
Clustering in Hypergraphs to Minimize Average
Edge Service Time∗

Ori Rottenstreich1, Haim Kaplan2, and Avinatan Hassidim3

1 Princeton University, Princeton, NJ, USA
orir@cs.princeton.edu

2 Tel Aviv University, Tel Aviv, Israel
haimk@post.tau.ac.il

3 Bar-Ilan University, Ramat Gan, Israel
avinatan@cs.biu.ac.il

Abstract
We study the problem of clustering the vertices of a weighted hypergraph such that on average
the vertices of each edge can be covered by a small number of clusters. This problem has many
applications such as for designing medical tests, clustering files on disk servers, and placing
network services on servers. The edges of the hypergraph model groups of items that are likely
to be needed together, and the optimization criteria which we use can be interpreted as the
average delay (or cost) to serve the items of a typical edge. We describe and analyze algorithms
for this problem for the case in which the clusters have to be disjoint and for the case where
clusters can overlap. The analysis is often subtle and reveals interesting structure and invariants
that one can utilize.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Clustering, average cover time, hypergraphs, set cover

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.64

1 Introduction

Between 15% and 20% of the population suffers from some form of allergic contact dermatitis
[26]. One of the most common ways to treat this is to find the allergen, and avoid it. In
order to find the allergen the doctor applies patch tests to the patient. Each patch test is
applied by attaching a patch containing a cluster of several different allergens to the patient’s
back. The doctor first decides which allergens to test based on anamnesis. Then she picks a
set of clusters that contains all suspected allergens and applies the corresponding patch tests.
The study of this paper answers the question how to cluster different allergens together such
that common anamnesis require a small number of patch tests. This is in order to reduce the
cost and patient’s discomfort. Such an abstraction is relevant of course in any scenario in
which tests (medical or other) are performed in clusters and one has to design the clusters.1

∗ Work by Haim Kaplan has been supported by Grant 1161/2011 from the German-Israeli Science
Foundation, by Grant 1841-14 from the Israel Science Foundation, and by the Israeli Centers for
Research Excellence (I-CORE) program (center no. 4/11).

1 This medical setting may remind the reader of group testing. In group testing we want to locate
individuals who have a certain property by testing the individuals against groups of properties, rather
than against individual ones, and we want to minimize the number of groups. Here we also group
properties into tests, but we may have different properties that we try to locate among different subsets
and our objective is different.

© Ori Rottenstreich, Haim Kaplan, and Avinatan Hassidim;
licensed under Creative Commons License CC-BY

25th Annual European Symposium on Algorithms (ESA 2017).
Editors: Kirk Pruhs and Christian Sohler; Article No. 64; pp. 64:1–64:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2017.64
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

64:2 Clustering in Hypergraphs to Minimize Average Edge Service Time

A similar clustering problem arises in several other application areas. For example,
in network design when a network operator has to apply a subset of functions (services
such as Deep Packet Inspection, Network Address Translation, etc.) to the packets of each
flow. In networks supporting Network Function Virtualization (NFV) these functions are
implemented in software on general-purpose servers, where each server can run a limited
number of functions [10, 27]. Here we need to assign the functions to servers (a cluster is a
set of functions assigned to the same server) such that heavy flows can be served by a small
number of servers to minimize delay. Unlike the medical setting, for NFV it is often the case
that we need to apply the functions to the packets within a prescribed order.2

For a different application consider the task of assigning papers to sessions in a conference
with a single track. We would like to construct the program such that attendees interested in
particular topics can hear all talks on these topics by attending a small number of sessions.

Another application is in disk servers where one would like to cluster on the same server
files that are often read together for minimizing the number of servers that have to be
accessed.

1.1 Formal definition of our clustering problem
Our input is a hypergraph G = (V,E) where |V | = n. Each edge e ∈ E has a positive weight
(“frequency”) w(e) satisfying

∑
e w(e) = 1. Our goal is to partition V into a collection P

of α = dn/ce disjoint clusters, P = {B(1), B(2), . . . , B(α)}, B(i) ⊆ V , where each cluster
is of size no larger than c. For each edge e ∈ E we define the service time of e to be
t(e) = |{B ∈ P | B ∩ e 6= ∅}|. Our objective is to compute a clustering that minimizes3 the
average service time

∑
e w(e)t(e).

We also consider the variant of this problem in which the clusters can overlap. For a
given number of clusters α and cluster size c such that α ≥ dn/ce we want to compute a
collection of clusters P = {B(1), B(2), . . . , B(α)} such that each cluster is of size at most
c and ∪B∈PB = V . In this case we may be able to cover e with a subset of the clusters
{B ∈ P | B ∩ e 6= ∅}. So, our clustering algorithm is also required to compute a small
cover P (e) ⊆ {B ∈ P | B ∩ e 6= ∅}, such that e ⊆ ∪B∈P (e)B, for each edge e. We define
t(e) = |P (e)| and our goal is to compute a clustering and edge covers P (e) that minimize
the average service time

∑
e w(e)t(e).

Last we consider the version of this problem in which each edge e ∈ E is an ordered tuple
of vertices (rather than a subset of the vertices), say e = (v1, . . . , v|e|). In this case P (e) has
to be a sequence of clusters B1, B2, . . . , Bt(e), possibly with repetitions4 such that there exist
i1, i2, . . . it(e) where {v1, . . . , vi1} ⊆ B1, {vi1+1, . . . , vi2} ⊆ B2, etc.

We denote the optimal average service time by TOPT . In the above applications, the
average time can describe the number of patch tests that have to be applied on average for
an anamnesis, the average number of servers a flow has to visit to implement its required
functions, the number of sessions one has to attend or the number of disk servers required
to be accessed. The maximal allowed cluster size c models a restriction on the number of
examined allergens in a patch test, the maximal number of functions that can be implemented
in a server, the number of papers in a conference session or the number of files a disk server
can save.

