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Data management using Device-to-Device (D2D) communications and opportunistic networks (ONs) is one
of the main focuses of human-centric pervasive Internet services. In the recently proposed “Internet of
People" paradigm, accessing relevant data dynamically generated in the environment nearby is one of the
key services. Moreover, personal mobile devices become proxies of their human users while exchanging
data in the cyber world and, thus, largely use ONs and D2D communications for exchanging data directly.
Recently, researchers have successfully demonstrated the viability of embedding human cognitive schemes in
data dissemination algorithms for ONs. In this paper, we consider one such scheme based on the recognition
heuristic, a human decision-making scheme used to e�ciently assess the relevance of data. While initial
evidence about its e�ectiveness is available, the evaluation of its behaviour in large-scale settings is still
unsatisfactory. To overcome these limitations, we have developed a novel hybrid modeling methodology,
which combines an analytical model of data dissemination within small-scale communities of mobile users,
with detailed simulations of interactions between di�erent communities. This methodology allows us to
evaluate the algorithm in large-scale city- and country-wide scenarios. Results con�rm the e�ectiveness of
cognitive data dissemination schemes, even when content popularity is very heterogenous.
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1 INTRODUCTION
It is commonly agreed that the vast and pervasive di�usion of devices at the edge of the network

is leading to an exponential expansion of the Internet at its edges [2, 7, 43]. This expansion is
proceeding at a faster pace than that of the Internet core, thanks to the di�usion of mobile personal
devices, IoT devices and sensors, and other objects dispersed in the physical environment that are
able to connect and communicate among themselves and with other remote entities and services.
The Internet at the edge will be mostly populated by devices that are either associated with

human users or are embedded in physical objects with which humans constantly interacts. This
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fact will put humans at the center of the Internet system [12, 13, 29, 33, 36], requiring a paradigm
shift from the traditional infrastructure-centric vision of the Internet toward a new human-centric
Internet paradigm. This new paradigm has been recently named as Internet of People (IoP) [12, 13].
In IoP, humans and their devices will become active actors in the provision of new services and
networking functions. Since humans (and their devices) become the center of the Internet system
in IoP, the behaviour of human users should be taken into consideration in the design of future
applications and services.
One the main characteristics of the scenario of IoP is that personal devices are the proxies that

allow their users to access the vast volume of data dynamically generated by other users and
“physical things" around them. In order to select and disseminate the most relevant information
in this scenario, we have recently demonstrated that human cognitive schemes, known in the
cognitive sciences as cognitive heuristics [18, 21, 22], can be directly embedded in the devices’ data
management and decision-making algorithms [10, 11, 30–32, 42]. Speci�cally, we have applied
cognitive heuristics in the context of data dissemination in opportunistic networks. Opportunistic
networking is a paradigm for self-organising networks, where direct contacts between devices
(i.e., when devices are within the transmission range of their wireless interfaces) are exploited
to exchange information and disseminate data. In particular, in this context we have used the
Recognition Heuristic [19, 20], a simple mental scheme that helps the human brain to assess the
relevance of an object in a set, based on its recognition level (an indicator of how “strongly" the
object is memorised) retrieved from its memory (see Section 3 for a more detailed description of the
Recognition Heuristic). In [8, 10, 42] we exploited this heuristic to quickly evaluate, at each node,
the utility of storing a copy of a data item fetched from other encountered nodes during direct
contacts. Simulation-based evaluations of this scheme have shown its ability to perform equally
well as other state-of-the-art solutions, while requiring much less overhead in terms of exchanged
messages and associated bandwidth consumption [10].
All the previous evaluations of this kind of systems have been carried out in small-scale sce-

narios (i.e., a few hundreds nodes and contents), while the performance of recognition-based data
dissemination for opportunistic networks in large-scale realistic scenarios still needs to be assessed.
Large-scale evaluations would allow us to characterise the performance and possible limitations of
a data dissemination approach based entirely on local choices taken by personal devices. However,
very large-scale performance evaluations pose many critical challenges. In fact, beyond a certain
number of devices and/or content items, simulations, like the ones used in [10, 42], become easily
unfeasible, since their complexity increases exponentially with the number of nodes and data items
that are to be considered. While analytical models of the Recognition Heuristic inside a single,
closed social community of users has been obtained [8], modelling reliably more complex scenarios
with multiple communities, heterogeneous nodes behaviours, and heterogeneous data types, would
make the analysis too complex to be tractable.
To address all these challenges, in this paper we use a hybrid simulation methodology. In a

hybrid simulation model [28, 39, 40], the model of the original system is decomposed into separate
components (submodels). Then, the interactions between the submodels are described using a
conventional event-based simulation model, while the behaviour of each component is described
at a higher abstraction level using a mathematical model. In the paper, the decomposition we
use exploits key features of human mobility. In fact, it is well-known that humans spend most
of their time moving in speci�c physical locations, because of the social relationships they have
with other people who spend time in those locations. Examples of such location-based social
communities are groups of co-workers, groups of friends, etc. Because each user is a member
of multiple such communities, after some time they also move towards other groups, bridging
them [6]. Therefore, we decompose an overall scenario of data dissemination across many di�erent
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social communities, as follows: we separately use a model of the data dissemination occurring
within each social community through a simple yet accurate mathematical model; then, we use
conventional event-based simulation to model the e�ect on data dissemination of nodes’ movements
across communities. Using this decomposition, we are able to study the behaviour of the data
dissemination scheme based on the recognition heuristic in very large-scale opportunistic networks.
In fact, in this paper we evaluate the performance of our cognitive-based scheme up to a regional
scale (in terms of geography), with hundreds of communities of mobile users, about 2.5 million of
users and up to �ve millions of data items. This can be considered as a reasonable (even somehow
far-fetched) horizon for data dissemination using exclusively direct communications between
devices. Interestingly, we show that data dissemination continues to be quite e�cient also at such
scales. Speci�cally, the hit rate (the probability that interested nodes receive the data items they
are interested in) is high also when content popularity is very heterogeneous, and there are data
items that are requested by a low number of users. In particular, in the considered scenarios, it is
su�cient that at least one node per community is interested in a given type of data to enable quick
dissemination of data items of that type across the entire network. When content popularity drops
below this threshold, data dissemination slows down in a graceful way with content popularity.
Finally, we show that data dissemination is very e�cient also when the sizes of local caches (used
by nodes to contribute to the dissemination process) are very limited. This is an important feature
to guarantee that data dissemination is not paid with excessive resource consumption.
The remainder of this paper is organised as follows. Section 2 summarises related works. Sec-

tion 3 brie�y presents the main concepts of cognitive heuristics and the recognition heuristic, and
gives a concise description of our recognition-based data dissemination scheme. Then, Section 4
describes the hybrid simulation approach for testing the recognition-based algorithm on large-scale
networks. The de�nition of the approach is based on the analytical model for data dissemination in
single communities presented in Section 5. Section 6 presents the detailed large-scale performance
evaluation of the data dissemination scheme. Finally, Section 7 concludes the paper.

