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ABSTRACT
The proliferation of sensor technologies and advancements in data
collection methods have enabled the accumulation of very large
amounts of data. Increasingly, these datasets are considered for
scientific research. However, the design of the system architecture
to achieve high performance in terms of parallelization, query pro-
cessing time, aggregation of heterogeneous data types (e.g., time
series, images, structured data, among others), and difficulty in
reproducing scientific research remain a major challenge. This is
specifically true for health sciences research, where the systems
must be i) easy to use with the flexibility to manipulate data at
the most granular level, ii) agnostic of programming language ker-
nel, iii) scalable, and iv) compliant with the HIPAA privacy law.
In this paper, we review the existing literature for such big data
systems for scientific research in health sciences and identify the
gaps of the current system landscape. We propose a novel archi-
tecture for software-hardware-data ecosystem using open source
technologies such as Apache Hadoop, Kubernetes and JupyterHub
in a distributed environment. We also evaluate the system using a
large clinical data set of 69M patients.

CCS CONCEPTS
• Computer systems organization→ Cloud computing; •Ap-
plied computing→ Health care information systems.

KEYWORDS
BigData, Healthcare, CloudComputing, Hadoop, Kubernetes, Jupyter-
Hub.

1 INTRODUCTION
According to the International Data Corporation (IDC)[46], the
global datasphere including finance, manufacturing, healthcare,
media and entertainment will grow from 33 zettabytes in 2018 to
175 zettabytes by 2025. The growing data is shifting the core of
the enterprise data repository from traditional datacenters to cloud
datacenters (both public and private). According to the IDC, 49% of
the world’s stored data will reside in public cloud environments by
2025, up from 25% in 2019.

, ,
2020.

Although health data currently makes up roughly 15% of the
datasphere [46], it is predicted that it will increase at the fastest
rate, and outmatch the media and entertainment industries by 2025.
Consequently, the need for having an integrated cloud based system
to store, manage, and analyze health data in a large scale computing
environment is critical [16].

One major motivation for developing curated data repositories
and analytics frameworks is widespread recognition of the po-
tential of data analytics solutions to solve critical health science
research problems. Several solutions have been provided in various
application domains including health sciences and computational
biology [14, 19, 26, 29, 35–37, 39, 41, 43, 44, 47, 48, 51], materials
design [17], and mitigating natural disasters [28, 49]. These first
generation systems typically collect, curate, and present data in a
mediated schema, or federate access across databases using con-
ventional web services technologies. Although these systems have
become commonplace, there is an increasing need for higher-level
functionality support within these systems. For example, repro-
ducibility of scientific research has gained much attention from the
scientific community due to the increasing rate of retracted scien-
tific research and proliferation of research articles without strong
validation strategies including external validity [15, 23, 24, 30, 31].
This is specifically true for health sciences where the safety and
efficacy trade-offs are studied with meticulous scrutiny due to regu-
latory reasons and scientific studies generally go through multiple
levels of reproducibility, from animal studies to human trials, be-
fore a new treatment strategy is recommended for clinical practice.
One general way to validate the result is through replication by
re-conducting the entire study. This is in general not feasible due
to the possibility of inaccurate and vague descriptions of analyt-
ical pipelines in scientific research and lack of access to the data
and software. However, as a minimum standard, reproducing the
research using the same data and analysis instructions helps to in-
crease research reliability [27] and enables testing other hypotheses
without re-inventing the wheel.

Reproducibility takes the form of hard reproducibility, which
supports complete recreation of the data, software, and execution
environment to arrive at the same result, or soft reproducibility,
which allows the analytics task to execute on potentially differ-
ent data (drawn from the same distribution), in different compu-
tational environments to arrive at statistically identical results.
Hard reproducibility poses significant systems challenges by way

ar
X

iv
:2

00
7.

