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Statistical abstraction for multi-scale spatio-temporal

systems

MICHALIS MICHAELIDES, JANE HILLSTON, and GUIDO SANGUINETTI, School of Infor-

matics, University of Edinburgh, United Kingdom

Modelling spatio-temporal systems exhibiting multi-scale behaviour is a powerful tool in many branches of

science, yet it still presents signi�cant challenges. Here we consider a general two-layer (agent-environment)

modelling framework, where spatially distributed agents behave according to external inputs and internal

computation; this behaviour may include in�uencing their immediate environment, creating a medium over

which agent-agent interaction signals can be transmitted. We propose a novel simulation strategy based on a

statistical abstraction of the agent layer, which is typically the most detailed component of the model and

can incur signi�cant computational cost in simulation. The abstraction makes use of Gaussian Processes, a

powerful class of non-parametric regression techniques from Bayesian Machine Learning, to estimate the

agent’s behaviour given the environmental input. We show on two biological case studies how this technique

can be used to speed up simulations and provide further insights into model behaviour.

CCS Concepts: • Theory of computation→ Abstraction; • Applied computing→ Systems biology;
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1 INTRODUCTION

Science is often tasked with examining natural or arti�cial systems characterised by spatial depen-
dence and complex dynamics. The complexities that these characteristics induce on the emergent
system behaviour mean that detailed models are often constructed in order to study them through
simulation. This approach has been used extensively in applications, ranging from cyber-physical
systems to collective adaptive systems of human behaviour and to cellular systems. Nevertheless
there is still room for advancement through automating the ability to recover simpler models that
still capture the dynamics with su�cient faithfulness, but which may have a lower computation
cost. This is especially true for systems involving onerous stochastic simulations [Dada and Mendes
2011; Gilbert et al. 2015].
We consider here a general framework which encompasses a large class of spatio-temporal

systems. In this framework, multiple identical agents are distributed in space over an external �eld.
The agents perceive the �eld locally and perform internal stochastic computations to determine
their subsequent behaviour, such that their actions are in�uenced by their environment. We also
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:2 Michaelides, M. et al.

allow the agents to act locally upon the external �eld, enabling the latter to become a medium for
signals between agents. This framework subsumes a wide range of systems, from swarm robots
performing a task in space, to bacteria exploring a nutrient �eld, or agents responding to distress
signals.

In this paper, we propose a method to replace expensive stochastic parts of the model with input-
output maps estimated via a machine learning procedure. We focus on a particular macro-scale
behaviour as output from the model, and devise a statistical abstraction of the system in order to
produce a simpler system which preserves the macro-scale behaviour. Crucially, we do not care
for the detailed internal state of the model, but only an abstracted version su�cient to capture
its qualitative behaviour. The abstracted state is formalised as the satisfaction output of a set of
logical properties evaluated on the original state. We estimate the necessary input-output relation
by learning a parameters-to-behaviours regression map using Gaussian Processes (GPs), a powerful
class of non-parametric Bayesian regression models. Our work is motivated by earlier work on
using GPs to learn e�ective characterisations of system behaviour [Bortolussi et al. 2015, 2016;
Michaelides et al. 2016].

This paper is an extension of our previous conference paper [Michaelides et al. 2017]. The major
extension compared to the conference version consists in adapting the statistical framework to
also handle agent-environment interactions, thereby closing the information loop and allowing
for environment-mediated agent-agent interactions. To illustrate this methodological extension,
we also provide as an additional case study a new model and abstraction for the chemotactic
aggregation of the social amoeba Dyctostelium discoideum. In addition to this methodological
extension, we also provide a more comprehensive explanation of the mathematical steps required
by our abstraction strategy, with the aim to make the method, and in particular the underpinning
machine learning, more accessible to a wider community.

The rest of the paper is organised as follows: we start with some background on spatio-temporal
systems (Section 2). The general framework for our statistical abstraction methodology is presented
in Section 3, followed by a brief discussion of related work (Section 4. We then present two case
studies describing applications of the abstraction on a model of E. coli chemotaxis and a model
of D. discoideum aggregation (Sections 5 and 6 respectively), which exemplify the methodology
and provide results assessing the quality and e�ciency of the abstraction. We conclude with a
discussion on the utility of the method and closing remarks about prospective expansion of the
work (Section 7).

2 BACKGROUND

2.1 Spatio-temporal agent models

We start by de�ning the class of spatio-temporal agent models we will consider in this paper. Let
D be a spatial domain (usually a compact subset of Rn with n = 2, 3), and let [0,T ] be the temporal
interval of interest. We de�ne the spatio-temporal �eld f : D × [0,T ] → R to be a real-valued
function de�ned on the spatial and temporal domains of interest. A spatio-temporal agent model is a
triple (D, f ,A) whereA is a collection of point agents whose location follows a stochastic process
which depends on the spatio-temporal �eld. Note that even though we realise that this is not the
most general case, as agents may be spatially extended, or directly interact with each other, a form
of agent-agent interaction is feasible within this framework. As illustrated through the case study
of a D. discoideum model in Section 6, the agents may a�ect the evolution of the spatio-temporal
�eld — this allows the �eld to transmit signals from agent to agent, enabling interaction.
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Statistical abstraction for multi-scale spatio-temporal systems :3

2.2 Multi-scale models

In many practical situations, one is interested in modelling not only the movement of the agents,
but also the mechanism through which sensing and decision making is carried out within each
agent. This naturally leads to structured models with distinct layers of organisation, with behaviour
in each layer informing the simulation that takes place at the layer above or below. We will assume
that the internal workings of the agent are also stochastic, and we model them here as a Markov
chain with a discrete state-space.

In the �rst case-study presented (Section 5), the internal workings of an agent are modelled by a
population Continuous Time Markov Chain (pCTMC). Note that the pCTMC is the internal model
for a single agent here, not for multiple agents. Formally, a pCTMC is de�ned as follows.

De�nition 2.1. A population CTMC is a continuous-time Markov chain [Norris 1998] with a
discrete state-spaceV , and an associated transition rate matrix Q . Each state V ∈ V counts the

number of entities of each type or “species" in a population, V ∈
{
N
0
}d

for d species. Transitions
in this space occur according to the rates given by Q .
The transitions can be regarded as occurrences of chemical reactions, written as

d∑

i=1

riVi
τ (V)
−−−→

d∑

i=1

siVi , (1)

where for every speciesVi , ri particles ofVi are consumed and si particles are created. The transition
rate τ (V) depends upon the current state of the system, and is the rate parameter of an exponential
distribution governing the waiting times for this transition. The above transition rates of allowed
reactions de�ne all elements of the rate matrix Q .

