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Abstract

We analyze the problem of how to optimally bid for ad spaces in online ad auc-
tions. For this we consider the general case of multiple ad campaigns with over-
lapping targeting criteria. In our analysis we first characterize the structure of an
optimal bidding strategy. In particular, we show that an optimal bidding strategies
decomposes the problem into disjoint sets of campaigns and targeting groups. In
addition, we show that pure bidding strategies that use only a single bid value for
each campaign are not optimal when the supply curves are not continuous. For
this case, we derive a lower-bound on the optimal cost of any bidding strategy, as
well as mixed bidding strategies that either achieve the lower-bound, or can get
arbitrarily close to it.

1 Introduction

Online advertising has grown dramatically in recent years and is by now a massive market. To
service the demand, ad exchanges have been set up in several places such as New York and Toronto.
Ad exchanges allow advertisers to target their ad campaigns towards specific demographic groups.
This leads to a new set of problems for bidding on ad spaces where specific targeting criteria need to
be taken into account. These decision problems are challenging due the large number of ad spaces
that can be used to potentially place a given ad, as well as the competition between ad campaigns
that target the same ad spaces. As a result, how to optimally bid for ad spaces has been an open
problem, and commercial platforms bidding for ad spaces have been relying on heuristics to make
these decisions.

In this paper we address this problem. More precisely, we consider the situation where rather than
directly buying ad spaces, advertisers use a broker, or a co-called demand supply platform (DSP),
that acquires ad spaces on their behalf. The interaction between a DSP and advertiser is governed
by a contract under which the DSP is obliged to acquire a certain number of ad spaces over a given
period of time, where each ad space satisfies the targeting criteria. We refer to this contract as an
ad campaign. We assume that a DSP represents one or more campaign of one or more advertiser.
Each campaign has its own targeting criteria, as well as a required number of ad spaces that the DSP
needs to obtain for the campaign.

A transaction (opportunity to buy an ad space) in an online ad marked unfolds as follows. The
transactions begins with an end user visiting a web page or mobile app. This visit triggers a bid
request that is sent to the ad exchange. The bid request contains information about the ad space,
as well as about the end user that has accessed the web page or mobile ad. The ad exchange then
forwards the bid request to the demand side platforms (DSPs). A DSP that receives the bid request
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can then decide whether or not to bid for the ad space by submitting a bid for the ad space. The ad
exchange collects all the bids submitted by DSPs for the ad space, and uses a second-price auction
to decide which of the competing DSPs will obtain the ad space. The DSP that wins the auction can
display an ad to the end user on that ad space. Once an ad has been displayed, and can be viewed by
the end user, this ad space is denoted, and counts, as an impression.

In this paper we analyze how a DSP should bid on a bid requests from the ad-exchange in order to
obtain the required number of impressions for the ad campaigns it represents at the lowest possible
cost. We formally model this decision problem as an optimization (cost minimization) problem.
To do that, we introduce the concept of targeting groups that groups bid requests from ad cam-
paigns based on the bid request types that match the targeting criteria of ad campaigns. In addition,
we associate with each targeting group a supply curve that characterizes the number (volume) of
impressions the DSP obtains during a given decision as a function of the bid value.

The main contributions of the paper are:

a) we provide a formal analysis of how a DSP optimal bids for ad spaces in an online ad
market for the case where a DSP has several campaigns, and the campaigns can have over-
lapping targeting criteria. In addition, we do not assume that supply curves to be convex
and continuous functions, but only assume them to be right-continuous and non-decreasing
functions.

b) we show that an optimal bidding strategies decomposes the problem into disjoint sets of
campaigns and targeting groups, where an optimal bidding strategy can be computed for
each component individually.

c) we show that pure bidding strategies that use only a single bid value for each campaign
and targeting group pair are not optimal when the supply curves are not continuous. For
this case we derive a lower-bound on the optimal cost of any bidding strategy, and provide
mixed bidding strategies that either achieve the lower-bound, or can get arbitrarily close to
it.

We note that discontinuous supply curves are the norm in practical applications (see Fig. 1 for an
illustration). As a result, the problem considered in this paper can not be solved using standard
techniques from optimization theory to compute an optimal bidding strategy, which makes the anal-
ysis challenging. In the paper we provide a solution approach and technique that can be used to
analyze supply curves that are right-continuous, non-decreasing functions, and thus not necessarily
continuous or convex functions.

The rest of the paper is organized as follows. In Section 2 we provide an overview of related work.
In Section 3 we describe the second price auction that is used in online ad markets. In Section 4
we present the optimization problem to that we use to model the decision problem of the DSP. In
Section 5 we consider the special case of a single campaign with a single targeting group in order
to illustrate the main intuition behind our analysis and results. In Section 6, we show that when the
supply curves are given by continuous functions, then an optimal bidding strategy decomposes the
problem into disjoint sets of campaigns and targeting groups, where an optimal bidding strategy can
be computed for each component individually. In Section 7 we present the algorithm to compute
an bidding strategy, and show in Section 8 that this bidding strategy is optimal when the supply
curves are given by continuous functions. In addition, we derive in Section 8 a lower-bound on the
optimal cost of any bidding strategy, and provide mixed bidding strategies that either achieve the
lower-bound, or can get arbitrarily close to it. In Section 9 we discuss how the results obtained in
the paper can be applied to practical systems.

2 Related Work

In this section we provide an overview of the literature related to optimal bidding algorithms for
DSPs. We first consider the literature that is directly related to the problem consider in this paper,
i.e. existing literature on optimal bidding algorithms for DSPs. Roughly, the existing literature on
the DSP bidding problem can be grouped into the following four categories: 1) single campaigns,
2) many campaigns with identical targeting criteria, 3) many campaigns with different but non-
overlapping targeting criteria, and 4) many campaigns with overlapping targeting criteria. In this
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paper we consider the last case, i.e. the general case where a DSP represents many campaigns that
have overlapping targeting criteria.

The single campaign case: There exist several results for the basic case of optimal bidding algo-
rithms where a DSP respresents a single ad campaign [5, 4, 11], and the goal of the DSP is to
maximize the utility (valuation) of the obtained ad spaces given a budget constraint. Compared with
our analysis, this literature does not consider the case where the supply curves are not necessarily
differentiable, or continuous.

Many Campaigns with Identical Targeting Criteria: The first generalization of the single campaign
case is to consider the case where a DSP respresents many campaigns, but all campaigns have an
identical targeting criteria. This case has been studied in [10] where the authors propose a bidding
strategy that maximizes revenue subject to a global budget and risk constraint; risk being the variance
of revenue. The resulting algorithm decides on the optimal bid value, as well as the probabilities with
which bid requests are assigned to a given campaign. This work considers a different problem (with
a budget and risk constraint rather than a constraint on the number of impressions that a campaign
needs to obtain) than the one considered in this paper, and the bidding strategies of [10] can not be
applied, and would not be optimal, for the problem considered in this paper.

Many Campaigns with Non-Overlapping Targeting Criteria: In [12], the authors consider the case
where a DSP represents many campaigns and the campaigns have different, but disjoint, targeting
criteria. For this case, [12] considers the problem of maximizing the total utility (valuation) over
all campaigns subject to a global budget constraint. The decision variables of the corresponding
optimization problem are the amount of total budget that is allocated to each campaign, and the price
that is used for to bid for ad spaces for the individual campaigns. The work in [12] derives an optimal
bidding strategy for this case assuming that the supply curves (distribution function of the winning
price for a given targeting criteria) are convex. This allows the problem to be formulated as a convex
optimization problem, and can be solved using standard techniques from convex optimization. In
addition, the analysis in [12] does not provide the structural properties of an optimal solution that
we present in Section 8 that shows that an optimal allocation decomposes the problem into disjoint
components that can be solved individually, and that pure strategies are not optimal when the supply
curves are not continuous (which is the case for the supply curves obtained in practice).

Many Campaigns with Overlapping Targeting Criteria: The most general case, and the case that
we consider in this paper, is where a DSP represents many campaigns that can have overlapping
targeting criteria. Obtaining an optimal bidding strategy for this case has been an open problem, and
so far only heuristic strategies have been considered for this case [7, 9]. In [7] the authors propose
a heuristic algorithm to compute bidding values, and allocate bid requests to campaign, for the case
where the DSP aims at maximizing the number of clicks that are received under a given budget
constraint. The proposed algorithm uses a linear (heuristic) bidding function that is proportional to
the predicted click through rate of a campaign for a given bid request, and allocates the bid request
to the campaign with the highest bid value. In essence, the proposed algorithm allocates bid requests
to the campaign that has the highest click-through rate. In [9], the authors consider the special case
where two campaigns either have identical targeting criteria (fully overlap), or have disjoint criteria
(do not overlap). For this case, the authors propose a heuristic algorithm that uses linear regression
to forecast the cost and number of clicks received. This forecast function is then used to formulate
the decision problem of a DSP as an optimization problem that can be solved.

A large fraction of the literature on optimal bidding strategies for DSPs considers the case where a
DSP aims at acquiring a many ad spaces as possible under a given budget constraint, or at maximiz-
ing a the utility of the obtained ad spaces under a given budget constraint. In this paper, we consider
a slightly different objective where the DSP needs to acquired a predefined number of ad spaces for
each campaign, and wants to achieve this at the lowest possible cost. The latter objective reflects
that scenario that many DSPs face in practice.

Next we highlight existing literature that is related to the general problem of online ad markets, but
considers a fundamentally different problem compared with the one consider in this paper.

In [8], the authors study the interaction between several advertisers/DSPs that are competing for
an identical set of bid requests, i.e. each advertiser/DSP has single campaign and the campaigns
(from the different advertisers/DSPs) have all the same targeting criteria. Using the game-theoretic
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approach, the authors derive a dynamic bidding strategy (for each advertiser/DSP) and show that the
bid values under this strategy converges to a Nash equilibrium.

In [1], the authors study online ad markets from the perspective of the ad publishers (owners of the
web pages or mobile ads where where the as spaces are located), rather than the DSP. In particu-
lar, [1] considers the situation where a publishers can choose between selling ad spaces either on
contract-based market, or on a spot market (ad exchange). A key difference between this problem,
and the problem considered in this paper, is that the total number of ad spaces that are available
(at the publisher) are given (as part of the problem formulation), and do not depend on a decision
variable (bid price) of the optimization problem.

There is a large body of existing literature on the problem where a centralized platform collects
available ad spaces, as well as the preferences of advertisers regarding the ad spaces, and the objec-
tive of the platform is to match ad spaces with advertisers with respect to a given criteria (see [6] for
an overview). This problem corresponds to a bi-partite matching problems that is NP (see discussion
in [6]). As a result this body of research focuses on obtaining efficient approximate algorithm for the
corresponding bi-partite matching problems. We note that this problem is fundamentally different
from the problem considered in this paper.

3 Second Price Auction

Before we define in Section 4 the model that we use to study the optimal decisions by a DSP in an
online ad market, we describe in this section the second price, sealed bid auction, that is used by ad
exchanges use to decide which DSP wins the ad spot for a given bid request.

Suppose that there are N DSPs submitting a bid for a given bid request, and let (b1, ..., bN ) be the
bids that are received by the ad exchange and assume that

bi 6= bj , i 6= j, i, j = 1, ..., N.

Then the DSP i∗ ∈ {1, ..., N} with the highest bid bi∗ , i.e. we have that
bi∗ ≥ bi, i = 1, ..., N,

will win the auction and receive the ad spot of the bid request. The price that DSP i∗ pays for the
ad spot is equal to the value of the second highest bid in (b1, ..., bN ), i.e. the price p is equal to
bs ∈ {1, ..., N} such that

bs ≥ bi, i ∈ {1, ..., N}\{i∗}.
We ignore in this paper the floor price of an auction; a floor price can easily be introduced in our
analysis without changing the results.

Whenever a DSP wins an ad space for a campaign that it represents, we say that the DSP has received
an impression (ad space) for the campaign.

4 Problem Definition

Recall that we consider the problem of how a DSP should bid for ad spaces in an online ad market.
We assume that the DSP represents one or more ad campaigns. Each campaign is given by a contract
that specifies the targeting criteria for the campaign, and the number of impressions the campaign
needs to obtain over a given time period (for example, a month). Below we describe the model that
we use to analyze this problem.

4.1 Decision Period

We focus in our analysis on the case where the DPS is required to spread out the total number of
impression over the given time period, and needs to obtain an equal number of impressions in during
a number of pre-specified smaller time intervals (for example, a day). In addition, we allow the DSP
to break the time intervals over which a required number of impressions needs to be obtained into
smaller decision periods. A the length of a decision period could relatively long such as an hour, or
shorter such as a few minutes. In the following, we analyze how a DSP optimally decides on the bid
values and bid request allocations for a given decision period. To do that, we formally model the
decision problem as an optimization problem
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4.2 Campaigns

Let N = {1, ..., Nc} be the set of campaigns that the DSP represents. For each campaign i ∈ N ,
let Ii be the total number of impressions that campaign is required (scheduled) to obtain during the
given decision period.

We assume that each bid request r that the DSP receives from the ad exchange, is characterized by
its properties t(r). Examples of a bid request properties could be the location, age, and gender, of
the end user who accessed the web page or mobile app and triggered the bid request. We refer to t(r)
as the type of the bid request. The type t(r) determines whether bid request r matches the targeting
criteria of a given campaign i ∈ N . More precisely, letR be the set of all possible bid request types,
and let Ri ⊆ R be the set of all bid request types that match the targeting criteria of campaign i.
For example, the targeting criteria of an a campaign could be to show ads to users located in New
York City aged between 30-50 years.

If for a given bid request r matches the targeting criteria of campaign i and we have that t(r) ∈ Ri,
then we say that r is an admissible bid request for campaign i.

4.3 Targeting Groups

The targeting criteria Ri of the campaigns i ∈ N are not necessarily disjoint sets. Moreover, the
targeting criteria Ri and Rj of two ad campaigns i and j that overlap, may not fully overlap. As
a result the set of targeting criteria {Ri}i∈N has very little structure, which makes it difficult to
use them directly to formulate an optimization problem for the decision problem of the DSP. To
overcome this problem, instead of using the targeting criteria directly, we use the set of targeting
criteria Ri, i ∈ N , to construct a set T = {1, ..., Nr} of Nr targeting groups with the following
structure.

Definition 1. A set of targeting groups T is given by Nr sets Tj ⊂ R, such that

Nr⋃
j=1

Tj =

Nc⋃
i=1

Ri

and
Tm ∩ Tn = ∅, m 6= n,m,m = 1, ..., Nr.

Furthermore, for every campaign i there exists a set Ai ⊆ {1, ..., Nr} of targeting groups such that

Ri =
⋃
j∈Ai

Tj

and
Ri ∩ Tj = Tj , j ∈ Ai.

For given a targeting group j, the set Bj is given by

Tj ∩Ri = Tj .

Note that as the number of campaigns is finite, a set of targeting groups as given by Definition 1 can
always be constructed. Below we discuss properties of targeting groups as given by Definition 1 that
play an important role in our analysis.

The set Ai, i ∈ N , in Definition 1 consists of all the targeting groups that campaign i can bid on.
That is, given a bid request r such that t(r) ∈ Ri, we have that there exists a j ∈ Ai such that
t(r) ∈ Tj . Furthermore as the targeting groups are given by disjoint sets, for given a bid request r
such that t(r) ∈ Ri there exists exactly one j ∈ Ai such that t(r) ∈ Tj .
Similarly, the set Bj , j ∈ T , consists of all of the campaigns that can bid on a request r such that
t(r) ∈ Tj and tr ∈ Ri. That is, it consists of all the campaigns that can bid on the set of targets in
Tj .
The key property of the targeting groups T is that the sets Tj , j ∈ T , are disjoint, and hence each
type t(r) of a bid request r maps to exactly one targeting group.
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Figure 1: Two examples of supply obtained from real-life data.

4.4 Supply Curves

Given the set T of targeting groups, we associate with each targeting group j ∈ T a supply curve
Dj(b), b ≥ 0. The supply curveDj(b) has the following interpretation. If during the decision period
the DSP bids with a fixed bid value bj for all bid requests that match targeting group Tj , j ∈ T ,
then Dj(bj) is the total number of impressions that the DSP obtains from targeting group j over
the decision period. Note that by definition, the supply curves Dj(b), b ≥ 0, are non-decreasing
function. Fig. 1 shows two supply curves that have been obtained from actual data from an online
ad exchange. From Fig. 1 we have that the supply curves are not necessarily given by differentiable,
or continuous, functions, and we make the following assumption regarding the supply curvesDj(b),
j ∈ T .

Assumption 1. For each targeting group j ∈ T the supply curve Dj(b) : [0,∞) 7→ [0,∞) is a
non-decreasing right-continuous function.

Using this definition of a supply curve, we have that if the DSP bids on all bid requests that match
a given targeting group j ∈ T with a fixed bid bj , then the DSP will obtain Dj(bj) impressions for
targeting group j with a cost of (see for example [3])∫ bt

0

bdDj(b) = Dj(bj)bj −
∫ bj

0

Dj(b)db.