10
49

8v
1 

 [
cs

.D
C

] 
 2

0 
Ju

l 2
02

0



, , Fatemeh Rouzbeh, Ananth Grama, Paul Griffin, and Mohammad Adibuzzaman

of version control for data (data checkpoints), archiving data ex-
periments, and recreating an identical computational environment
(e.g., containerized software solution). As analytics kernels oper-
ate on increasing rate of heterogeneous datasets with complex
dependencies across software components on ever changing hard-
ware platform, hard reproducibility becomes an important though
complex objective[11, 25]. In the context of computational science,
scientific workflows are the artifacts that are being designed and
published [47]. In terms of reproducibility, a workflow must be
enriched by the description of the execution environment and the
information of hardware and software components to be repro-
ducible. In addition, to design a suitable hardware and software
architecture, the scale, scope, and workload characteristics of big
data analytics need to be considered, specifically for health data.
For instance, by knowing the data access pattern of the users, it is
possible to do memory hierarchy optimization to decrease latency
and increase performance [34].

We present a novel architecture for a software-hardware-data
ecosystem using open-source tools and technologies such as Apache
Hadoop [1] , JupyterHub[7] and Kubernetes[8] with the goal of
supporting (hard) reproducibility of analytic workflow with mas-
sive volume of heterogeneous data (e.g., SQL, time series, imaging).
Apache Hadoop is one of the most popular technologies that serves
massive amount of heterogeneous data in terms of storage and
computation. Many organizations has adopted Apache Hadoop as
their enterprise data warehouse to integrate heterogeneous data.
For example, Geisinger[18] as a healthcare provider has migrated
to a big data enterprise data warehouse infrastructure based on
Apache Hadoop to aggregate data from more than 100 sources.
JupyterHub is an open source multi-user data science user interface
with support of multiple programming languages. Kubernetes is
an open-source container orchestration platform to automate the
management of the containerized applications across a distributed
cluster for scalability and reproducibility. Although there are many
systems that address reproducible workflow issues[47], our focus is
on reproducing the scientific benchmark code using Jupyter Note-
book. However, our infrastructure has the potential to incorporate
reproducible workflow system as a new service[10]. Our unique
software-hardware-data ecosystem can be easily deployed in pub-
lic and private cloud with minimal effort. It provides an analytic
pipeline to aggregate heterogeneous data type (e.g., time series,
images, structured data, among others) and is agnostic of program-
ming language kernel (leveraging JupyterHub) and compliant with
the HIPAA privacy law.

We evaluate the system using two large clinical datasets, MIMIC-
III and Cerner Health Facts (CHF)1. Medical Information Mart for
Intensive Care-III orMIMIC-III is a critical care data set curated with
approximately sixty thousand intensive care unit admissions be-
tween 2001 to 2012 at Beth Israel Deaconess Medical Center[32, 33].
It includes both clinical and waveform data such as demographics,

1Data in Health Facts is extracted directly from the Electronic Medical Record(EMR)
from hospitals in which Cerner has a data use agreement. Encounters may include
pharmacy, clinical and microbiology laboratory, admission, and billing information
from affiliated patient care locations. All admissions, medication orders and dispensing,
laboratory orders and specimens are date and time stamped, providing a temporal rela-
tionship between treatment patterns and clinical information. Cerner Corporation has
established Health Insurance Portability and Accountability Act-compliant operating
policies to establish de-identification for Health Facts.

vital signs, laboratory tests and medications. CHF data is the clinical
data associated with over 69 million patients for 19 years from 2000
to 2018. We evaluated the system with these data sets with regard
to the performance and functionality with varying data volume
and complexity of queries.

The rest of the paper is organized as follows: the next section
summarizes related works. Section 3 provides an overview of the
proposed architecture with a layered perspective. Section 4 de-
scribes the solutions to provide secure access to the system to
preserve privacy and security. Section 5 explains the data used
to assess the performance and utilization of our system. Section
6 describes the challenges in the current system that need to be
addressed for large commercial enterprise solution. Finally, Section
7 concludes the paper.

2 STATE OF THE ART
In this section we introduce several big data platforms that have
been developed to try to integrate complex health data and provide
analytical solutions based on this data.We describe the architectures
of these systems, their pitfalls as well as highlight the difference
between these architectures and our system.

