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ABSTRACT
In this paper, we propose a framework called Contego-TEE to secure
Internet-of-Things (IoT) edge devices with timing requirements
from control spoofing attacks where an adversary sends malicious
control signals to the actuators. We use a trusted computing base
available in commodity processors (such as ARM TrustZone) and
propose an invariant checking mechanism to ensure the security
and safety of the physical system. A working prototype of Contego-
TEE was developed using embedded Linux kernel. We demonstrate
the feasibility of our approach for a robotic vehicle running on an
ARM-based platform.

1 INTRODUCTION
Today’s embedded and cyber-physical systems are ubiquitous. A
large number of critical cyber-physical systems (e.g., autonomous
cars, drones, manufacturing systems, power grids, industrial control
systems, etc.) have real-time (RT) properties (e.g., strict timing and
safety requirements). The current trend is to connect embedded RT
devices to the Internet (e.g., remote surveillance over wired/wireless
network, connected vehicles through cellular wireless networks,
etc.) and this gives rise to the real-time Internet-of-Things (RT-
IoT) [1]. RT-IoT systems are intended to provide better user
experience through stronger connectivity and better use of next-
generation embedded devices, albeit with safety-critical properties.
RT-IoT systems are also increasingly becoming targets for cyber-
attacks. A number of high-profile attacks on RT-IoT systems, e.g.,
denial-of-service (DoS) attacks mounted from IoT devices [2],
Stuxnet [3], attack demonstrations by researchers on medical
devices [4] and automobiles [5] have shown that the threat is
real. Successful cyber attacks against such systems could lead to
problems more serious than just loss of data or availability because
of their critical nature [1]. Enabling security in RT-IoT, however,
is often more challenging than generic IoT due to additional
timing/safety constraints imposed by RT-enabled systems.

Since RT-IoT systems are largely based on sensing and actuation,
any false/spoofed command to the actuators can disrupt the normal
operation of the physical plant. Commonly used open-source RT-
IoT development stacks (such as Linux) do not provide explicit
control over actuation signals. For instance, if the application task
obtains permission (say, root or other privileged user access) to the
peripheral interface (e.g., I2C [6]), it is possible to send arbitrary
signals to the actuators. Let us consider an industrial robotic arm
(running an embedded variant of Linux in an ARM Cortex-A53
platform [7]) that periodically opens and closes the grip to drop off
and pick up objects in an assembly line. The movement of the grip
is controlled by a servo. We use an open-source implementation [8]
for this robotic arm where each operation is represented by a pulse
value x (where x = 577 for grip_open() and x = 420 for grip_close())
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Figure 1: Demonstration of a control spoofing attack on a
robotic control arm running embedded Linux.

and each pulse sends the following four 1 byte command sequences
to the servo registers: 0 & 0xFF, 0 >> 8, x & 0xFF, x >> 8. An
example of a spoofing attack for this control arm is presented in
Fig. 1 (x-axis is the servo access sequence number and y-axis is
the corresponding pulse value). Without any actuation command
validation, it is possible to send arbitrary (high) pulses to the
servo registers that prevents the grip from picking up/dropping
objects (showing in the shaded region, see the top figure) that is
not otherwise possible when our scheme (called Contego-TEE, see
§3 for details) is enabled (bottom figure).

Our proposed framework, Contego-TEE, prevents the sending
of malicious/undesired commands to physical actuators and
ensures safety of the system. Specifically, we use the concept of
Trusted Execution Environments (TEEs) [9] available in commodity
processors (e.g., ARM TrustZone [10], Intel SGX [11]) to ensure that
our protection mechanisms can not be disabled even if the host OS
is compromised. We develop a rule-based invariant checking and
access control mechanism as well as design-time (schedulability)
tests to ensure timing and safety requirements of the system.
Contego-TEE specifically designed for legacy systems developed
with Commodity-Off-The-Shelf (COTS) components and does not
require any modification to the application code/logic.

In this paper we present the following contributions.

• A new framework called Contego-TEE to secure COTS-based
RT-IoT systems against attacks that spoof control signals
(§3.1).