4.5 Decision Variables

For each targeting group j ∈ T the DSP has to decide on

a) the fraction γi,j , i ∈ Bj , of bid requests from the targeting group j that are allocated to
campaign i to bid on, and

b) the bid value bi,j that it uses for bidding on requests in targeting group j, j ∈ Ai, that are
allocated to campaign i.

We then use the following notation for the decision variables of the DSP during a given decision
period. Let

γj = {γi,j}i∈Bj
, i = 1, ..., Nr,

be the faction of bid request from targeting group j that are allocated to campaign i, and let

bj = {bi,j}j∈Ai
, i = 1, ..., Nc,

be the bid values that campaign i uses for bid request from targeting group j.

Furthermore, let
b = (b1, ..., bNc

), and γ = (γ1, ...,γNr
),

be the set of decision variables for all campaigns, and all targeting groups, and let (b,γ) denote the
corresponding allocation of the DSP for a given decision period.
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If the DSP allocates for a given decision a fraction γi,j of the bid requests of targeting group j to
campaign i, then the total number of impressions that campaign i will obtain from targeting group j
is given by γi,jDj(bi,j), and the total cost for obtaining these impressions is given by

γi,j

[
Dj(bi,j)−

∫ bi,j

0

Dj(b)db
]
.

4.6 Optimization Problem

Recall that for a given decision period the goal of the DSP is to obtain the required number of
impressions for each campaign i ∈ N at the lowest possible cost. Using the above notations and
definitions, the corresponding optimization problem is given by

minimize
(b,γ)

Nc∑
i=1

[ Nr∑
j=1

γi,j

(
Dj(bi,j)bi,j −

∫ bi,j

0

Dj(b)db
)]

subject to
∑
j∈Ai

γi,jDj(bi,j) ≥ Ii, i = 1, ..., Nc,∑
i∈Bj

γi,j ≤ 1, j = 1, ..., Nr,

bi,j ≥ 0, i = 1, ..., Nc, j = 1, ..., Nr,

γi,j ≥ 0, i = 1, ..., Nc, j = 1, ..., Nr.

(1)

The first inequality requires the number of impressions obtained for each campaign to meet the
required number of impressions. The second inequality states that the total fraction of bid request
that are allocated to campaigns can not exceed 1. The last two constraints state that the the bid values
and and allocations can not be negative.

In the following we refer to an allocation (b,γ) that satisfies the above conditions as a solution to
the optimization problem given by Eq. (1)

For our analysis we assume that the DSP can always get the required impressions by using high
enough bid values bij , i ∈ N , j ∈ T , and thus the optimization problem has a feasible solution.

4.7 Online Bidding Algorithm

In this section discuss how a solution (b,γ) of the optimization problem given by Eq. (1) can be
used to implement an online bidding algorithm.

Let (b,γ) be a solution for the optimization problem given by Eq. (1). The solution (b,γ) can then
be used to implement an online algorotihm as follows. Whenever a new bid request r is received
by the DSP, the DSP first determines the type t(r) of the bid request. Next, the DSP determines the
targeting group the type t(r) belongs to. Let j be this targeting group. Using the solution (b,γ),
the DSP then allocates with probability γi,j the bid request to campaign i, i ∈ Bj ; and uses the bid
value bi,j to obtain the ad space for campaign i.

Note that the solution (b,γ) is (pre-)computed in the background (off-line), and the values of the
solution (b,γ) are used to implement the online bidding algorithm described above. The length of
a decision period determines how often the solution (b,γ) is re-computed, and the bid values and
allocations for the online algorithm are updated. In Section 9 we discuss additional implementation
issues of the online algorithm.

5 Single Campaign with a Single Targeting Group

Before we start with the analysis of an optimal allocation for the optimization problem given by
Eq. (1), we provide in this section the main intuition behind our analysis and results. For this we
consider the special case where a single campaign i = 1 gets a total of I1 impressions from a single
targeting group j = 1. We assume that

lim
b→∞

D1(b) > I1,

7



and there is sufficient supply to support the impressions of the campaign.

Our first result characterizes the optimal allocation (b∗,γ∗) for the case where there exists a bid
value b∗ such that D1(b∗) = I1.

Proposition 1. Consider the special case where a single campaign i = 1 gets impressions from a
single targeting group j = 1, and I1 is the total number of impressions that the campaign is required
to obtain. If there exists a bid value b∗ such that

D1(b∗) = I1,

then the allocation (b∗,γ∗) given by

γ∗1,1 = 1 and b∗1,1 = b∗

is an optimal allocation. Furthermore, the optimal cost is given by

I1b
∗ −

∫ b∗

0

D1(b)db.

We provide a proof of Proposition 1 in Appendix B.1. Proposition 1 implies that if the supply curve
D1(b) is given by a continuous function, then the allocation (b∗,γ∗) given in Proposition 1 is an
optimal allocation. To see this, note that if the supply curveD1(b) is given by a continuous function,
then there exists a bid value b∗ such that

D1(b∗) = I1.

If the the supply curve D1(b) is not continuous, and there does not exist a bid value b∗ such that
D1(b∗) = I1, then we define the bid value b∗ such that

D1(b∗) ≥ I1 (2)

and
D1(b) < I1, 0 ≤ b < b∗. (3)

In the next subsection we study optimal allocations for this case. To do that we use the following
notation. We let

D(−)(b∗) = lim
b↑b∗

D1(b) < D1(b∗).

5.1 Pure Bidding Strategies

Note that the optimization problem given by Eq. (1) considers allocations under which each cam-
paign i ∈ N uses (as most) a single bid value bi,j for targeting group j ∈ Ai. We refer such an
allocation as a pure bidding strategy. Let Sp be the set of all pure bidding strategies. We then have
the following result.

Lemma 1. Consider the special case where a single campaign i = 1 gets impressions from a single
targeting group j = 1, and I1 is the total number of impressions that the campaign is required to
obtain. Furthermore, let the bid value b∗ be as given by Eq. (2) and (3). Then the pure bidding
strategy given by

b∗1,1 = b∗ and γ∗1,1 =
I1

D1(b∗)

is an optimal pure bidding strategy. Furthermore the cost under the optimal pure strategy is given
by

I1b
∗ − γ∗1,1

∫ b∗

0

D1(b)db.

The result of Lemma 1 follow from the fact that the bid value b∗ be as given by Eq. (2) and (3) is the
lowest bid value to obtain the I1 impressions required by the campaign. Note that if we have that
Dj(b

∗) = I1, then the result of Lemma 1 is identical to the result of Proposition 1.
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5.2 Mixed Bidding Strategies

We next consider a more general class of bidding strategies, where a campaign can use several bid
values for a given targeting group. We refer to such strategies as mixed bidding strategies. For a
given mixed bidding strategy s, let P1,1 be the bid values that the campaign 1 uses for targeting
group 1, and let γ1,1(b), b ∈ P1,1, be the fraction of bid requests from targeting group 1 for which
the campaign uses bid value b, where we have the constraint that∑

b∈P1,1

γ1,1(b) ≤ 1.

Let S be the set of all such mixed bidding strategies.

The cost C(s) of a mixed bidding strategy s ∈ S to obtain∑
b∈P1,1

γ1,1(b)D1(b)

impressions is given by

C(s) =
∑
b∈P1,1

γ1,1(b)

[
D1(b)b−

∫ b

0

D1(x)dx

]
.

We have the following result.
Proposition 2. Consider the special case where a single campaign i = 1 gets impressions from a
single targeting group j = 1, and I1 is the total number of impressions that the campaign is required
to obtain. Let s ∈ S given mixed bidding strategy such that∑

b∈P1,1

γ1,1(b)D1(b) = I1.

Then we have

C(s) ≥ I1b∗ −
∫ b∗

0

D1(b)db,

where the bid value b∗ is as given by Eq. (2) and (3).

We provide a proof for Proposition 2 in Appendix B.2. Proposition 2 provides a lower-bound on the
cost obtained by any mixed bidding strategy.

The next result shows that the bound of Proposition 1 is tight.
Proposition 3. Consider the special case where a single campaign i = 1 gets impressions from a
single targeting group j = 1, and I1 is the total number of impressions that the campaign is required
to obtain. Let the bid value b∗ be as given by Eq. (2) and (3), and suppose that D(−)(b∗) > 0.
Furthermore, let the mixed bidding strategy s(b1) ∈ S, 0 ≤ b1 < b∗, be given by P1(s) = {b1, b∗},
as well as

γ1,1(b1) =
D1(b∗)− I1

D1(b∗)−D1(b1)
and γ1,1(b∗) = 1− γ1,1(b1).

Then we have that

lim
b1↑b∗

C(s(b1)) = I1b
∗ −

∫ b∗

0

D1(b)db.

We provide a proof for Proposition 3 in Appendix B.3. Proposition 3 is that it implies that it is
sufficient to consider mixed bidding strategies that use two bid values b1 and b∗, b1 < b∗, in order
to obtain a (near) optimal cost.

5.3 Cost Bound for Optimal Pure Strategy

The above results imply that using mixed bidding strategies can lead to a strictly lower overall cost
compared with pure strategies. The following result provides a bound on this cost difference.

9



Proposition 4. Consider the special case where a single campaign i = 1 gets impressions from a
single targeting group j = 1, and I1 is the total number of impressions that the campaign is required
to obtain. Furthermore, let the bid value b∗ be as given by Eq. (2) and (3), and let s∗ ∈ Sp be the
optimal pure bidding strategy as given by Lemma 1. Then we have that

C(s∗)−

[
I1b
∗ −

∫ b∗

0

D1(b)db

]

≤ (1− γ∗1,1)

∫ b∗

0

D1(b∗)db

≤ D1(b∗)−D(−)
1 (b∗)

D1(b∗)

∫ b∗

0

D1(b)db,

where D(−)(b∗) = limb↑b∗ D1(b).

Proposition 4 follows from Lemma 1. Proposition 4 states that the smaller the height (jump)(
D1(b∗) − D

(−)
1 (b∗)

)
of the discontinuity at b∗, the closer the performance of the optimal pure

strategy will be to the lower-bound of Proposition 2.

5.4 Discussion

The results for case where a single campaign gets impressions from a single targeting group provide
important insight into the structure of an optimal bidding strategy. In particular, the results suggest
that studying optimal policies under the assumption that the supply curve is continuous provides cor-
rect structure of an optimal bidding strategy. More precisely, Proposition 2 suggests that the optimal
cost in the case of continuous supply curves provides the correct expression for the (tight) lower-
bound of the cost of any mixed strategy for the case where the supply curves are not necessarily
continuous. In addition, the optimal value b∗ obtained in Proposition 1 corresponds to the optimal
bid value of a pure strategy as given in Lemma 1, as well as one of the bid values of the general bid
strategy given in Proposition 3.

In the following we show that the results and insights obtained for the case of a single campaign
getting impressions from a single targeting group carry over to the general case where multiple
campaigns getting impressions from several targeting groups. To do that, we proceed as follows. We
first characterize in Section 6 the structure of an optimal allocation (b∗,γ∗) under the assumption
that the supply curves are given by continuous function. Using this result, we propose in Section 7
an algorithm to compute an allocation (b∗,γ∗). In Section 8 we show that this allocation is an
optimal bidding strategy when the supply curves are given by continuous functions. In addition,
we derive for this case a lower-bound on the optimal cost of any mixed bidding strategy, as well as
mixed bidding strategies that either achieve the lower-bound, or can get arbitrarily close to it.

6 Structural Properties

In this section we characterize an optimal solution (b∗,γ∗) for the optimization problem given
by Eq. (1) under the simplifying assumption that the supply curves Dj(b), j ∈ T , are given by
continuous functions.

To do this, we use the following notation. Let (b∗,γ∗) be a solution to the the optimization given
by Eq. (1). For each campaign i ∈ N let the set Ai(b∗,γ∗) be given by

Ai(b∗,γ∗) = {j ∈ Ai|γ∗i,jDj(b
∗
i,j) > 0}.

The set Ai(b∗,γ∗) contains all the targeting groups j from which a campaign receives a positive
number γ∗i,jDj(b

∗
i,j) of impressions under the solution (b∗,γ∗).

Similarly, for each targeting group j ∈ T let the set Bj(b∗,γ∗) be given by

Bj(b∗,γ∗) = {i ∈ Bj |γ∗i,jDj(b
∗
i,j) > 0}.
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When the have the result that there always exists an optimal solution (b∗,γ∗) for the optimization
problem given by Eq. (1) that consists of components

C(p∗, b∗,γ∗) = (Cc(p∗, b∗,γ∗), Ct(p∗, b∗,γ∗))

where Cc(p∗, b∗,γ∗) is a set of campaigns, and Ct(p∗, b∗,γ∗) is a set of targeting groups, such that
for each campaign i ∈ Cc(p∗, b∗,γ∗) we have that

b∗i,j = p∗, j ∈ Ai(b∗,γ∗).

Proposition 5. Suppose that the supply curves Dj(b), j ∈ T , are given by continuous functions.
Then there exists an optimal solution (b∗,γ∗) to the optimization problem given by Eq. (1) such
that the following is true. There exists a set of bid values P(b∗,γ∗) such that with every bid value
p∗ ∈ P(b∗,γ∗) we can associate a component

C(p∗, b∗,γ∗) = (Cc(p∗, b∗,γ∗), Ct(p∗, b∗,γ∗))

where Cc(p∗, b∗,γ∗) is a set of campaigns, and Ct(p∗, b∗,γ∗) is a set of targeting groups, such that

Ai(b∗,γ∗) ∩ Ct(p∗, b∗,γ∗) = Ai(b∗,γ∗), i ∈ Cc(p∗, b∗,γ∗),

and
Bj(b∗,γ∗) ∩ Cc(p∗, b∗,γ∗) = Bj(b∗,γ∗), j ∈ Ct(p∗, b∗,γ∗),

as well as
b∗i,j = p∗, i ∈ Cc(p∗, b∗,γ∗), j ∈ Ai(b∗,γ∗).

In addition, we have that ⋃
p∗∈P(b∗,γ∗)

Cc(p∗, b∗,γ∗) = N

and ⋃
p∗∈P(b∗,γ∗)

Ct(p∗, b∗,γ∗) = T .

7 Algorithm to Compute (b∗,γ∗)

Using the results of Section 6, we present in this section an algorithm to compute a solution (b∗,γ∗)
for the optimization problem given by Eq. (1). In the next section, we show that the solution (b∗,γ∗)
is an optimal solution for the case where the supply curves are given by continuous functions. In
addition, we derive a lower-bound on the optimal cost of any bidding strategy, as well as mixed
bidding strategies that either achieve the lower-bound, or can get arbitrarily close to it.

7.1 Algorithm

Using the result of Proposition 5, we derive an algorithm that computes an allocation (b∗,γ∗) that
consists of components as given in Proposition 5. To do that, the algorithm recursively computes
components (Ĉc, Ĉt, p, t), where each component consists of a set of campaigns Ĉc ⊆ N and a set
of targeting groups Ĉt ⊆ T . Using these components, we then construct an allocation (b∗,γ∗) as
given in Proposition 5.

More precisely, let
Cc = N and Ct = T

be the initial set of campaigns and targeting groups, and let

P = ∅.

We then split the set (Cc, Ct) = (N , T ) into two subsets (C1c , C1t ) and (C2c , C2t ) as follows.

We first compute the unique bid value p such that∑
j∈Ct

Dj(p) ≥
∑
i∈Cc

Ii (4)
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and ∑
j∈Ct

Dj(b) <
∑
i∈Cc

Ii, 0 ≤ b < p. (5)

Using the bid value p, we next compute an optimal solution to the optimization problem
ALLOC(Cc, Ct, p) given by

minimize
t

∑
i∈Cc

(
Ii −

∑
j∈Ai∩Ct

ti,jDj(p)

)2

subject to
∑

i∈Bj∩Cc

ti,j ≤ 1, j ∈ Ct,

0 ≤ ti,j , i ∈ Cc, j ∈ Ct.

(6)

Note that the optimization problem ALLOC(Cc, Ct, p) is a convex (quadratic) optimization prob-
lem, and can easily been solved using standard algorithms (solvers) of quadratic programming.

If the minimization problem given by Eq. (6) has an optimal solution t∗ with cost zero, then we stop
the recursion, and return the component (Ĉc, Ĉt, p, t) where

t = t∗

is equal to the optimal solution t∗ for the optimization problem ALLOC(Cc, Ct, p), and p is the bid
value that we used to in the optimization problem ALLOC(Cc, Ct, p). In addition, we add the bid
value p to the set P and let

P = P ∪ {p}.

On the other hand, if the minimization problem given by Eq. (6) has an optimal solution t∗ with a
strictly positive cost, then we split the set (Cc, Ct) into two sets s (C1c , C1t ) and (C2c , C2t ) as follows.
We set

C(1)c =

i ∈ Cc
∣∣∣∣∣∣
(
Ii −

∑
j∈Ai∩Ct

t∗i,jDj(p)

)2

> 0

 , (7)

and
C(1)t =

⋃
i∈C(1)c

Ai. (8)

Furthermore, we set
C(2)c = Cc\C(1)c and C(2)t = Ct\C(1)t . (9)

For each of the two components we then recursively apply the above step until all recursions stop.