2.1 Patient-Centered Informatics Common:
Standard Unification of Research
Elements(PIC-SURE)

PIC-SURE[2, 26, 39] is an open source software platform to incor-
porate multiple heterogeneous patient level data including clinical,
-omics and environmental data. The core idea of PIC-SURE is to uti-
lize distributed data resources of various types and protocols such as
SciDB, i2b2[40] and any other data systems by a single communica-
tion interface to perform queries and computations across different
resources. For this purpose, PIC-SURE developed the Inter Resource
Communication Tool (IRCT). IRCT is a resource-driven system and
allows new resources to be integrated quickly. Furthermore, PIC-
SURE API provides several pre-defined API resources that users can
use to define and run a query and the results generated by a user can
be available to that specific user only[21]. However, PIC-SURE API
is not responsible for authentication and governance for individual
access. While it provides a programming API that can be used in R
and Python within an environment such as Jupyter Notebook, it is
limited only to the pre-defined resources. In addition, to provide the
reproducibility requirements (e.g. hard-reproducibility in terms of
the same data and same environment) the proposed API should be
integrated with a cloud-native development environment that users
can develop and deploy their programs in a reproducible manner.

2.2 Informatics for Integrating Biology and the
Bedside (i2b2)

i2b2[40] is an open source analytic query tool built on web ser-
vices. i2b2 consists of a set of server-side software modules called
Cell and uses XML message for inter-cell communications which
is illustrated in Figure 1. Data is stored in a relational database
such as Oracle using a common star schema data model. i2b2 is
used by more than 200 healthcare institutions for cohort selection.
Although using the relational database gives the advantage of SQL,
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Figure 1: i2b2 Architecture[40]: The Component and Con-
nector view shows a Client/Server view of i2b2’s instances
and the protocols they use for connection.

with web based architecture the proposed services are not as flexible
as SQL itself. Furthermore, relational databases have the horizontal
scalability issue and also are not optimized for large unstructured
data. In the context of reproducibility, i2b2 allows users to share
their queries within a group to be repeated with the same data or
used for a new set of data. However, this notion of reproducibility
is only at the query level and there is no mechanism to share statis-
tical methods and analytics pipelines. Although i2b2 provides a set
of pre-loaded machine learning and statistical algorithms, its web
based architecture allows to develop more sophisticated and com-
plex algorithms as new web services for advanced programmers or
engineers.

2.3 Observational Health Data Science and
Informatics (OHDSI)

OHDSI[29] is an open network of multiple observational data hold-
ers such as healthcare providers, hospitals, insurance companies,
etc. It requires the network participants to translate their data into
a common data model (OMOP2) in order to reuse the same query
across different systems. Figure 2 shows the layered architecture for
OHDSI consisting of three layers Client Tier, Server Tier and Data
Tier. Similar to i2b2, OHDSI only works with relational databases
such as Oracle and PostgreSQL and has the same challenges of
being limited to structured data and issues with scalability. In terms
of reproducibility, the OHDSI community has developed methods,
libraries and tools consisting of R packages and shared them in
the community’s repository to be accessible by everyone in the
community.

2Observational Medical Outcomes Partnership
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Figure 2: OHDSI Layered Architecture[29]: This layered ar-
chitecture shows a visual illustration of the main compo-
nents of Client Tier, Service Tier and Data Tier of OHDSI’s
technology stack.

2.4 Unified Platform for Big Trajectory Data
Management and Analytics (UlTraMan)

In [20], the authors propose a unified platform for big trajectory
data management and analytics called UlTraMan. UlTraMan is an
integrated platform of extended Apache Spark in both data storage
and computing aspects. The extension has been made by integrat-
ing Spark with Chronicle Map and enhanced MapReduce. Chronicle
Map is a key-value store for the purpose of data storage and ran-
dom data access. They also have improved MapReduce by random
data access optimization for computing purpose. The goal is to
handle the pipeline of transforming, processing and analyzing the
big trajectory data such as data generated by cars and mobiles.
Chronicle Map is a high performance, in-memory key-value data
store that plays as internal block manager of Spark in this platform.
To utilize random-access based techniques and optimization such
as hash-map and indexes the authors improved MapReduce by an
abstraction called TrajDataset. TrajDataset enables random access
in both the local and global levels. The platform consists of four lay-
ers: storage, computation, operation, and application. The storage
layer handles the data and the indexes. The computation layer is
responsible for the distributed computations using the TrajDataset
abstraction to enable random access. The operation layer supports
a programming language interface to develop reusable components
to analyze and process the data. In the application layer, UltraMan
offers multiple ways of interaction for users, such as Spark shell
and HTTP server for web requests. However, it doesn’t propose
any mechanism to provide reproducibility in terms of sharing and
reproducing data pipelines and analytics. Also, UltraMan is not
suitable for highly sensitive data such as health data.