2 In this setting the maximum load on a processor is also a relevant metric, which is not a part of this
treatment.

3 We assume without loss of generality that |e| > 1 for every e ∈ E since edges of size 1 just contribute
their weight to the cost of any clustering.

4 That is we may have Bi = Bj for i 6= j, t(e) is the size of P (e) counting repetitions.

O. Rottenstreich, H. Kaplan, and A. Hassidim 64:3

Table 1 Summary of the results.

Clusters Cluster size Hypergraph edges Result
α c e

Unordered edges
n/c 2 – Optimal algo.
– 2 |e| = 2 Optimal algo.
n/c – |e| = 2 2c+1

c+2 Approx. algo.
n/c 3 |e| ≤ 3 5/3 Approx. algo.
– 2 |e| = 3 NP-hardness
n/c 3 |e| = 2 NP-hardness
n/c n/2 |e| = 2 NP-hardness
– – – Bi-criteria approx. algo.

Ordered edges
n/c – – Approx. algo.

1.2 Our results
We give an algorithm that computes an optimal clustering for the case of disjoint clusters of
size c = 2. We also give an optimal algorithm for the case of overlapping clusters of size 2
when our hypergraph is in fact a graph (all edges are of size 2). These algorithms compute
the optimal clustering by finding maximum matchings in related graphs. In case of disjoint
clusters the construction of the graph is relatively straightforward whereas for overlapping
clusters the reduction is more sophisticated and requires solving multiple matching problems
(see Section 2 and Section 3.1).

In contrast with these positive results we show that when clusters are allowed to overlap,
c = 2, and the edges of the hypergraph are of size 3 the problem is already NP-hard. Moreover,
when the clusters are required to be disjoint the problem becomes NP-hard for c = 3 even if
|e| = 2 for all e ∈ E, so we cannot hope for polynomial algorithms that compute the optimal
clustering in a more general setting. This motivates the design of approximation algorithms.

To understand which approximation ratios we are targeting, notice that for any e ∈ E,
t(e) ≤ |e| and since each cluster is of size at most c, t(e) ≥ d|e|/ce. This implies that
the average service time of any two clusterings is within a factor of c from each other. In
particular an arbitrary clustering gives a c-approximation. (Clearly an approximation ratio
of max{|e| | e ∈ E} is also achieved by an arbitrary clustering.) Getting an approximation
ratio strictly better than c is not trivial.

For disjoint clusters and hypergraphs with edges of size 2 or 3 we describe and analyze a
greedy strategy. If all edges are of size 2 we show that this algorithm obtains a clustering of
cost at most (2c+ 1)/(c+ 2) times the cost of the optimal clustering. When edges are of size
2 or 3 and c = 3 we prove that the approximation ratio is at most 5/3. We can generalize the
greedy algorithm (in several ways) for hypergraphs with larger edges and for larger values of
c but these variants are more complicated to analyze (see Section 2.1 and Section 2.2).

Our analysis (for hypergraphs of edges of size 2 and 3) is subtle and relies on the fact that
a clustering has to pay more for edges that cannot be covered by a single cluster. We show
that when the optimal clustering is much better than the greedy one, then the subsets of the
edges that they cover are almost disjoint. Since they are almost disjoint, it must be that the
optimal clustering covers many edges by more than a single cluster (those that are covered
by a single cluster in the greedy clustering), and hence it has to pay for them. Interestingly,
we observe that for hyperedges with edges of size 3 or more, a stronger phenomena occurs: If

ESA 2017

64:4 Clustering in Hypergraphs to Minimize Average Edge Service Time

the optimal clustering covers many more edges than the greedy clustering then it must be
the case that there are edges which are not covered by neither the greedy nor the optimal
clustering. We do not know exactly how to exploit this phenomenon, and leave it as an open
question. We hope that this observation would lead to a tighter analysis of a generalization
of the greedy for hypergraphs with larger edges.

We give a bi-criteria approximation algorithm to compute overlapping clusters in any
hypergraph for any value of c. This algorithm produces a clustering of O(α logM log c)
clusters whose average service time is larger than the optimal service time with α clusters
by a factor of O(logM log c). Here M denotes the maximum cardinality of an edge (see
Section 3.2).

We use our approximation algorithm for disjoint clusters in the case where all edges are of
size 2 to develop an approximation algorithm for the case of disjoint clustering in an ordered
hypergraph with edges of arbitrary sizes (see Section 3.3).

Our results are summarized in Table 1.

1.3 Related work
Clustering has always been an important problem, and a lot of research has been done on this
topic. Clustering has applications in many different fields, including machine learning, vision,
information retrieval and bioinformatics. Different applications have different metrics for the
quality of the clustering, and consequently use different algorithms [16]. Some of the more
common quality measures include various distance metrics (e.g., the Davies-Bouldin index
[12] or the Dunn index [14]), spectral properties [25, 31, 29], and correlation (in correlation
clustering [5]).

Clustering is usually a partition of the data (often represented as a graph), but overlapping
clusters have also been studied for at least 45 years [11]. Recent applications include solving
partial differential equations [6, 18], analysis of social networks [24, 3], wireless networks [1]
and solving algorithmic problems on large graphs [7, 4]. One of the challenges in this case is
to define the right measure for the quality of the clustering. Taking the standard measure
(e.g., the sum of the weights of the edges crossing clusters over the sum of the weight of edges
inside clusters) does not give any benefit to overlapping clusters.

