Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3387514.3405853acmconferencesArticle/Chapter ViewAbstractPublication PagescommConference Proceedingsconference-collections
research-article
Open access

Concurrent Entanglement Routing for Quantum Networks: Model and Designs

Published: 30 July 2020 Publication History

Abstract

Quantum entanglement enables important computing applications such as quantum key distribution. Based on quantum entanglement, quantum networks are built to provide long-distance secret sharing between two remote communication parties. Establishing a multi-hop quantum entanglement exhibits a high failure rate, and existing quantum networks rely on trusted repeater nodes to transmit quantum bits. However, when the scale of a quantum network increases, it requires end-to-end multi-hop quantum entanglements in order to deliver secret bits without letting the repeaters know the secret bits. This work focuses on the entanglement routing problem, whose objective is to build long-distance entanglements via untrusted repeaters for concurrent source-destination pairs through multiple hops. Different from existing work that analyzes the traditional routing techniques on special network topologies, we present a comprehensive entanglement routing model that reflects the differences between quantum networks and classical networks as well as a new entanglement routing algorithm that utilizes the unique properties of quantum networks. Evaluation results show that the proposed algorithm Q-CAST increases the number of successful long-distance entanglements by a big margin compared to other methods. The model and simulator developed by this work may encourage more network researchers to study the entanglement routing problem.

Supplementary Material

MP4 File (3387514.3405853.mp4)
Quantum entanglement enables important computing applications such as quantum key distribution. Based on quantum entanglement, quantum networks are built to provide long-distance secret sharing between two remote communication parties.This video introduces the quantum network model and its associated communication model. The model shows its differences from classical network: the slotted time, probabilistic link states, and non-additive routing metric, and these differences prevent direct apply of the existing routing algorithms for classical networks. Two routing algorithms Q-PASS and Q-CAST are designed to deliver multihop entanglements in the quantum networks. We believe more smarter algorithms for routing entanglements are on their way, and more optimization goals can be taken into consideration. If you are interested in more details, feel free to read our paper and contact us via email. Q-PASS and Q-CAST are opensourced on this link. https://github.com/QianLabUCSC/QuantumRouting