2.5 WaveformECG
Winslow et al. [54] developed WaveformECG, an open source web
based platform that supports interactive analysis, data visualiza-
tion, and annotation of the Electrocardiogram (ECG) data. ECG is a
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Figure 3: ULTraMan Layered Architecture[20]: The Storage
andComputation layers show the underlying unified engine
of UltraMan which is an integration of Apache Spark, Traj-
Dataset abstraction and Chronicle Map.

well known time series data type in cardiovascular research. It can
contain high frequency data and is primarily used for monitoring
the heart condition or diagnosing diseases such as atrial fibrilla-
tion. Users can login to WaveformECG through a portal developed
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Figure 4: WaveformECG Architecture[54]: WaveformECG
uses a web based architecture to provide access to data, anal-
ysis algorithms, analysis results and data annotation.

using Liferay Portal Community Edition that is extended to use a
federated identity provider Globus Nexus for authentication and
authorization. After the authentication layer, there are four portlet
interfaces to upload, visualize, analyze and download- supported by

several backend libraries. The upload and visualization interfaces
utilize OpenTSDB[50], which is an open source distributed time-
series database with Apache Hadoop and Hbase. This architecture
with Apache Zookeaper provides an interface to process real-time
streaming ECG data. In addition, OpenTSDB provides RESTful APIs
to access its storage and retrieve data that makes it possible to query
ECG data from other software. Analysis algorithms are available as
web services accessed through Apache Axis2. When a user selects
data file(s) and executes algorithm(s), data will be retrieved by a
HTTP request from OpenTSDB and written in the desired format
(e.g., XML or WFDB) by the algorithm. Visualization services let
users examine the actual ECG data directly and annotate them
manually. WaveformECG is integrated with i2b2 clinical data ware-
house so the selected cohort in i2b2 can be sent to WaveformECG
for further analysis.

2.6 Starfish
The ability to perform cost-effective analysis in a timely fashion
over big heterogeneous data is one of the purposes of Hadoop
software stack. Hadoop provides different parameters such as the
number of map and reduce tasks that can be tuned based on the
job specification for optimal performance. However, most of the
Hadoop users lack the expertise needed to tune the system for
good performance. Starfish [12] is a self-tuning system for big data
analytics that is built on top of Hadoop. It tunes the system based on
the user’s needs and the system workloads. Starfish tunes at three
different levels, Job-level by approximating the job’s statistics and
performancemode,Workflow-level by handling the unbalanced data
layout because of the data-local fashion in Hadoop andWorkload-
level by optimizing workflows based on the shared data-flow or
re-using the intermediate data and handing them to the workflow
scheduler.

2.7 Cerner’s HealtheDataLab
Cerner’s HealtheDataLab[22] is a cloud computing solution uti-
lizing Fast Healthcare Interoperability Resources (FHIR) for data
standardization, and distributed computing solutions for advanced
data analysis. It is designed to serve the researchers to develop
data analysis and machine learning models in a HIPPA compli-
ant, high-performance and cloud-based computing environment.
Jupyter Notebook is the front-end of the platform and it provides
a web-based interface to develop, document, and execute codes in
Python and R programming languages. Apache Spark is the core
component of the backend as a computing engine. Apache Spark
is an in-memory, parallel analytic engine that provides big data
analysis and a rich machine learning libraries. HealtheDataLab is
deployed in Amazon AWS to provide scalability and elasticity and
data is stored in Amazon Simple Storage Solution (S3). The primary
source of data is the CernerâĂŹs HealtheIntent platform.

3 AN OVERVIEW OF THE PROPOSED
ARCHITECTURE

We provide an overview of the proposed architecture in Figure 5.
The system consists of four layers: Infrastructure, Storage, Computa-
tion and Service. The Infrastructure layer represents the underlying
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hardware that we are using for the system. The Storage layer con-
sists of the storage technologies. The Computation layer contains
different distributed computation tools for different scenarios. Fi-
nally, the Service layer consists of different services in a container
based environment. We explain each of these layers in detail in the
following subsections.