One way to measure the quality of a partition is to perform a random walk, and see how
long it stays in the same cluster (equivalently how often the random walk crosses clusters).
Anderson et al. generalize this metric to overlapping clusters [4]. Their clustering is composed
of overlapping clusters that cover all the vertices in the graph, and in addition, each vertex
has its primary cluster (one of the clusters it belongs to). To evaluate a clustering and a
choice of primary clusters, they start a random walk at a random vertex v1. Let t1 denote
the number of steps the walk stays in the primary cluster of v1. Let v2 denote the first vertex
outside that cluster the walk visits. Let t2 denote the number of steps the walk stays in the
primary cluster of v2, etc. The clustering is good if the expected value of t1 + t2 + t3 + . . . is
large.

There has been many works that deal with non overlapping hypergraph clustering
problems. Motivated by applications in computer vision, Agarwal et al. [2] proposed a
two phased approach, which first projects the hypergraph to a weighted graph, and then
uses graph clustering techniques. Zhou et al. [32] generalize the spectral techniques to
work directly on hypergraphs, without the projection stage. Shashua et al. [28] use tensor
factorization instead of spectral methods. Lately, Leordeanu and Sminchisescu [22] used
an iterative method based on solving a series of LPs, to obtain faster clustering algorithms.
Finally, Bulò and Pelillo [8] apply a game theoretic approach, in which every cluster is being

O. Rottenstreich, H. Kaplan, and A. Hassidim 64:5

controlled by an agent who tries to maximize the size of her cluster, and the equilibrium
status determines the partition. We note that the classical work on hypergraph clustering
deal with non overlapping clusters, and that the used metrics differ from ours.

After the selection of clusters, the decision which of them to use to cover each of the
edges is an instance of the minimum set cover problem. In the set cover problem the input is
a universe U of n = |U | elements and k sets S1, . . . , Sk ⊆ U . The goal is to find a collection
with a minimal number of sets such that its union equals the universe U . Set cover is
NP-hard as shown in Karp’s seminal paper [21]. A greedy algorithm, selecting as the next
set one that covers a maximal number of elements that have not been covered, gives a lnn
approximation. Feige showed that assuming P 6= NP , no polynomial-time algorithm can
obtain an approximation ratio better than lnn [17]. Furthermore, if the cardinality of each
set is at most c, the greedy algorithm obtains roughly a 1 + ln c approximation [20, 23, 9].
Trevisan [30] adjusted the parameters in Feige’s reduction, to show that if the largest set
is of size c, no polynomial-time algorithm can obtain an approximation ratio better than
ln c−O(ln ln c), assuming P 6= NP .

2 Disjoint clusters

In this section we study the case that α = n/c, i.e., the clusters are disjoint.
We start with the case of c = 2 for which we can find the optimal clustering as follows.

We construct a weighted complete (undirected) simple graph Λ = (V, F) over the vertices
of our input hypergraph G = (V,E) and set the weight c(u, v) of an edge (u, v) ∈ F to
be

∑
e∈E|{u,v}⊆e w(e). We claim that a maximum perfect matching in Λ gives an optimal

clustering. Correctness of this algorithm follows from the observation that the average service
time of a clustering P = {B(1), B(2), . . . , B(n/c)} is exactly∑

e∈E
w(e) (|e| − |{B ∈ P | B ⊆ e}|) =

∑
e∈E

w(e)|e| −
∑
B∈P

∑
e|B⊆e

w(e).

This holds since we can trivially serve an edge e with |e| clusters – one per vertex. Each
cluster Bi with |Bi| = 2 and Bi ⊆ e can be used to serve two of the vertices of e and
thereby reduces by one the total number of required clusters. Since clusters are disjoint their
contributions add up. We note that in the special case where |e| = 2 for each e ∈ E and E
connects every pair of vertices from V then Λ and G are identical, and the optimal solution
is given by a maximum matching in G.

2.1 The greedy algorithm for a graph
We start with the case where |e| = 2 for every e ∈ E, meaning that our input hypergraph
G = (V,E) is in fact a graph. The value of c is arbitrary, and assume for simplicity that |V |
is a multiple of c.

A solution is a partition of V into disjoint clusters of c vertices. We refer to a partition
of the vertices in which every cluster is of size at most c as a partial solution. We define
the score s(B) of a cluster B (of size at most c) to be the sum of the weights of the edges
contained in B, i.e., s(B) =

∑
e∈E|e⊆B w(e).

We analyze a simple greedy algorithm that at every step, chooses as the next cluster the
set B of maximum score among all possible clusters of size c consisting of uncovered vertices.

I Theorem 1. The greedy algorithm results in an average service time of at most 2c+1
c+2 TOPT .

For c = 3 the approximation ratio is 7/5, and for c = 4 it is 3/2.

ESA 2017

64:6 Clustering in Hypergraphs to Minimize Average Edge Service Time

We need the following definitions for the proof of Theorem 1. Given a solution or a partial
solution X, we define its score s(X) as the sum of the scores of its clusters. In particular, we
consider the optimal and the greedy partitions denoted by OPT and GREEDY with scores
of s(OPT) and s(GREEDY), respectively. Finally, let W denote the sum of the weights of
the edges in the graph G. We begin with the following lemma that relates s(GREEDY),
s(X) for some solution X, and W.

I Lemma 2. For every graph G = (V,E) and every solution X and c ≥ 2, the following
relations hold:
(i) s(GREEDY) ≥ s(X)/c,
(ii) (c− 1) · s(GREEDY) +W ≥ 2s(X).

Proof Outline. The proof is by induction on the number of vertices in the graph. The
basis is the case where |V | ≤ c. In this case GREEDY selects one cluster containing all
vertices of G so s(GREEDY) = W. It follows that s(GREEDY) ≥ s(X) ≥ s(X)/c and
(c− 1)s(GREEDY) +W ≥ s(GREEDY) +W ≥ 2 · s(X).