More formally we define the algorithm as follows. Let the function

p = PRICE(Cc, Ct)

return the unique price p∗ as defined by Eq. (4) and Eq. (5). Furthermore let the function

(t∗, done) = ALLOC(Cc, Ct, p)

return an optimal solution to the optimization problem given by Eq (6), as well as a boolean value
done = TRUE if the optimal solution t∗ for the optimization problem by Eq (6) has a cost equal
to 0, i.e. we have that ∑

i∈Cc

(
Ii −

∑
j∈Ai∩Ct

t∗i,jDj(p)

)2

= 0,

and a boolean value done = FALSE otherwise. Finally let the function

((Cc,1, Ct,1), (Cc,2, Ct,2)) = SPLIT (Cc, Ct, t
∗, p)

return the sets (Cc,1, Ct,1) and (Cc,1, Ct,1), as given by Eq. (7) - (9).

Using these functions, the pseudo-code for the recursion step

(Cout,Pout) = REC(Cc, Ct, Cin,Pin)
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Algorithm 1: (Cout,Pout) = REC (Cc, Ct, Cin,Pin)

1 p = PRICE(Cc, Ct);
2 (t∗, done) = ALLOC(Cc, Ct, p);
3 if done then
4 Cout = Cin ∪ {(Cc, Ct, t∗, p)};
5 Pout = Pin ∪ {p});
6 return (Cout,Pout);
7 else
8 ((Cc,1, Ct,1), (Cc,2, Ct,2)) = SPLIT (Cc, Ct, t

∗, p);
9 (Cout,1,Pout,1) = REC(Cc,1, Ct,1, Cin,Pin);

10 (Cout,2,Pout,2) = REC(Cc,2, Ct,2, Cin,Pin);
11 Cout = Cout,1 ∪ Cout,2;
12 Pout = Pout,1 ∪ Pout,2;
13 return (Cout,Pout);
14 end

is then given by Algorithm 1. To simplify the notation, it is assumed that the set Ai, i ∈ N , and Bj ,
j ∈ T , are available to the function REC(Cc, Ct, Cin,Pin) given in Algorithm 1 as global (globally
defined) variables.

Using the recursive function REC(Cc, Ct, Cin,Pin), the algorithm to compute the set
{(Ĉc, Ĉt, p, t)}p∈P of components is given by

(Cout,P) = REC(N , T , ∅, ∅) (10)

where P is the set of bid values of the components (Ĉc, Ĉt, p, t), and

Cout = {(Ĉc, Ĉt, p, t)}p∈P
is the set of components obtained by the algorithm.

7.2 Construction of Allocation (b∗,γ∗)

Using the set P of bid values, and the components (Ĉc, Ĉt, p, t)}, p ∈ P , obtained by the algorithm
given by Eq (10), we construct a solution (b∗,γ∗) as given by Proposition 5 as follows. Let

P(b∗,γ∗) = P,

and for each component (Ĉc, Ĉt, p, t), p ∈ P , create a component C(p∗, b∗,γ∗) with p∗ = p, and

Cc(p∗, b∗,γ∗) = Ĉc and Ct(p∗, b∗,γ∗) = Ĉt.

Finally using the component (Ĉc, Ĉt, p, t) with p = p∗, the allocation for component C(p∗, b∗,γ∗),
p∗ ∈ P(b∗,γ∗), is given by

b∗i,j = p∗, i ∈ Cc(p∗, b∗,γ∗), j ∈ Ct(p∗, b∗,γ∗),

as well as
γ∗i,j = ti,j , i ∈ Cc(p∗, b∗,γ∗), j ∈ Ct(p∗, b∗,γ∗)

and
γ∗i,j = 0, i ∈ Cc(p∗, b∗,γ∗), j /∈ Ct(p∗, b∗,γ∗).

8 Results

In this section we analyze the allocation (b∗,γ∗) obtained by the algorithm in Section 7, and present
our main results. In particular we show in the next subsection that if the supply curves are given by
contiguous function, then the allocation (b∗,γ∗) obtained by the algorithm is an optimal solution
to the optimization problem given by Eq. (1). In Subsection 8.2 we use the allocation (b∗,γ∗)
obtained by the algorithm to derive a lower-bound for the cost of any mixed bidding strategy for the
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the optimization problem given by Eq. (1), and derive a sequence of mixed bidding strategies that
achieves a cost that is equal, or arbitrarily close, to this lower-bound.

We use the following notation to state our results. Let the allocation (b∗,γ∗) with components
C(p∗, b∗,γ∗), p∗ ∈ P(b∗,γ∗), be the solution to the allocation obtained by the algorithm in Sec-
tion 7. Then for all bid values p∗ ∈ P(b∗,γ∗) let

Dp∗(b) =
∑

j∈Ct(p∗,b∗,γ∗)

Dj(b), b ≥ 0,

and
Ip∗ =

∑
i∈Cc(p∗,b∗,γ∗)

Ii.

8.1 Continuous Supply Curves

We first analyze the allocation (b∗,γ∗) obtained by the algorithm presented in Section 7 for the case
where the supply curves are given by continuous functions, and show that in this case allocation
(b∗,γ∗) is an optimal allocation.
Proposition 6. Let (b∗,γ∗) with components C(p∗, b∗,γ∗), p∗ ∈ P(b∗,γ∗), be the allocation
obtained by the algorithm in Section 7. If the supply curvesDj(b) are given by continuous functions,
then (b∗,γ∗) is an optimal solution for the optimization problem given by Eq. (1), with cost∑

p∗∈P(b∗,γ∗)

[
Ip∗p

∗ −
∫ p∗

0

Dp∗(b)db

]
.

We provide a proof for Proposition 6 in Appendix E.

8.2 General Supply Curves

We next consider the general case where the supply curves are not necessarily given by continuous
functions. For this case, we consider mixed strategies in addition to pure strategy. Under a mixed
strategy campaign i can use more than one bid value when bidding for impression of a targeting
group j ∈ Ai. More precisely, for a mixed strategy s we let Pi,j be the set of bid values that
campaign i uses at targeting group j, and let γi,j(b), b ∈ Pi,j(s), be the fraction of bid requests at
targeting group j for which campaign i uses the bid value b ∈ Pi,j . Let S be the set of all such
mixed strategies.

In the following we say that a mixed strategy s ∈ S is a solution to the optimization problem given
by Eq. 1, if we have that ∑

j∈Ai

∑
b∈Pi,j

γi,j(b)Dj(b) ≥ Ii, i ∈ N ,

and ∑
i∈Bj

∑
b∈Pi,j

γi,j(b) ≤ 1, j ∈ T .

The cost C(s) of a mixed strategy that is a solution for the optimization problem Eq. 1 is given by

C(s) =

Nc∑
i=1

 Nr∑
j=1

∑
b∈Pi,j

γi,j(b)

(
Dj(b)b−

∫ b

0

Dj(b)db

) .
We then have the following result.
Proposition 7. Let s ∈ S be a mixed strategy that is a solution to the optimization problem given
by Eq. 1. Then we have that

C(s) ≥
∑

p∗∈P(b∗,γ∗)

[
Ip∗p

∗ −
∫ p∗

0

Dp∗(b)db

]
.
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We provide a proof for Proposition 7 in Appendix F. Similar to the case of a single campaign and
a single targeting group of Section 5, Proposition 7 states that the expression for the lower-bound
of the cost of any mixed strategy s is equal to the optimal cost in Proposition 6 for the case where
the supply curves are given by continuous functions. In addition, Proposition 7 that the allocation
(b∗,γ∗) obtained by the algorithm of Section 7 can be used to compute the lower-bound on the cost
of any mixed strategy. This is an important result as it provides an algorithm to compute a lower-
bound of the cost of any mixed bidding strategy. We discuss in in more details in Section 9 why this
result is important in practice.

We next construct a sequence of mixed strategies that either obtains a cost that is equal to the lower-
bound given in Proposition 7, or gets arbitrarily close to the lower-bound. More precisely, the
next result constructs for each component C(p∗, b∗,γ∗), p∗ ∈ P(b∗,γ∗), of the solution (b∗,γ∗)
obtained by the algorithm in Section 7 a sequence of mixed bidding strategies under which the cost
converges to the lower-bound for this component which is given by

Ip∗p
∗ −

∫ p∗

0

Dp∗(b)db.

Proposition 8. Let (b∗,γ∗) with components C(p∗, b∗,γ∗), p∗ ∈ P(b∗,γ∗), be the allocation
obtained by the algorithm in Section 7. Then for every component C(p∗, b∗,γ∗), p∗ ∈ P(b∗,γ∗),
the following is true. Let j ∈ Ct(p∗, b∗,γ∗) be a targeting group that belongs to the component
C(p∗, b∗,γ∗), and for all campaigns i ∈ Bj(b∗,γ∗) let

γi,j =
γ∗i,j∑

m∈Bj(b∗,γ∗)
γ∗m,j

.

Furthermore, let sp∗(b1) be a mixed bidding strategy for the component C(p∗, b∗,γ∗) such that for
all campaigns i ∈ Cc(p∗, b∗,γ∗) and j ∈ Ct(p∗, b∗,γ∗) we have that

Pi,j = {b1, p∗}, j ∈ Ai(b∗,γ∗),

as well as

γi,j(b1) =
γi,jD1(p∗)− γ∗i,jD1(p∗)

D1(p∗)−D1(b1)
, j ∈ Ai(b∗,γ∗),

and
γi,j(p

∗) = γi,j − γ1,1(b1), j ∈ Ai(b∗,γ∗).
Finally, let Cp∗(sp∗(b1)) be the cost of strategy sp∗(b1) on component C(p∗, b∗,γ∗).

If D(−)
p∗ (p∗) > 0, then we have that

lim
b1↑b∗

Cp∗(sp∗(b1)) = Ip∗p
∗ −

∫ p∗

0

Dp∗(b)db.

We provide a proof for Proposition 8 in Appendix F. In the proof we show that the the allocation
sp∗(b1) is a feasible solution for component C(p∗, b∗,γ∗) in the sense that for j ∈ Ct(p∗, b∗,γ∗)
we have ∑

i∈Bj(b∗,γ∗)

[
γi,j(b1) + γi,j(p

∗)
]

= 1,

and for i ∈ Cc(p∗, b∗,γ∗) we have∑
j∈Ai(b∗,γ∗)

[
γi,j(b1)Dj(b1) + γi,j(p

∗)Dj(p
∗)
]

= Ii.

8.3 Cost Bound for Pure Strategy (b∗,γ∗)

Finally we provide a bound on much we loose by using the pure strategy (b∗,γ∗) by the algorithm
in Section 7 instead of a mixed strategy.
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Corollary 1. Let (b∗,γ∗) be the the allocation obtained by the algorithm in Section 7. Furthermore,
let C(b∗,γ∗) the cost the allocation (b∗,γ∗). Then we have that

C(b∗,γ∗)−
∑

p∈P(b∗,γ∗)

[
Ip∗p

∗ −
∫ p∗

0

Dp∗(b)db

]

≤
∑

p∗∈P(b∗,γ∗)

∑
j∈Ct(p∗,b∗,γ∗)

Dj(p
∗)−D(−)

j (p∗)

Dj(p∗)

∫ p∗

0

Dj(b)db.

Similar to Section 5, Proposition 1 states that the smaller the height
(
Dj(p

∗) − D
(−)
j (p∗)

)
of a

discontinuity at p∗ of the supply curve of targeting groups in Ct(p∗, b∗,γ∗), p∗ ∈ P(b∗,γ∗), the
closer the performance of pure strategy (b∗,γ∗) will be to the lower-bound of Proposition 7.

9 Practical Considerations

The focus of this paper is to analyze the optimization problem given by Eq. (1), and derive an
algorithm to compute an optimal allocation (b∗,γ∗). In Section 4.7 we discussed how a solution to
the optimization problem given by Eq. (1) can be used to implement an online bidding algorithm. In
this section we briefly discuss some additional aspects of how the results obtained in the paper are
relevant for understanding, and implementing, bidding algorithms on practical systems.

9.1 Benchmark

An important result of our analysis is Proposition 7 which provides a tight lower-bound on the cost of
any mixed strategy. We note that this lower-bound can be easily computed using the algorithm given
in Section 7. This lower-bound can be used to benchmark the performance of other online bidding
algorithms. In addition, Proposition 1 can be used to determine the cost difference of the allocation
(b∗,γ∗) obtained by the algorithm in Section 7 and any mixed bidding strategies. Note that the
allocation (b∗,γ∗) is a pure bidding strategy that is (slightly) easier to compute and implement in
practice. If the cost difference is not too large, then using allocation (b∗,γ∗) might be preferred
over using a mixed strategy.

9.2 Structural Properties

Proposition 5, and Proposition 6 and 8, state that an optimal bidding strategy “decomposes” the
problem given by Eq. (1) into disjoint components consisting of a set of campaigns and targeting
group; an an optimal allocation can be obtained by computing an optimal solution for each compo-
nent individually. In addition, for each component there exists a single bid value p∗ that is used by
all campaigns in the component to bid for impressions. This means than rather having to decide on a
bid value for each admissible campaign and targeting group pair in a given component, it suffices to
compute a single bid value [∗ for each component. This result is also important for designing online
algorithms that dynamically update bid values and allocations as bid requests arrive as this result
allows to significantly reduce the search space for optimal bid values, i.e. the online algorithm has
to tune/learn only a single bid value for each component.

9.3 Mixed Bidding Strategies

An important result of our analysis is to show that in the case (which is the norm in practice) where
supply curves are not necessarily given by continuous functions, then pure bidding strategies might
not be optimal. Moreover, the result in Proposition 8 states it is sufficient to consider mixed strategies
that use with at most 2 bid values for each targeting group, where one if the bid values is equal to
the bid valued obtained p∗ by the algorithm of Section 7, and then second bid value is chosen so that
it is close to p∗. This implies that (near) optimal mixed bidding strategies are relatively simple to
compute and implement.
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9.4 Dynamic Bidding Strategies

Rather than pre-computing the bid values and allocations at the beginning of a decision period, one
can also consider the approach where bid values and allocations are dynamically updated during a
decision period. As noted in the previous subsection, the results on the structural property of an
optimal allocation can be used in this case to significantly reduce the search space. Analyzing this
approach is future research.

9.5 Estimating Supply Curves

The online algorithm of Section 4.7 assumes that (a good estimate of) the supply curves are available
at the beginning of a decision period. A discussion of how to estimate the supply curves is outside
the scope of this paper, and this question has been addressed in related work such as [2]. The result
of the experimental case study in [2], as well as experiments that we carried out, suggest that the
supply curves can be estimate quite well using historical data. In particular, using historical data over
the past few days, the supply curve for decision periods of a few minutes, or even an hour, can be
well estimated (predicted). One reason for this is that each targeting group consists of bid requests
that come from several applications. While the supply curve of each application may have random
fluctuations (noise) over a decision period of a few minutes or an hour, the aggregated supply curves
tend to “smooth out” the noise of individual targeting groups and are easier to estimate/predict.
We also note that small estimation errors can be “corrected” over a decision period by using the
allocation obtained by the algorithm as a starting point, and dynamically make small adjustments
to the bid value and allocations. A detailed analysis and discussion of this approach is outside the
scope of this paper, and future research.

We note that the supply curves used in the optimization problem should evolve from one decision
period to another. That is, for each decision period one would use the newest estimates/predictions
of the supply curves that is available based on historical data.

9.6 Curse of Dimensionality

In the case where a bid request type consists of a small number of variables/properties such as for
example the location, gender, and age of the end user, then targeting groups as given by Definition 1
can be easily computed/determined. We note that in current practical applications, where the number
of properties the bid request type is typically small (around 3-5 properties). However if the bid
request types consists of a large number of properties (more than 20 properties) then the number
of targeting groups can become too large to be computed and/or stored. This problem corresponds
to the well-known “curse-of-dimensionality”. Fortunately, in this case it is possible to compute
in this case “approximate” optimal solution by using “approximate targeting groups” that can be
efficiently computed. This “approximate” optimal solution maintains the structural properties on an
optimal solution for the optimization problem given by Eq. (1). The discussion/derivation of such
approximate solutions is outside the scope of this paper. We note that in order to be able to derive
such approximate optimal solution, it is crucial to first characterize the exact optimal solution to the
the optimization problem given by Eq. (1).

10 Conclusions

We studied the optimal bidding strategies for a DSP that represents several ad campaigns with over-
lapping targeting criteria. Using the concept of targeting groups and supply curves, we formally
modelled the problem as an optimization problem, and characterize optimal bidding strategies.

While the focus of the paper is the formal analysis of optimal bidding strategies, we discussed in
Section 4.7 how the solution obtained by the algorithm of Section 7 can be used to implement an
online bidding algorithm. In addition, we discussed in Section 9 several aspects of the formal anal-
ysis, and the online algorithm of Section 4.7, that are relevant for the implementation of bidding
algorithms in practice. In collaboration with a DSP, we have implemented and evaluated the online
algorithm of Section 4.7 using historical data obtain from actual ad exchanges, and actual campaigns
that the DSP was representing. Our experiments showed that the online algorithm (using the alloca-
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tion (b∗,γ∗) obtained by the algorithm of Section 7) allows the DSP to significantly reduce the cost
of getting the required impressions for the ad campaigns it represents.