3.1 Infrastructure Layer
The Infrastructure layer is the underlying equipment made up of
a cluster of computers with high capacity in memory, storage and
processors. This layer can be equipped with specific hardware such
as specialized microprocessors including Graphical Processing Unit
(GPU) or Solid-State Drive (SSD). GPUs are capable of handling a
few specific tasks in a very short time. SSDs are special disks that
increase the performance for read/write (I/O) operations.

3.2 Storage Layer
The Storage layer is responsible for storing and managing large
data with heterogeneous data types (e.g. images, time-series and
structured data) of varying size. Figure 5 shows this layer consists
of two major components to keep the storage management sepa-
rate for the data and users’ files. The first component is Hadoop
Distributed File System (HDFS). HDFS is the storage system used
by Hadoop applications and provides high throughput data access
for large and heterogeneous data sets. Different types of data such
as structured, unstructured and image data can be stored on HDFS
and be accessible by the components in computation layer. Differ-
ent types of clinical data such as medical image data, time series
data from medical devices such as ECGs, physiological monitoring
devices, genomcis and clinical data can be stored and processed for
analysis.

The second component is Ceph [52] storage which is directly
used by the service layer. Services on a data processing environ-
ment are mostly stateful and hence need a place to store their
intermediate data and files. For this purpose, we have used Ceph
as the storage platform to provide persistent volume for services’
persistent data. In order to ease the administrative overhead, Ceph
storage is managed automatically by a Rook [9] cluster, which is
deployed in the service layer. We explain the Rook cluster in more
details in Section 3.4.

3.3 Computation Layer
To utilize a cluster of computers and processors, Hadoop provides
a framework that holds a collection of open-source software and
tools. The computation layer holds the tools we use to support the
distributed processing and computing for a large amount of data.

Hadoop Image Processing Interface (HIPI) [6] is an image process-
ing library that can be used with Apache Hadoop MapReduce for
parallel processing. HIPI helps to store a large collection of images
on the HDFS and also makes them available for distributed process-
ing. Furthermore, we can use HIPI with well known open source
image processing libraries such as OpenCV that provides a variety
of computer vision algorithms.

To store the temporal and waveform data, we use HBase (non-
relational database) that runs on top of HDFS. HBase stores data as
key/value pairs in columnar fashion and provides real-time read
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Figure 5: RCHE-HUB Layered Architecture: This layered ar-
chitecture shows the integration of open-source cloud based
technologies to provide a data-type agnostic, programming
language agnostic, scalable and reproducible environment
in a privacy-preservingmanner suitable for highly sensitive
data.

and write access with low latency. However, executing queries
against HBase are not convenient for a relational data schema. To
support SQL-like queries for relational database schema (e.g., for
electronic health records (EHR)) we use Apache Hive. Apache Hive
is a data warehouse software on top of Hadoop and provides SQL-
Like queries (i.e. HiveQL). Hive, by default uses HadoopMapReduce
to execute queries and analyze the data. MapReduce performs the
processing in disk which is I/O intensive and very slow. Hive can
also use other distributed computation engines such as Apache
Spark. In order to improve the performance and processing speed,
we use Apache Spark on top of Hive. The biggest advantage of Spark
over MapReduce is that it performs the processing in-memory and
in parallel using Resilient Distributed Dataset (RDD). This improves
performance due to low disk communication needs.

3.4 Service Layer
The Service layer provides a container based environment for scala-
bility, self-healing, auto-managing and monitoring services running
in containers (micro-services). A popular open-source container
technology is Docker[3], which allows us to create, run and man-
age containers on a single operating system. However, for the case
of a cluster of hosts, it is hard to keep track of all of the containers
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on different hosts. In such a scenario, we can leverage the open-
source container orchestration platform Kubernetes[8] to automate
the management of the containerized applications across the cluster
of hosts.