References

[1]
2019. Source Code of the Quantum Routing Simulations. https://github.com/QianLabUCSC/QuantumRouting.
[2]
Ian F Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and Erdal Cayirci. 2002. Wireless sensor networks: a survey. Computer Networks (2002).
[3]
Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson Huang, and Amin Vahdat. 2010. Hedera: dynamic flow scheduling for data center networks. In Proceedings of USENIX NSDI.
[4]
James Aspnes, Yossi Azar, Amos Fiat, Serge Plotkin, and Orli Waarts. 1993. Online load balancing with applications to machine scheduling and virtual circuit routing. In Proceedings of the twenty-fifth annual ACM symposium on Theory of computing.
[5]
Charles H Bennett and Gilles Brassard. 1984. Quantum Cryptography: Public Key Distribution and Coin Tossing. In Proceedings of the International Conference on Computers, Systems and Signal Processing.
[6]
Hannes Bernien, Bas Hensen, Wolfgang Pfaff, Gerwin Koolstra, Machiel S Blok, Lucio Robledo, TH Taminiau, Matthew Markham, Daniel J Twitchen, Lilian Childress, and R. Hanson. 2013. Heralded entanglement between solid-state qubits separated by three metres. Nature (2013).
[7]
Anne Broadbent, Joseph Fitzsimons, and Elham Kashefi. 2009. Universal blind quantum computation. In 2009 50th Annual IEEE Symposium on Foundations of Computer Science.
[8]
Angela Sara Cacciapuoti, Marcello Caleffi, Francesco Tafuri, Francesco Saverio Cataliotti, Stefano Gherardini, and Giuseppe Bianchi. 2019. Quantum internet: networking challenges in distributed quantum computing. IEEE Network (2019).
[9]
M. Caleffi. 2017. Optimal Routing for Quantum Networks. IEEE Access (2017).
[10]
Marcello Caleffi, Angela Sara Cacciapuoti, and Giuseppe Bianchi. 2018. Quantum Internet: From Communication to Distributed Computing! (Proceedings of NANOCOM '18).
[11]
Lilian Childress and Ronald Hanson. 2013. Diamond NV centers for quantum computing and quantum networks. MRS bulletin 38, 2 (2013), 134--138.
[12]
Richard Cole, Bruce M Maggs, Friedhelm Meyer auf der Heide, Michael Mitzenmacher, Andréa W Richa, Klaus Schröder, Ramesh K Sitaraman, and Berthold Vöcking. 1998. Randomized protocols for low-congestion circuit routing in multistage interconnection networks. In Proceedings of the thirtieth annual ACM symposium on Theory of computing.
[13]
Axel Dahlberg, Matthew Skrzypczyk, Tim Coopmans, Leon Wubben, Filip Rozpedek, Matteo Pompili, Arian Stolk, Przemyslaw Pawelczak, Robert Knegjens, Julio de Oliveira Filho, Ronald Hanson, and Stephanie Wehner. 2019. A link layer protocol for quantum networks. In Proceedings of ACM SIGCOMM.
[14]
S. Das, S. Khatri, and J. P. Dowling. 2018. Robust quantum network architectures and topologies for entanglement distribution. Phys. Rev. A (2018).
[15]
Vasil S Denchev and Gopal Pandurangan. 2008. Distributed quantum computing: A new frontier in distributed systems or science fiction? ACM SIGACT News (2008).
[16]
Whitfield Diffie and Martin Hellman. 1976. New directions in cryptography. IEEE transactions on Information Theory (1976).
[17]
Artur K Ekert. 1991. Quantum cryptography based on Bell's theorem. Physical review letters (1991).
[18]
Chip Elliot. 2002. Building the quantum network. New Journal of Physics (2002).
[19]
Chip Elliott, David Pearson, and Gregory Troxel. 2003. Quantum Cryptography in Practice. In Proceedings of ACM SIGCOMM. Association for Computing Machinery.
[20]
Xiaoyan Hong, Kaixin Xu, and Mario Gerla. 2002. Scalable routing protocols for mobile ad hoc networks. IEEE network (2002).
[21]
Peter C. Humphreys, Norbert Kalb, Jaco P. J. Morits, Raymond N. Schouten, Raymond F. L. Vermeulen, Daniel J. Twitchen, Matthew Markham, and Ronald Hanson. 2018. Deterministic delivery of remote entanglement on a quantum network. Nature (2018).
[22]
David B. Johnson and David A. Maltz. 1996. Dynamic Source Routing in Ad Hoc Wireless Networks. In Mobile Computing. Kluwer Academic Publishers, 153--181.
[23]
Brad Karp and Hsiang-Tsung Kung. 2000. GPSR: Greedy perimeter stateless routing for wireless networks. In Proceedings of the 6th annual international conference on Mobile computingand networking.
[24]
Axel Dahlberg Kaushik Chakraborty, Filip Rozpedek and Stephanie Wehner. 2019. Distributed Routing in a Quantum Internet. arXiv:1907.11630 (2019).
[25]
H Jeff Kimble. 2008. The quantum internet. Nature (2008).
[26]
Peter Komar, Eric M Kessler, Michael Bishof, Liang Jiang, Anders S Sørensen, Jun Ye, and Mikhail D Lukin. 2014. A quantum network of clocks. Nature Physics (2014).
[27]
Simon S. Lam and Chen Qian. 2011. Geographic Routing in d-dimensional Spaces with Guaranteed Delivery and Low Stretch. In Proceedings of ACM SIGMETRICS.
[28]
Yuan Lee, Eric Bersin, Axel Dahlberg, Stephanie Wehner, and Dirk Englund. 2020. A Quantum Router Architecture for High-Fidelity Entanglement Flows in Multi-User Quantum Networks. arXiv:2005.01852 [quant-ph]
[29]
David Luong, Liang Jiang, Jungsang Kim, and Norbert Lütkenhaus. 2016. Overcoming lossy channel bounds using a single quantum repeater node. Applied Physics B 122, 4 (Apr 2016). https://doi.org/10.1007/s00340-016-6373-4
[30]
Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers. 2001. BRITE: An Approach to Universal Topology Generation. In International Workshop on Modeling, Analysis and Simulation of Computer and Telecommunications Systems.
[31]
Rodney Van Meter, Takahiko Satoh, Thaddeus D. Ladd, William J. Munro, and Kae Nemoto. 2013. Path Selection for Quantum Repeater Networks. Networking Science (2013).
