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Figure 1: Overview of our pipeline for monocular dense scene flow estimation.

ABSTRACT

Contrary to the ongoing trend in automotive applications towards
usage of more diverse and more sensors, this work tries to solve
the complex scene flow problem under a monocular camera setup,
i.e. using a single sensor. Towards this end, we exploit the latest
achievements in single image depth estimation, optical flow, and
sparse-to-dense interpolation and propose a monocular combina-
tion approach (MonoComb) to compute dense scene flow. Mono-
Comb uses optical flow to relate reconstructed 3D positions over
time and interpolates occluded areas. This way, existing monoc-
ular methods are outperformed in dynamic foreground regions
which leads to the second best result among the competitors on the
challenging KITTI 2015 scene flow benchmark.
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1 INTRODUCTION

One current trend for many applications in assisted or autonomous
driving is the utilization and fusion of as many sensors as available.
As a result, certain approaches have increasing requirements on
the hardware in a product. A different strategy is to solve the same
problems based on input from less sensors, which allows to have the
same functionality at lower cost. This becomes possible by adding
constraints or assumptions to the formulation of the problem, by
technical progress, or by relying on more or other visual cues.

In this work, the problem at hand is the estimation of dense 3D
scene flow. Scene flow can be considered the 3D equivalent of 2D
optical flow, which is achieved by additional 3D reconstruction of
the scene. In most conventional approaches, a pair (or sequence) of
stereo images is used as input. The stereo view allows for the 3D

reconstruction, while the images at different points in time provide
a motion cue and the temporal information. Recently, methods that
operate solely on point clouds from LiDAR sensors were proposed
[2, 13]. These approaches however are less dense compared to the
standard resolution of images. Therefore, the fusion of cameras and
LiDAR have been considered, either in the stereo case [1] or in the
monocular case [16], where the LIDAR measurements replace the
stereo dependency for 3D reconstruction.

However, following the strategy to reduce the sensor input, we
propose a method to estimate scene flow in the purely monocular
case. While a single RGB camera does not provide a geometric cue
as in stereo cameras and is also unable to measure depth directly as
a LiDAR or RGB-D camera is, this setup poses scene flow estimation
as a much more difficult problem. To our rescue, latest develop-
ments in single image depth estimation have proven that absolute
depth can be reconstructed from a single view point [4, 6, 7, 12, 15].
This is possible by relying on depth cues like the monocular mo-
tion parallax, defocus blur by the field of depth, linear perspective,
texture gradients, or the relative size of known objects.

We exploit the progress in the field of single image depth es-
timation and use it within the combination framework for scene
flow [17] where geometry and temporal image correspondences
are estimated separately and are later combined to obtain full 3D
scene flow. Towards that end, we propose to 1.) estimate depth
from two single images, 2.) estimate optical flow between these
two images, 3.) correlate corresponding 3D points to estimate 3D
motion, and 4.) interpolate gaps due to occlusions to obtain a dense
result. The overview of these steps is given in Figure 1. Since our
combination approach operates in a monocular camera setting, we
term the proposed method MonoComb.



2 RELATED WORK

In the very beginning of scene flow estimation the problem has
already been formulated for a monocular camera [23], however
with a strong dependency on multiple views. Shortly after, stereo
cameras were used to provide a better geometric cue for depth esti-
mation [10, 24, 26]. A parallel evolution was using RGB-D cameras
to measure the geometry of the scene directly [8, 9]. As mentioned
earlier, the emerging use of laser scanners in vehicles has driven the
development of scene flow algorithms in the point cloud domain
[2, 13, 25]. And lastly, camera and LiDAR information has been
fused to solve the problem of scene flow estimation [1, 16].

Opposed to all these methods, our work presents a method to esti-
mate scene flow from just two consecutive images from a monocular
camera. There are a few approaches considering the same setup. In
Mono-SF [3], pixel-wise depth distributions are estimated for both
images and then used in a probabilistic optimization framework to
estimate rigidly moving, planar segments for the scene. Though
the superpixel segmentation provides a strong regularization and
high accuracy, the assumptions of rigidity and planarity introduce
errors depending on the granularity of the segmentation. Also, the
optimization is computational heavy. Self-Mono-SF [11] uses an
adaptation of PWC-Net [21] that is trained in an self-supervised
manner to jointly estimate 3D position and 3D flow at a quarter
resolution. This methods is able to achieve competitive results after
supervised fine-tuning, but the purely unsupervised version lags
behind. Lastly, OpticalExpansion (OE) [28] exploits the assumption
that most of the change of the projected size of objects is due to
the change in distance to the observer. Therefore the authors argue
that the relative motion-in-depth can be estimated directly together
with optical flow. In conjunction with an estimate for the depth in
one frame, the depth at the second frame can be reconstructed to
obtain full scene flow.