• A runtime, rule-based invariant checking mechanism as well
as design-time analysis to ensure security (and safety) of the
physical plant (§3.2).

• An open source implementation and patch to the (embedded)
Linux kernel that includes the Contego-TEE functionality
(§4.1).

We use ARM TrustZone as a TEE and implemement our solution
in an ARM Cortex-A53 board (i.e., Raspberry Pi [7]). We also
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demonstrate the viability of our approach using a COTS rover
platform (§4.2).

2 SYSTEM AND ADVERSARY MODEL
In the following, we first present background on RT-IoT systems
and give an overview of a TEE-based architecture (e.g., ARM
TrustZone).We then introduce our systemmodel (§2.2) and describe
our assumptions on the adversarial capabilities (§2.3).

2.1 Preliminaries
2.1.1 RT-IoT Systems: RT-IoT systems comprise IoT edge

devices with RT capabilities. RT systems are those that, apart from
a requirement for functional correctness, require that temporal
properties be met as well. These temporal properties are often
presented in the form of deadlines. The usefulness of results (say
the performance of the actuators) produced by the system drops
after the passage of a deadline. Some of the common properties and
assumptions related to RT systems include [1]: (i) periodic/sporadic
execution of set of tasks1, (ii) strict timing and safety requirements,
(iii) well-characterized execution time (e.g., execution times in the
worst-case are known for all loops), (iv) limited resources (e.g.,
memory, processing power and energy).

RT-IoT systems are often designed based on the periodic task
model [12], i.e., each task τi is characterized by a tuple: (Ci ,Ti ,Di )
whereCi is theWorst Case Execution Time (WCET),Ti is the period
(e.g., inter-invocation time) and Di is the deadline. Schedulability
tests [13, 14] are used to determine if all tasks in the system meet
their respective deadlines. If they do, then the taskset is deemed to
be ‘schedulable’ and the system is considered safe.

2.1.2 TEE and ARM TrustZone: TEE is a set of hardware and
software-based security extensions where the processors maintain
a separated subsystem in addition to the traditional OS components.
TEE technology has been implemented on commercial secure
hardware such as ARM TrustZone [10] and Intel SGX [11]. In this
work we consider TrustZone as the building block of Contego-
TEE due to wide acceptability of ARM processors for embedded
IoT systems – although our framework can be ported into other
TEE platforms without loss of generality. ARM partnered with
GlobalPlatform and has defined new TEE APIs [15]. TrustZone
encompasses the following major features [16]: (a) safe and secure
boot (to ensure all software components are in a trusted state before
launching the OS); (b) isolated execution of critical applications
(i.e., in a secure enclave) and (c) protection for trusted applications
data (in terms of integrity and confidentiality).

ARM TrustZone contains two different privilege blocks: (i)
Normal World (NW) and (ii) Secure World (SW). The NW is the
untrusted environment running a commodity untrusted OS where
SW is a protected computing block that only runs privileged
instructions. SW in TrustZone defines the memory regions that
can only be accessed by privileged instructions and the code that
runs in the SW has higher privilege than the NW. Hardware logic
ensures that the resources in the secure world can not be accessed
from the normal world (e.g., if the code running in the NW tries to
access protected memory regions, TrustZone throws a hardware
1The ‘task’ in RT-IoT systems can trivially be mapped with the concept of process or
thread in general-purpose OSes.
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Figure 2: High-level schematic of a RT control system.

exception). The SW instructions are triggered when a specific flag in
the processor e.g., Non-secure (NS) bit in the Secure Configuration
Register (SCR) is not set. These two worlds bridge via a software
module referred to as Secure Monitor. The context switch between
the NW and SW is performed through a Secure Monitor Call (SMC).

In this work we use the TrustZone functionality to prevent the
malicious commands from being sent to the actuators (See §3 for
details). We now present our system and adversary model.

