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ABSTRACT
Though significant progress has been made in artistic style trans-
fer, semantic information is usually difficult to be preserved in
a fine-grained locally consistent manner by most existing meth-
ods, especially when multiple artists styles are required to transfer
within one single model. To circumvent this issue, we propose a
Stroke Control Multi-Artist Style Transfer framework. On the one
hand, we design an Anisotropic Stroke Module (ASM) which realizes
the dynamic adjustment of style-stroke between the non-trivial
and the trivial regions. ASM endows the network with the abil-
ity of adaptive semantic-consistency among various styles. On
the other hand, we present an novel Multi-Scale Projection Dis-
criminator to realize the texture-level conditional generation. In
contrast to the single-scale conditional discriminator, our discrimi-
nator is able to capture multi-scale texture clue to effectively dis-
tinguish a wide range of artistic styles. Extensive experimental
results well demonstrate the feasibility and effectiveness of our
approach. Our framework can transform a photograph into differ-
ent artistic style oil painting via only ONE single model. Further-
more, the results are with distinctive artistic style and retain the
anisotropic semantic information. The code is already available on
github: https://github.com/neuralchen/ASMAGAN.
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Figure 1: Previous method [32] needs separate models for
each target style from artists’ portfolios. Meanwhile, the
semantic details are unrecognizable with excessive distor-
tion. Ourmodel is able to performmulti-artist style transfer
within one model, while well preserving semantic informa-
tion through anisotropic style-stroke controlling.
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1 INTRODUCTION
Style transfer is a practical technique that transfers a natural pho-
tograph into an artistic painting. Recently, Convolutional Neural
Network (CNN) based style transfer approaches [10, 32, 40] make
significant progress in imitating style texture and tone. However, a
convincing stylization is not just about the imitation of textures, it
also needs to choose suitable stroke size according to different se-
mantic regions, e.g., face, background. Painters never use the same
stroke size on the entire painting, where they use thicker strokes
in trivial regions(e.g., sky, water surface), and use finer strokes in
non-trivial regions(e.g., face, boats) to showmore details. Therefore,
anisotropic stroke control according to the content is a vital idea
to make the style transfer closer to real painting. In addition, from
a practical point of view, the style transfer model should have the
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ability of achieving multiple artistic stylization just via ONE single
model.

Strokes refer to the fundamental element of the artistic paint-
ings, artists tend to use different stroke size in various part of a
painting. For example, to make the face more vivid, painters use
fine brush strokes to outline facial details, while using thicker brush
strokes to draw the background. Approaches such as [32] devote to
learning style-stroke control in the style transfer. However, those
frameworks can only adjust the overall brushstroke of the painting
without distinction. Inspired by human perception, recent methods
such as [25, 40, 42] incorporate attention mechanism to achieve the
different generation granularity in non-trivial regions and trivial re-
gions. Yao et al. [40] follow this scheme and introduce self-attention
module which generates a salient map in hidden space, and then
adjusts the style-stroke of different regions according to that map.
However, this method suffers from the uncertainty of focus ar-
eas and poor effect of highlighting the pixel-wise salient part of
semantic content.

Additionally, most contemporary style transfer methods [1, 7,
10, 14, 33, 35] focus on example guided stylization, which transfers
the style characteristics of the example image onto a target content
image. In this way, those approaches can only achieve the imitation
of color and texture of a single painting rather than learning the
overall artist style of an artist. Such learning strategy is completely
different from human-artistic creation habits. The common way for
humans to learn to paint the style of an artist is to delve into a set of
works of the artist instead of a single piece of artwork. By analogy,
the abstract yet comprehensive style-knowledge should be flexibly
modeled from a quantity of artist paintings. Sanakoyeu et al. [32]
train their model by a set of certain artist artworks and indeed
achieve a substantial improvement in visual quality. However, this
method faces strict limitations, only one single artistic stylization
can be performed within one model. Such defects make this method
have serious difficulties in deployment, e.g., one thousand styles
need a thousand models to deploy, which is unrealistic.