Since most of the previous work in monocular scene flow esti-
mation - as well as our proposed approach — rely on single image
depth estimation, we discuss a part of state-of-the-art in this area
as well. LRC [6] is a self-supervised approach that uses an encoder-
decoder network architecture and trains with a photometric loss
and consistency between left and right view of a stereo camera. The
approach was later refined in MonoDepth2 [7]. DORN [4] proposes
to use a ordinal regression loss instead of a regular regression loss to
train a network for single image depth estimation. This formulation
is closer to monocular depth cues, where it is often easier to order
the depth of regions instead of regressing the absolute depth of each
point. BTS [12] represents state-of-the-art across different data sets.
The idea of BTS is to fuse depth estimates from multiple scales at
full resolution using local planar guidance for up-sampling.

Finally, very related work is the combination approach for stereo
scene flow estimation in [17, 19]. Though the sensor setup is differ-
ent from ours, the ideas are similar: Separate the complex problem
of scene flow estimation into several (solved) sub-problems. In the
work by [17], this concept yields non-dense scene flow, due to oc-
clusion. The work of [19] solved this limitation by applying the
interpolation method of SceneFlowFields [18] to the non dense
result. Since our objective is dense scene flow as well, we also apply
an interpolation method to fill in the gaps after warping. However

in contrast to these previous approaches, our initial depth estimates
are obtained using a single image from a monocular camera.

3 MONOCULAR COMBINATION APPROACH

We propose the following method to obtain dense scene flow from
a single monocular image pair I; and I, at time steps ¢; and ty. First,
we use an off-the-shelf single image depth estimator to predict a
dense depth map for each of the images, D1 and D,. We also predict
dense optical flow u = (v, )T from the first to the second image
with an auxiliary optical flow estimator. The optical flow result
is directly used within our combined scene flow, and further to
estimate the (non-dense) change in depth, by warping D, towards
the reference frame at ;. At this point, a non-dense scene flow is
achieved. Lastly, we interpolate the gaps which originated during
warping to reconstruct the dense scene flow.

3.1 Auxiliary Depth and Optical Flow
Estimation

In principle, any methods for depth and optical flow estimation
can be used. The performance of the auxilliary methods directly
influence the quality of the final scene flow result. Therefore, we
experiment with the state-of-the-art in optical flow VCN [27] and
HD3 [29] and BTS [12] for single image depth estimation.

While for optical flow we use the publicly available pre-trained
weights, we re-train BTS on the complete KITTI depth data set
[5, 22] with a depth cap of 100 meters. Since the KITTI scene flow
data set [5, 14] provides scene flow labels for the stereo setup in im-
age space, i.e. disparity and optical flow displacements, we further
transform all estimated depth values for a pixel p into (virtual) dis-
parity displacements using the available focal length f and baseline
B of the stereo camera according to Equation 1.

f-B
di(p) Di(p) (1)
Throughout the remainder of this paper, we denote the (virtual)
disparity maps d; by lowercase letters, and the originally estimated
depth map D; by capital letters. Anyhow, assuming calibrated cam-
eras, both domains are interchangeable since both provide the

necessary geometric 3D information.

3.2 Warping and Occlusion Estimation

The auxiliary estimators provide the basis for our approach. How-
ever, warping is the actual core and biggest challenge for the com-
bination method. It is needed to correlate the 3D information of
different pixels to find the shift over time. In accordance with previ-
ous work [17], we define the warping operation to map the current
and future depth values as follows:

dy"(p) = dz (p +u(p)) @)

During warping, we ignore target pixels outside of the image
domain and use bilinear interpolation to account for sub-pixel
displacements in the estimated optical flow. These out-of-bound
regions lead to a non-dense warped disparity. Additionally, some
points move in front or behind others so that not all points visible at
t1 are also visible at t5. These occlusions need to be filtered, because
they produce ghosting effects, i.e. duplicated objects, after warping.



Figure 2: Illustration of the warping process with occlusion
handling. The top images visualizes the geometry (virtual
disparity) at time ¢, after warping towards the reference
frame at time #;. The bottom image shows the two types of
obstruction, geometric occlusion (magenta) and out-of-view
motion (cyan), which can be considered as occlusion by the
camera frustum.