2.2 System Model
In Fig. 2 we present a high-level illustration of a RT control system.
We consider a set of periodic RT control tasks Γ = {τi ,τ2, · · · ,τN }
that execute on single processor2. The physical system consists of
a set of M actuators (e.g., servo, motor, buzzer): {π1,π2, · · · ,πM }.
RT tasks periodically issue commands to the actuators to control
physical entities (e.g., wheel, propeller, alarm, robotic grip, etc.). We
assume that each task is allowed to access a subset of peripherals.
We represent this access permission as an N ×M Boolean matrix
A = [aik ] where aik = 1 represents task τi can send commands to
actuator πk . We also assume that the RT tasks finish computation
before their deadline, e.g., the tasks are schedulable3.

2.3 Adversary Model
We consider the following adversarial capabilities: (a) Integrity
Violation – an adversary may insert a malicious task (that
respects the RT guarantees) and/or modify exiting control logic
to manipulate actuator commands and control system behavior
in undesirable ways; (b) Denial of Service (DoS) – the attacker
may take control of the RT task(s) and destabilize the physical
plant e.g., by sending multiple control requests in a burst that may
result in a malfunctioning actuator, or worse, damage the actual
hardware/actuator and even threaten the safety of the system.

The attacker can gain privileged (e.g., root) access to perform
adversarial actions (e.g., to spoof control signals). We do not make
any assumptions as to how the compromised tasks enter the
device. For instance, bad software engineering practices leave
vulnerabilities in the systems [17]. When the system is developed
using a multi-vendor model [18] (where its components are
manufactured and integrated by different vendors) a malicious
code logic may be injected (say by a less-trusted vendor) during
deployment. The adversary may also induce end-users to download
the modified source code, say by using social engineering

2Since majority of the RT-IoT edge devices still use single core chips due to simplicity
and determinism.
3In the Appendix we present formal expressions to determine schedulability of the
tasks.
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.
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Figure 3: Overview of Contego-TEE system design (left) and high-level control flow of RT tasks in Contego-TEE (right).

tactics [19]. We also assume that the attackers do not have
any physical access (e.g., they can not physically control/turn
off/damage the actuators).

3 ACTUATION MONITORING FRAMEWORK
In the following we first introduce the Contego-TEE framework
(§3.1). We then present mechanisms to detect any abnormal control
commands issued by (rogue) tasks and analyze schedulability
conditions that ensures our (invariant) checking techniques can be
enforced at runtime (§3.2).

3.1 Overview and Architecture
As mentioned earlier, to secure RT-IoT platforms we propose a
TEE-based architecture that monitors actuation commands send
to the physical entities. At the high-level, our design is based
on the Simplex architecture [20]. Researchers use Simplex-based
architecture for time-critical cyber-physical systems to provide
fault-tolerance [21, 22] and recently, security [23–25]. A Simplex
system consists of the followingmain components: (a) under normal
operating conditions a High-Performance (complex) Controller
actuates the physical plant (such a controller may be unverifiable
due to its complexity, yet it must actuate a safety-critical system);
(b) if, during operation the system state becomes unstable (e.g.,
it is in danger of violating a safety condition), a Safety Controller
takes over and (c) the exact switching behavior is implemented by
a Decision Module that decides which controller output will drive
the plant. In our context, we use a trusted (and verified) computing
module (this is analogous to the safety controller) executed in a
secure enclave (viz., SW) and ensures that even if the (potentially
untrusted) NW RT tasks are compromised, an adversary can not
send false signals to the physical actuators.

In Fig. 3 we illustrate the high-level overview of Contego-TEE
design and control flow of the RT tasks. Contego-TEE contains the
following essential components: (a) a TEE-enabled SoC (System-
on-Chip) such as those supported by ARM TrustZone [10] (block
2○ in the figure); (b) an Enclave Client (block 7○) that is used to
communicate between NW and SW and (c) an Invariant Checker
(block 8○) that is used to monitor (and validate) the actuation
commands. The physical plant ( 1○) is connected with sensors ( 2○)