Induction step: We assume the lemma holds for any graph with less than |V | vertices.
Let B1 ⊆ V be the first cluster of size c that GREEDY chooses in G. Let s(B1) be the score
of this cluster, that is s(B1) =

∑
v,v′∈B1,(v,v′)∈E w(v, v′).

Let G′ = (V ′, E′) be the graph generated by deleting from G the vertices in B1 and all the
edges incident to these vertices. That is, V ′ = V \B1 and E′ = {(u, v) ∈ E | {u, v}∩B1 = ∅}.

We derive from the clustering X of G, a clustering X ′ of G′, by removing from each
cluster in X the vertices in B1, and keeping only clusters with at least two remaining elements
following the removal. Formally, the clusters of X ′ are {A \B1 | |A \B1| ≥ 2, A ∈ X}. Let
GREEDY ′ be the solution obtained by running the greedy algorithm in G′, which is the
same as GREEDY \B1. We have that s(GREEDY) = s(B1) + s(GREEDY ′).

The inductive hypothesis applied to G′ gives that s(GREEDY ′) ≥ s(X ′)/c, and that
(c− 1)s(GREEDY ′) +W ′ ≥ 2s(X ′), where W ′ is the total weight of the edges in G′.

Let E−X be the set of edges in E that are covered by a cluster of X but not covered
by a cluster of X ′ and let w(E−X) be the sum of the weights of the edges in E−X . Clearly,
E−X ⊆ E \ E′ and we have that s(X) = w(E−X) + s(X ′) and

W ≥W ′ + w(E−X) . (1)

Let X1 ⊆ X be the set of clusters in X covering the edges in E−X . Since |B1| = c we must
have that |X1| ≤ c. Since B1 was selected by GREEDY it follows that s(B1) ≥ s(A) for
every cluster A ∈ X and in particular for every cluster A ∈ X1. So it follows that

s(B1) ≥ s(X1)
|X1|

≥
w(E−X)
|X1|

≥
w(E−X)
c

. (2)

We can now show that s(GREEDY) ≥ s(X)/c by combining the induction hypothesis with
Equation (2) as follows.

s(GREEDY) = s(B1) + s(GREEDY ′) ≥ w(E−X)/c+ s(X ′)/c = s(X)/c .

To show that (c− 1)s(GREEDY) +W ≥ 2s(X), we distinguish between the cases where
(i) |X1| ≤ c− 1 and
(ii) |X1| = c.
We establish case (ii) by a stronger version of inequality (1) that holds in case and says that
W ≥W ′ + w(E−X) + s(B1). J

O. Rottenstreich, H. Kaplan, and A. Hassidim 64:7

1	
 1	
 1	

v1	

u1,1	
 u1,2	
 u1,3	

1	
 1	
 1	

v2	
 1+δ	

1	
 1	
 1	

v3	

1	
 1	
 1	

v4	
 1+δ	
 1+δ	

u2,1	
 u2,2	
 u2,3	
 u3,1	
 u3,2	
 u3,3	
 u4,1	
 u4,2	
 u4,3	

Figure 1 Illustration of the graph Gc,ε for c = 4 in Lemma 3. It consists of n = c2 vertices
{v1, . . . , vc} ∪ {ui,j | 1 ≤ i ≤ c, 1 ≤ j ≤ c− 1} and c2 − 1 edges of two types. For every 1 ≤ i ≤ c− 1
we have an edge (vi, vi+1) of weight 1 + δ where δ = ε/c(c − 1). For every 1 ≤ i ≤ c, and every
1 ≤ j ≤ c− 1 there is an edge (vi, ui,j) of weight 1.

We now use Lemma 2 to prove Theorem 1.

Proof Outline of Theorem 1. The service time for an edge is 1 if it is contained in one of
the clusters of the partition, and 2 otherwise. So we can bound the ratio of the average
service time of GREEDY, denoted by TGREEDY , and the average service time of OPT by

TGREEDY
TOPT

= 2W − s(GREEDY)
2W − s(OPT) ≤ 2c+ 1

c+ 2 .

The last inequality follows from the bounds in Lemma 2 applied with X = OPT and some
algebraic manipulations. J

Lemma 2 is tight for any fixed value of c and therefore the approximation ratio of
Theorem 1 is also tight. To show this we use the graph Gc,ε (for any ε > 0 and c) illustrated
in Figure 1 for which we prove the following lemma.

I Lemma 3. In the graph Gc,ε, we have (c − 1)s(GREEDY) +W ≤ 2s(OPT) + ε, and
simultaneously s(GREEDY) ≤ s(OPT)/c + ε. In particular for this graph TGREEDY /
TOPT ≥ (2c+ 1)/(c+ 2)− ε.

2.2 The case of a hypergraph
Having established tight bounds on the approximation ratio for the case |e| = 2, we now
move to the more difficult case where |e| ≤ 3 and c = 3. We again describe a simple greedy
algorithm and bound its approximation ratio.

For G = (V,E), let E2 ⊆ E and E3 ⊆ E be the subsets of the edges of size 2 and 3,
respectively. A solution is a partition of V into triplets. We also refer to a partition of
the elements in which every part is of size at most 3 vertices as a partial solution. Given
a solution or a partial solution X, we denote by X3 the set of edges e ∈ E3 that are also
triplets in X; by X2 the set of edges e ∈ E2 which are contained in a triplet or pair of X;
and by X2,3 the set of edges e ∈ E3 such that |e ∩B| = 2 for some pair or triplet B ∈ X.