There are several interesting direction for future research based on the results in this paper. In
particular, the question of how to approximate an optimal bidding strategy in the case where the
number of targeting groups becomes too large in order to be used on a practical system (curse of
dimensionality). In addition, an interesting question is how to tune/dynamically change the bid
values and allocations during a decision period in order to account for small changes, or estimation
errors, in the supply curves. Preliminary research suggests that the results obtained in this paper can
be used to address these two problems.

18



References

[1] Santiago R. Balseiro, Jon Feldman, Vahab Mirrokni, and S. Muthukrishnan. Yield optimization
of display advertising with ad exchange. Management Science, 60(12):2886–2907, 2014.

[2] Ying Cui, Ruofei Zhang, Wei Li, and Jianchang Mao. Bid landscape forecasting in online ad
exchange marketplace. In Proceedings of the 17th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’11, pages 265–273, New York, NY, USA,
2011. ACM.

[3] Robert G. Gallager. Discrete Stochastic Processes. Springer, 1996.
[4] R. Gummadi, P. B. Key, and A. Proutiere. Optimal bidding strategies in dynamic auctions with

budget constraints. In 2011 49th Annual Allerton Conference on Communication, Control, and
Computing (Allerton), pages 588–588, Sep. 2011.

[5] Chong Jiang, Carolyn L. Beck, and R Srikant. Bidding with limited statistical knowledge in
online auctions. ACM SIGMETRICS Performance Evaluation Review, 41:38–41, 04 2014.

[6] Aranyak Mehta. Online matching and ad allocation. Found. Trends Theor. Comput. Sci.,
8(4):265–368, October 2013.

[7] Claudia Perlich, Brian Dalessandro, Rod Hook, Ori Stitelman, Troy Raeder, and Foster
Provost. Bid optimizing and inventory scoring in targeted online advertising. In Proceed-
ings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’12, pages 804–812, New York, NY, USA, 2012. ACM.

[8] Santiago R. Balseiro and Yonatan Gur. Learning in repeated auctions with budgets: Regret
minimization and equilibrium. SSRN Electronic Journal, 02 2017.

[9] Panagiotis Spentzouris, Iordanis Koutsopoulos, Kasper Grud Madsen, and Tommy Vester-
gaard Hansen. Advertiser Bidding Prediction and Optimization in Online Advertising, pages
413–424. 05 2018.

[10] Weinan Zhang and Jun Wang. Statistical arbitrage mining for display advertising. 06 2015.
[11] Weinan Zhang, Shuai Yuan, and Jun Wang. Optimal real-time bidding for display advertising.

In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’14, pages 1077–1086, New York, NY, USA, 2014. ACM.

[12] Weinan Zhang, Ying Zhang, Bin Gao, Yong Yu, Xiaojie Yuan, and Tie-Yan Liu. Joint opti-
mization of bid and budget allocation in sponsored search. Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 08 2012.

19



A Properties of Mixed Strategies

In this appendix we derive properties of mixed strategies that we use in our analysis.

A.1 Mixed Strategies for A Single Targeting Group

We first consider the case of Section 5 where a single campaign i = 1 gets impressions from a single
targeting group j = 1, and I1 is the total number of impressions that the campaign is required to
obtain. Furthermore, let s ∈ S be a mixed strategy as defined in Section 5.2.

Our first result states that for this case it suffices to consider mixed bidding strategies that obtain
exactly the required number of impressions from the targeting group.
Lemma 2. Consider the special case where a single campaign i = 1 gets impressions from a single
targeting group j = 1, and let I1 be the total number of impressions that the campaign is required
to obtained. If s ∈ S is a mixed bidding strategy such that∑

b∈P(s)

γ1,1(b)D1(b) > I1,

then there exists a mixed bidding strategy s′ ∈ S with∑
b∈P′1,1

γ′1,1(b)D1(b) = I1,

that leads to a strictly lower cost, and we have that

C(s′) < C(s).

This result can been proved by showing that reducing the allocations γ1,1(b), b ∈ P1,1, of strategy
s until the exact number of impressions is obtained will lead to a strictly lower cost compared with
C(s). We omit here a detailed derivation.

The next result provides a condition under which it suffices to consider mixed strategies such that∑
b∈P

γ1,1(b) = 1.

Lemma 3. Consider the special case where a single campaign i = 1 gets impressions from a single
targeting group j = 1, and let I1 be the total number of impressions that the campaign is required
to obtain. Suppose that for a mixed bidding strategy s ∈ S we have that∑

b∈P

γ1,1(b) < 1,

and there exists bid values b1, b2 ∈ P1,1 such that

0 < D1(b1) < D1(b2).

Then there exists a mixed bidding strategy s′ ∈ S with∑
b∈P′1,1

γ′1,1(b)D1(b) = I1

and ∑
b∈P′1,1

γ′1,1(b) = 1,

that leads to a strictly lower cost, and we have that

C(s′) < C(s).

Proof. We prove the result by constructing a mixed bidding strategy s′ ∈ S that leads to a strictly
lower cost than the given strategy s
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Let

γ1,1(b1)D1(b1) + γ1,1(b2)D1(b2) = I,

i.e. I is the amount of impressions that are obtained by bid values b1 and b2 combined.

Let γ > 0 be such that

γ +
∑

∈P1,1\{b1,b2}

γ1,1(b) = 1.

As by assumption we have that ∑
b∈P

γ1,1(b) < 1,

it follows that

γ > γ1,1(b1) + γ1,1(b2).

Let ∆γ be such that

∆γD1(b1) + (γ −∆γ)D1(b2) = I.

Note that such a ∆γ exists as we have that

γ1,1(b1)D1(b1) + γ1,1(b2)D1(b2) = I,

as well as

0 < D1(b1) < D1(b2)

and

γ1,1(b1) + γ1,1(b2) < γ.

Furthermore, these properties imply that

∆γ > γ1,1(b1)

and

(γ −∆γ) < γ1,1(b2).

Using these definitions, we construct the mixed bidding strategy s′ ∈ S as follows. We set

P ′1,1 = P1,1,

and let

γ′1,1(b1) = ∆γ ,

and

γ′1,1(b∗) = γ −∆γ .

For all b ∈ P ′1,1, b 6= b1, b2, we set

γ′1,1(b) = γ1,1(b),

and the new strategy s′ differs from strategy s only the the allocations for the bid values b1 and b2.
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The difference in the cost for the two strategies in then given by
C(s)− C(s′)

=
(
γ1,1(b1)−∆γ

)[
D1(b1)b1 −

∫ b1

0

D1(b)db

]

+
(
γ1,1(b1)− γ + ∆γ

)[
D1(b2)b2 −

∫ b−2

0

D1(b)db

]

= γ1,1(b1)

[
D1(b1)b1 −

∫ b1

0

D1(b)db

]

+
(
γ1,1(b2)− γ

)[
D1(b2)b2 −

∫ b2

0

D1(b)db

]

−∆γ

[
D1(b1)b1 −D1(b2)b2 −

∫ b2

b1

D1(b)db

]

> γ1,1(b1)

[
D1(b1)b1 −

∫ b1

0

D1(b)db

]

+
(
γ1,1(b2)− γ

)[
D1(b2)b2 −

∫ b2

0

D1(b)db

]

−∆γ

[
D1(b1)b1 −

∫ b1

0

D1(b)db

]
.

Using the fact that
∆γD1(b1) + (γ −∆γ)D1(b2) = I,

we obtain that
C(s)− C(s′)

> γ1,1(b1)

[
D1(b1)b1 −

∫ b1

0

D1(b)db

]

+γ1,1(b2)

[
D1(b2)b2 −

∫ b2

0

D1(b)db

]

+γ

∫ b2

0

D1(b)db

−I + ∆γ

∫ b1

0

D1(b)db.

Using the fact that
γ1,1(b1)D1(b1) + γ1,1(b2)D1(b2) = I1,

we obtain that
C(s)− C(s′)

> −γ1,1(b1)

∫ b1

0

D1(b)db

−γ1,1(b2)

∫ b2

0

D1(b)db

+γ

∫ b2

0

D1(b)db

+∆γ

∫ b1

0

D1(b)db.
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Finally, using the fact that
γ1,1(b1) + γ1,1(b2) < γ,

we obtain that

C(s)− C(s′)

> ∆γ

∫ b1

0

D1(b)db

> 0.

This establishes the result of the proposition.

The next results is the one of Proposition 2.

Proposition 9. Consider the special case where a single campaign i = 1 gets impressions from a
single targeting group j = 1, and let I1 be the total number of impressions that the campaign is
required to obtain. Let C(s) be the cost of a given mixed bidding strategy s ∈ S such that∑

b∈P

γ1,1(b)D1(b) = I1.

Then we have that

C(s) ≥ I1b∗ −
∫ b∗

0

D1(b)db,

where the bid value b∗ is as given by Eq. (2) and (3).

Proof. Let s ∈ S be the mixed bidding strategy as given in the statement of the proposition, and let
the set B∗(I1) be the set of all bid values b ∈ P1,1 such that

D1(b) = D1(b∗) = I1.

Note that if we have that
B∗(I1) = P1,1,

then we have by the definition of the cost function C(s) that

C(s) = I1b
∗ −

∫ b∗

0

D1(b)db;

and the result of the proposition follows. Therefore we assume in the following that

B∗(I1) 6= P1,1.

For this case, let the sets B(−) and B(+) be given by

B(−) = {b ∈ P1,1|D1(b) < I1}

and
B(+) = {b ∈ P1,1|D1(b) > I1}.

We first consider the case where there exists a bid value b1 ∈ B(−) such that

D1(b1) > 0.

Using Lemma 2 and 3, without loss of generality we can assume in this case that∑
b∈P

γ1,1(b)D1(b) = I1

and ∑
b∈P

γ1,1)(b) = 1,
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as otherwise the bidding strategy s is not an optimal bidding strategy. It then follows that∑
b∈B(−)

γ(b)D1(b) +
∑

b∈B(+)

γ(b)D1(b)

= I1

 ∑
b∈B(−)

γ(b) +
∑

b∈B(+)

γ(b)

 .
Using these results, we obtain that

C(s)− b∗I1 +

∫ b∗

0

D1(b)db

=
∑

b∈B(−)

γ(b)
[(
bD1(b)− b∗I1

)
+

∫ b∗

b

D1(b)db
]

+
∑

b∈B(+)

γ(b)
[(
bD1(b)− b∗I1

)
−
∫ b

b∗
D1(b)db

]
≥

∑
b∈B(−)

γ(b)
[(
bD1(b)− b∗I1

)
+D1(b)(b∗ − b)

]
+

∑
b∈B(+)

γ(b)
[(
bD1(b)− b∗I1

)
−D1(b)(b− b∗)

]
=

∑
b∈B(−)

γ(b)
[
b∗
(
D1(b)− I1

)]
+

∑
b∈B(+)

γ(b)
[
b∗
(
D1(b)− I1

)]
= 0.

This implies that

C(s)− b∗I1 +

∫ b∗

0

D1(b)db ≥ 0,

and the result of the proposition follows for the case where there exists a bid value b1 ∈ B(−) such
that

D1(b1) > 0.

It remains to consider the case where we have that

D1(b) = 0, b ∈ B(−).

Without loss of generality we can assume in this case that

B(−) = ∅,

and we have that
D1(b) ≥ I1, b ∈ P.

Using Lemma 2, without loss of generality we can furthermore assume in this case that∑
b∈P

γ1,1(b)D1(b) = I1.

Let
0 ≤ ∆γ = 1−

∑
b∈P

γ1,1(b).
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It then follows that

C(s)− b∗I1 +

∫ b∗

0

D1(b)db

=
∑

b∈B(+)

γ(b)
[(
bD1(b)− b∗I1

)
−
∫ b

b∗
D1(b)db

]
−∆γ

[
b∗I1 −

∫ b∗

0

D1(b)db
]

≥
∑

b∈B(+)

γ(b)
[(
bD1(b)− b∗I1

)
−D1(b)(b− b∗)

]
−∆γ

[
b∗I1 −

∫ b∗

0

D1(b)db
]

=
∑

b∈B(+)

γ(b)(D1(b)− I1)b∗

−∆γ

[
b∗I1 −

∫ b∗

0

D1(b)db
]

≥
∑

b∈B(+)

γ(b)(D1(b)− I1)b∗

−∆γ

[
b∗I1 −

∫ b∗

0

D1(b)db
]

≥
∑

b∈B(+)

γ(b)(D1(b)− I1)b∗

−∆γb
∗I1

= b∗
∑

b∈B(−)

γ(b)D1(b)

−I1b∗.
Using the fact that ∑

b∈P

γ1,1(b)D1(b) = I1,

we obtain that

C(s)− b∗I1 +

∫ b∗

0

D1(b)db ≥ 0.

The result of the proposition then follows.

A.2 Mixed Strategies on a Set of Targeting Groups

Next we consider a set T = {1, ...., k} of targeting groups, and provide a lower bound on the cost
C(s) of any mixed strategy s ∈ S to get a total of It impressions from these targeting groups. More
precisely, we have the following result.
Proposition 10. Let T = {1, ...., k} be a set of targeting groups, and let

Dt(b) =

k∑
j=1

Dj(b), b ≥ 0.

Furthermore, let bt be the bid value such that
k∑
j=1

Dj(bt) ≥ It
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and
k∑
j=1

Dj(b) < It, 0 ≤ b < bt.

Then for any mixed strategy s ∈ S that obtains a total of It impressions from the set of targeting
groups T we have that

C(s) ≥ Itbt −
∫ bt

0

Db(b)db.

Proof. Let s ∈ S be a mixed strategy that obtains It impressions from the set T = {1, ...., k} of
targeting groups, and let

Ij(s), j = 1, ..., k,
be the number of impressions that strategy s obtains from targeting group j.

Note that in order to prove the result of the proposition, it suffices to show that for n = 1, 2, ..., k,
the cost for the strategy s to get a total of

I(n, s) =

n∑
j=1

Ij(s)

impressions from the first n targeting groups is lower-bounded by

I(n, s)b(n, s)−
∫ b(n,s)

0

n∑
j=1

Dj(b)db,

where the bid value b(n, s) is such that
n∑
j=1

Dj(b(n, s)) ≥ I(n, s)

and
n∑
j=1

Dj(b) < I(n, s), 0 ≤ b < b(n, s).

To prove this result, we proceed as follows. First we note that by Proposition 9 we have for each
targeting group j = 1, ..., k, that the cost for getting Ij(s) impressions from targeting group j is
lower-bounded by

Ij(s)bj(s)−
∫ bj(s)

0

Dj(b)db,

where the bid value bj(s) is such that
Dj(bs) ≥ Ij(s)

and
Dj(b) < Ij(s), 0 ≤ b < bj(s).

We first show that the result is true for n = 2. Let C(2, s) be the cost for the strategy to get I(2, s)
impressions from the first two targeting groups. Without loss of generality, we can assume that

b1(s) ≤ b2(s).

Note that this implies that
b1(s) ≤ b(2, s) ≤ b2(s).

Using Proposition 9 we have that

C(2, s)− I(2, s)b(2, s) +

∫ b(2,s)

0

[
D1(b) +D2(b)

]
db

≥ I1(s)b1(s)−
∫ b1(s)

0

D1(b)db

+I2(s)b2(s)−
∫ b2(s)

0

D2(b)db

−I(2, s)b(2, s) +

∫ b(2,s)

0

[
D1(b) +D2(b)

]
db
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It then follows that

C(2, s)− I(2, s)b(2, s) +

∫ b(2,s)

0

[
D1(b) +D2(b)

]
db

≥ I1(s)b1(s) + I2(s)b2(s)− (I1(s) + I2(s))b(2, s)

+

∫ b(2,s)

b1(s)

D1(b)db

−
∫ b2(s)

b(2,s)

D2(b)db

≥ −I1(s)(b(2, s)− b1(s))

+I2(s)(b2(s)− b(2, s))
+D1(b1(s))(b(2, s)− b1(s))

−D(−)
2 (b2(s))(b2(s)− b(2, s))

= +
[
D1(b1(s))− I1(s)

]
(b(2, s)− b1(s))

+
[
I2(s)−D(−)

2 (b2(s))
]
(b2(s)− b(2, s))

As by assumption we have that

b1(s) ≤ b(2, s) ≤ b2(s)

as well as

D1(b1(s)) > I1(s)

and

D2(b) < I2(s), 0 ≤ b < b2(s).

it follows that

I2(s) ≥ D(−)
2 (b2(s))

and

C(2, s) ≥ I(2, s)b(2, s)−
∫ b(2,s)

0

[
D1(b) +D2(b)

]
.

This establishes the result for the case of n = 2.