and actuators ( 3○) and controlled by the (potentially vulnerable) RT
tasks ( 5○). RT tasks execute in untrusted NW and issue system calls
(e.g., read(), write(), ioctl()) to access the sensors/actuators
using specific interface such as I2C [6] and/or SPI [26]. Contego-TEE
ensures that RT tasks cannot directly send any actuation commands
(e.g., it breaks the bridge between 6○, 2○ and 4○). We do this by
placing a dispatcher (e.g., enclave client) between the peripheral
subsystem and actual hardware. As a result, before issuing any
command to the physical actuators, it will be validated by our
trusted application (e.g., invariant checker) running inside the
secure enclave (i.e., in the SW). In particular, when a RT task τi
sends an actuation command xtik to any peripheral πk at time t ,
enclave client traps those request and forwards the command to the
invariant checker using SMC. Depending on the access permission
matrix A and current system state S(t), invariant checker then
decides whether the given command xtik can be issued to the
actuator πk (refer to §3.2 for details). In Contego-TEE, both the
enclave client and invariant checker operate in the privileged mode
(e.g., kernel space) so that it can directly control low-level hardware.
By using the enclave client (to invoke context switching) and
invariant checking mechanisms, Contego-TEE ensures that even if
the NW RT tasks are compromised, an adversary can not send false
signals to the actuators. We note that unlike NW RT tasks that may
perform other computation, the invariant checker contains a small,
verified, code blocks that is used to monitor only actuation requests.
We also note that Contego-TEE does not require any application-
level modifications, e.g., developers can execute unmodified, existing
legacy RT tasks, using our Contego-TEE enabled OS-kernel (refer
to §4.1 for implementation/porting details).

3.2 Invariant Checking and Timing Analysis
3.2.1 Invariant Checking: In order to validate each actuation

command invoked by the RT tasks, Contego-TEE performs various
actions. One obvious access control mechanism is to ensure that
a task τi can access a given actuator πk only if the task has the
required permission (e.g., aik = 1). Contego-TEE therefore denies
all the actuation commands from tasks if the corresponding access
flag is zero. However, if the attacker can compromise a task with
legitimate access (to a given set of actuators) then the (victim)
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Table 1: Applicability of Contego-TEE for Various RT-IoT Platforms

Platform Application
Domain

Actuators Possible Invariant Conditions* Response Remarks

Water/air
monitoring system

Home/industrial
automation

Buzzer, display (a) Send high pulse to buzzer only if water-level
is high/air quality abnormal/detect smoke; (b) do
not display alert if the system state is normal

IGNORE Ignore all commands that fail invariant
checking

Surveillance system Home/industrial
automation

Servo, buzzer (a) Trigger alarm only if there is an
impact/object detected in camera; (b) rotate
camera (using servos) only within allowable
pan/tilt angle

IGNORE Ignore all commands that fail invariant
checking

Infusion/syringe
pump

Health-care Motor, display (a) Drive the motor only to allowable
positions/rates (b) display only the amount of
fluid infused (e.g., obtained from motor encoders)

IGNORE Ignore actuation when the task tries to
infuse wrong amount of fluid

Robotic arm Manufacturing Servo, buzzer (a) Check the servo pulse sequences matches
with the desired (design-time) sequence; (b) do
not raise alarm if the pulse sequence is normal

IGNORE,
FAIL-SAFE

If mismatch, use the predefined
sequence; ignore other pulses using
rate-control rule

Robotic vehicle
(aerial/ground)

Manufacturing,
surveillance,
agriculture

Servo, motor (a) Check if the robot is following the mission;
(b) allow only predefined number of actuation
commands per period

IGNORE,
FAIL-SAFE

Ignore command using rate-control
rule. If it deviates from the mission,
use predefined command and/or state-
observations

*We omit mathematical expressions for readability.

task may send arbitrary commands to the actuators. Therefore in
addition to checking access matrix A, Contego-TEE also performs
checking of system invariants andmonitors the number of actuation
commands for a given time interval as we discuss below.