To address the two problems mentioned above, we propose a
framework called Anisotropic Stroke Multiple Artists GAN, ASMA-
GAN. To solve the anisotropic control of style-stroke problem, we
present the Anisotropic Stroke Module, ASM. Worth mentioning, the
size of the receptive field determines the size of the style-stroke [16].
In contrast to [40], our ASM does not explicitly generate the salient
map to mark different style-stroke size regions, because this map is
troublesome to learn without explicit supervised signals. In order
to dynamically adjust the style-stroke, our AMS integrates features
from different scales of receptive fields (equivalent to different
strokes) according to the control signal. In detail, the control signal
comes from the deepest hidden features, and the features have the
largest receptive field, which will yield the thickest style-stroke.
At the same time, these features have the most abundant semantic
information, and this information can guide AMS to distinguish the
non-trivial region from trivial region. Therefore, with the help of
ASM, our framework is able to carry out dynamic and variable-grain
style transfer. Unlike existing multi-domain translation issues [17],
multi-artist style transfer requires the framework to have the abil-
ity to discriminate multi-scale texture textones. In view of this, a
Multi-Scale Projection Discriminator is proposed to utilize multi-
scale characteristic of style to integrally extract style information.

In fact, many paintings contain plenty of micro-structures, which
will be lost as the network deepens. Instead of single scale classifi-
cation, our discriminator judges the authenticity of the painting by
drawing the features of different receptive fields and using them
comprehensively. Furthermore, our discriminator abandons the
auxiliary classifier adopted by ACGAN, and uses the projection
way [27] to embed the conditional information into the final output
likelihood. With such a design, our discriminator can effectively en-
courage the generator to synthesize highly realistic stylized results.
Extensive experimental results well demonstrate the effectiveness
and high visual quality achieved by our framework.

2 RELATEDWORK
Semantic focus.Motivated by the importance of attention in hu-
man perception, a lot of research efforts have been devoted to the
semantic objects within an image [5, 6, 12, 36]. Methods in the field
of image translation can be categorized as two-step and one-step.
Two-step methods [3, 39] split models into two separated phases: 1)
acquire semantic mask from a separated segmentation network; 2)
process the semantic focal area using the main model. To augment
the ability of adapting to variations of semantic context, Luan et
al. [39] use DilatedNet [4] to generate image segmentation masks
of the inputs and reference images for a set of common labels. Two-
step methods require an extra pre-training network and millions
of labels on semantic context. Therefore, they are time-consuming
and also dilate the structures. By contrast, one-step models [24, 25]
achieve semantic focus by incorporating the attention mechanism
within the intact model. Ma et al. [24] decouple local textures from
holistic shapes by attending to local objects of interest through
square image regions, while it results in alteration of background
during image translation. Mejjati et al. [25] explore an attention
network to circumvent the problem.

Image Translation. Style transfer is a subfield of image trans-
lation where the goal is to learn the mapping between style and
content images. The key issues of style translation are the pre-
sentation of style and the synthesis of image. Since the success
of NST proposed by Gatys et al. [10], neural representation of im-
age is widely applied in texture synthesis. To speed up the style
transfer process, several algorithms have been proposed [1, 33, 35],
which produce stylized results with a forward pass. To improve
the flexibility, models incorporating multiple and arbitrary styles
are proposed [7, 11, 14, 22, 38]. These works synthesize style tex-
ture by the representation of style captured from certain artwork
rather than the style domain. Many works achieve domains map-
ping using generative adversarial networks (GANs) by unpaired
images [18, 41, 46]. Sannakoyeu et al. [32] utilize related style im-
ages to train an adversarial discriminator and optimize the gen-
erator with content perceptual loss. AC-GAN [29] provides class
information to generator and modifies the learning target of GANs
by an auxiliary classifier. Instead of naively concatenating class
information to the input, Projection Discriminator [28] proposes
a specific form of the discriminator, motivated by a commonly oc-
curring family of probabilistic models. However, it only utilizes the
feature of the last layer, which would lose style information when
transferring. Our method composes multi-scale style information.