We can then prove the result by induction. Assume that the result is true for n, n = 1, ..., k− 1. For
this, let the function D(n, b) be given by

D(n, b) =

n∑
j=1

Dj(b).
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The result is then also true for n+ 1 as we have that

C(n+ 1, s)− I(n+ 1, s)b(n+ 1, s) +

∫ b(n+1,s)

0

D(n+ 1, b)db

≥ I(n, s)b(n, s) +

∫ b(n,s)

0

D(n, b)db

+In+1(s)bn+1(s)−
∫ bn+1(s)

0

Dn+1(b)db

−I(n+ 1, s)b(n+ 1, s) +

∫ b(n+1,s)

0

D(n+ 1, b)db

= I(n, s)b1(s) + In+1(s)bn+1(s)− I(n+ 1, s)b(n+ 1, s)

+

∫ b(n+1,s)

b(n,s)

D(n, b)db

−
∫ bn+1(s)

b(n+1,s)

Dn+1(b)db

≥ −I(n, s)(b(n+ 1, s)− b1(n, s))

+In+1(s)(bn+1(s)− b(n+ 1, s))

+D(n, b(n, s))(b(n+ 1, s)− b(n, s))
−D(−)

n+1(bn+1(s))(bn+1(s)− b(n, s))

=
[
D(n, b(n, s))− I(n, s)

]
(b(n+ 1, s)− b(n, s))

+
[
In+1(s)−D(−)

n+1(bn+1(s))
]
(bn+1(s)− b(n+ 1, s)).

As by assumption we have that

b(n, s) ≤ b(n+ 1, s) ≤ bn+1(s),

as well
D(n, b(n, s)) > I(n, s)

and
Dn+1(b) < In+1(s), 0 ≤ b < bn+1(s),

it follows that
In+1(s) ≥ D(−)

n+1(bn+1(s))

and

C(n+ 1, s) ≥ I(n+ 1, s)b(n+ 1, s)−
∫ b(n+1,s)

0

D(n+ 1, b)db.

This establishes the induction step. The result of the proposition then follows.

B Proofs for Section 5

In this appendix we prove Proposition 1-3 of Section 5.

B.1 Proof of Proposition 1

We start out by proving Proposition 1 in a more general setting. We have the following result.

Proposition 11. Consider the special case where a single campaign i = 1 gets impressions from
a single targeting group j = 1, and let I1 be the total number of impressions that the campaign is
required to obtain. If there exists a bid value b∗ such that

D1(b∗) = I1,
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then an optimal bidding strategy in the set of mixed bidding strategies S is a pure bidding strategy
given by

γ∗1,1(b∗) = 1.

Furthermore, the optimal cost is given by

I1b
∗ −

∫ b∗

0

D1(b)db.

Proposition 1 states that if there exists a bid value b∗ such that

D1(b∗) = I1,

then the optimal bidding strategy is the pure strategy given in the statement of the proposition.

Proof. By Proposition 9, the cost of getting I1 impressions from the targeting group 1 is lower-
bounded by

I∗b∗ −
∫ b∗

0

D1(b)db.

Note that the pure strategy given in the statment of the proposition achieves this lower-bound, and
hence is an optimal allocation.

B.2 Proof of Proposition 2

Recall the statement of Proposition 2.
Proposition 12. Consider the special case where a single campaign i = 1 gets impressions from a
single targeting group j = 1, and let I1 be the total number of impressions that that campaign is
required to obtain. Let C(s) be the cost of a given mixed bidding strategy s ∈ S. Then we have that

C(s) ≥ I1b∗ −
∫ b∗

0

D1(b)db,

where the bid value b∗ is as given by Eq. (2) and (3).

This result follows immediately from Proposition 9.

B.3 Proof of Proposition 3

Recall the statement of Proposition 3.
Proposition 13. Consider the special case where a single campaign i = 1 gets impressions from
a single targeting group j = 1, and let I1 be the total number of impressions that the campaign is
required to obtain. Let the bid value b∗ be as given by Eq. (2) and (3) and suppose that

D(−)(b∗) > 0.

Furthermore, let the mixed bidding strategy s(b1) ∈ S, 0 ≤ b1 < b∗, be given by

P1,1 = {b1, b∗},

and

γ1,1(b1) =
D1(b∗)− I1

D1(b∗)−D1(b1)
and γ1,1(b∗) = 1− γ1,1(b1).

Then we have that

lim
b1↑b∗

C(s(b1)) = I1b
∗ −

∫ b∗

0

D1(b)db.

Proof. To prove Proposition 3 we construct a sequence of bidding strategies s(n) given as follows.
Consider a sequence of bid values bn, n ≥ 1, such that

bn < bn+1
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and

lim
n→∞

bn = b∗.

The strategy s(n) is then given by

P(n)
1,1 = {bn, b∗},

as well as

γ(n)(bn) =
D1(b∗)− I1

D1(b∗)−D1(bn)

and

γ(n)(b∗) = 1− γ(n)(b).

By the assumptions made in the statement of the proposition we have that

γ(n)(bn) =
D1(b∗)− I1

D1(b∗)−D1(bn)
< 1,

and therefore

γ(n)(bn)D1(bn) + γ(n)(b∗)D1(b∗) = I1.

Note that the bidding strategy s(n) with bn is equal to the bidding strategy s(b1 = bn) given in the
statement of the proposition.

The cost C(s(n)) of strategy s(n) is given by

C(s(n)) = γ(n)(bn)

[
D1(bn)bn −

∫ bn

0

D1(b)db

]

+(1− γ(n)(bn))

[
D1(b∗)b∗ −

∫ b∗

0

D1(b)db

]
= γ(n)(bn)D1(bn)bn + (1− γ(n)(bn))D1(b∗)b∗

−
∫ b∗

0

D1(b)db

+γ(n)(bn)

∫ b∗

bn

D1(b)db

= γ(n)(bn)D1(bn)b∗ + (1− γ(n)(bn))D1(b∗)b∗

+γ(n)(bn)D1(bn)(bn − b∗)

−
∫ b∗

0

D1(b)db

+γ(n)(bn)

∫ b∗

bn

D1(b)db

= I1b
∗ −

∫ b∗

0

D1(b)db

+γ(n)(bn)D1(bn)(bn − b∗)

+γ(n)(bn)

∫ b∗

bn

D1(b)db.
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We then obtain that

lim
n→∞

C(s(n))

= I1b
∗ −

∫ b∗

0

D1(b)db

+ lim
bn→b∗

γ(n)(bn)D1(bn)(bn − b∗)

+ lim
bn→b∗

γ(n)(bn)

∫ b∗

bn

D1(b)db

= I1b
∗ −

∫ b∗

0

D1(b)db.

The result of the proposition then follows.

C Properties of an Optimal Allocation

In this appendix we derive properties of an optimal solution (b∗,γ∗) for the optimization problem
given by Eq. (1) for the case where the supply curves are given by continuous functions, and provide
the proofs for results in Section 6. To help the reader we repeat here the results of Section 6 in order
to keep the flow of the argument.

We proceed as follows. We first provide in Subsection C.1 and Subsection C.2 the for results in
Section 6. Using these results, we derive in Subsection C.3 sufficient conditions for an allocation
(b∗,γ∗) to be an optimal solution.

C.1 Properties of the Bid Values of an Optimal Solution

In this subsection we derive structural properties of the bid values b∗ of an optimal solution for the
optimization problem given by Eq. (1) for the case where the supply curves are given by continuous
functions. For this we use the following notation. Let (b∗,γ∗) be a solution to the the optimization
given by Eq. (1). Then for each campaign

i ∈ N = {1, ..., Nc}
the set Ai(b∗,γ∗) is given by

Ai(b∗,γ∗) = {j ∈ Ai|γ∗i,jDj(b
∗
i,j) > 0}.

Or in other words, the set Ai(b∗,γ∗) contains all the targeting groups j from which campaign
receives a positive number γ∗i,jDj(b

∗
i,j) of impressions under the solution (b∗,γ∗).

Similarly, for each targeting group j = 1, ..., Nr the set Bj(b∗,γ∗) is given by

Bj(b∗,γ∗) = {i ∈ Bj |γ∗i,jDj(b
∗
i,j) > 0}.

The next lemma provides a necessary condition for a solution (b∗,γ∗) to be an optimal solution for
the optimization problem given by Eq. (1).
Lemma 4. If the supply curves Dj(b), j ∈ T , are given by continuous functions, then the following
is true. If (b∗,γ∗) is an optimal solution to the optimization problem given by Eq. (1), then we have
for each campaign i = 1, ..., Nc that ∑

j∈Ai(b∗,γ∗)

γ∗i,jDj(b
∗
i,j) = Ii.

Lemma 4 states that if (b∗,γ∗) is an optimal solution to the optimization problem given by Eq. (1),
then we have for each campaign i = 1, ..., Nc that the acquired number of impressions for campaign
i meets the required number of impressions Ii of campaign i. Note that if this is not the case, then
we can lower the cost for campaign i by decreasing the total number of impressions that are acquired
(by lowering the allocation variables γ∗i,j , j ∈ Ai).
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Proposition 14. If the supply curves Dj(b), j ∈ T , are given by continuous functions, then the
following is true. Let (b∗,γ∗) be an optimal solution to the optimization problem given by Eq. (1).
Then for each targeting group j = 1, ..., Nr there exists a bid value q∗j such that

Dj(b
∗
i,j) = Dj(q

∗
j ), i ∈ Bj(b∗,γ∗).

Proof. We prove the lemma by contradiction. That is we assume that (b,γ) is an optimal solution
to the optimization problem given by Eq. (1), and there exists a targeting group j, j = 1, ..., Nr, and
two campaigns m,n ∈ Bj(b,γ) such that

Dj(bm,j) < Dj(bn,j).

Note that this implies that
bm,j < bn,j .

We then construct a new allocation (b∗,γ∗) that is a feasible solution to the optimization problem
given by Eq. (1), and leads to a strictly lower overall cost compared with the allocation b,γ). Note
that proving this result suffices to prove the proposition as this leads to a contradiction with the
assumption that (b,γ) is an optimal allocation.

To construct the new allocation (b∗,γ∗) we use the following definitions. Let

Im,j = γm,jDj(bm,j)

and
In,j = γn,jDj(bn,j).

Furthermore, let
It = Im,j + In,j ,

and let the bid value q∗j be such that

(γm,j + γn,j)Dj(q
∗
j ) = It.

As we have that
Dj(bm,j) < Dj(bn,j),

a bid value q∗j with the above property exists and we have that

Dj(bm,j) < Dj(q
∗
j ) < Dj(bn,j)

and
bm,j < q∗j < bn,j .

Using these definitions, let (b∗,γ∗) be the allocation that is identical to (b,γ), expect that

b∗m,j = q∗j

and
b∗n,j = q∗j ,

as well as
γ∗m,j =

Im,j
Dj(q∗j )

and
γ∗n,j =

In,j
Dj(q∗j )

.

Compared with the allocation (b,γ), the new allocation (b∗,γ∗) only affects (changes) the alloca-
tions and bid values of campaign m and n at targeting group j.

As by construction we have that

(γm,j + γn,j)Dj(q
∗
j ) = Im,j + In,j ,

we have that
γ∗m,j + γ∗n,j = γm,j + γn,j .
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Furthermore, by construction we have that

γ∗m,jDj(q
∗
j ) = Im,j .

Similarly, we have that
γ∗n,jDj(q

∗
j ) = In,j .

These two results show that under the allocation (b∗,γ∗) both campaign m and n receive the re-
quired number of impressions Im,j , and In,j , respectively, from the targeting group j. It then follows
that the allocation (b∗,γ∗) is again a feasible solution to the optimization problem given by Eq. (1).

Therefore in order to show that the allocation (b∗,γ∗) leads to a strictly lower cost compared with
the allocation (b,γ), it suffices to show that[

Im,jbm,j − γm,j
∫ bm,j

0

Dj(b)db

]

+

[
In,jbn,j − γn,j

∫ bn,j

0

Dj(b)db

]

> Itq
∗
j − (γ∗m,j + γ∗n,j)

∫ q∗j

0

Dj(b)db

= (Im,j + In,j)q
∗
j − (γm,j + γn,j)

∫ q∗j

0

Dj(b)db,

or

Im,j(bm,j − q∗j )− γm,j
∫ q∗j

bm,j

Dj(b)db

+In,j(bn,j − q∗j )− γn,j
∫ bn,j

q∗j

Dj(b)db

> 0.

We have that

Im,j(bm,j − q∗j )− γm,j
∫ q∗j

bm,j

Dj(b)db

+In,j(bn,j − q∗j )− γn,j
∫ bn,j

q∗j

Dj(b)db

> Im,j(bm,j − q∗j ) + γm,jDj(bm,j(q
∗
j − bm,j)

+In,j(bn,j − q∗j )− γn,jDj(bn,j(bn,j − q∗j )

= Im,j(bm,j − q∗j ) + Im,j(q
∗
j − bm,j)

+In,j(bn,j − q∗j )− In,j(bn,j − q∗j )

= 0.

This implies that the allocation (b∗,γ∗) achieves a strictly lower cost compared to the allocation
(b,γ). This leads to a contradiction as we assumed that the allocation (b,γ) is an optimal allocation.
The result of the lemma then follows.

The following corollary follows immediately from Proposition 14.
Corollary 2. Suppose that the supply curvesDj(b), j ∈ T , are given by continuous functions. Then
there exists an optimal solution b∗,γ∗ to the optimization problem given by Eq. (1) such that the
following is true. For each targeting group j = 1, ..., Nr we have that

b∗i,j = q∗j , i ∈ Bj(b∗,γ∗).
Proposition 15. If the supply curves Dj(b), j ∈ T , are given by continuous functions, then the
following is true. Let (b∗,γ∗) be an optimal solution to the optimization problem given by Eq. (1).
Then for each campaigns i = 1, ..., Nc we have that

Dm(b∗i,m) = Dm(b∗i,n) = Dm(p∗i ), m, n ∈ Ai(b∗,γ∗).
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Proof. We prove the lemma by contradiction. That is we assume that (b,γ) is an optimal solution to
the optimization problem given by Eq. (1), and there exists a campaign i ∈ N and targeting groups
n,m ∈ Ai(b∗,γ∗) such that

Dm(bi,m) < Dm(bi,n)

or
Dm(bi,m) > Dm(bi,n).

We then show that there exists an allocation (b∗,γ∗) such that

b∗i,m = b∗i,n = p∗i

which leads to a strictly lower cost compared with the allocation (b,γ). This leads to a contradiction
as we assumed that the allocation (b,γ) is an optimal allocation.

In the following we consider the case where

Dm(bi,m) < Dm(bi,n).

The case where
Dm(bi,m) > Dm(bi,n).

can be proved using the same argument.

To show the result we use the following definitions. Let

Ii,m = γi,mDm(bi,m)

and
Ii,n = γi,nDn(bi,n).

Furthermore let p∗i be such that

γi,mDm(p∗i ) + γi,nDn(p∗i ) = Ii,m + Ii,n = It.

Note that such a bid value p∗i exists. Furhtermore, as we have that

Dm(bi,m) < Dm(b∗i,n),

it follows that
Dm(bi,m) < Dm(p∗j ) < Dm(b∗i,n)

and
bi,m < p∗i < bi,n.

Using these definitions, let (b∗,γ∗) be the allocation that is identical to (b,γ), expect that

b∗i,m = p∗i

and
b∗i,n = p∗i .

Compared with the allocation (b,γ), the new allocation (b∗,γ∗) only affects (changes) the bid
values that campaign i uses to botain impressions from targeting group m and n. Furthermore, as
we have that

γi,mDm(p∗i ) + γi,nDn(p∗i ) = Ii,m + Ii,n = It,

it follows the allocation (b∗,γ∗) is again a feasible solution to the optimization problem given by
Eq. (1).

Therefore in order to show that the allocation (b∗,γ∗) leads to a strictly lower cost compared with
the allocation (b,γ), it suffices to show that[

Im,jbm,j − γm,j
∫ bm,j

0

Dj(b)db

]

+

[
In,jbn,j − γn,j

∫ bn,j

0

Dj(b)db

]

> Itp
∗
i −

∫ q∗j

0

[γ∗i,mDm(b) + γ∗i,nDn(b)]db

= (Im,j + In,j)p
∗
i −

∫ q∗j

0

[γi,mDm(b) + γi,nDn(b)]db
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or

Im,j(bm,j − p∗i ) + γm,j

∫ p∗i

bm,j

Dj(b)db

+In,j(bn,j − p∗i )− γn,j
∫ bn,j

p∗i

Dj(b)db

> 0.

We have that

Im,j(bm,j − p∗i ) + γm,j

∫ p∗i

bm,j

Dj(b)db

+In,j(bn,j − p∗i )− γn,j
∫ bn,j

p∗i

Dj(b)db

> Im,j(bm,j − p∗i ) + γm,jDm(bm,j)(p
∗
i − bm,j)

+In,j(bn,j − p∗i )− γn,jDn(bn,j)(bn,j − p∗i )
= 0.

This implies that the allocation (b∗,γ∗) achieves a strictly lower cost compared to the allocation
(b,γ). This leads to a contradiction as we assumed that the allocation (b,γ) is an optimal allocation.
The result of the lemma then follows.

The following corollary follows immediately from Proposition 15.

Corollary 3. Suppose that the supply curvesDj(b), j ∈ T , are given by continuous functions. Then
there exists an optimal solution b∗,γ∗ to the optimization problem given by Eq. (1) such that the
following is true. For each campaign i = 1, ..., Nc we have that

b∗i,j = p∗i , j ∈ Ai(b∗,γ∗).