Kubernetes was originally developed to support stateless appli-
cations with no need for storage. In order to deploy applications
that need to store their data in persistent storage (known as stateful
applications) on a Kubernetes cluster, we need storage that is avail-
able anytime and anywhere the containers can be deployed. Cloud
providers offer their own storage services to provide persistent vol-
ume for persistent data. Unfortunately, for on-premise systems with
Kubernetes, we cannot rely on these convenient storage services.
In order to address this issue we use the storage orchestrator Rook.
Rook [9] is an open-source cloud-native (container based) storage
orchestrator that takes advantage of the underlying container based
environment for Kubernetes to facilitate managing, monitoring,
scaling, provisioning, healing, and recovery of the storage services.
Rook supports multiple storage solutions such as Ceph, Network
File System (NFS) and Cassandra to be integrated with cloud-native
environments. For a production environment the Ceph storage
system is recommended since it is more stable since most other
solutions are still in Alpha or Beta versions. Ceph is a highly scal-
able distributed storage system that provides block storage, object
storage, and shared file systems. We use block storage that can be
mounted to a single pod to store its persistent data and shared file
system which is shared between multiple pods.

Another issue to address for on-premise installation of Kuber-
netes is routing traffic into the cluster using load balancers. Public
clouds such as GCP or AWS have convenient services for routing
traffics to Kubernetes cluster. However, most of the standard load
balancers are only deployable on public cloud providers and are
not supported for on-premise installation. Fortunately, MetalLB[4]
has been developed to address this issue. MetalLB is an on-premise
load balancer that provides two different configuration, BGP based
and Layer2 based load balancing. MetalLB is mostly responsible
for distributing the network or application traffic across multiple
servers to increase the capacity and reliability of the applications.

Such a scalable container based environment that handles stor-
age and service load balancing is ready to deploy services and
applications in a reproducible manner. One of the primary services
we provide for researchers in our platform is JupyterHub[7], an en-
vironment for developing applications to analyze and process data.
JupyterHub is an open source multi-user web based programming
language interface that supports multiple programming language
Kernels such as Python, R, Scala. Deploying JupyterHub on the Ku-
bernetes cluster makes it manageable and scalable. Using Jupyter-
Hub helps to use single server JupyterLab for a group of people.
Every instance of a JupyterLab will be deployed inside a docker
container in our Kubernetes cluster with two different spaces as
storage. A block storage is used as a local directory and a shared
file system which is shared between all JupyterLab instances. In ad-
dition, utilizing the containerization helps to provide reproducible
applications which can be shared easily among the researchers.
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Figure 6: Response time vs. number of records for a simple
query using default and ORC tables: The response time in-
creases as we increase the size of the data for both types of
tables. ORC tables show a great improvement in response
time using the optimize way of data storing.

4 AUTHENTICATION
Collecting personally identifiable health information is important to
be able to conduct research. However, protecting personal privacy
is essential. For example, the HIPAA privacy law mandates that
certain individual information cannot be disclosed by researchers
[42]. To that end, the privacy and security of patients health in-
formation is a top priority of every health-related organization
[53]. To guarantee the safety of sensitive data, we provide multiple
security layers in our cluster. First, all the data are de-identified and
all personal information are removed according to our contracting
with the data providers. In order to access the data, a user needs to
sign a confidentiality agreement. Furthermore, all the connections
to the cluster are through a secure VPN with two factor authentica-
tion. In addition, JupyterHub has support for user authentication
via a third-party OAuth provider, including Google, GitHub, and
CILogon[5]. We use CILogon that supports Purdue University as an
identity provider. This helps us to take advantage of the Purdue’s
2-factor authentication. In addition to the aforementioned tech-
niques, we utilize Apache Ranger[13] to authorize different levels
of access. Apache Ranger is a framework to manage and monitor
data security across the Hadoop cluster, and allows us to define
different types of user-level allow/deny permissions for each data
table and database.

5 DATA AND PERFORMANCE EVALUATION
5.1 Experimental Setup
We have deployed our architecture with an on-premise private
cloud system at the Regenstrief Center for Healthcare Engineering
(RCHE) at Purdue University. The system has 10 nodes in total,
8 worker nodes and 2 master nodes, to perform the performance
evaluation. Each worker node is equipped with 188 GB memory, 24
processors each with 12 cores and 30 TB disk space. Each master
node is equipped with 250 GB memory and 40 processors with
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Figure 7: Response time vs. number of records for a complex
queries using default and ORC tables: The response time in-
creases aswe increase the size of the data for both types of ta-
bles. Even for complex queries containing multiple Join op-
erations and aggregation functions, ORC tables show a great
improvement in response time using the optimized way of
data storing.