2 RELATEDWORK
The Internet of People [12, 13] is a radically new Internet paradigm that stresses the need for a
change from a traditional platform- and infrastructure-centric approach to a new human-centric
vision of Internet data and knowledge management. The increasing centrality and relevance played
by humans (and their personal devices) [36] has been reported in several recent works that have
highlighted how this fact is creating new opportunities for services at the edge of the network. Some
examples of this kind are distributed sensing [41], mobile edge computing [4], mobile multimedia
networks [37], and new services for smart cities [44].
In order to take advantage of the participation of the users’ personal devices in the design

and provision of new services in the IoP, proper communication schemes should be exploited.
Opportunistic networks (ONs) are one of the forms of device-to-device (D2D) networking, which is
considered an enabling technology in 5G environments in general [1], and in the IoP paradigm
in particular [12, 13]. Indeed, since devices in an Opportunistic Network are usually associated
with their human users, protocols in Opportunistic Networks have a close tie with the human
behaviour and mobility patterns, thus presenting the characteristics required for IoP self-organising
networking [12, 13]. In the context of this paper, we focus our attention to data dissemination
schemes in ONs. Hereafter, we describe the main approaches presented in the literature for data
dissemination in ONs.

One of the �rst approaches to data dissemination in ONs was the PodNet Project [26]. In PodNet
data items are divided in channels of interest to which nodes are subscribed. Upon encounter, nodes
exchange, according to di�erent strategies, data items, storing in a local cache those they are not
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directly interested. As shown in [5], PodNet strategies su�er in mobility scenarios where nodes
move across communities (like those we consider here), which are typical of human mobility.
Later on, other researchers have de�ned more elaborate dissemination algorithms that exploit

social information about users. In ContentPlace [5], during contacts nodes exchange data items based
on locally computed utility values, which re�ect the individual node’s estimates of the usefulness
of each data item for the other members of the node’s social communities. Community centrality
of nodes is used in [24], and data is progressively moved on nodes with increasing centrality, to
maximise the chance that those nodes will encounter other interested nodes. Social information is
used also in SocialCast [14]. SocialCast also assumes that data is categorised in topics and nodes
advertise their interests upon encounters. Locally computed utility values are used to decide which
data to replicate on encountered nodes based on collected interests. In [46] authors propose a
pub/sub system adapted to ONs. Under the assumption of a community detection algorithm, a
Broker is de�ned for each community as the most central node. Brokers collect subscriptions in
their community, and advertise interests among them. Data of interest to other communities is
therefore circulated among Brokers and �nally disseminated in the target communities.

Schemes not considering social information have also been proposed. Among them we mention
PrefCast [27] where nodes compute a forwarding schedule to prioritise dissemination of contents
that are predicted to be more requested in the near future. Other approaches for data dissemination
consider solutions based on global utility functions to be solved as a global optimisation problem,
where nodes’ individual caches are viewed as a big, cumulative caching space, e.g. [35]. Such
approaches can �nd an optimal solution to the dissemination process, but require global knowledge,
and therefore they might be hardly applicable to ONs.

As discussed in the Introduction, this paper is part of our works on cognitive data dissemination
for ONs [8, 10, 30–32]. These previous works show that simple cognitive decision-making strategies
can be e�ectively applied in this �eld. In particular, in [10] we showed that mechanisms based
on the recognition and take-the-best cognitive heuristics are as e�ective ,as other state-of-the-art
solutions, while requiring considerably less overhead.

In this paper, we present a hybrid simulation study of the performance of the data dissemination
approach based on the Recognition Heuristic1.
Hybrid simulation is a technique used in the modeling and simulation �eld [17]. It is exploited

to face problems of scalability when evaluating large systems. This makes traditional simulation
studies extremely complex and expensive, in terms of both time and computational resources. On
the other hand, it is in general very di�cult to devise an analytical model that is able to properly
describe all the relevant details of the system. Hybrid simulation exploits both simulation and
analytical models trying to balance the complexity reduction, which can be achieved with analytical
models, with themodeling accuracy which can be obtained with simulation. Speci�cally, with hybrid
simulation, a complex model is analysed by decomposing it into smaller and simpler submodels.
Analytical models and traditional simulation techniques (like Discrete Event Simulations) are
then combined to analyse these submodels and the interactions between them, thus allowing to
describe the whole system with a reduced complexity, with respect to a pure simulation study, but
with a higher accuracy with respect to a pure analytical model. Hybrid simulation solutions has
been applied in various �elds, like computer networks [9], IoT [15], biological [25] and medical
systems [3], operations research [34].

The solution described in this paper is based on the work we presented in [8]. Speci�cally, in [8]
we developed an analytical model to analyze the behaviour of our data dissemination approach

1We refer the reader to Section 3 for a more detailed presentation of the general features of cognitive heuristics, and of the
Recognition Heuristic in particular (Section 3.1).
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within a single community of users. Here, we extend that work by analyzing, via hybrid simulation,
the performance of our dissemination approach in large scale scenarios that include hundreds
of communities of users, several thousands of data topics, and millions of nodes and data items.
The analytical model that we have developed in [8] is used within the hybrid simulation study to
analyze each submodel in isolation.
In this paper we do not compare our approach with other solutions since: i) the Recognition

Heuristic-based solution has been already successfully tested against other approaches in [10]; ii)
our main goal is to develop a hybrid simulation approach that allow us to test our solution at scales
(in terms of simulation area, number of nodes and data items) where other approaches become
unfeasible and too complex to be studied .

3 THE RECOGNITION HEURISTIC AND ITS USE IN OPPORTUNISTIC NETWORKS
As in most of the related literature (see Section 2), in this study we consider a scenario where

mobile nodes generate data items (these data may include data sensed by a mobile personal device
from the environment) and other nodes can be interested in those items. Data items belong to
high-level topics, called channels, to which the users subscribe. The popularity of channels (number
of nodes interested in the channel) is variable across channels. The goal is to bring all the data items
of a given channel to all the nodes that are interested in it. The details of the algorithm considered
in the paper have been presented in [10]. Hereafter, we provide the key elements necessary to
understand the analysis carried out in the rest of the paper.
In our algorithm, each node makes use of several internal data caches. Figure 1 shows the

internal architecture of these data caches on a generic node.

SNS - Topic

L I OCSC

Data Caches

Fig. 1. Device Data Caches

As shown in Figure 1, the data caches are:
• LI is the cache containing the Local Items, i.e. the items generated by the node itself.
• SC is the Subscribed Channel cache, i.e. the cache containing the items belonging to the
channel the node is subscribed to. Data items in this cache are obtained by encounters with
other peers. We assume that nodes are able to always allocate enough space for the channel
they are interested in. Thus, the SC cache is assumed unlimited.
• OC is the Opportunistic Cache, i.e. the cache containing the objects obtained through ex-
changes with other nodes and belonging to channels the node is not interested in. This cache
is the local storage space that a node contributes for the overall data dissemination process,
beyond its particular interests. Therefore, we assume that it has a limited size. Moreover, this
cache is in general much smaller than the amount of data items available in the environment.
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Its content consists of the items the node believes to be the most “useful" (i.e., needed by
other nodes) for a collaborative information dissemination process.

Similarly to most opportunistic data dissemination schemes, the algorithm we have proposed
in [10] estimates, upon each contact, the utility for the global dissemination process that a node
fetches data items from the encountered node, possibly replacing some of the data items locally
stored in itsOC . The original trait of our algorithm is to use the recognition heuristic to approximate
the utility values of data items. The recognition heuristic is one of the cognitive decision-making
processes known as cognitive heuristics. In Section 3.1, we brie�y describe the recognition heuristic
in general, while in Section 3.2 we describe how this is used in our data dissemination scheme.