In the second case-study (Section 6), the internal workings of a cell are modelled by a Discrete
Time Markov Chain (DTMC). Formally, a DTMC is de�ned as follows.

De�nition 2.2. Consider a random variableXn which takes values from a countable state-space I =
{1, 2, 3, . . . }. Let π be a probability distribution over I , such that

∑
i ∈I πi = 1, and let P = (pi j : i, j ∈

I ) be a stochastic matrix, with
∑
j ∈I pi j = 1. A collection of random variables {Xn}n∈N0 constitutes

a discrete-time Markov chain with initial distribution π and stochastic matrix P (DTMC(π , P )), if and
only if it satis�es

• P(X0 = i) = πi , and
• P(Xn+1 = j | Xn = i, . . . ,X0 = k) = P(Xn+1 = j | Xn = i) = pi j .

A trajectory of length M drawn from such a DTMC is a particular realisation of the random
variable collection {Xn} ∀n ∈ {1, . . . ,M}.

2.3 Simulating multi-scale systems

Multi-scale spatio-temporal systems are in general amenable to analytical techniques only in the
simplest of cases. For the vast majority of real-world models, simulation-based analysis is the only
option to gain behavioural insights.
Simulation of spatio-temporal systems typically employs nested algorithms: having chosen a

time-discretisation for the spatial motion (which is assumed to have the slower time-scale), a spatial
step is taken. Then, the value of the external �eld is updated, and the internal model is run for
the duration of a given time-step with the new rates (corresponding to the updated value of the
external �eld). A sample from the resulting state distribution then determines the velocity of the
agent for the next time-step.
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:4 Michaelides, M. et al.

Clearly, this iterative procedure, while asymptotically exact (in the limit of small time discretisa-
tion), is computationally very demanding. This has motivated several lines of research in recent
years [Bortolussi et al. 2015; Goutsias 2005; Haseltine and Rawlings 2002; Rao and Arkin 2003].

3 METHODOLOGY FOR STATISTICAL ABSTRACTION

In a multi-scale system, output from a set of processes in one layer in the system is passed as input
to another layer; these processes are often computationally expensive. We present a methodology
to abstract away such a set of processes and replace them with a more e�cient stochastic map
from the input to the output, governed by an underlying probability function. We approximate
this probability function using Gaussian processes after observing many input-output pairs from
the processes to be abstracted. The output consists of truth evaluations of properties expressed
in logical formulae, which capture some behaviour of the system that is to be preserved by the
abstraction.

3.1 Statistical abstraction framework

Consider a Markov chain S , which given an initial state s0, running time ∆t , and input q ∈ RD

which completely determines transition rates, generates a trajectory s[0,∆t ]. At each time step n in

the simulation of a multi-scale system, the trajectory s
(n)

[0,∆t ]
is checked for satisfaction of a logical

property resulting in output y(n) = f
(
s
(n)

[0,∆t ]

)
, y(n) ∈ {⊤,⊥}. For the next time step, the last state

in the Markov chain is kept as the new initial state (i.e. s
(n)
0 = s

(n−1)
∆t

), and with new input q(n) ∈ RD

to determine transition rates the process is repeated. This layer of the multi-scale system can
therefore be described as a set of operations at each time step n:

S
(
s
(n)
0 = s

(n−1)
∆t
,∆t , q(n)

)
= s
(n)

[0,∆t ]
; (2)

f
(
s
(n)

[0,∆t ]

)
= y(n). (3)

Note that we consider a single property here for simplicity (so a single binary value), but one could
generalise to multiple properties, and hence, multi-valued output. This output then becomes input
to a higher layer in the multi-scale system.

Our goal is to construct a system S̃ that is cheaper to simulate, whose output will be consistent
with the original system S . Since the system is stochastic, consistent refers to having the same
probability distribution for the output random variable y(n) given the same input q(n) and following
previous output y(n−1). Fundamentally, we seek to approximate the (generally) non-Markov process
of outputs {y(n)} with a Markov one. To describe the abstracted system, we write:

S̃
(
y(n−1), q(n)

)
= y(n). (4)

Replacing the initial state s
(n)
0 = s

(n−1)
∆t

input with the previous output y(n−1) allows us to substitute

the whole layer of �ne operations (2, 3) with the cheaper abstracted system S̃ (4), unburdening the
multi-scale system. We regard this abstracted system to be a stochastic map from the internal state
of the system, now abstracted to the last outputy(n−1), and some external input q(n), to a new output
y(n). The latter being a discrete random variable, the task is to estimate a probability distribution
over the output domain from which to sample the output. Since we expect this distribution to
depend upon the previous output y(n−1) and external input q(n), we use Gaussian process regression
with an appropriate observation likelihood to estimate an underlying probability function Ψ(y, q)

which governs the output of S̃ .
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It follows that the abstraction will become more accurate the faster the Markov chain S mixes,
since dependence on the initial state of the chain will no longer matter — in fact, for fast enough
mixing times relative to ∆t , one could even drop the output feedback and produce stochastic
output y only given the input q. Thus, we expect the abstraction to work particularly well for the
components of a system which equilibrate faster than the others. For the cases we present below,
notice that the internal agent dynamics which determine motility are faster than the changes in
the environmental input that a�ects them.
In our general construction, the output of the system is taken to be a combination of boolean

satisfaction values for a set of properties. Owing to its discrete nature, the resulting abstraction
could be interpreted as a discrete-time Markov chain (DTMC) whose state-space comprises of every
output combination. Our task is then to determine transition rates for this DTMC to make its paths
consistent with output of the original system. If one wishes to increase accuracy, the DTMC can be
made to be of a higher order. A higher order DTMC means that a longer output history is retained
and a�ects the next output, and can therefore be expected to better approximate the original output
dynamics. In the two examples presented here, we construct a �rst-order DTMC for the �rst case
and a second-order DTMC for the second case.