Figure 2: Some paintings generated by our ASMA-GAN. From left to right, the corresponding artists are Van Gogh, Samuel,
Munch, Nicholas. These results are very similar to oil painting. More high resolution results can be found in suppl.
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Figure 3: An overview of our framework. We train the ASM and multi-artist style transfer uniformly. ASM can dynamically
adjust the stroke size of the corresponding region according to the semantic information. Our Multi-Scale Projection Discrim-
inator can learn the multi-scale characteristics of oil painting to better guide the training of Generator. Each artist’s style is
trained by portfolio of certain artist instead of single painting.

3 METHODOLOGY
Our framework learns from artists’ portfolios, instead of one single
painting, for novel art creation, i.e., multi-artist stylization with
flexible style-stroke size. To this end, we propose a ASMA-GAN
framework consisting of the following components: 1) a Condi-
tional Generator G which efficiently leverages multi-artist style
labels to synthesis corresponding stylized painting 𝑥𝑜 ; 2) a novel
module called Anisotropic Stroke Module which endows the genera-
tor the capability to adjust style-stroke [16] size in different region
according to the semantic information; and 3) a Multi-Scale Projec-
tion Discriminator D, which encourages style consistency through
the task of distinguishing artworks of different artists. Figure. 3
illustrates the full pipeline of our approach.

3.1 The Conditional Generator
From the perspective of art creation, style should be learned from
artists’ portfolios instead of a single painting [32]. Our model bene-
fits from this conception: it is trained by artists’ portfolios. Suppose

I𝑖 ∈ {I𝑀𝑜𝑛𝑒𝑡 , I𝑃𝑖𝑐𝑎𝑠𝑠𝑜 , ...} denotes an artist’s portfolio, 𝑥𝑠 ∈ I𝑖 de-
notes an artwork of portfolio I𝑖 . Given an input content image 𝑥𝑐
and a target label 𝑙 , the task is to generate a stylized result 𝑥𝑜 us-
ing our Conditional Generator. Instead of unskillfully imitating a
single painting, we manage to make use of more general character-
istics of a certain artist. The Conditional Generator consists of four
parts: the Encoder, the Resblocks, the conditional Resblock and the
Decoder.

Style Information Injection. To generate multi-artist stylized
images within a single model, efficient injection of style label infor-
mation is necessary and crucial. Previous multi-domain translation
method [8] directly concatenates one-hot label map with the in-
put image or the feature map. This approach is only suitable for
tasks with similar domains. Since there are a significant discrep-
ancy between the content domain and the style domain in style
transfer task. Therefore, it is invalid to inject the style information
into the network through the direct concatenation. Another serious
flaw is that directly concatenated one-hot vector label is invalid
after reflection-padding. Validity of conditional input depends on
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Figure 4: Different sizes of style-stroke regard to different
down-sample rates. We put resblocks in places of different
down-sample rates between the Encode and the Decoder to
show the relationship between down-sample rate and styl-
ization extent. As shown above, granularity of stylization
increases as down-sample rate grows.

whether it would change data distribution in feature space [44].
Based on that idea, we design a conditional Resblock that uses Con-
ditional Instance Normalization (CIN) [9] as the style information
injection means. The structure of the conditional Resblock is shown
in Fig. 3.

3.2 The Anisotropic Stroke Module
When watching an artwork, people are more sensitive to semantic
content, such as people, faces and expect them to preserve details
with less distortion. However, coarse granularity of stylization re-
sults in detail distortion. For example, fine granularity of stylization
distorts subtle objects like edges, while coarse one causes distor-
tion of large scale objects, like cars and human face. Actually, the
granularity is closely related to receptive field of the network, and
the larger the receptive field is, the coarser the granularity will
be. In Fig. 4, it is shown that different down-sample (equivalent to
receptive field size) results in stylization with varying granularities.
Since this phenomenon extremely resembles drawing painting with
different sizes of painting brushstrokes, it is named style-stroke [16].
We present our framework to employ the Anisotropic Stroke Module
to dynamically adjust the style-stroke size according to the semantic
information in various region. Dynamic style-stroke yield pleasing
stylized results with meticulous strokes in rich semantics region
and rough strokes in remaining region. The dynamic style-stroke
make the stylized results maintain the legibility of the important
content (e.g., face, building parts and so on) in the photograph with-
out being severely distorted and losing the meaning of the original
picture.