10 cores for each processor. We use HDP-2.6.5.0 for the Hadoop
cluster with Apache Spark version 2, and client version 1.15.0 for
the Kubernetes cluster.

5.2 Datasets
Cerner Health Facts (CHF) data is a clinical database that includes
diagnostic information, demographics, medical history, admissions,
discharges, drug prescriptions, and laboratory tests associated with
over 69 million patients for the 19 year period of 2000 to 2018. This
longitudinal data for individual patients comes from the electronic
health records (EHR) of over 750 hospitals . CHF is HIPAA com-
pliant and de-identified and is used by selected community and
academic facilities across the United States. Purdue University has
Data Use Agreements to use the data for research purposes. The
use of the CHF data has been approved by the Purdue University
Human Research Protections Program (HRPP) Institutional Review
Board (IRB) with an exemption determination (PROPEL Determina-
tion No. 29007411). The dataset has previously been used in other
environments to answer some specific clinical questions [45]. How-
ever, no such computational platform as described here have been
developed and implemented for the CHF dataset[38].
A second source of data, MIMIC III and associated Physionet tools,
is a publicly available system for EHR data and high resolution
time series data from medical devices. It is created and maintained
by the Laboratory for Computational Physiology at MIT [32, 33].
The database contains high resolution waveform data and clinical
information on patients admitted to the Intensive Care Unit (ICU)
since 2001 at the Beth Israel Deaconess Medical Center.

5.3 Performance Evaluation
We evaluate the functionality and performance of the proposed
architecture from different perspectives. As the performance metric,
we measure the response time for a query which is submitted from
the JupyterLab instance on the Kubernetes cluster to the Hadoop
cluster. To capture the response time, we used function time() from
the "time" library in Python, which returns the number of seconds
that has passed since epoch (for Unix system epoch has started
from January 1, 1970, 00:00:00). By measuring the time before and
after submitting the job to Hadoop and calculating their differ-
ence, we obtain the approximate response-time in seconds. For
the benchmark, we chose tables Encounter and Lab_procedure
from CHF. The Lab_procedure table is one of the largest tables
in CHF and has information on lab events, and the Encounter ta-
ble has information on events associated with each patient and is
linked to Lab_procedure. The tables are stored in HDFS as CSV
files but are accessible through Hive external tables. In this case,
the default format of Hive tables are TEXTFILE, but we also cre-
ated Optimized Row Columnar (ORCFILE) tables which stores the
collection of rows in one file in a columnar way. Therefore, specific
columns can be accessed faster and in parallel. Furthermore, we
define both a simple and a complex query. The simple query is
an aggregation function to simply count the number of records
in the Lab_procedure table. The complex query joins two tables,
categorizes a specific lab result value, and gives the distribution of
number of patients over the categories. Using the different types of
tables and queries, we define the following three scenarios:

(1) Scenario One: Simple Query In this scenario wemeasured
the response time for the simple query to count the number
of records against both types of Hive tables for various sizes
of data. As the results in Figure 6 show, response time goes
up as the size of the data increases but the increase in latency
is significantly slower using ORC tables. The ORC file groups
the data rows in stripes along with indexes, it improves the
performance when Hive processes the data.

(2) Scenario Two: Complex Query In this scenario, we con-
sidered the complex query that joins two tables, categorizes a
specific lab result value, and gives the distribution of number
of patients over the categories to analyze the cluster using
both types of tables for different sizes of data. The trend
is similar to scenario one, but in overall we have a larger
response time because of the complexity of the query and
the joining of two large tables (Figure 7).

(3) ScenarioThree: SparkParameterOptimizationWeeval-
uate the impact of the number of Spark executors on the
response time. Since the ORC tables has shown a drastic
improvement on the response time, we decided to use it as
the base table format to evaluate the impact of the Spark pa-
rameters on the performance. As Figure 8 shows, increasing
the number of Spark instances doesn’t improve the response
time for the small data size independent of the complexity
of the query. Increasing the number of executors for large
data and complex queries (i.e. Complex Query - #Records =
1046046081 or Complex Query - #Records = 4299492713) im-
proves the response time. However, after a specific number
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Figure 8: Response time vs. number of Spark executors us-
ing ORC tables for simple and complex queries with various
sizes of data , spark-executor-mem = 256M - spark-executor-
cores = 3: There is a trade-off for increasing the number of
Spark executors, namely, as it increases the parallelism also
increases the overhead from communications and garbage
collection.

of executors, the response time increases due to the overhead
of distributed communication.