3.2 Approximating the underlying probability function

There are many approaches one could take to infer the probability function Ψ(y, q), necessary
for the abstraction. Here we make use of Gaussian processes (GPs), a powerful non-parametric
regression method, originating in geo-statistics and signi�cantly extended in the realm of machine
learning. Consider a collection of stochastic variables {Y (x)}, where x lives in a continuous domain
X. Such a stochastic process is termed a Gaussian process i� any �nite set of variables {Y (xi ) :
xi ∈ X, i = 1, . . . ,N } in the collection, is normally distributed. Equivalently, a GP follows a normal
distribution over a separable Hilbert space of functions. This normal distribution can be conditioned
on a �nite number of (potentially noisy) observations of the function to be inferred, learning new
mean and covariance parameters. These are computable at any point in the domain and correspond
to the expected value of the function and associated variance at that point, respectively.

GPs are universal function approximators. The choice of covariance kernel determines the prior
over the space of functions considered, and thus a�ects how many observations are required to get
a good estimate of the underlying function.1 However, given enough observations, a GP with an
appropriate kernel will approximate any function within a particular family arbitrarily well. Here
we make use of the squared exponential, or Gaussian, kernel

k(x ,x ′) = σ 2 exp

[
−
1

2
(x − x ′)⊤M(x − x ′)

]
,

where σ is a scalar amplitude hyperparameter which indicates the magnitude of variation in
the function, and M = diag(ℓ)−2 is a diagonal matrix which scales each input dimension by a
characteristic length-scale, indicative of how correlated output is along that dimension. Intuitively,
functions that exhibit more frequent variations along a dimension i are more probable when ℓi
is smaller, and functions with larger amplitudes of variation are more probable when σ 2 is larger.
The squared exponential kernel above provides a prior over functions f : X → R, X ⊆ Rn , which
populate a dense subspace of L2(X); our GP should therefore be able to approximate arbitrarily
well any function in L2(X). We refer to [Rasmussen and Williams 2006] for a more comprehensive
account of GPs.

1If an oracle allowed observation of the function at any point in the input domain, we would be able to actively reduce

our uncertainty over it as desired (i.e. we could take observations where we deem lower uncertainty necessary). In the

application cases presented here the system is observed through entire simulations, and so we do not have this power.
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Since training observations are binary samples of a Bernoulli distribution (satisfaction true or false
of logical properties) or samples of a categorical distribution (in the case of multiple properties), but
GPs regress over a continuous unbounded variable, some adjustments to the standard GP regression
must be made for correct evaluation of the underlying probability function Ψ. GP regression with
its many variations for di�erent problem tasks is well described in [Rasmussen and Williams 2006].
The necessary adjustments which we adopt here are found in the Gaussian process classi�cation
(GPC) section of the book, and essentially amount to identifying that the class probability function
is Ψ, where the class is the property satisfaction outcome. A detailed explanation can be found in
Appendix A, available in the digital version of the paper.

As discussed, GP regression is a statistical approach to approximate an unknown function based
on a �nite set of input/ output instantiations. The quality of this approximation is a�ected by a
number of factors, including model choices such as the covariance function, but naturally the prime
determinant of approximation quality is the amount of data available. In this application, since the
data is generated by model simulations, we have a degree of control on how much data is available.
In practice, however, it is extremely di�cult to estimate a priori the size of data set required for a
certain accuracy; in the case study in Section 5 we present a practical empirical strategy to address
this problem.

4 RELATED WORK

When it comes to abstracting stochastic systems, there is a wide literature of methods to consider.
For the cases where the system is solely de�ned in terms of a population continuous-time Markov
chain (pCTMC) found normally at large counts, the chemical Langevin equation provides an ap-
proximation for the whole process, while systematic approximation methods for the moments of
the distribution of the process existed since the 60s [Gillespie 2000; Kampen 1961; Kurtz 1971].
Both approaches have seen considerable improvement over the last decades, increasing their range
of applicability [Schnoerr et al. 2017]. Other approaches to the problem of e�ciently solving bio-
chemical systems attempt to gradate species’ concentration levels to discrete intervals [Ciocchetta
and Hillston 2009; Palaniappan et al. 2017], thereby reducing the state-space of the underlying
CTMC to be solved, or employ time-scale separation if possible [Bortolussi et al. 2015; Goutsias
2005; Haseltine and Rawlings 2002; Rao and Arkin 2003].
All of the above are �rmly situated in the domain of pCTMCs and are agnostic to the demands

made of the process downstream — whether the pCTMC is checked for reaching a particular value,
or having maintained a value for a particular duration in some time interval, does not a�ect the
approximation these methods will yield. We take a more holistic view in this work and consider the
system to be abstracted as a component of a larger multi-scale system. As such, only a particular
aspect of the component is relevant to the multi-scale system, and it is this aspect which our
abstraction attempts to preserve.

We take the relevant component output to be the evaluation of a logical property on a stochastic
trajectory drawn from a Markov chain, which comprises the internal process of the component to
be abstracted. The transition rates of the chain depend on some input the component receives, and
this enables us to utilise results in [Bortolussi et al. 2016] to estimate the output given the input via
the method of Gaussian process regression.

5 THE CASE OF E. COLI CHEMOTAXIS

5.1 Background on chemotaxis in the Escherichia coli bacterium

Foraging is a central problem for microbial populations. The bacterium Escherichia coliwill normally
perform a random walk within a spatial domain where nutrient concentration is constant (e.g.
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m, which represents the methylation state of the ligand receptors and whose stochastic evolution
is dependent on the ligand concentration L. Sincem depends on past L concentrations the cell
has been in, one may think of it as a chemical memory of sorts which encodes the value of L at
previous times. The time comparison window is determined by how fast methylation happens —
faster methylation leads to a shorter memory.
Sneddon et al. [2012] then resolve the entire dependency chain of the chemotaxis pathway to

Equations 5 and 6. The motor switching rates k±(m,L) are given by the deterministic equation

k± =ω · exp

{
±

[
д0

4
−
д1

2

(
Yp (m,L)

Yp (m,L) + KD

)]}
, (5)

where

Yp (m,L) =α ·

[

1 + eϵ0+ϵ1m ·

(
1 + L/Ko�

TAR

1 + L/Kon
TAR

)nTAR
·

(
1 + L/Ko�

TSR

1 + L/Kon
TAR

)nTSR ]−1
.