The detailed structure of ASM is shown in Fig. 5. We re-design
the reset and update gates with a spatial-wised attention mecha-
nism [37] to be light weighted and still effective in information
incorporation. Instead of removing the gates we choose to lighten
them [30] because experiments show removing either of them
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Figure 5: Structure of ASM. Our ASM is a variant of GRU
with much lighterweight. The box below is our spatial gate
structure. ASM can fuse features of two different scales to
achieve dynamic adjustment of style-stroke.

would lead to a sharp decline in model performance. Without loss
of generality, we choose the ASM located in the 𝑙-th layer as an
analysis example. The 𝑙-th layer feature coming from the encoder
side denotes as 𝒙𝑙 . 𝒉 denotes the feature drawn from the last layer of
the bottleneck. It contains rich semantic information to help ASM
distinguish important and unimportant regions. 𝒉 is firstly concate-
nated with style class information 𝒄 to obtain up-sampled hidden
state 𝒉. Then 𝒉 and 𝒙𝑙 are combined to calculate the masks 𝒓𝑙 , 𝒛𝑙
for the reset gate and update gate.W𝑇 ,W𝑟 ,W andW𝑧 represent
parameter matrix of transposed convolution, reset gate, merging
and update gate. The further process is similar to GRU. 𝒙𝑙 combines
two different receptive field features, in other words it blends the
style-stroke of two scales. The equation of gates is shown below,

𝒉 = W𝑇 ∗ [𝒉, 𝒄] ,

𝒓𝑙 = W𝑟 ∗
[
𝒉, 𝒙𝑙

]
,

𝒉𝑙 = 𝑡𝑎𝑛ℎ

(
W ∗

[
𝒓𝑙 ◦ 𝒉, 𝒙𝑙

] )
,

𝒛𝑙 = W𝑧 ∗
[
𝒉, 𝒙𝑙

]
,

𝒙𝑙 = 𝒛𝑙 ◦ 𝒉𝑙 +
(
1 − 𝒛𝑙

)
◦ 𝒉.

(1)

3.3 The Multi-Scale Projection Discriminator
The discriminator is the most important component of GANs,

and it is trained in the game between the generator and itself. The
Discriminator acts as an oil painting connoisseur in our framework,
and its performance directly determines the visual quality of style
transfer results. The existing translation frameworks achieve multi-
domain discriminator in the following two ways: 1) Adding an
auxiliary classifier similar to AC-GAN [29]; 2) Using multiple dis-
criminators [43]. In the first method, the auxiliary classifier works
well at low domain variance, but it is difficult to show good perfor-
mance when the variance is high. In the second method, GANs are
known for its notoriously difficult training, and multiple discrimina-
tors make training more unstable. Takeru Miyato et al. [28] propose
a new conditional generation method for multi-class images syn-
thesis. This method masterly projects the class label information
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into the likelihood and shows the state-of-the-art performance in
the Imagenet [31]. They decompose the adversarial likelihood to
the sum of two components:

D(𝒙𝒐, 𝒄) = 𝒄𝑇 𝑽𝜙 (𝒙𝒐) +𝜓 (𝜙 (𝒙𝒐)), (2)
where 𝑽 denotes an embedding matrix. 𝜙 (·) represents the input
to the last layer of the convolution network part of D.𝜓 (·) is the
FC layers to scale the output.

Inspired by PatchGAN [15], we design a novel discriminator,
called Multi-Scale Projection Discriminator, for extracting the multi-
scale characteristics of oil paintings while achieving the multi-artist
style transfer. Worth mentioning, the multi-scale character of artist
style is exceedingly commonplace in oil paintings. For example,
Van Gogh’s paintings, his paintings have unique overall color and
texture features, and are characterized by neatly arranged short
strokes. The most obvious difference between our Multi-Scale Pro-
jection Discriminator and [15] is that we extend the discriminator
into a multi-scale one that can fuse multiple scale features. It can
capture the style characteristics of an artist’s painting set from
strokes to color schemes. The structure of our discriminator is
shown in Fig. 6. Additionally, as the training process of GANs is
extremely unstable, we apply the Spectral Normalization (SN) [26]
in the Multi-Scale Projection Discriminator, which is able to force
the weights in discriminator to regularize the Lipschitz constant
yielding a stable training process. The mathematical expression of
our Multi-Scale Projection Discriminator is shown below:

D(𝒙𝒐, 𝒄) =
𝑁∑︁
𝑖=0

𝑤𝑖 ·
[
𝒄𝑇 𝑽𝑖𝜙𝑖 (𝒙𝒐) +𝜓𝑖 (𝜙𝑖 (𝒙𝒐))

]
, (3)

where 𝑁 indicates the total number of feature scales of the Multi-
Scale Projection Discriminator,𝑤𝑖 denotes weighting factor of 𝑖-th
output likelihood.

3.4 Objective Function
Perceptual Loss. Generator should try to ensure the semantic
consistency of content while stylization. Most of the existing trans-
lation networks [1, 7, 16, 34, 40] use the pre-trained VGG model
on Imagenet as the calculation function for perceptual loss [1].

However, when painting, the artist thinks about the content of the
painting from an artistic point of view rather than the classification.
Under the constraints of such perceptual loss, the generator can not
realize the artistic reconstruction of the content details. Inspired
by the style-aware content loss [32], we measure the similarity in
content between input image 𝒙𝒄 and stylized 𝒙𝑜 = G(𝒙𝒄 , 𝒄) by a
style-aware content loss. The loss directly uses the Encoder of the
Generator instead of the pre-trained VGG model as the calcula-
tion function for perceptual loss, which makes the Encoder tend
to retain the semantic region related to style. Therefore, our gen-
erator achieves better style transfer performance, but the content
consistency is drastically reduced. This problem is exactly what
our ASM had solved. Transform loss [32] L𝑇 is introduced, as the
extra signal, which initializes training and boosts the learning of
the primary latent space:

L𝐶 = E𝒙𝒄

[
∥E(𝒙𝒄 ) − E(G(𝒙𝒄 , 𝒄))∥ℓ1

]
, (4)

LT = E𝒙𝒄

[
1

𝐶𝐻𝑊
∥T (𝒙𝒄 ) − T (G(𝒙𝒄 , 𝒄))∥ℓ1

]
, (5)

where E is the Encoder of G, T denotes a pooling layer, and𝐶 ,𝐻 ,𝑊
respectively represent channels, height, width of T (·). ∥ · ∥ℓ1 de-
notes L1 loss. Experiments show that compared to perceptual loss,
training with sytle-aware loss can achieve better saturation in the
stylized image.

Adversarial Loss. At the beginning of the training process, the
stylization results are almost the same as the photographs. In or-
der to speed up the discriminator to learn to distinguish between
paintings and photographs, we also add photographs as the fake
samples to the training of discriminator. Furthermore, we intro-
duce the hinge loss [23] instead of WGAN loss [2] as the standard
adversarial loss. Our standard adversarial loss is shown below:

LD = E𝒄
[
E𝒙𝒔 [𝑚𝑎𝑥 (0, 1 − D(𝒙𝒔 , 𝒄))]

]
+ E𝒄

[
E𝒙𝒄 [𝑚𝑎𝑥 (0, 1 + D(𝒙𝒄 , 𝒄))]

]
+ E𝒄

[
E𝒙𝒄

[
𝑚𝑎𝑥 (0, 1 + D(Ĝ(𝒙𝒄 , 𝒄), 𝒄))

] ]
,

(6)

LG = −E𝒄
[
E𝒙𝒄

[
D̂(G(𝒙𝒄 , 𝒄), 𝒄)

] ]
, (7)

where Ĝ and D̂ indicates that the corresponding model parameters
are fixed and no training.

Overall Loss. To summarize, the full objective of our model is:
L(A,G,D) = LG + LD + 𝜆𝐶L𝐶 + 𝜆TLT , (8)

where A indicates the ASM. The weight coefficients: 𝜆𝐶 , 𝜆T are
mainly to balance the magnitude of different loss. We set 𝜆𝐶 =

90, 𝜆T = 100 respectively.