State Invariant Checking: Invariant checking [27] is useful to
detect control spoofing attacks. For a given RT-IoT platform we
do this by considering the availability of an invariant checking
function CheckInv(τi ,πk ) that predicts the actuation signal and
only allows access if the output of the function matches that of
the requested command. In particular, if a task τi sends actuation
command xtik at time t to any peripheral πk and the task has the
required permission (i.e., aik = 1), CheckInv(τi ,πk ) first obtains
system state S(t) by observing a set of signals Si = {s1, s2, · · · , sLi }
and decides whether xtik is valid for current state S(t). For example,
consider a warehouse water monitoring system where an alarm is
triggered only if the water level of the tank (measured by the sensor
sWL) is higher that a predefined threshold (θWL) and/or the water
temperature (sWT ) is not in expected range (i.e., [θ t1WT ,θ

t2
WT ]). We

represent this as the following invariant rule: INVW :: (sWL >

θWL) ∨ (sWT < [θ t1WT ,θ
t2
WT ]) → x = ON : x = OFF, e.g., Contego-

TEE will only allow the sending of the high pulse (i.e., x = ON) to
the alarm system (say a buzzer) only if the invariant conditions are
satisfied. We note that since Contego-TEE operates at the kernel-
level, it can directly access raw signals without any interaction of
NW RT tasks or other (user space) libraries.

Rate Control: Note that since RT systems are deterministic by
design, the (worst-case) number of actuation requests can be
bounded at design time [28]. Therefore, if a task τi tries to access
actuator(s) more than expected within a given time interval (e.g.,
Ti ), it may be indication of a possible attack. In such cases Contego-
TEE will limit subsequent access requests from τi and prevent the
sending of actuation commands to the hardware. We enforce rate
control using the following invariant rule: INVRCik :: ∆ik (w) <
θ̂ik → CheckInv(τi ,πk ) : ignore, i.e., Contego-TEE ignores further
actuation commands if the number of requests ∆ik (·) from any job
of τi within the (relative) time window w ∈ [0,Ti ] is exceeded
a design-time threshold θ̂ik . Such a rate control mechanism is

specially useful to defend against DoS attacks where an attacker
sends multiple actuation commands in a burst (say to quickly
change the speed of wheels/propellers in robotic ground/aerial
vehicles, abruptly move robotic arms, falsely toggles buzzers, etc.)
to disrupt normal operations of the system.

3.2.2 Response Mechanisms: When there exists a mismatch
between output of the CheckInv(·) and the requested actuation
commands, Contego-TEE makes use of the following strategies to
keep the physical system safe.

• IGNORE: this strategy prevents the execution of any actuation
commands requested by RT tasks. Hence, actuators will not receive
any signals from Contego-TEE and will continue to operate using
the last known (uncompromised) commands. Contego-TEE will
also ignore commands if the task makes multiple requests in a short
time window (e.g., by using rate control rule).

• FAIL-SAFE: while the IGNORE strategy ensures that actuators
will not get any abnormal signals, ignoring actuation commands (for
a long time) may not be acceptable for highly dynamic systems such
as unmanned ground/aerial vehicles (e.g., it may crash). Therefore,
Contego-TEE also allows operation of a FAIL-SAFE mode, i.e., if it
finds any mismatch, it ignores the requests from RT tasks and sends
the predetermined (and/or based on the output of CheckInv(·))
commands to make the system safe/operational. As an example, if
there is a sudden change in the propeller speed of a UAV, the FAIL-
SAFE strategy sets a safe, predefined speed, based on the current
state of the UAV.

Depending on the target system, both of the above strategies
may be required to keep the physical system operational. We
note that invariant checking and response mechanisms are
application dependent. Contego-TEE provides flexibility for the
system engineers to develop appropriate mechanisms depending
on the application requirements. In Table 1 we summarize possible
invariant conditions and response mechanisms that are applicable
for various RT-IoT platforms – however, this is by no stretch meant
to an exhaustive list.