3.1 Cognitive Heuristics and the Recognition Heuristic
Cognitive heuristics can be de�ned as simple rules used by the brain for facing situations where
people have to solve a complex problem quickly, relying on a partial knowledge of all the problem
variables, the evaluation criterion of the di�erent possible choices is not known, and the problem
itself may be ill-de�ned in such a way that traditional logic and probability theory are prevented to
�nd the optimal solution. Although the general concept of heuristic is similar to what is widely used
in computer science, heuristics used by human cognitive processes are formalized in a di�erent
way by cognitive sciences. We refer the interested reader to [10] for a more complete presentation
of them.
In this paper, we use the recognition heuristic, which is one of the most popular heuristics in

the cognitive science literature of the last decade [20, 23]. The recognition heuristic is based on
a very simple rule. The recognition heuristic is a model of how the human brain chooses among
di�erent options based on partial knowledge about them. Speci�cally, instead of acquiring complete
information about all options, according to the recognition heuristic, the brain chooses the option
that is recognized with respect to those that are not. An option is recognised if it has been “seen"
in the physical environment a su�cient number of times, where “seen" means that the brain has
been presented with that option a su�cient number of times in the recent past. For example, in
order to choose among two restaurants, one which belongs to a very well-known brand and one
whose name is totally unknown, the brain would pick the former one, just because the name is
well-known to it (of course, in this case, other heuristics would be applied to choose also based on
quality of the food). Finally, if more options are recognised, the brain will use other heuristics (or
the recognition heuristic applied to other features of the option) in order to further discriminate
and identi�ed the option to be chosen.

3.2 Local replacement of data items using the Recognition Heuristic
Without loss of generality, to present the algorithm we focus on the case where a tagged node
encounters another node. The tagged node has to decide which data items to store in its OC,
among the union of the ones it currently stores, and those available on the OC and LI caches of the
encountered node.
In order to exploit the recognition heuristic to select the most relevant data items, the tagged

node decides what items to store (and fetch, if they are at the encountered node) based on an
estimate of their utility for the dissemination process. The utility of data items is estimated based
on the following assumptions.
• the more nodes are encountered, which are subscribed to a given channel, the more relevant
are the data items of that channel (and their utility increases),
• the less a data item is replicated in the network, the more useful it is to store a copy of that
item.
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The algorithm proposed in [8, 10] uses a two-step process to estimate the utility of a data item. In the
�rst step, it applies the recognition heuristic to the channel of the data item, in the second it applies
it to the data item itself. Speci�cally, according to the general recognition heuristic algorithmic
model, to recognize a channel (or a data item) each node maintains a counter that counts how many
times it met a device that it is interested in that channel (stores that data item). Each device devotes
two caches to store this information, as shown in Figure 2.

SNS - Topic

CC

Recognition Caches

I C

RC
R

Fig. 2. Device Recognition Caches

Speci�cally, these caches are:
• CC is theChannel Cache: whenever the nodemeets another peer subscribed to a given channel,
the channel ID is added to this cache, along with a counter. The counter is incremented every
time a node subscribed to the same channel is found. Note that the storage space required to
maintain this information is very limited compared with the size of data items. Thus, the size
of this cache is assumed unlimited.
• IC is the Item Cache: similarly to the previous cache, when a new data item is seen in
an encountered node, its ID is added to this cache, along with a counter. The counter is
incremented every time the object is seen again. We assume that also this cache has no space
limits. Even in large-scale scenarios (like the one described in Section 6), this absence of
limits should not impact the search of the related IDs and counters when items are observed
during an encounter, since proper retrieval techniques are available to this end. Moreover,
memory requirements should remain well below the usual capabilities of standard users’
devices.

Using the information stored in the caches, each node can decide that a channel (data item) is
recognized if this counter reaches a given recognition threshold. In Figure 2, the channel and the
item recognition thresholds are termed RC and R, respectively. In the experiments we have made,
typical values of these thresholds varies from 2 to 25 (see Section 6). The recognition counter is
decremented if the channel (data item) is not seen for a while. This is equivalent to implement a
memory forgetting process in the recognition heuristic, which is known to be bene�cial to improve
the accuracy of the recognition itself [20]. Thus, a node considers to store a data item (either a local
one, or one stored at the encountered node) if: a) it recognises the channel the data item belongs to,
and b) is does not recognise the data item itself. All data items currently stored at the node, as well
as all those stored at the encountered nodes, are analysed according to these rules. Non-recognised
data items of recognised channels are candidate to be stored in the OC of the tagged node. If the
candidate items are more than what can be stored, the tagged node ranks them according to their
(data item) recognition level. Data items whose counter is lower (i.e., they are “farther away" from
being recognised) are preferred.
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4 HYBRID SIMULATION PERFORMANCE MODELLING
The scenario we target consists of a possibly very large number of nodes (users) that move according
to realistic human mobility patterns. We also aim to simulate a possibly very large number of
content items to be disseminated, which we assume to be divided into pre-de�ned channels. We
want to track the evolution over time of the di�usion of content items, i.e. the number of nodes
interested in a given channel that, at each point in time, have received the content items of that
channel. This performance index, hereafter referred to as the hit rate, allows us to understand how
well the recognition-based dissemination policy supports data dissemination as a function of the
number of users, data items and channels, popularity of channels, mobility patterns.
We start by de�ning the nodes’ mobility patterns. To this end, we consider the Home-Cell

Community-based Mobility Model (HCMM), de�ned in [6]. This is one of the reference models
in the opportunistic networking community, as it is possible to de�ne complex mobility patterns
that well reproduce known key features of human mobility, such as the distribution of contact and
inter-contact patterns, social aggregation, and regularity of visits [6]. In HCMM, the space is divided
into geographically separated communities. Each user belongs to just one speci�c community. The
geographical area that contains the community of a node is called the home cell of the node. In this
context, communities group together users that share strong social connections. Some of the nodes
are allowed to travel across di�erent communities, thus bridging them and allowing the delivery of
data from one group of users to another. These nodes are called “travellers". Travellers have social
relationships with (a subset of) the members of all communities they visit. The key parameters
of the mobility model for our purposes are the number and size of communities, the number of
travellers, and the probabilities of travellers moving inside their home cell or visiting an external
community.
For what concerns nodes interests, we assume that each node is interested in a single channel.

As it will be clear from the details of the evaluation model, the extension to the case of multiple
subscriptions is straightforward, and considering single subscriptions allows us to highlight more
clearly the properties of the dissemination process. For our purposes, key input parameters are:
the number of channels, the number of data items per channel, the distribution of interests across
nodes, the initial distribution of content items on nodes, and the size of the OC at each node.
Given this scenario, we decided to use a hybrid simulation methodology, as neither analytical

models nor regular event-based simulation models suit our needs. Event-based simulation models
(such as those used in [10, 31, 42]) simply do not scale beyond a certain number of nodes (a few
hundreds), because the number of events increases exponentially with the number of nodes. On
the other hand, analytical tractability requires that mathematical models (such as that used in [8])
abstract too many details, thus loosing in accuracy and predictive power. In [8], we have been able
to obtain an accurate analytical model only for the dissemination process inside single HCMM
communities, thanks to the fact that mobility of nodes inside communities is homogeneous, and
the inter-contact times between nodes can be modeled as i.i.d. random variables. This model is
described in details in Section 5.