We define the score, s(X), of a solution (or a partial solution) X to be s(X) = 2w(X3) +
w(X2) + w(X2,3). In particular, we define the score s(B) of a pair or a triplet B ∈ X to be
twice the weight of B if B ∈ E3, plus the sum of the weights of the edges e ∈ E such that
|e ∩B| = 2. Intuitively, this is the contribution of B to the reduction in the average service
time. The average service time TX of a solution X equals 3w(E3) + 2w(E2)− s(X).

We consider a greedy algorithm, denoted by GREEDY that at each step picks a triplet B
with maximum score and then removes the vertices of B, and all the edges whose restriction

ESA 2017

64:8 Clustering in Hypergraphs to Minimize Average Edge Service Time

to the remaining graph is of size at most one. The following analog of Lemma 2 is the main
technical lemma of this subsection.

I Lemma 4. For any solution X the following relations hold
(i) s(GREEDY) ≥ s(X)/3.
(ii) 3w(E3) + 1.5w(E2) + 3s(GREEDY) ≥ 3s(X).

Applying this Lemma to X = OPT we prove the following bound on the approximation
ratio of GREEDY .

I Theorem 5. For hypergraphs with |e| ≤ 3 for all e and c = 3, the average service time of
the greedy algorithm is at most 5

3 · TOPT .

I Remark. Our upper bound in Section 2.1 for the case where the input graph G is a graph
is tight as Lemma 3 shows. This follows since both parts of Lemma 2 are tight for the graph
Gc,ε. On the other hand, we believe that our result in Theorem 5 for the case in which G
is a multigraph is not tight as we suspect that there is no graph for which both parts of
Lemma 4 are tight. Lemma 4 can be extended for the case of hyperedges of size even larger
than 3, but we believe that this approach is unlikely to provide tight bounds. An obvious
open problem is to find a way to strengthen Lemma 4 and improve our bounds for the case
where G is a hypergraph.

3 Overlapping clusters

In this section we study the scenario of a general number α ≥ n/c of clusters that can overlap
and are not necessarily disjoint. In the first part of the section we focus on the case where
c = 2, that is each cluster can include two vertices from V . We give a polynomial-time
algorithm that finds an optimal clustering for the case where |e| = 2 for all e ∈ E, i.e., the
input is a graph. (We recall that without loss of generality we assumed |e| > 1 for every
e ∈ E.) In the full version of this paper we show that the problem is NP-hard for hypergraphs
in which |e| = 3 for all e ∈ E (and c = 2). This motivates the second part of this section
in which we describe an approximation algorithm that applies to a general instance of the
problem.

3.1 Optimal algorithm for a graph
We consider the case where c = 2 and |e| = 2 for all e ∈ E. Notice that in Section 2, we
gave an algorithm that finds an optimal clustering for the case where c = 2 and α = n/c but
without any assumption on |e|. When c = 2, α = n/c and |e| = 2 for all e, the algorithm we
give here and the algorithm of Section 2 are identical.

To simplify the presentation we assume that the input graph G contains all the edges (some
may have weight 0) and thereby a clustering P is just a subset of E. Edges of P are served
by a single cluster and each other edge is served by two clusters. Let w(P) =

∑
e∈P w(e). It

follows that the service time of P is 2 ·
∑
e∈E w(e)−w(P). The following characterization of

an an optimal clustering now easily follows.

I Theorem 6. Let c = 2 and α be an arbitrary value. For any weighted graph G = (V,E),
a clustering P = {e(1), e(2), . . . , e(α)} minimizes the average service time if and only if P
maximizes w(P) while satisfying

⋃
i∈[1,α] e(i) = V .

Assume without loss of generality that w(e) 6= w(e′) by some consistent tie breaking
scheme. Let e1, e2, . . . , e(n

2) be the edges of G in decreasing order of weight (by our tie

O. Rottenstreich, H. Kaplan, and A. Hassidim 64:9

breaking). Let P be an optimal clustering that includes the longest prefix of e1, e2, . . . , e(n
2)

(among all optimal clusterings). Let x be the length of this prefix and let e(1), e(2), . . . , e(α)
be the edges of P in non-increasing order of weight. By the choice of P , e(i) = ei for
1 ≤ i ≤ x and e(x + 1) 6= ex+1 if x < α. Here are a few observations about P that follow
from Theorem 6.

We say that a cluster e(j) ∈ P first covers a vertex v, if it is the first (according to the
order defined above) among the clusters of P that contains v. Each vertex is first covered by
exactly one of the clusters and each of the clusters e(x+ 1), . . . , e(α) must first cover either
one or two vertices. Indeed, if, say, e(i) for some x+ 1 ≤ i ≤ α, does not first cover any of its
vertices, we can replace it in P by ex+1 and get a clustering P ′ such that, w(P ′) ≥ w(P), P ′
covers all vertices, and P ′ contains a longer prefix of edges in the sequence e1, e2, . . . , e(n

2),
contradicting the choice of P .

Let y1 (resp. y2) be the number of clusters among e(x + 1), . . . , e(α) that first cover a
single vertex (resp. two vertices). Clearly we have that α = x+y1 +y2. Let αx be the number
of distinct vertices in the first x pairs, i.e. αx = |

⋃x
i=1 e(i)|. Since there are n vertices and

each is first covered exactly once, then n = αx + y1 + 2y2. The two equalities imply that

y2 = n− αx − α+ x and y1 = α− x− y2 = 2α− 2x− n+ αx. (3)

Consider a vertex v that is first covered by a cluster e(j), which first covers only v.
We claim that e(j) is the edge of largest weight (first in e1, e2, . . . , e(n

2)) that covers v, as
otherwise we can replace it in P by an edge of larger weight, while still covering all vertices
of G, contradicting the maximality of P .