C.2 Decomposition of an Optimal Solution

In this appendix, we prove Proposition 5. Recall the statement of the proposition.

Proposition 16. Suppose that the supply curves Dj(b), j ∈ T , are given by continuous functions.
Then there exists an optimal solution (b∗,γ∗) to the optimization problem given by Eq. (1) such
that the following is true. There exists a set of bid values P(b∗,γ∗) such that with every bid value
p∗ ∈ P(b∗,γ∗) we can associate component

C(p∗, b∗,γ∗) = (Cc(p∗, b∗,γ∗), Ct(p∗, b∗,γ∗))

where Cc(p∗, b∗,γ∗) is a set of campaigns, and Ct(p∗, b∗,γ∗) is a set of targeting groups, such that

Ai(b∗,γ∗) ∩ Ct(p∗, b∗,γ∗) = Ai(b∗,γ∗), i ∈ Cc(p∗, b∗,γ∗),

and
Bj(b∗,γ∗) ∩ Cc(p∗, b∗,γ∗) = Bj(b∗,γ∗), j ∈ Ct(p∗, b∗,γ∗),

as well as
b∗i,j = p∗, i ∈ Cc(p∗, b∗,γ∗), j ∈ Ai(b∗,γ∗)

and
b∗i,j = p∗, j ∈ Ct(p∗, b∗,γ∗), i ∈ Bj(b∗,γ∗),

as well as ⋃
p∗∈P(b∗,γ∗)

Cc(p∗, b∗,γ∗) = N

and ⋃
p∗∈P(b∗,γ∗)

Ct(p∗, b∗,γ∗) = T .
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Proof. Let (b∗,γ∗) be an optimal solution to the optimization problem given by Eq. (1) such that
for each campaign i = 1, ..., Nc we have that

b∗i,j = p∗i , j ∈ Ai(b∗,γ∗).

Note that such an optimal solution exists by Proposition 3.

We then iteratively construct a set P(b∗,γ∗), and a set of components

C(p∗, b∗,γ∗) = (Cc(p∗, b∗,γ∗), Ct(p∗, b∗,γ∗)), p∗ ∈ P(b∗,γ∗),

as given in the statement of the proposition as follows.

Let
N (0) = N = {1, ..., Nc}

and
T (0) = T = {1, ..., Nr}

Furthermore, set
P(b∗,γ∗) = ∅.

If the iteration hasn’t stopped at iteration k − 1, k ≥ 1, then we proceed with iteration step k as
follows. If

N (k−1) = ∅,
then we stop the iteration. Otherwise, we set

N (k) = N (k−1)

and
T (k) = T (k−1).

As we have in this case that
N (k) 6= ∅,

we can pick campaign i from the set N (k). Let the bid value p∗ be such that for this campaign i we
have that

b∗i,j = p∗, j ∈ Ai(b∗,γ∗).
Note that such a p∗ exists by assumption. We then consider the following two cases. If we have that

p∗ /∈ P(b∗,γ∗),

then we set
P(b∗,γ∗)← P(b∗,γ∗) ∪ {p∗},

and create a new set
C(p∗, b∗,γ∗) = (Cc(p∗, b∗,γ∗), Ct(p∗, b∗,γ∗))

where
Cc(p∗, b∗,γ∗) = {i}

and
Ct(p∗, b∗,γ∗) = Ai(b∗,γ∗).

Finally, we set
A = {i}

and repeat the following steps until we have that

A = ∅.

1. Pick a campaign i ∈ A and set
A ← A\{i}

N (k) ← N (k)\{i}.
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2. Update component

C(p∗, b∗,γ∗) = (Cc(p∗, b∗,γ∗), Ct(p∗, b∗,γ∗))
of the bid value p∗ to

Cc(p∗, b∗,γ∗)← Cc(p∗, b∗,γ∗) ∪ {i}
and

Ct(p∗, b∗,γ∗)← Ct(p∗, b∗,γ∗) ∪ Ai(b∗,γ∗).

3. Set
N (k) ← N (k)\{i}

and
T (k) ← T (k)\Ai(b∗,γ∗).

4. For all targeting groups j ∈ Ai(b∗,γ∗) set

b∗m,j = p∗, m ∈ Bj(b∗,γ∗).

5. For each targeting group
j ∈ Ai(b∗,γ∗)

set
A ← A∪

(
Bj(b∗,γ∗) ∩N (k)

)
.

6. For all campaigns m ∈ A set

b∗m,j = p∗, j ∈ Ai(b∗,γ∗).

This completes the iteration step k.

We make the following observation regarding the above update rules. By construction (initialization
and Step (6)), we have for all targeting group j ∈ Ai(b∗,γ∗) in Step (4) that

b∗i,j = p∗.

Using Lemma 14, we then have for each targeting group j ∈ Ai(b∗,γ∗) in Step (4) that

Dj(b
∗
m,j) = Dj(b

∗
i,j) = Dj(p

∗), m ∈ Bj(b∗,γ∗).
This implies that changing the bid value b∗m,j to p∗ does not affect that number of impressions that
campaing m obtains from targeting group j, nor the cost for obtaining the impressions. As such, the
allocation (opt) is still an optimal allocation if we makes this change in the bid value b∗m,j .

Similarly, by construction (Step (4)) we have for all campaigns m ∈ A in Step (6) that there exist a
targeting group n ∈ Ai(b∗,γ∗) such that

b∗m,n = p∗.

Using Lemma 15, we then have for each campaign m ∈ A in Step (6) that

Dj(b
∗
m,j) = Dj(b

∗
m,n) = Dj(p

∗), j ∈ Ai(b∗,γ∗).
This implies that changing the bid value b∗m,j to p∗ does not affect that number of impressions that
campaing m obtains from targeting group j, nor the cost for obtaining the impressions. As such, the
allocation (opt) is still an optimal allocation if we makes this change in the bid value b∗m,j .

By construction of the set P(b∗,γ∗) and the components

C(p∗, b∗,γ∗), p ∈ P(b∗,γ∗),

we have that for each campaign i = 1, ..., Nc, that there exists a unique p∗ ∈ P(b∗,γ∗) such that

i ∈ Cc(p∗, b∗,γ∗).
Similarly, we have for each targeting group j = 1, ..., Nr, that there exists a unique p∗ ∈ P(b∗,γ∗)
such that

j ∈ Ct(p∗, b∗,γ∗).
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Furthermore, by construction we have that for all components C(p∗, b∗,γ∗), p∗ ∈ P(b∗,γ∗), that

Ai(b∗,γ∗) ∩ Ct(p∗, b∗,γ∗) = Ai(b∗,γ∗), i ∈ Cc(p∗, b∗,γ∗),
and

Bj(b∗,γ∗) ∩ Cc(p∗, b∗,γ∗) = Bj(b∗,γ∗), j ∈ Ct(p∗, b∗,γ∗),
as well as

b∗i,j = p∗, i ∈ Cc(p∗, b∗,γ∗), j ∈ Ai(b∗,γ∗)
and

b∗i,j = p∗, j ∈ Ct(p∗, b∗,γ∗), i ∈ Bj(b∗,γ∗).
This establishes the result of the proposition.

C.3 Sufficient Conditions

We next provide sufficient conditions for an an allocation (b,γ) that has the structure of an optimal
solution as given in Proposition 5 to indeed be an optimal solution.

We proceed as follows. We first consider the special case where we are given an allocation (b∗,γ∗)
as in Proposition 5 for which we have that

P(b∗,γ∗) = {p∗},
the allocation (b∗,γ∗) consists of a single component C(p∗, b∗,γ∗). Note that we do not assume
that the allocation (b∗,γ∗) is an optimal solution, but only that the allocation has a structure as the
allocation given in Proposition 5.
Proposition 17. If the supply curves Dj(b), j ∈ T , are given by continuous functions, then the
following is true. Let (b∗,γ∗) be an allocation such that for all campaigns i = 1, ..., Nc we have
that

b∗i,j = p∗, j ∈ Ai(b∗,γ∗),
as given in Proposition 5, i.e. we have that

P(b∗,γ∗) = {p∗}
and

Cc(p∗, b∗,γ∗) = N .
If we have that ∑

j∈Ai(b∗,γ∗)

γ∗i,jDj(p
∗) = Ii, i ∈ Cc(p∗, b∗,γ∗),

and ∑
i∈Cc(p∗,b∗,γ∗)

∑
j∈Ai(b∗,γ∗)

Dj(p
∗) =

∑
i∈Cc(p∗,b∗,γ∗)

Ii,

then the allocation (b∗,γ∗) is an optimal solution to the optimization problem given in Eq. (1) with
cost ∑

i∈Cc(p∗,b∗,γ∗)

Iip
∗ −

∫ p∗

0

∑
j∈Ai(b∗,γ∗)

Dj(b)db.

Proof. This result can be proved using the same argument as the one given in the proof for Proposi-
tion 10.

Next we consider a more general, but still a special case. In particular we consider an allocation
(b∗,γ∗) as given by Proposition 5 such that for p∗, q∗ ∈ P(b∗,γ∗),

q∗ < p∗

we have that
Ai ∩ Ct(q∗, b∗,γ∗) = ∅, i ∈ Cc(p∗, b∗,γ∗).

As it turns out, this case is the case that is relevant for our analysis of the proposed algorithm to
compute an optimal allocation (b∗,γ∗) in Section 7.1.

Again we do not assume that the allocation (b∗,γ∗) is an optimal solution, but only that the alloca-
tion has a structure as the allocation given in Proposition 5.
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Proposition 18. If the supply curves Dj(b), j ∈ T , are given by continuous functions, then the
following is true. Let (b∗,γ∗) be an allocation as given in Proposition 5. If for all p∗ ∈ P(b∗,γ∗)
we have

a) ∑
j∈Ai(b∗,γ∗)

γ∗i,jDj(p
∗) = Ii, i ∈ Cc(p∗, b∗,γ∗),

and ∑
i∈Cc(p∗,b∗,γ∗)

∑
j∈Ai(b∗,γ∗)

Dj(p
∗) =

∑
i∈Cc(p∗,b∗,γ∗)

Ii,

b) ∑
i∈Cc(p∗,b∗,γ∗)

∑
j∈Ai∩T0

Dj(p) = 0, 0 ≤ p < p∗,

where

T0 =

j ∈ T ∣∣∣ ∑
i∈Bj

γ∗i,jDj(b
∗
i,j) = 0

 ,

c) for q∗ < p∗, q∗, p∗ ∈ P(b∗,γ∗), that

Ai ∩ Ct(q∗, b∗,γ∗) = ∅, i ∈ Cc(p∗, b∗,γ∗),

then the allocation (b∗,γ∗) is an optimal solution to the optimization problem given by Eq (1) with
cost ∑

p∗∈P(b∗,γ∗)

 ∑
i∈Cc(p∗,b∗,γ∗)

Iip
∗ −

∫ p∗

0

∑
j∈Ai(b∗,γ∗)

Dj(b)db

 .
Proof. We use the result of Proposition 10 to prove the proposition. More precisely, using Proposi-
tion 10 we have that the cost of any solution to the optimization problem of Eq. (1) that obtains the
an amount of ∑

i∈Cc(p∗,b∗,γ∗)

Ii

impressions from the component

C(p∗, b∗,γ∗), p ∈ P(b∗,γ∗),

is lower-bounded by ∑
i∈Cc(p∗,b∗,γ∗)

Iip
∗ −

∫ p∗

0

∑
j∈Ai(b∗,γ∗)

Dj(b)db.

As a result, the allocation (b∗,γ∗) is an optimal allocation for each individual component
C(p∗, b∗,γ∗), p ∈ P(b∗,γ∗).

Therefore, in order to proof the result, we have to show for each component

C(p, b,γ), p ∈ P(b∗,γ∗),

that is not possible reduce the cost for getting the required impressions for the campaigns in this
component by shifting some of these impressions to another component. We show this result by
induction as follows.

To show that this is indeed the case, we use the following notation. For each component
C(p∗, b∗,γ∗), p ∈ P(b∗,γ∗), let

Ip∗ =
∑

i∈Cc(p∗,b∗,γ∗)

Ii

and
D−p

∗(b) =
∑

j∈Ct(p∗,b∗,γ∗)

Dj(b), 0 ≤ b.
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We first show that for the component corresponding to the highest bid value p∗ ∈ P(b∗,γ∗), that
we can not reduce the for getting the require Ip∗ impressions by shifting some of the impressions to
another component.

We then do an induction step where we assume that it is not possible to reduce the the cost for obtain-
ing the impressions for the components corresponding to the n highest bid values p∗ ∈ P(b∗,γ∗)
by shifting impressions to another component, and then show that in this case it is also not possible
to reduce the the cost for obtaining the impressions for the components corresponding to the (n+ 1)
highest bid values p∗ ∈ P(b∗,γ∗) by shifting some of the impressions to another component.

Let p∗ be the the highest bid value in the set P(b∗,γ∗), and suppose that we move an amount of ∆I

of the impressions Ip∗ to another component. As we have for q∗ ∈ P(b∗,γ∗), q∗ < p∗, that

Ai ∩ Ct(q∗, b∗,γ∗) = ∅, i ∈ Cc(p∗, b∗,γ∗),

the only option is to move the ∆I impressions to the set T0, i.e. the set

T0 =

j ∈ T ∣∣∣ ∑
i∈Bj

γ∗i,jDj(b
∗
i,j) = 0

 .

Let
T0(p∗) = T0 ∩ ∪i ∈ Cc(p∗, b∗,γ∗)Ai,

i.e. the set T0(p) contains all the targeting groups j ∈ T0 from which at least one campaign i ∈
Cc(p∗, b∗,γ∗) can obtain impressions. Furthermore, let D0(b) be given by

D0(b) =
∑

j∈T0(p∗)

Dj(b).

Note by definition that we have that
D0(p∗) = 0.

Finally, suppose that there exists a bid value q such that

Dq(q) = ∆I

and
D0(b) < ∆I , 0 ≤ b < q.

Using these definitions and the fact that

D0(p) = 0

and
D

(−)
0 (q) ≤ ∆I ,

we have that that the cost for getting ∆I impressions from the targeting groups in the set T0(p) is at
least

∆Iq −
∫ q

p∗
D0(b)db

≥ ∆Iq −D(−)
0 (q)(q − p∗)

≥ ∆Iq −∆I(q − p∗)
= ∆Ip

∗.

Similarly using the bid value p′ such that

Dp∗(p
′) = Ip∗ −∆I ,
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the reduction in the cost for reducing the number of impressions obtained from component
C(p∗, b∗,γ∗) by ∆I is at most

Ip∗p
∗ −

∫ p∗

0

Dp(b)db

−(Ip∗ −∆I)p
′ +

∫ p′

0

Dp(b)db

= I(C(p, b,γ))(p∗ − p′) + ∆Ip
′

−
∫ p∗

p′
Dp(b)db

≤ I(C(p, b,γ))(p∗ − p′) + ∆Ip
′

−Dp(p
′)(p∗ − p′)

= (Ip∗ −Dp(p
′))(p∗ − p′) + ∆Ip

′

≤ ∆I(p
∗ − p′) + ∆Ip

′

= ∆Ip
∗.

Therefore, we obtain that it is not possible to reduce the cost for getting I − p∗ impressions for
the campaigns in component C(p∗, b∗,γ∗) by shifting some of the impressions to targeting groups
in the set T0(p). This establishes the result that the allocation (b∗,γ∗) is an optimal allocation for
getting Ip∗ impressions for the campaigns in component C(p∗, b∗,γ∗).

Having established the result for the component with the highest bid value, we do an induction
step. That is, we assume that it is not possible to reduce the the for obtaining the impressions for
the campaigns in the components corresponding to the n highest bid values in P(b∗,γ∗), and then
show that it is not possible to reduce the cost for obtaining the impressions for the campaigns in the
components corresponding to the (n+ 1) highest bid values in P(b∗,γ∗).

Let p∗ be the (n + 1)th highest bid value and let C(p∗, b∗,γ∗) be the corresponding component.
Note that in this case, the campaigns i ∈ Cc(p∗, b∗,γ∗) that belong to this component can only get
impressions from targeting groups that belong to the set Ct(p∗, b∗,γ∗), from targeting groups that
belong to a component with a higher bid value q∗ ∈ P(b∗,γ∗), or from the set of targeting groups
T0(p∗) given by

T0(p∗) = T0 ∩ ∪i ∈ Cc(p, b,γ)Ai.

As we have by assumption for D0(b) given by

D0(b) =
∑

j∈T0(p∗)

Dj(b),

that
D0(p) = 0,

it follows from the same argument as given for the case of the component with the highest bid
value, that it is not possible to reduce the cost for obtaining the impressions for the campaigns in
the components corresponding to the (n + 1) highest bid values p ∈ P(b∗,γ∗) by shifting some
impressions from the component C(p∗, b∗,γ∗) to the set T0(p∗).

It remains to consider the case where we shift some impressions from the component C(p∗, b∗,γ∗)
to a component C(q∗, b∗,γ∗) with a higher bid value q∗.

For this case, we use the following definitons. Let

Dp∗(b) =
∑

j∈Ct(p∗,b∗,γ∗)

Dj(b)

and
Dq∗(b) =

∑
j∈Ct(q∗,b∗,γ∗)

Dj(b).