To scale the model towards heterogenous scenarios with di�erent (and possibly many) commu-
nities of mobile nodes, we leverage a hybrid simulation methodology, as follows. In the rest of this
section, we make use of the symbols described in Table 1.
We use an event based simulation model only to simulate the events related to mobility of

travellers, and the possiblemeetings between travellers while they aremoving between communities.
Instead, we use the analytical model presented in [8] to describe the dissemination inside a single
community. Speci�cally, for any given content item a, the analytical model provides rt (a), which
is the proportion of nodes in the community that hold in their shared item cache a copy of a at
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Table 1. List of symbols and notations

Symbol De�nition

a Content item
Nc Number of nodes inside a community c
B Size of the OC (equal for each node)

rt (a) Perc. of nodes in a community holding a copy
of a at time t

r (a) Steady-state value of rt (a)
I Set of all the items in the system

Ic (t
⇤) All the items that are available in community

c at time t⇤
p (â) Probability within a community for a tagged

item â to be found in a community node’s OC

Algorithm 1 Items selection for a traveller n leaving a community c at time t⇤

1: Let Ic (t⇤) = {a 2 I |r (a) , 0 in c}
2: Let A be a multiset of cardinality Nc ⇥ B

3: Fill A by randomly extracting Nc ⇥ B items (potentially non distinct) from Ic (t
⇤)

4: Fill the OC of n with B distinct items , chosen from A using a uniform random probability
distribution.

time t (after a given initial time instant), starting from any allocation of a in the community (or,
equivalently, the probability that any given node in the community stores item a). Through the
model we can also identify, when a steady state exists, the constant value of rt (a) after an initial
transient regime, i.e. r (a) = limt!+1 rt (a). We can also identify the length of the transient regime.
Therefore, when in simulation a traveller enters a community at time t⇤, we use the current steady
state value of r (a) (for any data item a that is possibly stored in the community nodes) as the initial
condition for data dissemination in the community. We then use the model to identify a new steady
state value r (a), which is a function of the initial condition, and of the dissemination process of the
data items brought by the traveller. The key assumption of the hybrid modeling strategy at this
step is that travellers stay in a given community long enough that: i) they can “see" all data items
that are interesting to them, and ii) rt (a) reaches its steady state value before they leave. Based on
the results shown in Section 6.1, this is a reasonable approximation, even when the sojourn time of
travellers in the communities is very short. The caches of the traveller upon exiting are populated
as follows. As far as the cache containing the items of the channel the node is subscribed to, we
assume that upon exiting it stores all data items of interest available in the community (i.e., for
which r (a) is non zero). As far as OC, the new steady state value r (a) (for each possible data item
a) is used to populate it, following Algorithm 1.

Essentially, we assume that the OC of the traveller is a random sample (with uniform probability)
of all data items possibly available in the community. Speci�cally, we consider the set Ic (t⇤) of all
the items (out of the set I of all the items in the system) that are possibly available in the community
c at time t⇤ (line 1 of the algorithm). We then produce a group of items A, of size Nc ⇥ B, where
Nc is the number of nodes in the community and B is the OC size (equal for each node). The set
A is generated as a speci�c realization of the population of data items in the OCs of nodes in the
community, given the probability distribution obtained from r (a). Thus, the probability of an item
â to be in any node’s OC is
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p (â) =
r (â)P

a2Ic (t ⇤ ) r (a)
(1)

Note that, the setA can contain duplicate items, as it is the juxtaposition of the realisations of the
individual nodes’ caches. The �nal set of distinct items used to �ll the OC of the exiting traveller is
then selected uniformly at random from A (line 4).

Note that the same algorithm can also be used when multiple travellers visit the same community
at the same time, as long as a rt (a) has reached a steady-state value whenever a traveller enters
or exits the community. To test these aspects, we validate the accuracy of the complete hybrid
simulation model in Section 6.

5 ANALYTICAL MODEL FOR SINGLE-COMMUNITY DATA DISSEMINATION
The goal pursued by the analysis presented in this section is to develop an analytical model
describing the temporal evolution of rt (a) inside a single community of users for a generic data
item a belonging to a tagged channel c . In order to derive this model, we can observe that, in case
of a single community, HCMM behaves like a Random Waypoint Model [6]. Therefore, nodes’
mobility is homogenous, allowing to describe the nodes mobility process with iid random variables.
As a consequence, we can study the replication of a by considering changes in the caches of a single
tagged node, since the same average behaviour is observed in all the other nodes of the community.
Moreover, we can note that it is possible to write rt (a) as the sum of three components, i.e.

rt (a) = r0 (a) + (1  r0 (a)) [P (n subs to c )P (a 2 SC)+
P (n not subs to c )P (a 2 OC)] (2)

In Equation 2, r0 (a) is the initial replication of data item a among the nodes in the community.
Moreover, P (n subs to c ) (i.e., the probability that the tagged node is subscribed to channel c)
represents the popularity of c among nodes in the community.
In the rest of this section, we show how to compute P (a 2 SC) (Section 5.1) and P (a 2 OC)

(Sections 5.2, 5.3, 5.4). To this end, for each channel c , we make use of four distinct Markov Chains
that are used to model: i) the presence of the generic data item a in the SC of the tagged node; ii)
the recognition level of the tagged channel c in the CC of the node; iii) the recognition level of a in
the node’s IC; iv) the presence of a in the node’s OC.
Although the formal de�nition of the state spaces of these Markov chains is reported later, for

the sake of presentation clarity in Table 2 we list the main notations used in our analysis.

5.1 Subscribed Channel Cache
Let us consider a generic data item a belonging to the channel c to which the tagged node is
subscribed. Then, in the Markov chain describing the status of the SC cache for that data item,
state 1 is used to indicate that a copy of data item a is stored in SC, while state 0 indicates that
SC does not hold a copy of a. Let us assume that at point of time t+1 the tagged node encounters
another node, while the previous encounter event occurred at time t . Intuitively, the probability
p0,1 to move from state 0 to state 1 at time t+1, i.e., the probability that a copy of data item a is
fetched by the tagged node from the node encountered at point of time t+1, is given by p0,1=rt (a).
On the other hand, p0,0 is 1  rt (a). As the size of SC is assumed unlimited, it holds that p1,0 = 0
and p1,1 = 1. Denoting with t

a = {
t
a[0], t

a[1]} the state vector of the Markov chain at time step t ,
and P = {pi, j }2, i, j=0, 1, its transition matrix evaluated at time t+1, the evolution of the SCMarkov
Chain is as follows: t+1

a =  t
aP .