We now turn to describe the algorithm. We first sort the pairs of vertices by their weight
and compute the order e1, e2, . . . , e(n

2). Then we iterate over all possible values of x ∈ [0, α].
For each value x, we construct a clustering P = {e(1), e(2), . . . , e(α)} with e(i) = ei for
1 ≤ i ≤ x that maximizes w(P) among all such clusterings. We compute αx and the values
of y1 and y2 given by Equation (3). To find the y1 + y2 = α − x additional clusters, we
consider the induced subgraph Λ of G on the n− αx vertices not covered by the largest x
edges of G. We add to this induced subgraph, y1 additional dummy vertices d1, . . . , dy1 , and
obtain a graph Λ′ with n− αx + y1 = 2(α− x) = 2(y1 + y2) vertices. In Λ′ we add an edge
(di, v) for each 1 ≤ i ≤ y1 if the edge of largest weight covering v is ej for some j > x+ 1.
We set w(di, v) = w(ej). A maximum perfect matching in Λ′ gives us the n− x remaining
clusters as argued by the following lemma.

I Lemma 7. A perfect matching in Λ′ corresponds to the y1 + y2 edges among ex+2, . . . , e(n
2)

of largest weight containing the n− αx vertices of G that are not in e1, . . . , ex. An edge of Λ
corresponds to itself and an edge (di, v), where di is a dummy vertex, corresponds to the edge
incident to v of largest weight in G.

The total weight of the clustering defined by a perfect matching in Λ′ is given by the
sum of the weights of e1, . . . , ex and the weight of the matching. The optimal clustering is
selected as the one with the maximum total weight among the clusterings that we get for
the various values of x. An example demonstrating the algorithm is illustrated in Figure 2.
Finding a maximum weight perfect matching in a general (not necessarily bipartite) graph
is a classical combinatorial optimization problem that can be solved in polynomial-time by
various implementations of Edmond’s algorithm [15] (see also [13] and the references there).
The current best strongly polynomial bound is O(qr+r2 log r) by Gabow [19] (here q denotes
the number of edges and r denotes the number of vertices). Since the number of vertices in

ESA 2017

64:10 Clustering in Hypergraphs to Minimize Average Edge Service Time

{3,5} 0.23, {1,3} 0.15, {1,5} 0.11, {3,4} 0.10, {2,5} 0.09, {4,6} 0.08, {5,6} 0.06, {1,6}
0.05, {2,3} 0.04, {1,4} 0.03, {1,2} 0.02, {2,4} 0.01, {4,5} 0.01, {2,6} 0.01, {3,6} 0.01.
(a) The graph edges, sorted by weight.

(b) The corresponding constructed graph Λ′. (c) The complete weighted graph.

Figure 2 Illustration of the optimal algorithm for c = 2 in a graph (edges of two vertices) (for
the described edge weights with α = 5, n = 6). (a) shows the graph edges sorted in a non-increasing
order of their edge weights, shown next to each edge. The first x = 3 pairs appear in bold with
αx = |{1, 3, 5}| = 3 and n− αx = 3. (b) presents the constructed graph Λ′ with vertices 2, 4, 6 that
do not appear in the x = 3 pairs and a single additional dummy vertex. (c) shows the complete
weighted graph for all vertices in which dashed edges represent clusters in an optimal clustering.

any of the graphs in which we compute a perfect matching is O(α), each maximum matching
problem is solved in O(α3) time. In total we solve at most α matching problems in O(α4)
time. Since α ≥ n/2, this clearly dominates the time it take to sort the O(n2) edges. The
following theorem summarizes the result of this section.

I Theorem 8. The algorithm described above computes an optimal assignment for the case
of c = 2, |e| ≤ 2, and runs in O(α4) time.

In the special case where α = n/c = n/2 the optimal solution corresponds to a maximum
perfect matching in G. Indeed, for x = 0 we have αx = 0, y2 = n−αx−α+x = n−0−α = n/2,
and y1 = α− x− y2 = 0. So for this value of x there are no dummy vertices in Λ′ and an
optimal assignment is given by a maximum matching in G. There is no need to try other
values of x.

3.2 A Bi-Criteria Approximation Algorithm
We describe an approximation algorithm that applies to a general instance of the problem.
Let c denote the maximum cluster size and α the number of clusters as before, and let
M = maxe∈E |e|. We assume that the algorithm has an estimate β of TOPT , the optimal
average service time with α clusters, such that TOPT ≤ β < 2TOPT . In case such an
estimate is not available, we can run the algorithm with β = M/2i for i = 0, 1 . . . , blogMc.
Since 1 ≤ TOPT ≤ M , one of these values of β must be in the required range. Our
approximation algorithm is bi-criteria, it computes a clustering with an average service time
O(TOPT logM log c) and O(α logM log c) clusters.

Our algorithm adds a single cluster per iteration. At each iteration we compute a
score for each tentative cluster D, denoted by φ(D), and we pick the cluster of maximum
score. To compute φ(D) for each cluster D, we maintain for each edge e, the subset

O. Rottenstreich, H. Kaplan, and A. Hassidim 64:11

A(e) of the uncovered (by clusters picked at previous iterations) vertices of e. For each
edge e we compute the fraction of e covered by D. We define this fraction to be large
if it is at least 1

4β . The score φ(D), is the weighted sum of the large fractions that D
covers. That is, φ(D) =

∑
e w(e)|A(e) ∩D|/|A(e)|, where the sum is over all e such that

|A(e) ∩D|/|A(e)| ≥ 1
4β .