3.2.3 Schedulability Analysis: In order to perform invariant
checking and execute the response mechanisms at runtime, we
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Table 2: Summary of the Implementation Platform

Artifact Configuration

Platform Broadcom BCM2837 (Raspberry Pi 3)
CPU 1.2 GHz 64-bit ARM Cortex-A53
Memory 1 Gigabyte
Operating System Linux (NW), OP-TEE (SW)
Kernel version Linux kernel 4.16.56,

OP-TEE core 3.4
Peripheral interface I2C
Boot parameters dtparam=i2c_arm=on,

dtparam=spi=on

need to ensure that our framework should not cause delays and the
timing requirements of RT tasks are satisfied (e.g., they complete
execution before deadline). We therefore develop design-time
schedulability tests that ensure the taskset is schedulable (refer to
the Appendix for details). For instance, the RT task τi is schedulable
in Contego-TEE if the Worst Case Response Time (WCRT) RT EEi
is less than deadline, i.e., RT EEi = CT EEi + IT EEi ≤ Di , where
CT EEi is the task WCET (including the time for world switching
and invariant checking) and IT EEi is the interference4 from other
tasks. The taskset Γ is referred to as schedulable if all the tasks are
schedulable, viz., RT EEi ≤ Di ,∀τi ∈ Γ.

4 EVALUATION
In this section we first present the implementation details of
Contego-TEE (§4.1) and then show the viability of our approach
using a case-study on a robotic vehicle (§4.2). Table 2 summarizes
the system configurations and implementation details.

4.1 System Implementation
We implemented a proof-of-concept prototype of Contego-TEE
on Raspberry Pi 3 (RPi3) Model B [7] (equipped with 1.2 GHz
64-bit ARMv8 CPU and 1 GB RAM). We selected RPi3 as our
implementation platform since (a) it supports ARM TrustZone
and (b) previous research has shown feasibility of deploying
multiple IoT-specific applications on RPi3 [16, 19, 29–31]. We
developed Contego-TEE using theOpen-Portable Trusted Execution
Environment (OP-TEE) [32] software stack that uses GlobalPlatform
TEE APIs [15] to provide TrustZone functionality. OP-TEE provides
a minimal secure kernel (called OP-TEE core) that can be run in
parallel with the NW OS (e.g., Linux). In particular, we used Ubuntu
18.04 filesystem with a 64-bit Linux kernel (version 4.16.56) as the
NW OS and our invariant checker is running on OP-TEE secure
kernel (version 3.4). The enclave client was statically built with the
Linux kernel. In order to implement the enclave client, we extended
the Linux TEE interface (/linux/drivers/tee/) and enabled
SMC from Linux kernel space5. We implemented the invariant
checker as an OP-TEE kernel-level trusted application6 (e.g., in
/optee_os/core/arch/arm/pta/). In our current implementation
Contego-TEE supports actuators that are controlled via the

4In RT scheduling theory, the term ‘interference’ refers to the amount of time (from
release to deadline) the task τi is ready but can not be scheduled due to execution of
other tasks.
5Since GlobalPlatform APIs only support SMC from user space.
6This is known as PTA (Pseudo Trusted Application) in OP-TEE terminology.

I2C interface. Specifically, we modified the built-in structure
i2cdev_fops (e.g., in /linux/drivers/i2c/i2c-dev.c) with our
enclave client functions that is then switch the control to the
invariant checker (e.g., by using SMC). Our implementation code is
available in a public repository [33].

4.2 Case-Study: Robotic Vehicle
We implemented Contego-TEE in a COTS rover (named GoPiGo2,
manufactured byDexter Industries [34]) that can be used inmultiple
IoT-specific applications such as remote surveillance, agriculture,
manufacturing, etc. [35]. The rover is equipped with two optical
encoders that are connected to the motors (e.g., actuator in this
setup): it can turn left by switching off the right encoder and vice-
versa. The detailed specifications of the rover are available on the
vendor website [34].

4.2.1 Results. We first demonstrate how Contego-TEE can be
used to protect such systems from actuation attacks and then
measure the performance overheads.