2Note that the pi, j values depend on the parameter t , but for the sake of notation simplicity we omit it.
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Table 2. List of mathematical notations

Symbol De�nition

N Number of nodes of the network
M Number of items in the network
C Number of channels in the network
a.c Channel to which data item a belongs
rt (a) Fraction of nodes storing a copy of a
Pop (c ) Probability for a node to be subscribed to chan-

nel c
 t
a[1]( t

a[0]) Prob. that data item a is (is not) in SC at time
t

 tc [i] Prob. that channel c has a recognition level i
in CC at time t

ta[i] Prob. that data item a has a recognition level i
in IC at time t

ta[i] Prob. that data item a is stored in OC at time
t with a rec. level i

Rc Threshold for channel recognition
R Threshold for data item recognition
B Max. number of slots available in a OC

5.2 Channel Recognition
As described in Sec. 3, CC stores the number of times the tagged node has encountered another
node subscribed to the tagged channel. Thus, the state i of its Markov Chain is the number of times
this has happened, which is the recognition level of the channel. The transition matrix is de�ned as
follows

pi, j =

8>>>>>>>>>>>><
>>>>>>>>>>>>
:

Pop (c ) if j=i+ 1, i 2 [0,Rc1]
 i (1Pop (c )) if j=i 1, i 2 [1,Rc ]
1 ((1 i )Pop (c )+ i ) if j=i, i 2 [1,Rc1]
1Pop (c ) if i, j=0
1   i (1Pop (c )) if i, j=Rc
0 otherwise

, (3)

The probability that i increases at an encounter is the probability that the encountered node
is interested in the channel, i.e. the channel popularity Pop (c ). We drop the recognition level by
1 when the encountered node is not interested in the channel (which happens with probability
1  Pop (c )). This is weighted by a factor  i , with 0    1. Variable  replicates the phenomenon
of forgetting. As reported in the cognitive science literature [16, 38, 45], the memory trace associated
with an item decays over time exponentially. However, repeated expositions to the item reinforce
its memory trace, thus slowing down the forgetting process. For these reasons, factor  i decreases
as the recognition level increases. Therefore, we drop recognition of channels that are not popular
(anymore), but we do so more conservatively for very popular channels, since they have been
observed more times, achieving an increased memory strength. The probability of remaining at the
same recognition level is the complement of the �rst two transitions. Special cases are state i=0,
where the recognition level cannot decrease, and state i=Rc , where the recognition level cannot
increase.
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The state vector of the CC chain is denoted by  tc , and the initial state at the beginning of the
process evolution is 0c = {1, 0, . . . , 0}.

5.3 Item Recognition
Conceptually, the recognition process of data items is similar to the channel recognition. In fact, IC
maintains a list of the observed data items and their recognition levels, de�ned as the number of
times they have been observed in encountered nodes. Thus, the state i of the Markov chain used
to describe the status of the IC for the generic data item a belonging to channel c represents its
recognition level, while state 0 represents the condition of data item a not having been observed,
yet. Considering that the probability that a tagged node �nds a copy of data item a in the caches
of another node encountered at point of time t+1 depends only on its replication level rt (a), the
transition probability matrix of this Markov chain is as follows

pi, j =

8>>>>>>>>>>>><
>>>>>>>>>>>>
:

rt (a) if j = i+1, i 2 [0,R1]
 i (1rt (a)) if j = i1, i 2 [1,R]
1[rt (a) (1 i ) +  i ] if j = i, i 2 [1,R1]
1rt (a) if i, j = 0
1 (1rt (a)) i if i, j = R

0 otherwise

, (4)

where  (0    1) is the discount factor for the item recognition level. In the following, ta is the
state of the IC chain, with initial state 0a = {1, 0, . . . , 0}.
5.4 Opportunistic Cache

Di�erently from the other caches, OC has a limited size B. As described in Sec. 3.2, only copies
of data items belonging to recognized channels can be stored in the OC cache. However, given
that OC can contain only a subset of available data items, a replacement policy is needed. We
recall that our modi�ed Take-the-Best replacement policy gives a higher priority to data items with
lower recognition levels. In case of ties, the data items found in the caches of the encountered node
are preferred to the ones already in the OC cache of the tagged node. To tackle the problem of

Fig. 3. �euing network modeling the OC cache.

modeling the evolution of OC, we represent this cache as a queuing network, as shown in Figure 3.
In this queuing network, a sub-queue i stores all data items that are in the OC and have the same
recognition level i . The sub-queue 0 is a virtual queue that contains all the data items that are
outside of the OC, independently of their recognition levels. Then, the ith element (i > 0) in the
state vector ta = {ta[0],ta[1], . . . ,ta[R]} represents the probability that the generic data item a is
in the OC cache with recognition level i at time t . It is also important to note that each individual
sub-queue has not a �xed size, but we must ensure that the sum of the numbers of data items stored
in these sub-queues (excluding sub-queue 0) is lower or equal to B.
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To analyse the replacement policy for OC, we split the problem into two simpler sub-problems.
First of all, we model the reordering of the data items stored in the OC cache due to changes in
their recognition levels after an encounter event. For instance a data item that was initially stored
in sub-queue i should be moved to sub-queue i+1 if its recognition level is increased upon an
encounter event. Since this process involves only an internal reordering of stored data items, no
data items are dropped. The second step in the analysis takes into account that new data items
fetched by the caches of the encountered node may enter the OC of the tagged node at a sub-queue
that depends on their recognition level. Due to cache size constraints, some of these data items
could not be allowed to enter the OC cache, or some data items already stored in OC could be
removed to let new data items enter the OC cache. In addition, in both steps we consider the
possibility that data items in the OC are moved to sub-queue 0 – i.e. are dropped – if their channel
is not recognized anymore after the encounter occurring at point of time t+1. In the following we
separately describe these two modeling phases.

Step 1. Let us introduce an auxiliaryMarkov chain, whose state vector 0a = { 0a[0], 0a[1], . . . , 0a[R]}
represents the probability that the generic data item a is in the OC cache with recognition level i
after the encounter event, but before new data items are inserted in the OC. Then, we have that
 0a =

t
aP
0, where P 0 is the transition probability matrix of the auxiliary Markov chain modeling the

data item reordering. Since no data items enter OC in this phase, we have that p 00,0=1. However, a
data item could be removed from OC if the channel it belongs is not recognised anymore, which
happens with probability (1   t+1a [Rc ]), or the recognition level of the data items becomes 0. In
other words

p 0i,0 = 1   t+1a [Rc ], i 2 [2,R] (5)

p 01,0 = (1   t+1a [Rc ]) +  t+1a [Rc ] (1  rt (a)) (6)
Formula (6) can be explained by noting that a data item of a recognized channel can change its
recognition level from one to zero only if it is not in the caches of the encountered node, and
the tagged node applies the discount factor  to the data-item recognition level stored in IC (see
formula (4)). Following a similar line of reasoning as in (6) we can compute the probability that a
data item already in the OC moves to either backwards or forwards sub-queues. More formally we
have that

p 0i,i1 =
t+1
a [Rc ] i (1  rt (a)), i 2 [2,R] (7)

p 0i,i+1 =
t+1
a [Rc ]rt (a), i 2 [1,R  1] (8)

On the other hand, the probability of remaining in the same sub-queue after the encounter event
at point of time t+1 is simply given by the complement of the sum of the probabilities of moving
backwards or forwards and to leave the OC cache. More formally, it holds that

p 01,1 = 1  p1,0 + p1,2
 (9)

p 0i,i = 1  pi,0 + pi,i1 + pi,i+1


, i 2 [2,R  1] (10)

p 0R,R = 1  pR,0 + pR,R1
 (11)

We now exploit the knowledge of the state vector  0a to compute the new average number of
data items in each sub-queue i , say B0i , after the internal reordering, which is simply given by

B0i =

MX

a=1
 0a[i] . (12)
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Step 2: To derive the �nal status of the OC cache, i.e. t+1a [i], in this step we �rst compute the
average number N0,i of new data items that are eligible to enter OC at sub-queue i . Then, we
compute the number Fi of available free slots at each sub-queue i of the OC. The Fi value is the key
parameter we need to compute the probability that a new data item is either discarded or cached,
and the probability that an old data item stored in OC is removed. N0,i is computed as follows:

N0,i =
MX

a=1
(1  r0 (a)) rt (a) t+1a [Rc ]ta[i1]ta[0] . (13)

In this de�nition, we can observe that a new data item not already stored in the OC of the tagged
node is eligible for entering OC in the sub queue i i� (i) it is not one of the items generated by
the tagged node itself (that happens with probability 1  r0 (a)), (ii) it is outside the OC at time t
(probability ta[0]), (iii) it is stored in the caches of the encountered node (probability rt (a)), (iv)
the channel it belongs to is recognized (probability  t+1a [Rc ]), (v) and its recognition level before
the encounter event was i1 (probability ta[i1]).