Since we have an estimate of depth, we can reason about which of
these points occlude the others, masking all but the closest point for
all source pixels with the same target position. This is formalized
in Equation 3 by

occ(p) = [di(p) < di(p")Vp' € Q| p’ +u(p’) »p+u(p)] ()

to obtain a binary occlusion mask occ for each pixel in the image
domain Q, where [e] denotes the Iverson bracket and sub-pixel
optical flow is handled by rounding.

After initial occlusion mask estimation, we correct discretization
and rounding errors by applying two iterations of morphological
closing and opening. An exemplary result of a warped disparity
map and occlusion mask is given in Figure 2.

By combining the initially estimated optical flow u, the geomet-
ric information of dj at time t;, and the warped disparity d*, a
non-dense scene flow can be obtained. This intermediate result is
analyzed in Section 4.1.

3.3 Interpolation and Refinement

To recover full density, we have to fill in the gaps of the warped
disparity d,". Our method of choice is SSGP [20]. SSGP is a recently
presented network architecture for image-guided interpolation of
different sparse or non-dense information. It was shown to work
for optical flow, scene flow, or depth maps. We use it to interpo-
late the gaps in our warped virtual disparity map and name the
interpolated output d;. Because of the inverse target domain (dis-
parity instead of depth), we retrain an implementation of SSGP on
the KITTI depth data in the disparity space. This is achieved by
conversion of all predicted values and ground truth depth labels
with Equation 1 during loss computation. An example for warped,
sparse geometry and the interpolated result is given in Figure 3.
Note how in this example even the fully occluded bush on the right
side is reconstructed reliably by the image guidance of SSGP.

In our experiments in Section 4.1, we show that the interpola-
tion is able to reconstruct full density (with respect to the image

Figure 3: Visualization of a depth (virtual disparity) estimate
from our validation split before and after interpolation with
SSGP [20].

resolution) and additionally to improve the predicted geometric in-
formation. We account this mostly to an correction of the absolute
scale of depth (virtual disparity). This is similar to the two-stage
depth estimation in Mono-SF [3] where a dedicated network for
re-calibration refines the initial depth estimates.

However, based on the observation that SSGP improves the re-
sults beyond interpolation, we suggest that this step might also
improve already dense input, i.e. the (virtual) disparity estimate
at time #;. For this reason, our full model processes the dense esti-
mate d; with SSGP before combining it into dense scene flow (cf.
Figure 1). We term the refined disparity map d7.

Lastly, all separate results (u, d7, dé) are combined to form dense
scene flow (in image space).

4 EXPERIMENTS AND RESULTS

In our experiments, the monocular combination approach is evalu-
ated step-by-step — starting from the initial estimates until dense
scene flow — and then compared to state-of-the-art on the KITTI
scene flow benchmark [5, 14]. This data set provides realistic im-
agery for diverse traffic scenarios — including highway, suburban
streets, and cities — as well as labels for full 3D scene flow. 200
sequences are labeled for training and another 200 sequences are
provided as input for online evaluation with ground truth labels
withhold. The models for monocular depth estimation are trained
with the KITTI depth data set, which is much larger. These two data
sets are related by an intersection of 142 sequences of the labeled
training sets. Therefore, we define our validation split for scene
flow as the remaining 58 sequences. The full list of these sequences
is available in the official development kit of the KITTI scene flow
data set.

For the evaluation, we consider the default metrics for scene flow
as defined by KITTI. These are the average end-point-errors (EPE)
in image space for the separate results, i.e. disparities at time t;



Table 1: Evaluation of different components and steps of our approach on the validation split of the KITTI scene flow training
data. End-point-error (EPE, [px]) and KITTI outlier error (KOE, [%]) are given. Numbers in parentheses indicate that the

respective model was (partially) trained on the validation data.

Method b1 bz OF SE Densit

EPE KOE | EPE KOE EPE KOE | XEPE KOE Y
BTS [12] (original) 3.60 2451 | - - - - - - 100 %
BTS (re-trained) 3.19 23.86 - - - - - - 100 %
HD3 [29] - - - - @7 13| - - 100 %
VCN [27] - - - - @4 (500 | - - 100 %