In order to tune the Spark parameters to achieve optimal perfor-
mance, a user should be aware of the size of the data, distribution
of the data across the cluster and the complexity of the query.
Otherwise, simply increasing the number of executors, amount of
memory or the number of virtual cores for each executor would not
necessarily lead to an improvement. For example, having executors
with large amounts of memory often leads to excessive garbage
collection overhead. Further, running executors with a single core
and small memory suitable for only one task doesn’t allow for the
benefit of parallelism.

6 DISCUSSION
We provide a novel multi-layer cloud based infrastructure using
Hadoop and Kubernetes clusters for the purpose of addressing
issues of scalability, heterogeneity, and reproducibility. This archi-
tecture allows users to easily implement, deploy and share their
research applications in different programming languages. For the
system administrator, the proposed architecture is equipped with
managing and monitoring tools that facilitates scaling, managing,
and monitoring both the data and the applications for security
and authentication. This architecture allows us to develop and test
performance issues related to data aggregation, query processing
time, container deployment, and management, with health data.
Using Kubernetes as a Docker orchestration platform helps to de-
velop new functionalities as light and salable micro-services with
no dependency to the underlying system.

In the future, we will address some critical aspects of the system
to better support collaborative research infrastructure for health
data. For example, while preserving privacy is one of the critical

challenges in working with health data, de-identifying the data
might cause information loss for analytic solution resulting in less
accurate methods. Consequently, it is crucial to provide different
levels of access so that researchers can perform robust and accurate
analysis while at the same time ensure the data privacy of individ-
uals. It is also important to have an audit trail for each user that
can be processed and analyzed with advanced artificial intelligence
methods for any unauthorized activities. In addition, such a plat-
form is usually used by physicians, computational scientists and
health-related researchers who typically have limited training in
computational systems and approaches. Therefore, providing a min-
imum set of simple abstractions for different stages of a machine
learning workflow from data pre-processing, loading, and model
training will be beneficial to the research community.

In addition, JupyterLab does not currently provide a collaborative
programming work-space in the cluster environment, rather it
provides an isolated environment for each researcher to work on
their projects in a single server JupyterLabs. Here, developing an
extension to JupyterLab that can leverage the shared file system to
define different levels of access to the shared projects would be of
value. However, this will add challenges for managing the cluster
in a shared work space.

Exception handling for driver failure in the client side is another
important feature to develop. In a client mode Spark job, the driver
component is created on the client side, and it is responsible of
creating, and planning the job to be executed by the executors in
parallel. In this mode, if the driver encounters any exception, the
computation will fail and the user will have to restart the compu-
tation. Since Apache Hadoop provides fault tolerance in terms of
resuming computations in case of software, hardware and node
failure, we will implement exception handling due to driver failure
resuming user’s job in case of crash on the client side.

Finally, in terms of data visualization in a big-data environment
with petabytes of data, we will implement distributed data visualiza-
tion functionalities using Apache Spark by providing an abstraction
of the data chunks handled by each executor to the driver.

As another future plan, we will also evaluate the performance
of the architecture with other types of data such as time series and
image data. Considering the high potential of our system, we plan
to make an improvement by designing and developing new cloud-
native sub-systems to increase the performance in a practical way.
To evaluate the future optimization techniques, we will compare
the performance of our system with the baseline SQL databases in
case of relational datasets such as clinical data.

7 CONCLUSION
In this paper, we proposed a novel architecture for a healthcare
software-hardware-data ecosystem using open source tools and
technologies including Apache Hadoop, Kubernetes and Jupyter-
Hub. Our base architecture can store, manage and process large
heterogeneous data in a reproducible manner and it has potential
to be extended by new sub-systems in a cloud-native way. We also
evaluated the systemwith different scenarios and with large clinical
data sets. For baseline performance evaluation, we compared two
types of data management using Apache Hive (Text and ORC) to
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illustrate the difference. We also plan to evaluate the system using
other types of data such as time-series and image data.
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