It is important to remind that N0,i expresses the number of new data items that can be potentially
copied in the OC cache. However, the actual number of new data items that are copied in OC will
depend on the number of free slots. More precisely, let us denote with Fi the maximum number of
free slots that new data items can occupy in the sub-queue i of the OC cache. It holds that

Fi = B

i1X

j=1
Bt+1j , (14)

with F1 = B. Indeed, data items (both new or old) with recognition level equal to one have the
highest precedence and they can use the entire OC. On the contrary, data items with recognition
level equal to i (i >1) can use only the part of OC not used by data items with lower recognition
levels. It is also important to point out that in formula (14) we must use the Bt+1i value because it
provides the size of sub-queue i in OC after completing the internal reordering, the insertion of
new items and the removal of old items. However, it is quite straightforward to observe that Bt+1i is
simply given by

Bt+1i = min(N0,i + B
0
i , Fi ) . (15)

Formula (15) can be explained by noting that if N0,i+ B
0
i >Fi , then there are enough free slots in

OC for all the new items that could enter at level i and for the old items that are already at level i
after the reordering. On the other case, some new items will be discarded and/or some old items
will be dropped till only Fi slots are occupied, as discussed later. Now, by using formulas (14), (15)
and the initial condition F1=B we can iteratively compute all remaining Bt+1i and Fi values.

Finally, to compute the state vector t+1a we introduce an auxiliary transition probability matrix
P such that t+1a =

0
aP . As observed in formula (13), a new data item is eligible for entering OC at

recognition level i with probability rt (a) t+1a [Rc ]ta[i1]. Remember that, when we need to pick
only a subset of the N0,i + B

0
i data items that could possibly stay in sub-queue i , we prefer new

items over items that were previously in the OC. Therefore, that new data item will certainly be
fetched by the tagged node if N0,i  Fi , otherwise only a fraction Fi/N0,i will be fetched. Thus, the
probability p0,i that a new item e�ectively enters the OC cache can be expressed as

p0,i =
8><
>
:

rt (a)
t+1
a [Rc ]ta[i1] if N0,i  Fi

rt (a)
t+1
a [Rc ]ta[i1]

Fi
N0,i

otherwise
(16)
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On the other hand, an old data item that was already stored in the OC cache should be removed if
the new data items have consumed all (or most of the) free slots. More precisely, we have that

pi,0 =

8>>>><
>>>>
:

0 if N0,i + B
0
i  Fi

1 if N0,i > Fi

1  FiN0,i
B0i

otherwise .
(17)

Formula (17) indicates that in case N0,i +B
0
i  Fi there is no need of replacing data items because

the free slots can accommodate both new and old data items. On the other hand if N0,i  Fi a
fraction 1 FiN0,i

B0i
of old data items has to be removed from theOC cache. The rest of the transitions

of matrix P are clearly as follows:

pi, j =

8>>>><
>>>>
:

1 Pk>0 p0,k if i = j = 0
1  pi,0 if j = i, i , 0
0 otherwise .

(18)

5.5 Steady-state Analysis Inside a Single Community
In [8] we have presented a comprehensive analysis of the transient state of data replication based
on the model. In this section, we only point out that the model is able to accurately follow the
simulation results. Speci�cally, for the purpose of this paper it is of particular interest to focus
on the steady state properties, as shown in Figure 4. The same �ndings reported in this �gure
are valid for other con�gurations and we refer the reader to [8] for the complete set of the model
validation results. Results are obtained with a network composed of 45 nodes, 3 di�erent channels
with 99 data items each (297 data items in total). Channels’ popularities are skewed and they follow
a Zipf distribution with parameter 1. Nodes move according to a Random Waypoint model in a
square area of side 1 km. Figure 4 reports the replication levels over time in the nodes’ OCs of each
tagged item of the 3 channels over time. The model is compared with the results of a conventional
simulation. In this �gure, the results of the most popular channel are presented in the leftmost
plot, the mid popular channel is presented in the central plot, while the least popular channel’s
results are in the rightmost plot. From these results, we can speci�cally highlight two features of
the system. The �rst one is that the replication level in the steady state is the same for all channels.
As shown by the �gures, the model is able to correctly account for this feature. Furthermore, the
model also allows us to accurately predict the evolution of the dissemination process during the
transient phase, and the time when the steady-state value of the replication function is achieved.

6 HYBRID SIMULATION VALIDATION AND LARGE SCALE EVALUATION
In this section we evaluate the performance of the recognition-based data dissemination policy in
large-scale scenarios.
Based on the results shown in Section 5.5, we instantiate Algorithm 1, by setting an identical

steady-state probability r (a) for each item a available in the community when an event occurs
(remember that events are traveller entering or leaving a community). We �rst validate the hybrid
simulation model in small scale against legacy simulation results. Then, we use hybrid simulation
to study the system in larger settings, with wider areas and greater number of users. These settings
have the geographical extension and the population size of a urban- and a regional-scale scenario,
respectively. Note that in the following we mainly study the transient phase of the entire system
(i.e., not of individual communities), i.e. the phase before the convergence of the hit rate. This is
clearly di�erent from the transient phase of dissemination in each speci�c community, which was
highlighted in [8] .
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Fig. 4. rt (a) for Rc = 5, R = 5 and B = 3.

6.1 Hybrid Model Validation
In the following, all data items are generated at the beginning of the simulation, and are initially
distributed uniformly at random among nodes in the network. Each node subscribes to one channel
only at the beginning of the experiment. Nodes subscriptions inside each group are skewed, and
are distributed according to a Zipf distribution with parameter 1. Moreover, interests are rotated,
so that the most popular channel in a group is the second in another and the third one in the other,
and so on. The results shown in the following �gures are obtained using the simulation parameters
reported in Table 3.