[32]
David L Moehring, Peter Maunz, Steve Olmschenk, Kelly C Younge, Dzmitry N Matsukevich, L-M Duan, and Christopher Monroe. 2007. Entanglement of singleatom quantum bits at a distance. Nature (2007).
[33]
J. Moy. 1998. OSPF Version 2. RFC 2328.
[34]
S Olmschenk, DN Matsukevich, P Maunz, D Hayes, L-M Duan, and C Monroe. 2009. Quantum teleportation between distant matter qubits. Science (2009).
[35]
Jian-Wei Pan, Dik Bouwmeester, Harald Weinfurter, and Anton Zeilinger. 1998. Experimental entanglement swapping: entangling photons that never interacted. Physical Review Letters (1998).
[36]
Mihir Pant, Hari Krovi, Don Towsley, Leandros Tassiulas, Liang Jiang, Prithwish Basu, Dirk Englund, and Saikat Guha. 2019. Routing Entanglement in the Quantum Internet. npj Quantum Information (2019).
[37]
James L Park. 1970. The concept of transition in quantum mechanics. Foundations of Physics (1970).
[38]
Momtchil Peev, Christoph Pacher, Romain Alléaume, Claudio Barreiro, Jan Bouda, W Boxleitner, Thierry Debuisschert, Eleni Diamanti, M Dianati, JF Dynes, S Fasel, S Fossier, M Fürst, J-D Gautier, O Gay, N Gisin, P Grangier, A Happe, Y Hasani, M Hentschel, H Hübel, G Humer, T Länger, M Legré, R Lieger, J Lodewyck, T Lorünser, N Lütkenhaus, A Marhold, T Matyus, O Maurhart, L Monat, S Nauerth, J-B Page, A Poppe, E Querasser, G Ribordy, S Robyr, L Salvail, A W Sharpe, A J Shields, D Stucki, M Suda, C Tamas, T Themel, R T Thew, Y Thoma, A Treiber, P Trinkler, R Tualle-Brouri, F Vannel, N Walenta, H Weier, H Weinfurter, I Wimberger, Z L Yuan, H Zbinden, and A Zeilinger. 2009. The SECOQC quantum key distribution network in Vienna. New Journal of Physics (2009).
[39]
Charles E. Perkins and Elizabeth M. Royer. 1999. Ad-hoc On-demand Distance Vector Routing. In IEEE WORKSHOP ON MOBILE COMPUTING SYSTEMS AND APPLICATIONS. 90--100.
[40]
Stefano Pirandola. 2019. End-to-end capacities of a quantum communication network. Commun. Phys 2 (2019), 51.
[41]
Stefano Pirandola, Ulrik L Andersen, Leonardo Banchi, Mario Berta, Darius Bunandar, Roger Colbeck, Dirk Englund, Tobias Gehring, Cosmo Lupo, Carlo Ottaviani, J. Pereira, M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden. 2019. Advances in Quantum Cryptography. arXiv:1906.01645 [quant-ph]
[42]
Stefano Pirandola, Raul García-Patrón, Samuel L Braunstein, and Seth Lloyd. 2009. Direct and reverse secret-key capacities of a quantum channel. Physical review letters 102, 5 (2009), 050503.
[43]
Stefano Pirandola, Riccardo Laurenza, Carlo Ottaviani, and Leonardo Banchi. 2017. Fundamental limits of repeaterless quantum communications. Nature communications (2017).
[44]
Chen Qian and Simon Lam. 2011. Greedy distance vector routing. In Proceedings of IEEE ICDCS.
[45]
Mark Riebe, H Häffner, CF Roos, W Hänsel, J Benhelm, GPT Lancaster, TW Körber, C Becher, F Schmidt-Kaler, DFV James, et al. 2004. Deterministic quantum teleportation with atoms. Nature 429, 6993 (2004).
[46]
Ronald L Rivest, Adi Shamir, and Leonard Adleman. 1978. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM (1978).
[47]
Reza Rooholamini, Vladimir Cherkassky, and Mark Garver. 1997. Finding the Right ATM Switch for the Market. IEEE Computer (1997).
[48]
M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger. 2012. Field test of quantum key distribution in the Tokyo QKD Network. Optics Express (2012).
[49]
Eddie Schoute, Laura Mancinska, Tanvirul Islam, Iordanis Kerenidis, and Stephanie Wehner. 2016. Shortcuts to quantum network routing. arXiv preprint arXiv:1610.05238 (2016).
[50]
Peter W Shor. 1994. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings 35th annual symposium on foundations of computer science.
[51]
Ankit Singla, Chi-Yao Hong, Lucian Popa, and P. Brighten Godfrey. 2012. Jellyfish: Networking Data Centers Randomly. In Proceedings of USENIX NSDI.
[52]
Pirandola Stefano and Braunstein Samuel Leon. 2016. Unite to build a quantum internet. Nature 532 (2016), 169--171.
[53]
Masahiro Takeoka, Saikat Guha, and Mark M Wilde. 2014. Fundamental rate-loss tradeoff for optical quantum key distribution. Nature communications (2014).
[54]
Rodney Van Meter and Joe Touch. 2013. Designing quantum repeater networks. IEEE Communications Magazine (2013).
[55]
Gayane Vardoyan, Saikat Guha, Philippe Nain, and Don Towsley. 2019. On the Stochastic Analysis of a Quantum Entanglement Switch. In ACM SIGMETRICS Performance Evaluation Review.
[56]
Bernard M Waxman. 1988. Routing of multipoint connections. IEEE journal on selected areas in communications (1988).
[57]
Stephanie Wehner, David Elkouss, and Ronald Hanson. 2018. Quantum internet: A vision for the road ahead. Science (2018).
[58]
Jin Y Yen. 1971. Finding the k-shortest loopless paths in a network. Manegement Science (1971).
[59]
Juan Yin, Yuan Cao, Yu-Huai Li, Sheng-Kai Liao, Zhang, Ji-Gang Ren, Wen-Qi Cai, Wei-Yue Liu, Bo Li, Hui Dai, Guang-Bing Li, Qi-Ming Lu, Yun-Hong Gong, Yu Xu, Shuang-Lin Li, Feng-Zhi Li, Ya-Yun Yin, Zi-Qing Jiang, Ming Li, Jian-Jun Jia, Ge Ren, Dong He, Yi-Lin Zhou, Xiao-Xiang Zhang, Na Wang, Xiang Chang, Zhen-Cai Zhu, Nai-Le Liu, Yu-Ao Chen, Chao-Yang Lu, Rong Shu, Cheng-Zhi Peng, Jian-Yu Wang, and Jian-Wei Pan. 2017. Satellite-based entanglement distribution over 1200 kilometers. Science (2017).
[60]
Ye Yu and Chen Qian. 2014. Space Shuffle: A Scalable, Flexible, and High-Bandwidth Data Center Network. In Proceedings of IEEE ICNP.