The methylation process can be naturally modelled as a birth / death process with rates depending
on ligand concentration; again following [Sneddon et al. 2012] we take a �uid approximation of
this, yielding the Ornstein-Uhlenbeck (OU) process:

dm

dt
= −

1

τ
(m −m0(L)) + ηm(t). (6)

In the above stochastic di�erential equation (SDE), ηm = σm
√
2/τ Γ(t), Γ(t) is the normally dis-

tributed random process with 0 mean and unit variance, σm is the standard deviation of �uctuations
in the methylation level, andm0(L) is an empirically derived function whose output is the methyla-
tion level required for full adaptation at the current external ligand concentration L. The adaptation
rate τ , determines how fast methylation occurs and so, how long the ‘chemical memory’ of previous
L values is in the system. The constants τ , along withmb0 and α involved in them0(L) function (see
[Sneddon et al. 2012]), fully parametrise the methylation evolution. See [Vladimirov et al. 2010] for
reported values of constants used in Equation 5 and [Frankel et al. 2014; Sneddon et al. 2012] for a
detailed derivation of the results. Equations 5 and 6 couple the transition rates of the pCTMC in
Figure 1: Right, with the external ligand concentrations, and therefore fully describe the internal
model of the E. coli chemotactic response.

5.2 Simulating chemotaxis in E. coli

Simulations of the E. coli model outlined proceed along the general lines discussed in Section 2.3.
Given a value of the ligand �eld and a characteristic time-step ∆t , we draw samples of the SDE (6)
using the Euler-Maruyama method, a standard method for simulating SDEs.
In the F/M pCTMC system and following the reaction equation style, each species represents

a di�erent F/M conformation for a total of three species. With respect to the CTMC in Figure 1:
Right, the pCTMC counts how many F/M (molecules) there are of each conformation (species). The
following transitions (reactions) are said to occur:

(S_CW )
µ
−→ (C_CW ), (C_CW )

k+
−−→ (N_CCW ),

(S_CW )
k+
−−→ (N_CCW ), (N_CCW )

k−
−−→ (S_CW ).

(7)

Note that in the above rate transitions there are dependencies on both external (L) and internal
(m) states: k±(m,L), where L is an external input to the system (the external chemoattractant
concentration at the time) andm is the current methylation level (sampled from the OU process in
Equation 6 every ∆t ). Instead, the rate transition for (S_CW ) → (C_CW ) is �xed, µ = 5s−1.
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:10 Michaelides, M. et al.

where ϕ, ϕ ′ are the ϕRUN DTMC states at time-steps h, h + 1 respectively. Also, the boolean {⊥,⊤}
truth values of the properties have been mapped to the standard corresponding integers {0, 1} for
mathematical ease.
We recognise that a single step transition of this DTMC (ϕ ′ | ϕ,m,L) is the output y ′ | y, q pro-

duced by the abstracted layer S̃(y, q). Identifying the corresponding probability functionpϕ′=1 |ϕ (m,L)
as the underlying governing function Ψ(y, q) completes the setting of E. coli chemotaxis model
abstraction to the methodology framework given above (Section 3.1). Note that the OU process for
methylation is retained in the abstracted model as a parallel running process in the same layer of
the multi-scale system. The OU process outputm, together with the ligand concentration L (output
of a di�erent layer in the multi-scale system), constitute the input q. The altered simulation scheme
for this abstracted model is outlined in Algorithm 2 (Appendix B). Notice how Steps 5, 6 there
replace the more expensive Steps 22, 23 in Algorithm 1 (Appendix B).

Philosophical remark. One may observe that our method requires choosing which parts of the
model to abstract using our framework, and this is at the modeller’s discretion. In this case, for
instance, asking of the method to abstract a large pCTMC modelling the methylation process might
be feasible, but redundant, as we already know of a very e�cient abstraction for it: the Langevin
SDE for the OU process. It is therefore bene�cial and desirable to aid the method where possible
because we have particular insight. This agency re�ects our focus on inquiring whether a particular
interpretation of an accurate micro-scale model may provide a useful mechanism for observed
macro-scale behaviour, especially in areas where domain knowledge is lacking. In this sense, the
nature of the attempted abstraction puts di�erent questions to the model.

Constructing Ψ in E. coli chemotaxis. A central part of our abstraction methodology is estimating
an underlying probability function Ψ, which is used to produce stochastic output. In our E. coli
example model, a single DTMC transition (ϕ ′ | ϕ,m,L) corresponds to the output y ′ | y, q produced

by the stochastic mapping S̃(y, q). Therefore, S̃(ϕ, (m,L)) consists of sampling from a Bernoulli
distribution Bernoulli(p = pϕ′=1 |ϕ (m,L)) where pϕ′=1 |ϕ (m,L) is the underlying probability function
Ψ(y = ϕ, q = (m,L)) in the general formalism.

We approximateΨ(y, q) = pϕ′=1 |ϕ (m,L), usingGPs trained on observations frommicro-trajectories,
i.e. trajectories of the �ne F/M pCTMC system which are then mapped onto the property space,
ϕ ∈ {0, 1}, to serve as training data. The nature and training of the GPs is described in 3.2. Note
that the Bernoulli distribution likelihood, used here for Gaussian process classi�cation (GPC), is a
special case result because of both the binary y = ϕ output and the single observation of transitions
at a particular (m,L) parametrisation.2 Lifting these restrictions would result in the more general
multinomial distribution likelihood.
Observations are gathered from simulation of the original system, and are therefore generated

as follows. At a given (m,L) the pCTMC with transition rates k±(m,L) is at a state s0 which maps
onto ϕ(s0). After a time ∆t , the same CTMC is found at a state s∆t , which maps onto ϕ(s∆t ).
An observation ϕ(s∆t ) | ϕ(s0),m,L is in this way recorded for every parametrisation (m,L) the
bacterium has visited in the micro-trajectories.

Since the output of S̃ is binary (y = ϕ ∈ {0, 1}) we construct two probability functions Ψϕ (m,L) =
pϕ′=1 |ϕ (m,L). Each is approximated with a separate GPC function, where Ψ0(m,L) is trained on
observations of transitions originating from the ‘TUMBLE’ state (pϕ′=1 |ϕ=0(m,L)) and Ψ1(m,L)
using transitions from the ‘RUN’ state (pϕ′=1 |ϕ=1(m,L)). Notice that we need not estimate separate
functions for ϕ ′ = {0, 1}, since pϕ′=1 |ϕ (m,L) = 1 − pϕ′=0 |ϕ (m,L). Having access to these underlying

2It is highly unlikely to have more than a single transition since (m, L) are continuous values that constantly change for

the bacterium.
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The reported factor values do not include the costs paid for training the GP and producing the
training data. It takes ∼ 4min to train GPs for both Ψϕ functions, and ∼ 10min for producing 20000
observations of pCTMC transitions from the original �ne system (10000 training points for each
Ψϕ function). The relatively low times compared to simulation times, combined with the fact that
one only pays this once, upfront, make these costs negligible.