BTS + HD3 2.99 20.18 | 3.42 26.28 | (0.95) (2.39) 7.35 29.04 | 81.89%

BTS + VCN 298 20.15 | 3.36 25.44 | (0.76) (2.70) | 7.10  28.07 | 81.70 %
BTS + HD3 + SSGP [20] (D2) | 3.19 23.86 | 321  24.01 | (1.74) (5.13) | 8.14 3508 | 100%
BTS + VCN + SSGP (D2) | 3.19 23.86 | 3.24 2446 | (1.41) (5.00) | 7.84 3522 | 100 %
BTS + HD3 + SSGP (D1+D2) | 276 20.30 | 3.21  24.01 | (1.74) (5.13) | 7.70 2950 | 100 %
BTS + VCN + SSGP (D1+D2) | 276 2030 | 3.24  24.46 | (1.41) (5.00) | 7.41 2934 | 100 %
BTS + SSGP (D1) + OF [28] | 2.76  20.30 | (3.36) (23.63) | (2.02) (7.01) | 814 2653 | 100%
BTS + O 319 23.86 | (3.90) (27.87) | (2.02) (7.01) | 9.10 30.60 | 100 %
MonoDepth2 [7] + OE 2.95 2537 | (3.54) (28.47) | (2.02) (7.01) | 850 3090 | 100 %

Table 2: Evaluation results from the KITTI benchmark for all submitted monocular scene flow approaches. We distinguish

between supervised and unsupervised methods. Best (lowest) numbers in bold.

D1 [%] D2 [%] OF [%] SF [%] Run
Method .
bg fg all bg fg all bg fg all bg fg all time
Mono-SF [3] 14.21 2694 16.32 | 16.89 33.07 19.59 | 1140 19.64 12.77 | 19.79 39.57 23.08 41s
MonoComb (ours) 17.89 21.16 18.44 | 2234 25.85 2293 | 5.84 8.67 6.31 27.06 33.55 28.14 0.58 s
MonoExpansion [28] | 24.85 27.90 2536 | 27.69 31.59 2834 | 5.83 8.66 6.30 | 29.82 36.67 3096 | 0.25s
Self-Mono-SF-ft [11] | 20.72 29.41 22.16 | 23.83 3229 25.24 | 1551 17.96 1591 | 31.51 45.77 33.88 | 0.09s
Self-Mono-SF [11] 31.22 48.04 34.02 | 34.89 43,59 36.34 | 23.26 2493 2354 | 46.68 63.82 4954 | 0.09s

(D1) and t; (D2) as well as optical flow (OF) and the average KITTI
outlier rates (KOE), where an estimated value is defined as outlier
if its EPE exceeds 3 px or 5 % of the magnitude of the ground truth
value. Scene flow outliers are defined as union of the outliers of
separate results, i.e. if either disparity values at ¢; or t2, or optical
flow is an outlier.

4.1 Ablation Study

In our ablation study, we evaluate separate parts and intermediate
results of our approach individually. The results are presented in
Table 1. In detail, we test the re-trained BTS [12] with disparity
transformation on the scene flow validation set and notice a small
improvement over the officially provided pre-trained weights. Fur-
ther, the two considered estimators for optical flow, HD3 [29] and
VCN [27], are evaluated. It is important to note, that we have not
re-trained these networks and thus our validation split was entirely
used during training of both, HD3 and VCN. This is indicated by
parentheses in Table 1. That said, the generalization of the models
to the unseen test set is not too bad as is shown by the results on
the KITTI benchmark (cf. Table 2).

The important next step of our pipeline is the warping. The
warped (virtual) disparities are also evaluated together with the

sparse scene flow that is created by warping. We notice similar
performance for both optical flow estimators, reaching densities of
81.9 and 81.7 %. It is further evident that the warping introduces
some artifacts which reduce the accuracy compared to the disparity
maps that are directly estimated in the respective reference frame.
At the same time, the masking of occlusions and out-of-bounds
motions also removes some outliers in the disparity at time #; and
the optical flow. This reveals that HD3 has more difficulties to han-
dle occlusion compared to VCN. Overall, as seen in previous work
[17], the sparse scene flow obtained by warping is comparatively
accurate, yet being non-dense.

To recover full density, d,” is interpolated with SSGP. Interest-
ingly, the interpolation does not only fill in the gaps, but further
improves the dense result over the sparse one. For that reason, we
finally apply dense refinement to d; using SSGP. This results in a
significant reduction of errors for D1 and an even bigger improve-
ment for the overall scene flow estimates. At the same time, the
qualitative impressions in Figures 3 and 4e reveal that the interpo-
lation and the dense refinement with SSGP introduce artifacts in
the sky regions (upper third of the image) where no supervision
signal is available in the data set.