Cited By

View all
  • (2024)A Reliable Routing Method for Remote Entanglement Distribution under Limited Resources2024 26th International Conference on Advanced Communications Technology (ICACT)10.23919/ICACT60172.2024.10471969(360-364)Online publication date: 4-Feb-2024
  • (2024)Resource Placement for Rate and Fidelity Maximization in Quantum NetworksIEEE Transactions on Quantum Engineering10.1109/TQE.2024.34323905(1-16)Online publication date: 2024
  • (2024)On the Bipartite Entanglement Capacity of Quantum NetworksIEEE Transactions on Quantum Engineering10.1109/TQE.2024.33666965(1-14)Online publication date: 2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGCOMM '20: Proceedings of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication
July 2020
814 pages
ISBN:9781450379557
DOI:10.1145/3387514
This work is licensed under a Creative Commons Attribution International 4.0 License.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 30 July 2020

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Entanglement Routing
  2. Network Modeling
  3. Quantum Internet
  4. Quantum Networks

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

SIGCOMM '20
Sponsor:

Acceptance Rates

Overall Acceptance Rate 462 of 3,389 submissions, 14%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)872
  • Downloads (Last 6 weeks)111
Reflects downloads up to 03 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2024)A Reliable Routing Method for Remote Entanglement Distribution under Limited Resources2024 26th International Conference on Advanced Communications Technology (ICACT)10.23919/ICACT60172.2024.10471969(360-364)Online publication date: 4-Feb-2024
  • (2024)Resource Placement for Rate and Fidelity Maximization in Quantum NetworksIEEE Transactions on Quantum Engineering10.1109/TQE.2024.34323905(1-16)Online publication date: 2024
  • (2024)On the Bipartite Entanglement Capacity of Quantum NetworksIEEE Transactions on Quantum Engineering10.1109/TQE.2024.33666965(1-14)Online publication date: 2024
  • (2024)Efficient Remote Entanglement Distribution in Quantum Networks: A Segment-Based MethodIEEE Transactions on Network and Service Management10.1109/TNSM.2023.329667221:1(249-265)Online publication date: Feb-2024
  • (2024)An Efficient Scheduling Scheme of Swapping and Purification Operations for End-to-End Entanglement Distribution in Quantum NetworksIEEE Transactions on Network Science and Engineering10.1109/TNSE.2023.329917711:1(380-391)Online publication date: Jan-2024
  • (2024)Concurrent Entanglement Routing for Quantum Networks: Model and DesignsIEEE/ACM Transactions on Networking10.1109/TNET.2023.334374832:3(2205-2220)Online publication date: Jun-2024
  • (2024)Q-DDCA: Decentralized Dynamic Congestion Avoid Routing in Large-Scale Quantum NetworksIEEE/ACM Transactions on Networking10.1109/TNET.2023.328509332:1(368-381)Online publication date: Feb-2024
  • (2024)Entanglement Routing Design Over Quantum NetworksIEEE/ACM Transactions on Networking10.1109/TNET.2023.328256032:1(352-367)Online publication date: Feb-2024
  • (2024)Segmented Entanglement Establishment With All-Optical Switching in Quantum NetworksIEEE/ACM Transactions on Networking10.1109/TNET.2023.328190132:1(268-282)Online publication date: Feb-2024
  • (2024)Towards QoS-Aware Quantum Networks2024 International Conference on Quantum Communications, Networking, and Computing (QCNC)10.1109/QCNC62729.2024.00052(288-296)Online publication date: 1-Jul-2024
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media