Security Analysis: For the following experiments, we conducted
a line following mission where the robot steered from an initial
location to a target location by following a line. The controller
task was running as a NW Linux application and executed
vendor-provided PID (Proportional–Integral–Derivative) closed-
loop control [36] to track the planned path using the data received
from sensors. The rover used the following commands: fwd(), lft(),
rht(), st_sp(δ ) for navigating the rover forward/left/right and set
the speed to δ , respectively, where each command sent a 5-byte
value to the actuator registers (e.g., wheel encoders/motors) using
the I2C interface. For this mission we defined the following three
invariant conditions7 that were used to monitor control signals
(e.g., cmd): INV1 :: sLF < −θ → cmd = st_sp(δ1) ∧ rht(),
INV2 :: sLF > θ → cmd = st_sp(δ1) ∧ lft() and INV3 :: sLF ∈
[−θ ,θ ] → cmd = st_sp(δ2) ∧ fwd() where sLF was the readings
from the sensor, θ = 2500 was a vendor-provided threshold (e.g., to
follow the line) and δ1,δ2 ∈ [0, 255] were used to set the speed of
the rover.We show the case where the access flag is set (e.g., aik = 1)
since Contego-TEE will trivially deny requests if the corresponding
flag is zero. In our experiments we used both the FAIL-SAFE and
IGNORE (to enforce rate control) strategies. For each actuation
signal, our invariant checker matches with the desired signal and
choose the appropriate strategy as we present in the following.

In Fig. 4a we illustrate our invariant checking mechanism with
FAIL-SAFE strategy. The x-axis of the figure shows the time (e.g.,
count of the controller job) and the y-axis is the total distance
travelled by the rover (e.g., readings from the encoders). In order to
demonstrate malicious behavior, we followed a strategy similar to
that considered in prior work [24, 25, 35, 37]. In particular, during
program execution, we injected a logic bomb (during the shaded
region in Fig. 4a) and sent erroneous commands to the controller.
In this case, during the control spoofing attack, the rover deviated
from the mission (e.g., PID control loop) and falsely sent commands
to turn off one of the motors. As a result, when Contego-TEE was
not active, the rover was not following the line and the encoder

7We manually inspected the vendor-provided control code and translated them into
invariant conditions.
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Figure 4: Illustration of Contego-TEE under (a) control
spoofing and (b) DoS attacks. Contego-TEE prevents the
sending of malicious commands to the motors and ensures
that the rover moves at a steady speed.
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Figure 5: Runtime of rover control tasks with and without
Contego-TEE: (a) for 99-th percentile and (b) worst-case.
Contego-TEE increases the execution time by upto 43.47 ms
(worst-case) and 23.31 ms (99th-percentile).

readings (i.e., traversed distance) remained same (see the maroon
line in the figure). We next executed the same code with Contego-
TEE enabled (green curve in the figure). In this case, when each
control command was issued, our checker followed the invariant
conditions (e.g., INVi , 1 ≤ i ≤ 3) and sent desired commands to the
motors (and hence the rover was moving as expected).

We next show the effect of our rate control mechanism (Fig. 4b).
In this experiment, when the DoS logic bomb was triggered (shaded
region in the figure) it sent multiple requests to increase the speed
of the rover. When Contego-TEE was not enabled, this caused the
rover to move faster and hence there was a rapid increase in the
encoder readings (e.g., maroon line, shaded region in the figure). In
contrast, when Contego-TEE was active (green line), it disallowed
multiple increase speed requests per period (e.g., according to
IGNORE strategy) and hence the rover followed the line with a
steady speed.

Overhead Analysis: To measure the runtime overheads we
conducted experiments with the vendor-provided control tasks [34]
as a benchmark (Fig. 5). In this setup our invariant checker was
following a rate control policy and ignored more that one actuation
request per period (200 ms). The x-axis of Fig. 5 shows the control
tasks and y-axis represents execution time (a) when Contego-TEE
is not enabled (dark bar) and (b) with Contego-TEE enabled (light

bar). We present the timing results for 99th percentile (Fig. 5a)
and worst-case (Fig. 5b). The timing values were measured using
the Linux clock_gettime() system call with CLOCK_MONOTONIC
clock parameter and we present data from 10, 000 trials. As we
see from the figure, Contego-TEE increases the execution time
– this is expected due to (world) context switching as well for
invariant checking. From our experiments we found that Contego-
TEE increases execution times by (i) 34.11 to 43.47 ms (worst-case),
(ii) 22.87 to 23.31 ms (99-th percentile) and (iii) 19.55 to 19.60
ms (average-case) for the various control tasks and hence can be
used with 15 Hz (or slower) controllers (for this setup). This extra
overhead results in increased security and we expect this could be
acceptable for various RT-IoT platforms.