Table 3. Validation - Main simulation parameters

Simulation Parameters
Simul. Area 1000 m ⇥ 1000 m

Transm. range 20 m
Numb. of Communities 3

Numb. of Nodes 45 (15 per comm.)
Numb. of travellers 6 (2 per group)
Numb. of channels 3
Items per channel 99
Simulation time 125000 s

Results from both conventional and hybrid simulations are the average over 10 replicas. Unless
otherwise stated, we do not show con�dence intervals, since they are very small, and showing
them would compromise the readability of the �gures. In each replica we use an independent
synthetic mobility trace obtained from HCMM with the same con�guration. The hybrid simulation
is designed by assuming that the spreading of data within a community reaches a steady state
before a traveller exits the group. This condition is met whenever the mean sojourn time of the
traveller in a community is long enough. Therefore, in order to analyse the e�ects of sojourn times
on the assumptions of the hybrid simulation, we tested the system using di�erent mean sojourn
times. Results are reported in Figure 5. For both the hybrid and conventional simulation, we used
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Fig. 5. Comparison of hybrid simulation and complete simulation results, with di�erent mean sojourn times.

a OC size B = 5, while the results of the conventional simulation reported in the �gure are obtained
with a Channel Recognition Threshold Rc = 10, and Item Recognition Threshold R = 10. We
analyse in Figure 5 the results varying these parameters. Clearly, the two latter parameters are not
relevant for the hybrid simulation, since this model assumes that the recognition of channels and
items reaches a steady state before any event happens. In the �gure, hybrid simulation results start
at a time di�erent from 0, since this is the time step when the �rst event (i.e., the exit of a traveller
from a community) is registered in the simulation.
Looking at Figure 5, it is possible to note that there are only minor di�erences between the hit

rate obtained by the hybrid simulation and the ones resulting from the legacy simulation, when
travellers have sojourn times of 6000 and 600 seconds, respectively. This is a remarkable result,
since the two sojourn times di�er by one order of magnitude. When using a very short sojourn
time (just 35 sec.), di�erences are more marked. Nonetheless, they still remain limited, with the two
hit rates increasing with close and similar trends in both types of simulation. A traveller’s mean
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Fig. 6. Comparison of hybrid simulation and complete simulation results, with di�erent item (a) and channel
(b) recognition thresholds. Mean sojourn time = 35 s

sojourn time of 35 seconds is extremely short, and this is an interesting con�guration as it stresses
the assumptions of the hybrid simulation model. Therefore, in Figure 6 we further investigate the
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Table 4. Urban and Regional scale simulation parameters

Urban Scale Regional Scale
Simul. Area 1,000 m ⇥ 1,000 m 10,000 km2

Transm. range 20 m 20 m
Numb. of Communities 50 250

Numb. of Nodes 10,000 (200 per comm.) 2,500,000 (10,000 per comm.)
Numb. of travellers 2,450 (49 per comm.) 6,250 (25 per comm.)
Numb. of channels 50 10,000
Items per channel 100 (def.), 200 and 400 500 (5,000,000 in tot.)
Simulation time 125,000 s 125,000 s

behaviour of the hybrid simulation with a mean sojourn time of 35 seconds. Speci�cally, we use
values that represent extreme cases for the Channel and Item Recognition Thresholds in the legacy
simulation. Figure 6a shows the results obtained by keeping the Rc �xed to the value of 10 and by
varying the value of R. Note that the hybrid simulation starts with a higher Hit Ratio. This happens
because the hybrid simulation assumes that the nodes in the community are able to retrieve all
the items of their subscribed channels before the departure of a traveller. Afterwards, the hit rate
in the conventional simulation model become higher. This is more evident for larger values of R,
because data items take longer to be recognised. Note however, that the hybrid simulation model
well follows the trend of increase of the hit rate.

In Figure 6b the value of R is �xed to 10 and two di�erent values of Rc are used. The general
behaviour is similar to that of the previous experiment, with di�erences between the hybrid and
conventional simulations due to di�erent recognition levels. It is interesting to note that the highest
value of Rc modestly a�ects the Hit Ratio, by slightly slowing it down, as channels need more time
to become recognized and have their items di�used in the system.

6.2 Urban-Scale Evaluation
In this section, we present a series of experiments made with the hybrid simulation approach in
a much larger scale than that of the previous experiments, in order to test the recognition-based
dissemination scheme in a urban area scale. The experimental parameters used in this section are
reported in Table 4. Events about the travellers’ movements are obtained with the HCMM model.
We consider that each group has one outgoing traveller toward each of the other communities.

Speci�cally, the following experiments analyse a scenario like the one of a urban area, with
a considerably large number of nodes, in the order of thousands of devices. In fact, we scale up
to 10,000 nodes. The number of channels and communities are one order of magnitude greater
than that used in the validation study (see Section 6.1). We still assume that subscriptions within
each community follow a Zipf distribution with parameter 1. Moreover, subscriptions are rotated
between groups, also in this case.

Figure 7 shows the trend of the Hit Ratio over time for the most, mid and least popular channels
within a tagged community. We focus on a speci�c community instead of the entire set of nodes
because overall all channels have the same popularity, while in each community they are not
equally popular. In this experiment, the size of the OC is su�cient to hold 10 data items, and
there are 100 items per channel. Despite the fact that the most popular channel has 50 times more
subscriptions than the least popular one, the di�erence in hit rate is very limited. In particular,
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Fig. 7. Hybrid simulation results for the most, mid, and least popular channels within a tagged group

there are no di�erences between the curves of the most and mid popular channels, while the least
popular channel seems to converge more slowly that the previous ones. However, note that 95%
con�dence intervals for the most (depicted in red) and least (blue) popular channels always overlap,
sometimes including the other curve. This is expected, as the steady state value for distribution
of data items on nodes (r (a)) is equal among channels. This fact highlights one of the positive
features of the recognition policy, that gives priority in the OC cache to less recognised, and thus
less di�used, data items, obtaining a �nal fair di�usion of all the items, regardless of their channels’
popularities.
In the experiments reported in Figure 8a, we analyse the impact of the OC size on the hit rate

considering the entire network (not a single community). These results are obtained assuming that
each channel has 100 items and that only 2 of them are initially available within each community.
This is to test the capacity of our policy to spread data items across di�erent communities. As one
could expect, the greater the size of theOC, the faster the convergence of the hit rate to its maximum
value. While with an OC of 25 slots (i.e. only 0.5% of the total number of data items) a 100% hit
rate is reached after nearly 60,000 sec. of simulation, with an OC of 10 slots the system stabilises at
the end of the simulation. When the OC is very small, i.e. 3 slots, the hit rate remains below 60%
even after 100,000 seconds of simulation. Finally, Figure 8b presents the di�erent behaviour of the
system when the number of items per channel is increased. Speci�cally, the system is tested with a
total number of items in the system equal to 5000 (100 items per channel), 10000 (200 items per
channel) and 20000 (400 items per channel). The size of the OCs is �xed to 10. The converge of
the Hit Ratio is reduced when a larger number of items is involved. Larger sets of items, in fact,
require more time to be spread between all the communities, thus slowing down the trend of the
Hit Ratio. However, it is worth noting that the di�erence among the curves is proportional to the
total amount of items available in the system.