Accuracy evaluation. To evaluate how closely results from the abstracted model are compared
to the original one, we applied the Kolmogorov-Smirnov (KS) two-sample test [Chakravarty et al.
1967] to the population distributions of the two models at several time-points in the simulation,
as well as to the distributions of running and tumbling duration. We have 100 samples from each
population distribution since we simulated 100 cells. However, in the case of ‘Run’ and ‘Tumble’
duration distributions we have ∼ 60000 observations from each, because we aggregate observations
from the entire trajectory; we choose a random 1000 sample of these to perform the KS test.3 In
light of these di�culties, a di�erent test which quanti�es the distance between the two distributions
(e.g. Jensen-Shannon divergence) might be more useful here, but that requires analytic forms of the
distributions.

Inspecting Table 1 we �nd no KS distance higher than 0.2 indicating very similar distributions, as
supported by the associated high p-values. The latter do not allow rejecting the null hypothesis with
the current sample, which is that the samples originate from the same distribution. An exception is
the ‘Tumble’ duration distributions in the L1 ligand �eld, where the somewhat higher KS distance
of the large sample sizes gives an exaggerated p-value (see footnote 3).

We note how even in the case of the dynamic L3 �eld, the resulting population behaviour of the
abstracted model is preserved without any additional training necessary. The fact that the original
training occurred in a static �eld does not a�ect the ability of the abstract model to cope with a
dynamic one.

Table 1. KS two-sample test statistics, where the first (top) value reports KS distance and the second (in
brackets, bo�om) the associated p-value. One sample came from 100 trajectories of fine E. coli system
simulations, and the other from 100 abstracted system simulations. The first four columns show KS test
results of original and abstracted bacterial population distances from peak concentration at various times
t (shown in Figure 5). ‘Run’ and ‘Tumble’ columns compare the distributions of run and tumble durations
respectively for 1000 samples from each system. The last column reports the observed speed-up factor based
on running times and normalising for core utilisation.

Field t = 125s t = 250s t = 375s t = 500s Run Tumble Speed-up factor

Gaussian: 0.110 0.160 0.170 0.160 0.039 0.101
L1(®r ) (0.556) (0.140) (0.099) (0.140) (0.425) (7 · 10−5) 7.8

Linear: 0.010 0.150 0.170 0.130 0.022 0.014
L2(®r ) (0.677) (0.193) (0.100) (0.344) (0.967) (0.100) 9.4

Dynamic 0.140 0.070 0.140 0.080 0.047 0.039
Gaussian: L3(®r , t) (0.261) (0.961) (0.261) (0.894) (0.214) (0.425) 8.9

3 We sub-sample because the KS test p-value depends heavily on sample size. Even if two distributions generating samples

might be very close, in the limit of an in�nite sample size one approaches the true distributions. In such a case, the KS test

will reject that the two samples were produced by the same distribution, returning lower p-values as sample size increases

(for the same KS distance). We do not expect to produce the same distributions here since we are making approximations,

so comparing p-values for very large sample sizes is not of interest.
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transition probabilities depend on the sensed cAMP gradient. The latter provides an e�cient
method to compute the cAMP chemical �eld at a point in space and time γ (x, t), by utilising a
Green’s function (GF) method to solve the di�usion equation with degradation. Having melded the
two models, we verify that the aggregation behaviour between the agents under cAMP emission is
consistently observed and show that it is preserved in the abstraction.
We postulated that the motion of the amoeba cells can be well approximated by a simple

Markovian process: a Bernoulli trial which determines the alignment of the next pseudopodium to
be extended with respect to the cAMP gradient, based on the latest kind of pseudopodium (split/ de
novo) and its alignment to the direction of the cAMP gradient. Pseudopodia can either be a result
of splitting the current pseudopodium, or a de novo extension unrelated to the current one. The two
kinds induce probability distributions over the possible extension angles of the next pseudopod
with respect to the cAMP gradient. Since this dynamics is more complex than the simple run/tumble

dynamics of the E. coli model, and the agent layer model in [Eidi 2017] is already considerably
simpli�ed, we do not expect the abstraction to yield signi�cant computational gains. Nevertheless,
it is still a useful proof of principle of our methodology, and illustrates how additional insights can
be gained through identifying the necessary properties for preserving the qualitative behaviour of
this model, which rests upon interaction between agents. We �nd that we retain the in�uence of
agents on the environment and observe that the agent-environment-agent communication results
in the macro-scale behaviour of aggregating amoebae for the abstracted model as well, albeit with
some loss in accuracy.

6.2 Original model

The original model consists of two layers, the environment layer and the internal agent (D. Dis-
coideum cell) layer. The two are coupled such that output from one layer is the input to the other
layer and vice versa. The environment layer takes as input the cAMP emission history from each
amoeba cell, and evaluates cAMP concentration and its gradient at all agent positions. This serves
as input to the internal agent layer, which picks a direction for the cell to move and updates its
position accordingly; it also updates the cAMP emission history for the cell with the latest cAMP
emission value.

Environment layer. The model laid out in [Calovi et al. 2010] for cAMP di�usion in space and the
corresponding methodology is taken as the environment layer we use. Following the paper, we
describe cAMP di�usion with degradation and emitting sources through the coupled di�erential
equations of [Martiel and Goldbeter 1987] (MG equations):

∂tγ (x, t) =
kt

h
β(x, t) − keγ (x, t) + D∇

2γ (x, t), (13)

β(x, t) =

N∑

j=1

βj (t) exp

[
−

4

σ 2
(x − xj )

2

]
, (14)

dβj

dt
= ϕ(ρ j ,γj ) − (ki − kt )βj ,

dρ j

dt
= f2(γj )(1 − ρ j ) − f1(γj )ρ j , (15)

where f1, f2,ϕ, and Yj are de�ned as:

f1(γj ) =
k1 + k2γj

1 + γj
, f2(γj ) =

k−1 + λ1k−2γj

1 + λ1γj
, (16)