5 RELATEDWORK
Enhancing security in time-critical cyber-physical systems is an
active research area (see the related survey [1]). Perhaps the
closest line of work to ours is PROTC [31] where a monitor
in the SW enforces secure access control policy (given by the
control center) for some peripherals of the drone and ensures
that only authorized applications can access certain peripherals.
Unlike our scheme, PROTC is limited for specific applications
(e.g., aerial robotic vehicles) and requires a centralized control
center to validate/enforce security policies. In early work we
proposed mechanisms to secure legacy time-critical systems [38–
40]. Researchers also proposed anomaly detection approaches for
robotic vehicles [35, 37, 41]. However these (prior) approaches do
not provide any response mechanism and are vulnerable if the
adversary can compromise the host OS.

There exist various hardware/software-based mechanisms and
architectural frameworks [19, 23–25, 42, 43] to secure RT-IoT
systems. However those frameworks are not designed to protect
against control-specific attacks and may not be suitable for systems
developed with COTS components. There also exist large number
of research for generic IoT systems as well as use of TrustZone
to secure traditional embedded/mobile applications (too many to
enumerate here, refer to the related surveys [10, 44–46]) – however
the consideration of time-critical and control-centric aspects of
RT-IoT applications distinguish Contego-TEE from other research.

6 CONCLUSION
In this paper we presented a new framework named Contego-TEE
that enhances the security and safety of the RT-IoT systems. We use
a combination of trusted hardware, intrinsic real-time nature and
domain-specific characteristics of such systems to detect control
intrusions and prevent the physical plants from being misbehaved
under attacks. We believe our framework is tangential and can be
incorporated into multiple RT-IoT and cyber-physical domains.
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APPENDIX
Response Time Analysis for RT Tasks
Our schedulability test is based on the fixed-priority response time
analysis proposed in RT literature [13]. Let Ni be the number of
actuation request for τi and Coi is the additional computation time
due to world switch and invariant checking. Then the WCET of
τi can be represent as CT EEi = Ci + NiC

o
i . Since our enclave

client and invariant checker can serve one actuation request at
a time (e.g., an atomic process), τi may be delayed due to processing
requests of lower priority tasks. Let BT EEi = max

τj ∈lp(τi )
NjC

o
j denote

the ‘blocking’ factor from tasks that are with lower-priority that
τi (denoted as lp(τi )). We note that the maximum computational
demand for a given task τj in any interval length 0 ≤ w ≤ Tj can
be no more than the maximum execution time required by one
job of τj multiplied by the maximum number of jobs of τj that
can execute in that interval [13, 14]. The maximum interference
experience by τi from other tasks for an intervalw can be expressed
as: BT EEi +

∑
τh ∈hp(τi )

⌈
w
Th

⌉
CT EEh where hp(τi ) denotes the set of

tasks with a priority higher than τi . Therefore, we can calculate the
response time of τi (denoted as ri ) as follows:

ri = C
T EE
i + BT EEi +

∑
τh ∈hp(τi )

⌈
ri
Th

⌉
CT EEh . (1)

The WCRT then can be obtained by solving this recurrence using
an iterative fixed-point search, e.g., RT EEi = r

(α )
i = r

(α−1)
i for

some iteration α with initial condition r
(0)
i = 0. The iteration is

guaranteed to be converged if we assume that the total processor

utilization (i.e.,
∑
τi

CT EE
i
Ti ) is less than 1 [47]. The taskset is considered

as ‘unschedulable’ if there exists an α such that r (α )i > Di . Such
unschedulability result will hint the designers to update parameters
(e.g., periods, number of tasks, invariant checking policies) to
incorporate Contego-TEE framework for the target system.
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