We prove that after a phase consisting of at most 8α(logM + 1) iterations we completely
cover edges of total weight at least a 1/4 (using 8α(logM + 1) clusters), where each edge
which is completely covered is covered by ≤ 8TOPT (logM + 1) clusters. The optimal service
time of the remaining (not completely covered) edges (of total weight at most 3/4) is at most
4/3TOPT . In the next phase we apply the same procedure to these remaining edges with
their new value of TOPT (and estimate β). By the same argument, in the next phase we
cover edges whose weights sum to 1/4 of the total weight of the remaining edges (that were
not covered in the first phase) using ≤ 8 · (4/3TOPT)(logM + 1) clusters. It follows that each
phase adds O(α logM) clusters and increases the average service time by O(TOPT logM).

After O(log c) phases the leftover uncovered edges are of total weight ≤ 1/c. We cover
these remaining 1/c fraction of the edges arbitrarily using at most dn/ce ≤ α additional
clusters including all functions. The following theorem summarizes our result.

I Theorem 9. The algorithm described above computes a solution with an average service
time O(TOPT logM log c) that uses O(α logM log c) clusters.

The running time of our algorithm is exponential in c since we have to compute the scores
of all (unused) clusters of size c in each iteration.

3.3 Directed Hypergraphs
In some applications demands have to be served according to a specific order. In this case
our input is a directed hypergraph meaning that each edge is an ordered tuple of vertices.
We show how to use our approximation algorithm for graphs (all edges are of size 2 and
unordered) specified in Theorem 1 to obtain a clustering with small average service time for
directed hypergraphs. We only consider the case where α = n/c (disjoint clusters).

Recall that in the directed case which we consider here P (e) is a sequence of clusters
(possibly with repetitions) that cover the vertices of e in order consistent with the order of e.
The service time t(e) is the length of the sequence P (e).

For an ordered hyperedge e = (v1, v2, . . . , vk) let U(e) be the set of the k − 1 edges
{{v1, v2}, {v2, v3}, . . . , {vk−1, vk}}. We have the following lemma.

I Lemma 10. Let α = n/c and let B be a clustering of the vertices of a directed hypergraph
H into α disjoint clusters. Let t(e) be the service time for serving an ordered edge e by B.
Consider the set U(e) of |e|−1 (unordered) edges, each equals to a consecutive pair of vertices
in e as defined above. Then the total service time of serving U(e) by B is t′ = t(e) + |e| − 2.

Consider for example the edge e = (8, 2, 1, 7, 3) and the clusters B(1) = {1, 2, 3}, B(2) =
{4, 5, 6}, B(3) = {7, 8, 9}. With this clustering, the edge e must be covered first by cluster 3
(to cover vertex 8), then cluster 1 (covering vertices 2 and 1), then cluster 3 again (to cover
vertex 7), and finally cluster 1 again (to cover vertex 3), so t(e) = 4. The set U(e) consists
of the four edges {8, 2}, {2, 1}, {1, 7}, {7, 3}. Each of these edges but {2, 1} requires two
clusters to be covered for a total of 7 which is indeed t(e) + |e| − 2.

Lemma 10 suggests the following reduction from the ordered problem to an unordered
problem in which |e| = 2 for all e.

ESA 2017

64:12 Clustering in Hypergraphs to Minimize Average Edge Service Time

Given a directed hypegraph H = (V,E) we construct a graph G = (V,E′) on the same
vertex set V and with E′ = ∪e∈EU(e). We set the weight of an edge e′ ∈ U(e) to be
w(e′) = w(e)/(W − 1) where W =

∑
e∈E w(e)|e|. Note that W − 1 =

∑
e∈E w(e)(|e| − 1) is

a normalization factor that makes the weights of the edges in U sum to 1.5

Consider a clustering B of n vertices into α = n/c clusters. Then by Lemma 10

∑
e∈E′

w(e)t(e) =
∑
e∈E

w(e)
W − 1(t(e) + |e| − 2).

So if T ′ is the average service time of G by B and T is the average service time of H by B
then T ′ = (T +W − 2)/(W − 1). By rearranging we get that T = (W − 1)T ′ −W + 2.

Since all edges in G are of size 2 then we can apply to G the approximation algorithm of
Theorem 1 which guarantees an approximation ratio of 2c+1

c+2 . The resulting clustering has
the following guarantee for H.

I Theorem 11. The clustering obtain for G by the algorithm of Theorem 1 has an average
service time T ≤ 2c+1

c+2 TOPT (H) when applied to serve the hyperedges of H, where TOPT (H) is
the smallest possible average service time for H.

Proof. The average service time T of the obtained clustering satisfies that T ≤ (W − 1) ·
2c+1
c+2 · TOPT (G) −W + 2, where TOPT (G) is the average service time of the optimal solution
to G. The optimal solution of H induces a solution of G with a service time T ′ such that
T ′ = (TOPT (H) + W − 2)/(W − 1). It follows that TOPT (G) ≤ T ′ = TOP T (H)+W−2

W−1 . By
substituting the last equation into the previous we get T ≤ 2c+1

c+2 TOPT (H). J

4 Conclusions and Open Problems

We introduce the problem of clustering vertices of a weighted hypergraph to minimize the
average service time of its edges. For disjoint clusters we described a natural greedy algorithm
and analyzed it in two cases: when edges are of size 2, and when edges are of size at most 3
and clusters are of size 3. The latter analysis is subtle and uses an interesting set of invariants.
This greedy algorithm can be naturally generalized for larger edges and cluster sizes. Our
analysis, however, gets complicated and the number of cases seems to get out of control.
Is there an alternative simpler way to analyze such a generalization? One can also try to
deal with larger clusters via an hierarchical approach: First cluster the vertices into smaller
clusters, then contract these small clusters, and cluster the contracted hypergraph into small
clusters again. Finding a way to analyze this hierarchical approach is an open problem.
An interesting problem for an experimental research is to compare the performance of the
hierarchical and non-hierarchical approaches on some interesting data sets. To conclude,
finding a general algorithm for disjoint clusters which is amenable to analysis, and has good
approximation ratio is a very interesting challenge (or alternatively proving inapproximability
results). Such an algorithm, if practical, will find numerous applications. For overlapping
clusters we gave a bicriteria approximation algorithm. A natural open question is to find an
algorithm with a guaranteed approximation ratio with respect to the optimal clustering with
α clusters that does not require more than α clusters.