ϕ(ρ j ,γj ) =
λ2 + Y

2
j

λ3 + Y
2
j

× 1800, Yj =
ρ jγj

1 + γj
, (17)
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and xj is the location of the jth amoeba in Cartesian coordinates. The cAMP concentration �eld is
given by γ (x, t), which evolves according to the partial di�erential equation (PDE) 13. The term
β(x, t) describes the emission of cAMP from every cell, and −keγ (x, t)models the chemical’s natural
degradation. Constants used in the above equations are �xed (Table 2 Appendix C, as given in
[Calovi et al. 2010]).
The last couple of di�erential equations (Eqs. 15) describe intracellular concentration and the

ratio of active cAMP receptors of the jth amoeba respectively. These are intracellular processes
independent within each cell, and so we implement them in the internal agent layer of our model.
To solve Equation 13, we implement a Green’s function method 4 as in the paper, and produce

the solution

γ (x, t) =

N∑

j=1

∫ t

0

c j (s)

22d
exp [−ke (t − s)]

d∏

k=1

[

erf

(
lj,k + Rσ

√
4D(t − s)

)

− erf

(
lj,k − Rσ

√
4D(t − s)

)]

ds, (18)

where c j (s) =
kt
2h βj (s) is the amount of cAMP created by the jth amoeba at time t − s , and lj,k is the

distance between jth amoeba and x on the k Cartesian coordinate.
Despite the integration in time in Equation 18 which necessitates the use of numerical integration

techniques, it is still a more e�cient solution to calculate than alternative �nite element techniques
for integrating the PDE 13. The latter require discretisation of space to a �ne resolution (comparable
to amoeba cell size) and would scale accordingly, whereas Equation 18 scales linearly with the
number of amoebae. Additionally, the natural degradation of cAMP allows us to only keep a �nite
history of the emission from every agent, and limits the integration time required for achieving a
good enough value for the concentration �eld.

Agent layer. The intracellular set of processes takes as input the concentration and gradient of
cAMP at the cell’s location and determines the cell’s cAMP emission rate and its direction for the
next ∆t time step. The MG Equations 15 model the emission rate evolution and are solved in a
forward Euler manner as shown below.
Formally, the agent layer comprises of a set of equations:

st = S(st−1,∇γ t−1j ), (19)

β tj = β
t−1
j + ∆t

[
ϕ(ρt−1j ,γ

t−1
j ) − (ki − kt )β

t−1
j

]
, (20)

ρtj = ρ
t−1
j + ∆t

[
f2(γ

t−1
j )(1 − ρ

t−1
j ) − f1(γ

t−1
j )ρ

t−1
j

]
, (21)

where the last two equations are forward Euler methods for Eqs. 15, the superscripts t ∈ N denote
time steps, and S is a step on a Markov chain. The Markov chain has state space I = {(s1, s2)} where
si ∈ {0, 1, 2, 3, 4, 5} signi�es the angle θ = si (2π/6) of a step taken by the cell, with respect to the
horizontal axis in a 2D space. The state space consists of tuples of step directions since both the
latest step and the one taken before it are necessary to correctly describe the cell’s motion. The
transition probabilities satisfy the condition st2 = s

t−1
1 that the second element of the tuple is the

previous step direction. They also shift according to θr el (si ,∇γ ), the angle between a potential
step direction and the cAMP gradient ∇γ , in order to bias the next step direction to align with
the cAMP gradient. As modelled in [Eidi 2017], the bias is a linear superposition of the term
ϵ cos(θr el (si ,∇γ )) on the four si directions other than the latest step direction of the cell and the

4A well-known method for solving a partial di�erential equation (PDE), the GF is the inverse of the linear di�erential

operator in the PDE; it is therefore the solutionG(x, y, t, s) of the PDE at (x, t )when driven by a point source δ (x −y, t −s).

In the case of the di�usion equation with degradation, the solution for a point source is analytically known. Since the

operator is linear, one can then reconstruct the solution to the PDE with the actual source f (x, t ) by superposition of the GF

solutions for every point source in the domain of space and time — i.e. computing
∫
dydsG(x, y, t, s)f (y, s). See [Butkov

1995] for a comprehensive exposition.
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one directly opposite it. Picking an appropriate ϵ = 0.04, we retain the probability conditions
for the transition probabilities of the Markov chain, 0 ≤ pik ≤ 1 and

∑
j pik = 1, ∀ik . The result

is transition probabilities pik = p0
ik
+ ϵ cos(θr el (sk ,∇γ )) where p

0
ik

are the unbiased transition
probabilities. Note that these states are tuples of step directions, and so the di�erence between
consecutive steps is relevant in determining probabilities for the next step direction.

Simulation scheme. We perform simulations of the original model presented above with the
following set-up: we initialise 250 agents at random positions drawn from a uniform distribution
over a 0.0625mm2 square with centre (0, 0). We set ∆t = 0.3m and iterate between executing
processes in the environment layer (evaluating the cAMP concentration and gradient at the agents’
positions), and executing processes in the internal agent layer (updating the agents’ positions and
cAMP emissions). The simulation ends at tend = 30m, at which point the agents have congregated
into one or more clusters. Initial values for the internal agent parameters are β0j = 0, and ρ0j drawn

from a uniform distributionU [0, 1] for each j agent.

6.3 Abstracted model

Our aim is to �nd appropriate logical properties evaluated on the states such that their satisfaction
probabilities can be used to correctly recreate the motility characteristics of D. discoideum cells.
Guided by the biological theory used to craft the model by Eidi, we formalise the abstracted internal
agent model with the following equations:

st = S̃
(
st−1, st−2,∇γ t−1j

)
, (22)

where S̃
(
st−1, st−2,∇γ t−1j

)
= Categorical(pϕ ); (23)

ϕ ∼ Bernoulli
(
Ψy

(
θr el

(
st−11 ,∇γ

t−1
j

)))
, (24)

with Bernoulli outcomes 1 for |θr el (s
t
1,∇γ

t−1
j )| < π/2 (extension will be aligned to cAMP gradient),

or 0 otherwise (not aligned); and

y =

{
1 for |θr el (s

t−1
1 , s

t−1
2 )| < π/2 (split extension),

0 otherwise (de novo extension).
(25)

The above describes the process of receiving an input (st−1,∇γ t−1j ) and going through the steps of:

(1) evaluating whether the current pseudopod extension is of a split or de novo nature (y ∈ {1, 0});
(2) using the appropriate learned stochastic function Ψy to sample whether the next pseudopod will
be within π/2 rad from the cAMP gradient direction (ϕ); and �nally (3) determining the direction
of the next pseudopod by picking from a categorical distribution of the possible directions with
event probability vectors pϕ . The vectors pϕ are constructed as follows:

pϕ = [r1, · · · , r6], (26)

with elements

ri =





1/Z if

(
i , st−11

)
∧

(
(
ϕ = 1 ∧ |θr el (i,∇γ

t−1
j )| ≤ π/2

)
∨

(
ϕ = 0 ∧ |θr el (i,∇γ

t−1
j )| ≥ π/2

)
)
,

0 otherwise,

where Z is a normalisation constant such that
∑
i ri = 1. The conditions for the elements of pϕ

imply that two consecutive steps cannot be taken in the same direction (i , st−11 ), and that for ϕ = 1

the step must be in an angle within π/2 rad relative to the gradient ∇γ t−1j and vice versa for ϕ = 0.