Lastly, numbers for the competing method OE [28] are presented.
This method uses every fifth frame (starting with sequence 0) for



validation and the rest for training. As a consequence, part of our
validation set has been used to train OE. The reference depth esti-
mate for OpticalExpansion was computed with MonoDepth2 [7].
We also report numbers when OE is used in conjunction with BTS
and our refined disparity estimate d]. We make this comparison to
validate that our approach performs not just better because of the
better depth estimator (BTS over MonoDepth2), but because of the
way corresponding depth values over time are correlated. This is
validated by the relatively little improvement of scene flow outliers
(SF KOE) compared to the outliers of D1 in the last two rows of
Table 1. The third last row validates that our contribution of dense
refinement is also beneficial for other approaches.

4.2 Comparison to State-of-the-Art

In this experiment we compare our dense monocular scene flow
approach to state-of-the-art in this field. This is done by submitting
to the online KITTI scene flow benchmark. For that, SSGP for inter-
polation and dense refinement is re-trained on all 200 sequences of
the KITTI training split. This turned out especially useful since our
validation split is comparatively large (> 25%). Results for all pub-
lished monocular approaches and our proposed method is shown
in Table 2. The results of the ablation study (Table 1) are transferred
within reasonable deviation and some further improvements due
to the additional training data.

Our monocular combination approach (MonoComb) pushes state-
of-art in various ways. We achieve the second best result overall
and the best result among all methods with sub-second run time.
Further, we achieve the lowest error rate for the important fore-
ground regions (fg) of dynamic objects with a margin of more than
3 percentage points.

A qualitative comparison is provided in Figure 4 where the result
of the first test frame for all monocular methods is visualized along
with the corresponding error maps. This particular sample reveals
the major issues of each approach. For Mono-SF [3] the biggest
challenge is the correct estimation of dynamic objects. This is also
reflected by the quantitative results in Table 2. The monocular
version of OpticalExpansion [28] (MonoExpansion), is depending a
lot on the estimate of the initial depth/disparity. Further, since the
relative change in depth is tightly coupled and estimated together
with optical flow, the estimated second disparity suffers from the
same limitations as optical flow, i.e. occlusions, visual perturbation
by large geometric deformations over time, etc. The (fine-tuned) self-
supervised approach [11] is mainly restricted by the lower level of
details due to the reduced output resolution. Our proposed approach
predicts scene flow at full resolution, handles occlusion explicitly
and solves this issue by interpolation, and provides top performance
for dynamic objects. However, the error maps in Figure 4e indicate
that the absolute scale is not recovered sufficiently well. Further, the
major limitation of our method is the inconsistency of the prediction
due to the separation. This results in bad alignment of correct and
erroneous regions across the separate tasks, and ultimately in a
high outlier rate in the scene flow metric. In fact in Table 2, our
approach has a much larger margin between the highest outlier
rate of D1, D2, or OF and SF, compared to e.g. OpticalExpansion
[28].

4.3 Run Time

One advantage of the combination approach is the modularity. As
part of that, the overall run time is defined by the sum of the aux-
iliary run times as given by Table 3. In our case this leads to an
approximate average run time per frame of 0.58 seconds. This sums
up over two runs of the single image depth estimator, one forward
pass of the optical flow estimator, and two runs of SSGP for refine-
ment and interpolation. The time for warping and combination of
the separate results is neglectable small.

Table 3: Breakdown of the run time.

Module Calls | Run time
HD3[29]/VCN[27] | 1 |0.1/018s
BTS [12] 2 0.06 s
SSGP [20] 2 0.14s
Total - 0.5/0.58s

5 CONCLUSION

The sparse-to-dense re-combination approach for scene flow esti-
mation is successfully transferred to the monocular camera setup.
This is achieved by latest success in single image depth estimation
and robust sparse-to-dense interpolation. Together with state-of-
the-art auxiliary estimators, the proposed concept achieves more
than competitive results at reasonable speed. The modularity of
the approach allows to quickly replace parts of the pipeline to
tune the overall performance towards a certain goal, i.e. real time
performance.

In this relatively new discipline of monocular scene flow estima-
tion, the monocular combination approach can be seen as a strong
baseline for future developments.

The biggest limitation of our method is the inconsistency of
the separate results. To overcome this in the future, we propose to
perform interpolation and dense refinement jointly, which might
also introduce mutual advantages for both tasks. Additionally, the
monocular camera setup for scene flow estimation does not restrict
the depth estimation to use a single image. It should be investigated
whether the joint estimation of depth over time (e.g. two-view depth
estimation) can improve the results further.
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