Furthermore, let p′ be such that
Dp(p

′) = Ip∗ −∆I ,
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and let q′ be such that
Dq∗(q

′) = Iq∗ + ∆I

Under these definitions, by shifting an amount of ∆I impressions from component C(p∗, b∗,γ∗) to
the component C(q∗, b∗,γ∗), we can reduce the cost by at most an amount given by

Ip∗p−
∫ p∗

0

Dp(b)db

−(Ip∗ −∆I)p
′ +

∫ p′

0

Dp(b)db

= Ip∗(p
∗ − p′) + ∆Ip

′

−
∫ p∗

p′
Dp(b)db

≤ Ip∗(p
∗ − p′) + ∆Ip

′

−Dp(p
′)(p∗ − p′)

= (Ip∗ −Dp(p
′))(p∗ − p′) + ∆Ip

′

≤ ∆I(p
∗ − p′) + ∆Ip

′

= ∆Ip
∗.

Similarly, by shifting an amount of ∆I impressions from component C(p∗, b∗,γ∗) to C(q∗, b∗,γ∗),
we increase the cost by at least an amount given by

−Iq∗q∗ +

∫ q∗

0

Dq(b)db

(Iq∗ + ∆I)q
′ −
∫ q′

0

Dq(b)db

= Iq∗(q
′ − q∗) + ∆Iq

′

−
∫ q′

q∗
Dq(b)db

≥ Iq∗(q
′ − q∗) + ∆Iq

′

−D(−)
q (q′)(q′ − q∗)

= (Iq∗ + ∆I −D(−)
q∗ (q′))(q′ − q∗) + ∆Iq

∗,

≥ ∆Iq
∗.

As we have that
p∗ < q∗,

it follows that we can not lower the by shifting some impressions from compoenent C(p∗, b∗,γ∗) to
component C(q∗, b∗,γ∗).

This establishes the that the allocation (b∗,γ∗) is optimal for getting the Ip∗ impressions for the
campaigns in the components C(p∗, b∗,γ∗) with the (n + 1) highest bid values p∗ ∈ P(b∗,γ∗).
This completes the induction step, and the proof of the proposition.

D Properties of Solution (b∗,γ∗) obtained by Algorithm

In this appendix we derive properties of the set of components (Ĉc, Ĉt, p, t), p ∈ P obtained by the
algorithm of Section 7.

The following two results that follow directly from the definition of the the algorithm.

Lemma 5. Let (Ĉc, Ĉt, p, t), p ∈ P be the set of components obtained through the algorithm given
by Eq. (10). Then we have that ⋃

p∈P
Ĉc = N
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and ⋃
p∈P
Ĉt = T .

Lemma 5 states that each campaign i ∈ N , and each targeting group j ∈ T , belongs to a component
(Ĉc, Ĉt, p, t), p ∈ P .

Lemma 6. Let (Ĉc, Ĉt, q, t), q ∈ P be the set of components obtained through the algorithm given
by Eq. (10), let p ∈ P be the lowest bid value in the set P , and let (Ĉc, Ĉt, p, t) be the corresponding
component. Then we have that

T0(b∗,γ∗) ⊆ Ĉt,
where

T0(b∗,γ∗) =

j ∈ T ∣∣∣∑
q∈P

∑
i∈Bj∩Ĉt

ti,jDj(q) = 0

 .

Next we consider one recursion step of the algorithm. That is, we are given a set Cc of campaigns,
and a set Ct of targeting groups, and use the function SPLIT (Cc, Ct, t∗, p) described in Subsec-
tion 7.1 to produce two sets (Cc,1, Ct,1) and (Cc,2, Ct,2).

Lemma 7. Let Cc ⊆ N be a set of campaigns, and Ct ⊆ T be a set of targeting groups. Further-
more, suppose that the the function SPLIT (Cc, Ct, t∗, p) in Algorithm 1 returns the sets (Cc,1, Ct,1)
and (Cc,2, Ct,2), let p be the bid value used in the function ALLOC(Cc, Ct, p), and let t∗ be an
optimal solution returned by the function ALLOC(Cc, Ct, p). Then we have that

Ai ∩ Ct,2 = ∅, i ∈ Cc,1,

as well as
t∗i,j = 0, i ∈ C2c , j ∈ C1c ,

and ∑
i∈Bj∩Cc,1

t∗i,j = 1, j ∈ Ct,1.

As the minimization problem given by Eq. (6) is a convex optimization problem. The result of
Lemma 7 follows directly from the first order conditions of an optimal solution t∗ for the optimiza-
tion problem given by Eq. (6).

Lemma 8. Let Cc ⊆ N be a set of campaigns, and Ct ⊆ T be a set of targeting groups. Further-
more, suppose that the the function SPLIT (Cc, Ct, t∗, p) in Algorithm 1 returns the sets (Cc,1, Ct,1)
and (Cc,2, Ct,2), let p be the bid value used in the function ALLOC(Cc, Ct, p), and let t∗ be an
optimal solution returned by the function ALLOC(Cc, Ct, p).

Then for all components (Ĉc, Ĉt, q, t) that are obtained from the recursion REC(Cc,2, Ct,2, ∅, ∅), we
have that

q ≤ p.

Proof. Suppose that we obtain K components from the recursion REC(Cc,2, Ct,2, ∅, ∅). We then
number the components and create the set {(Ĉ(k)c , Ĉ(k)t , q(k), t(k))}Kk=1 such that for a given k we
have that

Ai ∩ Ĉ(l)t = ∅, i ∈ Ĉ(k)c , l = k + 1, ...,K.

Note that we can create this ordering by Lemma 7.

Recall that we say that the optimization problem

ALLOC(Cc, Ct, p)

has a feasible solution if there exists a solution t∗ such that∑
j∈Ai∩Ct

t∗i,jDj(p) = Ii, i ∈ Cc.
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In order to show the result of the lemma, we have to show that for all k = 1, ...,K we have that the
optimization problem ALLOC(Ĉ(k)c , Ĉ(k)t , p), where p is the bid value given in the statement of the
lemma, has a feasible solution. We show this result by induction.

First, we show the result for k = 1, i.e. we show that optimization problem ALLOC(Ĉ(1)c , Ĉ(1)t , p),
where p is the bid value given in the statement of the lemma, has a feasible solution. By definition of
the function SPLIT (Cc, Ct, t

∗, p), we have that there exists an optimal solution t∗ to optimization
problem ALLOC(Cc, Ct, p) such that∑

j∈Ct∩Ai

t∗i,jDj(p) ≥ Ii, i ∈ Ĉ(1)c .

Furthermore, by Lemma 7 we have for every the optimal solution t∗ to the optimization problem
ALLOC(Cc, Ct, p) that

t∗i,j = 0, i ∈ Ĉ(1)c , j /∈ Ĉ(1)t .

Combining the above results, we obtain for the optimal solution t∗ to the the optimization problem
ALLOC(Cc, Ct, p) that ∑

j∈Ai∩Ĉ(1)t

t∗i,jDj(p) ≥ Ii, i ∈ Ĉ(1)c .

This implies that the optimization problem ALLOC(Ĉ(1)c , Ĉ(1)t , p) has a feasible solution.

Next we do an induction step. That is, we assume that for the components (Ĉ(l)c , Ĉ(l)t , q(l), t(l)),
l = 1, ..., k−1, we have that the optimization problemALLOC(Ĉ(l)c , Ĉ(l)t , p) has a feasible solution.
We then show that this is also true for the component (Ĉ(k)c , Ĉ(k)t , q(k), t(k)), i.e. we have that the
optimization problem ALLOC(Ĉ(k)c , Ĉ(k)t , p) has a feasible solution.

By the definition of the algorithm there exists a recursion step REC(C̃c, C̃t) where

C̃c ⊆ Cc,2
and

C̃t ⊆ Ct,2,
that returns the sets (C̃c,1, C̃t,1) and (C̃c,2, C̃t,2) such that

Ĉ(k)c ⊆ C̃c,2
and

C̃c,1 ⊆
k−1⋃
l=1

Ĉ(l)c .

By the induction assumption, we have for l = 1, ..., k − 1 that∑
j∈Ĉ(l)t

Dj(p) ≥
∑
i∈Ĉ(l)c

Ii.

This implies that for the bid value used for the optimization problem ALLOC(C̃c, C̃t, q) that was
used in the recursion step REC(C̃c, C̃t, ∅, ∅) we have that

q < p.

Furthermore, by the definition of the algorithm we have that there exists an optimal solution t∗ to
optimization problem ALLOC(C̃c, C̃t, q) such that∑

j∈C̃t∩Ai

t∗i,jDj(q) ≥ Ii, i ∈ Ĉ(k)c .

By Lemma 7 we have for every optimal solution t∗ to the optimization problem ALLOC(C̃c, C̃t, q)
that

t∗i,j = 0, i ∈ Ĉ(k)c , j /∈ Ĉ(k)t .
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Combining the above results, we obtain for the optimal solution t∗ to the the optimization problem
ALLOC(C̃c, C̃t, q) that ∑

j∈Ai∩Ĉ(k)
t

t∗i,jDj(q) ≥ Ii, i ∈ Ĉ(k)c .

This implies that the optimization problem

ALLOC(Ĉ(k)c , Ĉ(k)t , p)

has a feasible solution. This completes the induction step, and establishes the result of the lemma.

Lemma 9. Let Cc ⊆ N be a set of campaigns, and Ct ⊆ T be a set of targeting groups. Further-
more, suppose that the the function SPLIT (Cc, Ct, t∗, p) in Algorithm 1 returns the sets (Cc,1, Ct,1)
and (Cc,2, Ct,2), let p be the bid value used in the function ALLOC(Cc, Ct, p), and let t∗ be an
optimal solution returned by the function ALLOC(Cc, Ct, p).

Then for all the components (Ĉc, Ĉt, q, t) that are obtained from the recursionREC(Cc,1, Ct,1, ∅, ∅),
we have that

q > p.

Proof. Suppose that we obtainK components from the recursionREC(Cc,1, Ct,1). We then number
the components and create the set {(Ĉ(k)c , Ĉ(k)t , q(k), t(k))}Kk=1 such that for a given k we have that

Ai ∩ Ĉ(l)t = ∅, i ∈ Ĉ(k)c , l = 1, ..., k − 1.

Note that we can create this ordering by Lemma 7.

Recall that we say that the optimization problem

ALLOC(Cc, Ct, p)

has a feasible solution if there exists a solution t∗ such that∑
j∈Ai∩Ct

t∗i,jDj(p) = Ii, i ∈ Cc.

In order to show the result of the lemma, we have to show that the optimization problem
ALLOC(Ĉ(k)c , Ĉ(k)t , q), k = 1, ...,K, does not have a feasible solution for q ≤ p, where p is
the bid value given in the statement of the lemma. We show this result by induction.

First, we show the result for k = 1, i.e. we show that optimization problem ALLOC(Ĉ(1)c , Ĉ(1)t , q)
does not have a feasible solution for q ≤ p, where p is the bid value given in the statement of the
lemma. We prove this case by contradiction. That is we assume that there exists a q, 0 ≤ q < p,
such that the optimization problemALLOC(Ĉ(1)c , Ĉ(1)t , q) has a feasible solution, and show that this
leads to a contradiction.

Suppose that there exists an optimal solution t to the optimization problem ALLOC(Ĉ(1)c , Ĉ(1)t , q)
such that ∑

j∈Ĉ(1)t ∩Ai

ti,jDj(q) ≥ Ii, i ∈ Ĉ(1)c .

By Lemma 7 we have for every optimal solution t∗ to the optimization problem ALLOC(Cc, Ct, p)
that ∑

i∈Ĉ(1)c

t∗i,j = 1, j ∈ Ĉ(1)t .

Combining the above results, we obtain for every optimal solution t∗ to the the optimization problem
ALLOC(Cc, Ct, p) that ∑

j∈Ai∩Ĉ(1)t

t∗i,jDj(p) ≥ Ii, i ∈ Ĉ(1)c ,
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as by assumption we have that
q ≤ p.

However this leads to a contradiction to the fact that

Ĉ(1)c ⊆ Cc,1
and

Ĉ(1)t ⊆ Ct,1.
This establishes that the optimization problem

ALLOC(Ĉ(1)c , Ĉ(1)t , q)

does not have a feasible solution for q ≤ p

Next we do an induction step. That is, we that for the components (Ĉ(l)c , Ĉ(l)t , q(l), t(l)), l = 1, ..., k−
1, we have that

q(l) > p.

We then show that this also has to be true for component (Ĉ(k)c , Ĉ(k)t , q(k), t(k)), i.e. we have that

q(k) > p.

We prove this case again by contradiction. That is we assume that for q, 0 ≤ q < p, the optimization
problem ALLOC(Ĉ(k)c , Ĉ(k)t , q) has a feasible solution, and show that this leads to a contradiction.

By the definition of the algorithm we have in this case for the optimal solution t to the optimization
problem

ALLOC(Ĉ(k)c , Ĉ(k)t , q)

that ∑
j∈Ĉ(k)

t ∩Ai

ti,jDj(q) ≥ Ii, i ∈ Ĉ(k)c .

Furthermore, by the definition of the algorithm there exists a recursion step REC(C̃c, C̃t) where

C̃c ⊆ C̃c,1
and

C̃t ⊆ C̃t,1,
that returns the sets (C̃c,1, C̃t,1) and (C̃c,2, C̃t,2) such that

Ĉ(k)c ⊆ C̃c,1
and

C̃c,2 ⊆
k−1⋃
l=1

Ĉ(l)c .

By Lemma 7 we have for every optimal solution t∗ to the optimization problem ALLOC(Cc, Ct, p)
that ∑

i∈(Ĉ(k)
c ,Ĉ(k)

t ,q(k),t(k))

t∗i,j = 1, j ∈ Ĉ(k)t

and
t∗i,j = 0, j ∈ Ĉ(k)t , i /∈ Ĉ(k)c .

Combining the above results, we obtain for every optimal solution t∗ to the the optimization problem
ALLOC(Cc, Ct, p) that ∑

j∈Ai∩(Ĉ(k)
c ,Ĉ(k)

t ,q(k),t(k))

t∗i,jDj(p) ≥ Ii, i ∈ Ĉ(k)c .

as by assumption we have that
q ≤ p.
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This leads to a contradiction that
Ĉ(k)c ⊆ C̃c,1

and
Ĉ(k)t ⊆ C̃t,1.

This implies that the optimization problem

ALLOC((Ĉ(k)c , Ĉ(k)t , q(k), t(k)), Ĉ(k)t , q)

does not have a feasible solution for q ≤ p. This also completes the induction step, and establishes
the result of the lemma.

The following result follows directly from the definition of the algorithm given by Eq. (10).

Lemma 10. Let (Ĉc, Ĉt, p, t) be a component returned by the algorithm given by Eq. (10), then we
have that there exists a feasible solution to the optimization problem ALLOC(Ĉc, Ĉt, p), and we
have that ∑

j∈Ĉt

Dj(b) <
∑
i∈Ĉc

Ii, 0 ≤ b < p.

E Proof of Proposition 6

In this section we prove Proposition 6. For the reader’s convenience we repeat the statement of the
proposition.

Proposition 19. Let {(Ĉc, Ĉt, p, t)}p∈P be the components that the recursions given by Eq. (10)
returned, and let the allocation (b∗,γ∗) with components

C(p∗, b∗,γ∗), p ∈ P(b∗,γ∗),

be given as follows. We set
P(b∗,γ∗) = P.

Furthermore, for each bid value p∗ ∈ P(b∗,γ∗), we set

Cc(p∗, b∗,γ∗) = Ĉc
and

Ct(p∗, b∗,γ∗) = Ĉt.
Finally, the allocation (b∗,γ∗) is such that

b∗i,j = p∗, i ∈ Cc(p∗, b∗,γ∗), j ∈ Ct(p∗, b∗,γ∗)

as well as
γ∗i,j = ti,j , i ∈ Cc(p∗, b∗,γ∗), j ∈ Ct(p∗, b∗,γ∗)

and
γ∗i,j = 0, i ∈ Cc(p∗, b∗,γ∗), j /∈ Ct(p∗, b∗,γ∗).

Then (b∗,γ∗) is an optimal solution.

Proof. In order to prove Proposition 6 we need to show that the allocation (b∗,γ∗) given by the
components

C(p∗, b∗,γ∗), p ∈ P(b∗,γ∗),

defined in the statement of the proposition indeed satisfy the sufficient conditions of Proposition 18.
We prove this result by induction as follows.

We first show for the lowest bid value p∗ ∈ P(b∗,γ∗), that the component C(p∗, b∗,γ∗) satisfies
the sufficient conditions given in Proposition 18.

We then do an induction step where we assume that the the sufficient conditions given in Proposi-
tion 18 are satisfied for the n components with the n lowest bid values in the set P(b∗,γ∗), and
then show that the sufficient conditions are satisfied by the component with the (n+ 1)th lowest bid
value in P(b∗,γ∗).
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Let p∗ be the lowest bid value in the set P(b∗,γ∗). Then by construction, i.e. by the definition of
the Algorithm 1, we have that∑

j∈Ai(b∗,γ∗)

γ∗i,jDj(p
∗) = Ii, i ∈ Cc(p∗, b∗,γ∗).