If these conditions are not met for a step direction i , no probability mass is given (ri = 0). Note
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consistent with the decision. The conversion to direction in the latter function happens through
categorical distributions with �xed probability vectors which do not depend on the angle θr el —
i.e. the �rst function removes the dependence of the layer output on the relative angle and split /
de novo nature of pseudopod. Given ϕ, the satisfaction of the alignment to cAMP gradient for the
next step, we have all the necessary information to produce the internal layer’s output.

6.4 Results

As before, we present results of both the accuracy and computational costs of the abstracted
model with respect to the original one, after running twenty simulations of each model. In the
original model, the internal agent layer amounted to sampling a single transition in a discrete-time
Markov chain of e�ectively 30 states but with only 5 possible transitions from each state. Transition
probabilities had to be re-evaluated before each sampling according to environmental input, but
the whole layer has low computational costs. The abstracted model instead takes as input a binary
satisfaction for a logical property and a continuous value ∈ [−1, 1) and outputs one of 5 possible
values (corresponding to the 5 permitted transitions from each state of the DTMC) stochastically.
Due to the low computational cost of the original layer, we do not expect signi�cant gains from the
abstraction; we therefore focus on recovery of the emergent behaviour dependent on non-linear
interaction e�ects between parts of the model which we are abstracting.
The macro-scale phenomenon we wish to retain here is the aggregation of agents, which we

attempt to quantify for comparison purposes. To that end, we construct an empirical distribution
of the agents’ locations over space through the use of Gaussian kernel density estimators (KDE)
[Bishop 2006], at various times in the evolution of both systems, as seen in Figures 8, 9. An
inspection of Figures 8, 9 shows that qualitatively both the original and the abstracted model show
an aggregation behaviour into a major cluster within the time-frame of the experiment. Since there
is a single cluster forming and the uniform distribution was centred at (0, 0), we expect that the
distribution of the agents’ distance from the centre is a good proxy for quantifying aggregation of
the population.

To get a quantitative measure of the agreement between original and abstracted model, we pool
the results of 20 simulations and compare the histogram distributions of agent distance from the
origin at di�erent time points. Figure 10, left panel, shows the �rst two statistics (mean and standard
deviation) of the distance of the agents from the origin as a function of time for both models. This
�gure shows an excellent statistical agreement between the two models, even though the rate of
aggregation seems slightly higher in the abstracted model than the original one. We can gain some
insights into the origin of this discrepancy by looking at the histogram of agent distance from
origin at the end of the simulation time, shown in Figure 10, right panel. This shows that, while
the bulk and the mode of the distribution are well matched between the two models, the original
model distribution has a heavier tail than the abstracted one. A potential cause of these deviations
is that the choice of property matched (Eq. 24) does not contain su�cient information to precisely
match the macro-scale behaviour, particularly in term of rarer events. This points to a need for
automatic property construction method, which is something to be explored in future work.
Running times for a simulation were 219 ± 6min and 249 ± 8min for the original and

abstracted system respectively. Experiments were run on a server machine with 48 CPU cores
working in parallel. Note that most resources went towards evaluating the integral in Eq. 18 for
each agent at every step. As expected, the abstraction does not yield computational gains for this
model. We can attribute this to the small size of the original model and the overhead of producing
predictions from a trained GP. This illustrates a fundamental trade-o� within our abstraction
approach: while the approach is generally applicable, the wisdom of applying such an abstraction
depends on the speci�c model. In particular, when the internal agent layer is straightforward to
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computational e�ciency, but it is valuable in understanding the processes in the layer and the
relevant information �ow through them.
Because the properties necessary for an accurate abstraction have to be manually de�ned, we

can also use this abstraction framework to evaluate consistency of the original model with other
higher-level models which have di�erent assumptions. For instance, we �rst attempted to replace
the agent layer of the D. discoideum model with a stochastic function which receives as input
whether the current pseudopod was a split or de novo nature and produces output of whether the
next one will be a result of split or de novo, akin to the E. coli case. This is a simpler abstracted model
than the one we presented, and is supported by the literature [Haastert and Bosgraaf 2009; Li et al.
2008]. The result was a population of agents which did not display aggregation and instead retained
their original uniform distribution in space, or even slightly di�used. We can therefore assert that
the original model by Eidi used here cannot be cast down to a simple �rst order two-state discrete
Markov chain (split / de novo being the two states) which has transition probabilities dependent on
the output. The property of whether the next step is aligned to the cAMP gradient (beyond split /
de novo) is relevant and cannot be discarded. This raises the question of which is the better model
for D. discoideum motility, since other models claim to achieve similar aggregation behaviour with
simple split / de novo models. Failure to reconcile models in this manner is indicative of inherent
di�erences in the models, which may prove useful in assessing their veracity with respect to reality.

Future work avenues include, for example, allowing more properties to be expressed and using
them to guide the abstraction to capture more complex behaviours. Additionally, we could infer
abstracted model parameters or underlying functions from real data, instead of synthetic ones.
Finally, one would ideally like to have a way to infer suitable properties for preserving a particular
macro-scale behaviour. As seen in the case of the D. discoideum model, this is not trivial to achieve
and often the properties fall short of accurately reproducing the behaviour. An automatic way to
construct this properties would relieve the researcher from having to make the choice, and might
reveal further insights to the models abstracted.
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A GAUSSIAN PROCESS CLASSIFICATION DETAILS

In mathematical language, we observe the mapping we wish to approximate at N points of its
domain,D = {(Xi ,yi )}

N
i=1 whereXi ∈ X is the input value andyi the output. In our case, the output

is a binary value of the property evaluation yi ∈ {⊤ = 1,⊥ = 0}. We denote the collection of all
{Xi }

N
i=1 = X and {yi }

N
i=1 = y. Given D, we would like to infer the underlying probability function

Ψ : X → [0, 1] which we assume to give the probability parameter of the Bernoulli distribution
generating the observations y:

y | X ∼ Bernoulli(p = Ψ(X )). (29)