6.3 Regional Scale Evaluation
In this section, we extend the analysis of our system to a much larger scale scenario. In this case,
the simulation area and population are comparable with that of the county of San Diego, CA, the
Gifu Prefecture in Japan, or with that of a small nation like Jamaica. In this context, nodes are
grouped in 250 large communities of 10,000 devices each, reaching a total population of 2,500,000
users. In order to have more realistic settings, we consider a very large number of channels (10,000),
with a large amount of total available items, i.e. 5,000,000 items (500 per channel). Subscriptions
are skewed at the level of the entire population, following a Zipf distribution of parameter 1. As a
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Fig. 8. Hybrid simulation results, with di�erent sizes of the OC (a), and with di�erent total amounts of items
available in the network (b).

consequence, there is a very long tail, with numerous channels having only a few tens of nodes
subscribed to them, while the most popular channels can count on tens of thousands of subscribers.
Nodes are assigned to communities according to a uniform distribution. In such a scenario, we
cannot expect to have each community connected to all the others, like in the previous experiments.
Speci�cally, each group has only a small number of outgoing travellers (25, in the experiments),
connecting it to other communities. As in the experiments of the previous sections, each traveller
commutes toward another group only. In this case, the destination community of a traveller is
chosen at the beginning of the simulation on a geographical basis. Speci�cally, travellers have a
skewed probability (modeled as a Zipf distribution of parameter 1) of choosing another group as
their destination: the farthest a group, the lowest the probability to be connected with it. The main
parameters used in the simulations are summarised in Table 4.
Due to the high skewness in the channels popularities, in this experiment we do not expect

that all the channels are able to achieve the same hit rate at the end of the simulation. Our goal
is to investigate the behaviour of the system and its ability to deliver data with such a highly
heterogeneous data popularity, under strict limits in terms of OC size (compared to the number of
channels and items), number of travellers (with respect to the number of communities and users)
and conditions that make the dissemination di�cult, like a wide geographic area, and a very large
number of users to be served. In the experiments, we evaluate the system using two di�erent
scenarios for the initial data generation, which a�ect the overall dissemination process. In the �rst
scenario (hereafter termed as Scenario 1), the data of a channel is generated by the nodes that are
also subscribers of that channel. In the second scenario (Scenario 2), the data of each channel is
initially placed uniformly at random across all the nodes in the system. Figures 9a and 9b report
the results for these two scenarios, obtained by the system with an OC size of 5,000 slots (i.e., the
0.1% of the total number of items). Generally, the dissemination in the �rst scenario proceeds more
rapidly than in the second one, since, in the latter case, data is more dispersed, with respect to
users interests, and then it requires more time to reach the interested users. In both scenarios, all
channels up to the 1000-th most popular one achieve a 100% hit rate at the end of the simulation
(90% for the 1000-th most popular one in the second case) Note that the most popular channel
has more than 250,000 subscribers (ca. 10% of the users), compared to just a little more than 250
subscribers of the 1000-th channel (almost 0.01% of the users). Therefore, the system is able to fairly
serve the users who are interested in channels with extremely di�erent levels of subscriptions on a
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regional scale. We can also note that there is a very high di�erence between the 1000-th subscribed
channel and the 2500-th channel, much greater than that existing between the 1000-th channel and
the 1st one, suggesting that a phase transition occurs in the behaviour of the system. This is due to
the fact that the 1000-th least popular channel is nearly the last channel with at least one subscriber
per community (on average). In fact, some channels have a number of subscribers that is lower than
the number of communities. Whenever nodes in a community cannot observe any other device
subscribed to a given channel (and this is the case for the less popular channels), this channel is
prevented to become recognised in that community. As a result, its data items cannot be replicated
inside the OCs of the nodes of that community. Although this has no e�ect on the hit rate of nodes
of that community, this limits the overall dissemination of those data items, and impacts other
communities where subscribers are present. The speci�c hit rate achieved by subscribers of those
channels clearly depends on how travellers connect the di�erent communities.
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Fig. 9. Results for channels with various popularities, OC size = 5000. (a) Scenario 1 (b) Scenario 2.

These e�ects are particularly evident for the least popular channels. These channels are char-
acterised by a very low number of subscribers (less than 30 users), highly dispersed among the
available communities (just one subscriber every ten communities for the very least popular
channels). These are very extreme conditions. In order to have a deeper understanding of the
behaviour of the system with respect to less dispersed distributions of subscriptions, in the next
set of experiments we analyse the cognitive-based solution when only channels with a minimum
number of users per community are present in the network. Speci�cally, we use a setting where we
keep only the users and items of channels having subscribers on at least the 25% of the communities.
Note that the least popular channels of this setting are already in the long tail of the channels
popularity distribution, each having 0.0025% of the total number of nodes as subscribers. Results
are shown in Figures 10 and 11. Speci�cally, Figures 10b and 11b are obtained with the new setting
of channel distributions, while Figures 10a and 11a are those referring to the system with all the
channels. In both scenarios, the hit rate for all the channels is increased in the new setting. This
e�ect is particularly signi�cant for the least popular channels in Scenario 1 and for all the channels
in Scenario 2. In both cases, data is dispersed among communities, and requires more e�ort to
be delivered. Thus, these channels receive the most noticeable advantage from the absence of
extremely poorly subscribed channels.

The previous results were obtained using the channel recognition mechanism inside the commu-
nities. In the �nal experiment we test whether removing the channel recognition inside communities
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Fig. 10. Scenario 1. (a) Results with all the channel (b) Results with channels having subscribers on at least
25% of the communities
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Fig. 11. Scenario 2. (a) Results with all the channel (b) Results with channels having subscribers on at least
25% of the communities

could be bene�cial for the system. The comparison is presented in Figure 12, where results are
the average hit rate among all the channels, and are obtained with the same con�guration used in
Figures 10 and 11. In both Scenario 1 and 2, the solutions without the channel recognition increase
the hit rate at a lower pace than the versions using it. In fact, without the channel recognition,
data items pass through communities where they are not requested. As a result, these items could
compete for entering the caches of travellers, even when they are not useful for the overall dissemi-
nation process. The usage of the channel recognition mechanism allows to have a more focused
dissemination strategy, resulting in a faster di�usion of data items toward their interested users.

7 CONCLUSIONS
In this paper we have considered a data dissemination scheme for opportunistic networks where
nodes embed human cognitive processes to decide how to replicate data items upon contacts. This
approach is based on the general ideas that, in future IoP systems (i) self-organising networks
based on devices at the edge will be a key element, and (ii) data-centric services running on
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Fig. 12. Channel recognition impact: (a) Scenario 1; (b) Scenario 2. Only channels with subscribers on at least
25% of the communities

personal mobile devices need to incorporate algorithms that closely match the behaviour of their
human users in the physical world. The main goal of the paper was to assess the behaviour of
the cognitive-based data dissemination scheme in large-scale con�gurations. To this end, neither
purely simulation-based evaluation methods nor analytical models are su�cient. Therefore, we
have applied a hybrid simulation methodology, using an analytical model to characterize the system
behaviour at the community level to reduce the complexity of the simulation model. This allows us
to scale up the evaluation scenarios by orders of magnitude with respect to what we could obtain
with conventional simulation, without losing accuracy.

Performance results characterise the behaviour of the cognitive-based data dissemination along
several directions, including number and popularities of data, number of users, geographical scales,
and mobility patterns. The single most typical feature observed across the simulations is that the
considered scheme is able to e�ectively disseminate data items across a wide range of popularities,
while using a very limited amount of storage space at each node. This is very important, as serving
e�ciently content “in the long tail" is key, and not consuming individual nodes’ resources is also
fundamental. At a �ner level of detail, our hybrid simulation model allows us to highlight di�erences
due to the scheme and environment parameters. Quite interestingly, for example, we have found a
phase transition, at the point where less than one node per social community is interested in data
types (channels). For popularities below that point, as it is intuitive, the speed of dissemination
drops dramatically, while di�erences are not so pronounced as soon as popularities increase over
that threshold.

We can thus conclude that the analysed data dissemination scheme is very e�cient in bringing
data to interested users, and is able to support completely decentralised and self-organising data
sharing schemes even up to the geographical scale of a region (or a small country), populated by a
few million users.
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