5 Notice that in the constructed unordered instance U we may have identical edges.

O. Rottenstreich, H. Kaplan, and A. Hassidim 64:13

References
1 Ameer Ahmed Abbasi and Mohamed Younis. A survey on clustering algorithms for wireless

sensor networks. Computer communications, 30(14):2826–2841, 2007.
2 Sameer Agarwal, Jongwoo Lim, Lihi Zelnik-Manor, Pietro Perona, David J. Kriegman, and

Serge J. Belongie. Beyond pairwise clustering. In IEEE CVPR, 2005.
3 Yong-Yeol Ahn, James P. Bagrow, and Sune Lehmann. Link communities reveal multiscale

complexity in networks. Nature, 466(7307):761–764, 2010.
4 Reid Andersen, David F. Gleich, and Vahab Mirrokni. Overlapping clusters for distributed

computation. In ACM Web search and data mining, 2012.
5 Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine Learning,

56(1-3):89–113, 2004.
6 Rafael Bru, Francisco Pedroche, and Daniel B. Szyld. Additive Schwarz iterations for

Markov chains. SIAM Journal on Matrix Analysis and Applications, 27(2):445–458, 2005.
7 Rafael Bru, Francisco Pedroche, and Daniel B. Szyld. Cálculo del vector PageRank de

Google mediante el método aditivo de Schwarz. In Congreso de Métodos Numéricos en
Ingeniería, 2005.

8 Samuel Rota Bulò and Marcello Pelillo. A game-theoretic approach to hypergraph cluster-
ing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(6):1312–1327,
2013.

9 Vasek Chvatal. A greedy heuristic for the set-covering problem. Mathematics of operations
research, 4(3):233–235, 1979.

10 Rami Cohen, Liane Lewin-Eytan, Joseph Naor, and Danny Raz. Near optimal placement
of virtual network functions. In IEEE Infocom, 2015.

11 A. J. Cole and D. Wishart. An improved algorithm for the Jardine-Sibson method of
generating overlapping clusters. The Computer Journal, 13(2):156–163, 1970.

12 David L. Davies and Donald W. Bouldin. A cluster separation measure. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 1(2):224–227, 1979.

13 Ran Duan. A simpler scaling algorithm for weighted matching in general graphs. CoRR,
abs/1411.1919, 2014. URL: http://arxiv.org/abs/1411.1919.

14 Joseph C. Dunn. Well-separated clusters and optimal fuzzy partitions. Journal of cyber-
netics, 4(1):95–104, 1974.

15 Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17(3):449–467,
1965.

16 Vladimir Estivill-Castro. Why so many clustering algorithms: a position paper. ACM
SIGKDD explorations newsletter, 4(1):65–75, 2002.

17 Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM, 45(4):634–
652, 1998.

18 Andreas Frommer and Daniel B. Szyld. Weighted max norms, splittings, and overlapping
additive Schwarz iterations. Numerische Mathematik, 83(2):259–278, 1999.

19 Harold N. Gabow. Data structures for weighted matching and nearest common ancestors
with linking. In ACM-SIAM SODA, 1990.

20 David S. Johnson. Approximation algorithms for combinatorial problems. In ACM sym-
posium on Theory of computing, 1973.

21 Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, IBM Thomas J. Watson Research Center, 1972.

22 Marius Leordeanu and Cristian Sminchisescu. Efficient hypergraph clustering. In AISTATS,
2012.

23 László Lovász. On the ratio of optimal integral and fractional covers. Discrete mathematics,
13(4):383–390, 1975.

ESA 2017

http://arxiv.org/abs/1411.1919

64:14 Clustering in Hypergraphs to Minimize Average Edge Service Time

24 Nina Mishra, Robert Schreiber, Isabelle Stanton, and Robert E. Tarjan. Clustering social
networks. In Algorithms and Models for the Web-Graph, pages 56–67. Springer, 2007.

25 Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis and
an algorithm. Advances in neural information processing systems, 14:849–856, 2002.

26 Matthias Peiser et al. Allergic contact dermatitis: epidemiology, molecular mechanisms, in
vitro methods and regulatory aspects. Cellular and Molecular Life Sciences, 69(5):763–781,
2012.

27 Ori Rottenstreich, Isaac Keslassy, Yoram Revah, and Aviran Kadosh. Minimizing delay in
network function virtualization with shared pipelines. IEEE Transactions on Parallel and
Distributed Systems, 28(1):156–169, 2017.

28 Amnon Shashua, Ron Zass, and Tamir Hazan. Multi-way clustering using super-symmetric
non-negative tensor factorization. In ECCV, 2006.

29 Daniel A. Spielmat and Shang-Hua Teng. Spectral partitioning works: Planar graphs and
finite element meshes. In IEEE Foundations of Computer Science, 1996.

30 Luca Trevisan. Non-approximability results for optimization problems on bounded degree
instances. In ACM symposium on Theory of computing, 2001.

31 Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395–
416, 2007.

32 Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. Learning with hypergraphs:
Clustering, classification, and embedding. In NIPS, 2006.

	Introduction
	Formal definition of our clustering problem
	Our results
	Related work

	Disjoint clusters
	The greedy algorithm for a graph
	The case of a hypergraph

	Overlapping clusters
	Optimal algorithm for a graph
	A Bi-Criteria Approximation Algorithm
	Directed Hypergraphs

	Conclusions and Open Problems