In addition, we have by the definition of Algorithm 1 that∑
j∈Ct(p∗,b∗,γ∗)

Dj(b) <
∑

i∈Cc(p∗,b∗,γ∗)

Ii, 0 ≤ b < p∗,

and
T0 ⊂ Ct(p∗, b∗,γ∗).

This implies that ∑
j∈T0

Dj(b) = 0, 0 ≤ b < p∗.

It then follows that the sufficient conditions given in Proposition 18 are satisfied for the component
C(p∗, b∗,γ∗) with the lowest bid value p∗.

Next we assume that the sufficient conditions given in Proposition 18 are satisfied for the n compo-
nents with the n lowest bid values in the set P(b∗,γ∗), and then show that the sufficient conditions
are satisfied by the component with the (n + 1)the lowest bid value in P(b∗,γ∗). More precisely,
let p∗ ∈ P(b∗,γ∗) be the (n + 1)th lowest bid value, and let C(p∗, b∗,γ∗) be the corresponding
component.

By Lemma 7, for all bid values q∗ ∈ P(b∗,γ∗), such that

q∗ < p∗,

we have that
Ai ∩ Ct(q∗, b∗,γ∗) = ∅, i ∈ Cc(p∗, b∗,γ∗).

In this case, the sufficient conditions given in Proposition 18 are that we have that∑
j∈Ai(b∗,γ∗)

γ∗i,jDj(p
∗) = Ii, i ∈ Cc(p∗, b∗,γ∗),

and ∑
j∈Ct(p∗,b∗,γ∗)

Dj(b) <
∑

i∈Cc(p∗,b∗,γ∗)

Ii, 0 ≤ b < p∗.

Note that this is the case by the definition of Algorithm 1. This completes the induction step, and
the proof of the proposition.

F Proof of Proposition 7 and 8

In this appendix we proof Proposition 7 and Proposition 8 of Section 8. Before we do that, we derive
in the next subsections a bound on the cost of mixed strategies.

Recall the statement of Proposition 7.
Proposition 20. Let s ∈ S be a mixed strategy that is a solution to the optimization problem given
by Eq. 1. Then we have that

C(s) ≥
∑

p∗∈P(b∗,γ∗)

[
Ip∗p

∗ −
∫ p∗

0

Dp∗(b)db

]
.

Proof. We use the result of Proposition 10 to prove Proposition 7. To do that, we use the following
notation. For each component C(p∗, b∗,γ∗), p ∈ P(b∗,γ∗), of the allocation (b∗,γ∗) obtained by
the algorithm in Section 7, let

Ip∗ =
∑

i∈Cc(p∗,b∗,γ∗)

Ii
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and
D−p

∗(b) =
∑

j∈Ct(p∗,b∗,γ∗)

Dj(b), 0 ≤ b.

Using Proposition 10 we have that the cost of the mixed allocation (b∗,γ∗) that obtains the an
amount of

I(C(p∗, b∗,γ∗))
impressions from component

C(p∗, b∗,γ∗), p ∈ P(b∗,γ∗),

is lower-bounded by

Ip∗p
∗ −

∫ p∗

0

Dp∗(b)db. (11)

Therefore, in order to proof the result, we have to show for each component

C(p∗, b∗,γ∗), p∗ ∈ P(b∗,γ∗),

that is not possible reduce the bound given by Eq. (11) by shifting some of the impressions Ip∗ to
another component. We show this result by induction as follows.

We first show that for the component corresponding to the highest bid value p ∈ P(b∗,γ∗), that
we can not reduce the bound given by Eq. (11) by shifting some of the impressions Ip∗ to another
component.

We then do an induction step where we assume that it is not possible to reduce the the bound given by
Eq. (11) for obtaining the impressions for the components corresponding to the n highest bid values
p∗ ∈ P(b∗,γ∗), and then show that it is not possible to reduce the the bound given by Eq. (11)
for obtaining the impressions for the components corresponding to the (n + 1) highest bid values
p∗ ∈ P(b∗,γ∗).

Let p∗ be the the highest bid value in the set P(b∗,γ∗), and suppose that we move an amount of
∆I of the impressions Ip∗ to another component. Note that as the solution satisfies the sufficient
conditions given in Proposition 18, the only option is to move the ∆I impressions to the set T0, i.e.
the set

T0 =

j ∈ T ∣∣∣ ∑
i∈Bj

γ∗i,jDj(b
∗
i,j) = 0

 .

Let
T0(p∗) = T0 ∩ ∪i ∈ Cc(p∗, b∗,γ∗)Ai,

i.e. the set T0(p∗) contains all the targeting groups j ∈ T0 from which at least one campaign
i ∈ Cc(p∗, b∗,γ∗) can obtain impressions. Furthermore, let D0(b) be given by

D0(b) =
∑

j∈T0(p∗)

Dj(b).

Note by definition that we have that
D0(p∗) = 0.

Finally, suppose that there exists a bid value q such that

D0(q) ≥ ∆I

and
D0(b) < ∆I , 0 ≤ b < q.

Using these definitions and the fact that

D0(p∗) = 0

and
D

(−)
0 (q) ≤ ∆I ,

49



we have that that the cost for getting ∆I impressions from the targeting groups in the set T0(p∗) is
at least

∆Iq −
∫ q

p∗
D0(b)db

≥ ∆Iq −D(−)
0 (q)(q − p∗)

≥ ∆Iq −∆I(q − p∗)
= ∆Ip

∗.

Similarly using the bid value p′ such that

Dp∗(p
′) ≥ Ip∗ −∆I

and
Dp∗(p

′) < Ip∗ −∆I , b < p′,

the reduction in the lower bound for reducing the number of impressions obtained from component
C(p∗, b∗,γ∗) by ∆I is at most

Ip∗p
∗ −

∫ p∗

0

Dp(b)db

−(Ip∗ −∆I)p
′ +

∫ p′

0

Dp(b)db

= I(C(p, b,γ))(p∗ − p′) + ∆Ip
′

−
∫ p∗

p′
Dp(b)db

≤ I(C(p, b,γ))(p∗ − p′) + ∆Ip
′

−Dp(p
′)(p∗ − p′)

= (Ip∗ −Dp(p
′))(p∗ − p′) + ∆Ip

′

≤ ∆I(p
∗ − p′) + ∆Ip

′

= ∆Ip
∗.

Therefore, we obtain that it is not possible to reduce the the bound given by Eq. (11) by shifting
some of the impressions Ip∗ to targeting groups in the set T0(p∗). This establishes the result that
the cost for getting Ip∗ impressions for the campaigns in component C(p∗, b∗,γ∗) is bounded from
below by

Ip∗p
∗ −

∫ p∗

0

Dp∗(b)db.

This establishes the result for the component C(p∗, b∗,γ∗) with the highest bid value p∗.

Having established the result for the component with the highest bid value, we do an induction step.
That is, we assume that it is not possible to reduce the the bound given by Eq. (11) for obtaining the
impressions for the components corresponding to the n highest bid values in P(b∗,γ∗), and then
show that in this case it is not possible to reduce the the bound given by Eq. (11) for obtaining the
impressions for the components corresponding to the (n+ 1) highest bid values in P(b∗,γ∗).

Let p6∗ be the (n + 1)th highest bid value and let C(p∗, b∗,γ∗) be the corresponding component.
Note that in this case, the campaigns i ∈ Cc(p∗, b∗,γ∗) that belong to this component can only get
impressions from targeting groups that belong to the set Ct(p∗, b∗,γ∗), from targeting groups that
belong to a component with a higher bid value q∗ ∈ P(b∗,γ∗), or from the set of targeting groups
T0(p∗) given by

T0(p∗) = T0 ∩ ∪i ∈ Cc(p∗, b∗,γ∗)Ai,
i.e. the set T0(p∗) contains all the targeting groups j ∈ T0 from which at least one campaign
i ∈ Cc(p∗, b∗,γ∗) can obtain impressions.

As we have that for D0(b) given by

D0(b) =
∑

j∈T0(p∗)

Dj(b),
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that
D0(p∗) = 0,

it follows from the same argument as given for the case of the component with the highest bid
value, that it is not possible to reduce the the bound given by Eq. (11) for obtaining the impressions
for the components corresponding to the (n + 1) highest bid values in P(b∗,γ∗) by shifting some
impressions from the component C(p∗, b∗,γ∗) to the set T0(p∗).

There it remains to consider the case where we shift some impressions from the component
C(p∗, b∗,γ∗) to a component C(q∗, b∗,γ∗) with a higher bid value q∗.

For this case, let p′ be such that
Dp∗(p

′) ≥ Ip∗ −∆I

and
Dp∗(p

′) < Ip∗ −∆I , 0 ≤ b < p′,

and let q′ be such that
Dq∗(q

′) ≥ Iq∗ + ∆I

and
Dq∗(q

′) < Iq∗ + ∆I , 0 ≤ b < q′.

Under these definitions, by shifting an amount of ∆I impressions from component C(p∗, b∗,γ∗) to
C(q∗, b∗,γ∗), we can reduce the bound given by Eq. (11) by at most an amount given by

Ip∗p−
∫ p∗

0

Dp(b)db

−(Ip∗ −∆I)p
′ +

∫ p′

0

Dp(b)db

= Ip∗(p
∗ − p′) + ∆Ip

′

−
∫ p∗

p′
Dp(b)db

≤ Ip∗(p
∗ − p′) + ∆Ip

′

−Dp(p
′)(p∗ − p′)

= (Ip∗ −Dp(p
′))(p∗ − p′) + ∆Ip

′

≤ ∆I(p
∗ − p′) + ∆Ip

′

= ∆Ip
∗.

Similarly, by shifting an amount of ∆I impressions from component C(p∗, b∗,γ∗) to C(q∗, b∗,γ∗),
we increase the lower bound by at least an amount given by

−Iq∗q∗ +

∫ q∗

0

Dq(b)db

(Iq∗ + ∆I)q
′ −
∫ q′

0

Dq(b)db

= Iq∗(q
′ − q∗) + ∆Iq

′

−
∫ q′

q∗
Dq(b)db

≥ Iq∗(q
′ − q∗) + ∆Iq

′

−D(−)
q (q′)(q′ − q∗)

= (Iq∗ + ∆I −D(−)
q∗ (q′))(q′ − q∗) + ∆Iq

∗,

≥ ∆Iq
∗.

As we have that
p∗ < q∗,
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it follows that we can not lower the bound for getting the impressions for component C(p∗, b∗,γ∗)
by shifting some impressions to component C(q∗, b∗,γ∗).

This establishes the result that the bound given by Eq. (11) provides a lower bound for obtaining the
impressions for the campaigns in the components with the (n+1) highest bid values p ∈ P(b∗,γ∗).
This completes the induction step, and the proof of the proposition.

Next we prove Proposition 8. Recall the statement of the proposition.
Proposition 21. Let (b∗,γ∗) with components C(p∗, b∗,γ∗), p∗ ∈ P(b∗,γ∗), be the allocation
obtained by the algorithm in Section 7. Then for every component C(p∗, b∗,γ∗), p∗ ∈ P(b∗,γ∗),
the following is true. Let j ∈ Ct(p∗, b∗,γ∗) be a targeting group that belongs to the component
C(p∗, b∗,γ∗), and for all campaigns i ∈ Bj(b∗,γ∗) let

γi,j =
γ∗i,j∑

m∈Bj(b∗,γ∗)
γ∗m,j

and
Ii,j = γ∗i,jDj(p

∗).

Furthermore, let sp∗(b1) be a mixed bidding strategy for the component C(p∗, b∗,γ∗) such that for
all campaigns i ∈ Cc(p∗, b∗,γ∗) and j ∈ Ct(p∗, b∗,γ∗) we have that

Pi,j = {b1, p∗}, j ∈ Ai(b∗,γ∗),
as well as

γi,j(b1) =
γi,jD1(p∗)− Ii,j
D1(p∗)−D1(b1)

, j ∈ Ai(b∗,γ∗),

and
γi,j(p

∗) = γi,j − γ1,1(b1), j ∈ Ai(b∗,γ∗).
Finally, let Cp∗(sp∗(b1)) be the cost of strategy sp∗(b1) on component C(p∗, b∗,γ∗).

If D(−)
p∗ (p∗) > 0, then we have that

lim
b1↑b∗

Cp∗(sp∗(b1)) = Ip∗p
∗ −

∫ p∗

0

Dp∗(b)db.

Proof. To prove the proposition, we proceed as follows. Note that by definition we have for every
targeting group j ∈ Ct(p∗, b∗,γ∗) that∑

i∈Bj(b∗,γ∗)

[
γi,j(b1) + γi,j(b

∗)
]

=
∑

i∈Bj(b∗,γ∗)

γi,j = 1.

Furthermore, for every targeting group j ∈ Ct(p∗, b∗,γ∗) we have for every campaign i ∈
Bj(b∗,γ∗),

γi,j(b1)Dj(b1) + γi,j(b
∗)Dj(p

∗)

= γi,j(b1)Dj(b1) +
[
γi,j − γ1,1(b1)

]
Dj(p

∗)

= γi,jDj(p
∗)− γi,j(b1)(Dj(p

∗)−Dj(b1))

= γi,jDj(p
∗)− γi,jDj(p

∗) + Ii,j

= γ∗i,jDj(p
∗) = Ii,j .

Using this result, it follows that for each campaign i ∈ Cc(p∗, b∗,γ∗) we have that∑
j∈Ai(b∗,γ∗)

[
γi,j(b1)Dj(b1) + γi,j(b

∗)Dj(p
∗)
]

=
∑

j∈Ai(b∗,γ∗)

γ∗i,jDj(p
∗)

= Ii.
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This means that the mixed strategy sp∗(b1) obtains for each campaign i ∈ Cc(p∗, b∗,γ∗) the required
number of impressions.

Finally, under the bidding strategy s(b1) we have for each campaign i ∈ Cc(p∗, b∗,γ∗) the cost for
obtaining the

Ii,j = γ∗i,jDj(p
∗)

impressions from targeting group j ∈ Ai(b∗,γ∗) is given by

γi,j(b1)

[
Dj(b1)b1 −

∫ b1

0

Dj(b)db

]

+(γi,j − γi,j(b1))

[
Dj(p

∗)p∗ −
∫ p∗

0

Dj(b)db

]
= γi,j(b1)D1(b1)b1 + (γi,j − γi,j(b1))D1(p∗)p∗

−γi,j
∫ p∗

0

Dj(b)db

+γi,j(b1)

∫ p∗

b1

Dj(b)db

= γi,j(b1)D1(b1)p∗ + (γi,j − γi,j(b1))D1(p∗)p∗

+γi,j(b1)D1(b1)(b1 − p∗)

−γi,j
∫ p∗

0

Dj(b)db

+γi,j(b1)

∫ p∗

b1

Dj(b)db

= Ii,j − γi,j
∫ p∗

0

Dj(b)db

+γi,j(b1)D1(b1)(b1 − p∗)

+γi,j(b1)

∫ p∗

b1

Dj(b)db.

Combining the above results, it then follows that

lim
b1↑p∗

Cp∗(sp∗(b1))

=
∑

i∈Cc(p∗,b∗,γ∗)

∑
j∈Ai(b∗,γ∗)

[
Ii,jp

∗ − γi,j
∫ p∗

0

Dj(b)db

]

+ lim
b1↑p∗

∑
i∈Cc(p∗,b∗,γ∗)

∑
j∈Ai(b∗,γ∗)

γi,j(b1)D1(b1)(b1 − p∗)

+ lim
b1↑p∗

∑
i∈Cc(p∗,b∗,γ∗)

γi,j(b1)

∫ p∗

b1

Dj(b)db

=
∑

i∈Cc(p∗,b∗,γ∗)

∑
j∈Ai(b∗,γ∗)

[
Ii,jp

∗ − γi,j
∫ p∗

0

Dj(b)db

]

53



It then follows that

lim
b1↑p∗

Cp∗(sp∗(b1))

=
∑

i∈Cc(p∗,b∗,γ∗)

∑
j∈Ai(b∗,γ∗)

Ii,jp
∗

−
∑

i∈Cc(p∗,b∗,γ∗)

∑
j∈Ai(b∗,γ∗)

γi,j

∫ p∗

0

Dj(b)db

Using the fact that ∑
i∈Cc(p∗,b∗,γ∗)

∑
j∈Ai(b∗,γ∗)

γi,j

∫ p∗

0

Dj(b)db

=
∑

j∈Ct(p∗,b∗,γ∗)

∑
i∈Bj(b∗,γ∗)

γi,j

∫ p∗

0

Dj(b)db,

we obtain that

= Ip∗p
∗ −

∑
j∈Ct(p∗,b∗,γ∗)

∑
i∈Bj(b∗,γ∗)

γi,j

∫ p∗

0

Dj(b)db

= Ip∗p
∗ −

∫ p∗

0

 ∑
j∈Ct(p∗,b∗,γ∗)

Dj(b)

 db

= Ip∗p
∗ −

∫ p∗

0

Dp∗(b)db.

The result of the proposition then follows.
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