To learn Ψ from D observations, the GP assumes the existence of a latent function f : X → R
which we pass through an inverse-probit transformation to bring it within Bernoulli parameter
domain range [0, 1], such that Ψ(Xi ) = Φ(f (Xi )), whereΦ : R→ [0, 1] is the cumulative distribution
function of the standard normal distribution N(0, 1). This forms the likelihood of the Bernoulli
parameter being approximated (Ψ(·)) given the latent function f (·). In fact, the GP assumes a whole
distribution over possible latent functions; this is a multivariate normal de�ned by our choice of
covariance structure (kernel k(·, ·)) and mean function m(·), denoted as f (·) ∼ GP(m(·),k(·, ·)).
Considering only the collection of function values f = [f (Xi )]

N
i=1 where we have observations X,

our prior distribution becomes a �nite-dimensional Gaussian f | X ∼ N(m,K), where bold letters
denote the functions evaluated at each observation Xi or Xi ,X j pair. We proceed to condition on
outputs y to obtain a posterior distribution over the latent functions through standard Gaussian
distribution results.

p(yi | Xi , f (·)) = Bernoulli(Ψ(Xi )) = Φ(f (Xi ))
yi (1 − Φ(f (Xi )))

1−yi , (30)

giving posterior p(f | D = X, y) ∝ p(y | f)p(f | X). (31)

To predict Ψ(X∗) at an unobserved domain point X∗ not in D, we take a weighted average of
all possible values of Φ(f (X∗)) under the posterior distribution of latent function values Ψ(X∗) =
〈Φ(f (X∗))〉f∗ |D,x∗ , where for notational simplicity f∗ = f (X∗).

Ψ(X∗) =

∫
Φ(f∗)p(f∗ | D,x∗)d f∗, (32)

where p(f∗ | D,x∗) =

∫
p(f∗ | X , f ,x∗)p(f | D) df . (33)

GP regression with its many variations for di�erent problem tasks is well described in [Rasmussen
and Williams 2006]. The necessary adjustments which we adopt here are found in the Gaussian
process classi�cation (GPC) section of the book, and essentially amount to identifying that the class
probability function is Ψ, where the class is the property satisfaction outcome. Standard results
make the integrals in Eqs. 32-33 analytically tractable if we approximate the posterior p(f | D) with
a Gaussian. To do this, we use Minka’s Expectation-Propagation (EP) technique because it is more
accurate than the alternative Laplace approximation. Further, we use fully independent training
conditional (FITC) approximation [Snelson and Ghahramani 2006] to allow a large number of
observations to be considered for learning the underlying function, while maintaining a low cost of
predicting at any point of the domain. The approximation essentially replaces the original training
data (input-output set) with a smaller set of inducing points (dummy input-output set) which is
constructed from the former and used in prediction; these inducing points produce a conditional
distribution over functions that is close to the one produced by conditioning on the real data. It
relies on a rank-reduced approximation of the original covariance matrix.
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B SIMULATION SCHEMES FOR E. COLIMODEL

B.1 Simulation scheme for original E. colimodel

Algorithm 1 Simulation scheme for the E. coli model, based on full simulation of the pCTMC
describing F/M conformation changes. Below, τ ,mb0, α are constants which parametrise the model
(see [Sneddon et al. 2012]), and ∆t is the �xed simulation time-step.

1: function Run(®r , ®v , ∆t )
2: ®r ← ®r + ®v · ∆t
3: return ®r
4: end function

5:

6: function Tumble(®v , ∆t )
7: θ ∼ Γ(shape = 4, scale = 18.32) ⊲ Sample tumbling angle from distribution

given in [Sneddon et al. 2012].
8: ®v ← R(θ ) · ®v ⊲ R(θ ) is a 2D rotation matrix through angle

θ .
9: return ®v
10: end function

11:

12: function OU-Euler-Maruyama(m, L, ∆t )
13: m̄ ←MeanMeth(L,mb0, α ) ⊲ Mean methylation level m̄(L,mb0,α) as in

[Frankel et al. 2014; Sneddon et al. 2012].

14: m ←m +
[
∆t/τ (m̄ −m) + σm

√
2/τdW (∆t)

]

15: returnm

16: end function

17:

18: procedure SimulateFineEcoliCell(tend)
19: t ← 0

20: while t < tend do

21: L← L(®r , t) ⊲ The ligand �eld L value, at the cell’s loca-
tion ®r .

22: s← pCTMC(s,m, L, ∆t ) ⊲ Drawing F/M pCTMC trajectory of length
∆t , with parameters k±(m,L) and initial
state the last pCTMC state of the cell.

23: ψ ← ϕRUN(s) ⊲ Evaluating the ϕRUN on (the �nal state of)
the pCTMC trajectory.

24: if ψ then

25: ®r ← Run(®r , ®v , ∆t )
26: else

27: ®v ← Tumble(®v , ∆t )
28: end if

29: m ← OU-Euler-Maruyama(m, L, ∆t ) ⊲ Evolving methylation.
30: t ← t + ∆t

31: end while

32: end procedure
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B.2 Simulation scheme for abstracted E. colimodel

Algorithm 2 Simulation scheme for the abstracted E. coli model, based on GP approximation for
the RUN/TUMBLE probability. Steps 5, 6 here replace the expensive Steps 22, 23 in Algorithm 1.

1: procedure SimulateAbstractedEcoliCell(tend)
2: t ← 0

3: while t < tend do

4: L← L(®r , t)
5: p ← GPψ (m, L)
6: ψ ∼ Bernoulli(p)
7: if ψ then

8: ®r ← Run(®r , ®v , ∆t )
9: else

10: ®v ← Tumble(®v , ∆t )
11: end if

12: m ← OU-Euler-Maruyama(m, L, ∆t )
13: t ← t + ∆t

14: end while

15: end procedure

C CONSTANTS OF D. DISCOIDEUM MODEL

Table 2. Table of fixed constants for the D. Discoideum model. These are used in Equations 13-17 and taken
from [Calovi et al. 2010], where their physical interpretation is also examined.

Parameter Value Parameter Value

λ1 10 ki 1.7 min−1

λ2 0.18 kt 0.9 min−1

λ3 463.5 ke 5.4 min−1

k1 0.036 min−1 σ 0.01 mm

k−1 0.36 min−1 D 0.024 mm2/min

k2 0.666 min−1 h 0.025

k−2 0.00333 min−1
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