4 EXPERIMENTS
4.1 Implementation details
Structure details. As mentioned above, the framework consists of
the Conditional Generator, the Anisotropic Stroke Module and the
Multi-Scale Projection Discriminator. The Conditional Generator
contains three blocks: the Encoder, the Resblocks and the Decoder.
The Encoder has 1 conv3-stride-1 and 4 conv3-stride-2, where each
convolution layer is followed by an IN [34] and a LeakyRelu. 5 resid-
ual layers [13] and a conditional Resblock are connected in series
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Figure 7: Results produced for different artist style from different style transfer methods, with a fixed content image. We
evaluate the zoomed in cut-out of the same region in all results to compare the variation across different styles and details
stylization effect. More high resolution results can be found in suppl.

to form the Resblocks. The Decoder is composed of 4 upsampling-
conv3 layers and 1 conv3-stride-1 colorization layer. The backbone
network of theMulti-Scale Projection Discriminator is a fully convo-
lutional network with 6 conv5-stride2-SN-LeakyRelu blocks. More
details can be found in suppl.

Training Data. The training data consists of two parts: the
content images are sampled from Places365 [45] and the artistic

style portfolios are collected from the Wiki Art dataset. Optimizer
is Adam optimizer [19] and learning rate is set as 0.0001.

4.2 Stylization Assessment
In order to assess the quality of the stylization results of our frame-
work, we propose two Quantitative metrics: Semantic Retention
Ratio (SRR) and Stylization Accuracy. Actually, style is a relatively
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Figure 8: Comparison of anisotropic semantic preserving effect from Style-Aware, AAMS, AdaIN,WCT and ours. ASM1, ASM2,
ASM3 indicate that ASM is placed in different layers of Generator.

Table 1: User studies scores (𝑚𝑒𝑎𝑛) of different methods, in
terms of the style transfer effect and anisotropic semantic
preserving effect. Preference Score is the final score, it is the
average of the two scores.

Method Preference
Score

Style
Deception
Score

Semantic
Retention
Score

Ours 8.00 7.9 8.1
Style-Aware [32] 7.00 8.5 5.5
Style Swap [7] 5.15 2.7 7.6
WCT [22] 5.95 6.1 5.8
AdaIN [14] 6.15 6.4 5.9
AAMS [40] 6.25 4.6 7.9
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Figure 9: Semantic Retention Ratio histogram of different
methods. The higher the score, the worse the semantic re-
tention of the corresponding method.

abstract concept, it is difficult to use quantitativemetrics for compre-
hensive measurement. Based on this fact, we introduced two types
of user studies, Style Deception Score, Semantic Retention Score, with

reference to [20, 21, 32] to perceptually evaluate the effectiveness
of our algorithm.

Semantic Retention Ratio. This metric is designed to measure
the degree of retention of the input image semantics after styliza-
tion. In fact, the main task of our ASM is to retain discriminative
semantic information. Therefore, SRR can accurately and quantita-
tively evaluate the effectiveness of ASM. The mathematical form of
our SRR is as follows:

𝑆𝑆𝑅 = EΔ𝑥


1

𝑛2

∑︁
𝑖, 𝑗

����� 𝐷
𝒙𝑜
𝑖 𝑗∑

𝑖 𝐷
𝒙𝑜
𝑖 𝑗

−
𝐷
𝒙𝑐
𝑖 𝑗∑

𝑖 𝐷
𝒙𝑐
𝑖 𝑗

����� , (9)

where 𝐷 ·
𝑖 𝑗
denotes the patch of corresponding image, 𝑛 is the total

number of patches.
Stylization Accuracy. We designed the Stylization Accuracy

to evaluate the performance of our Multi artist style transfer. This
metric is measured by an artistic style classifier that is isomorphic
to our discriminator. To avoid overfitting, we collected 11 artists’
paintings to generate more than 105 style patches to train our style
classifier. Finally, the classifier achieves a 91.9% average accuracy
on the paintings dataset.

4.3 Qualitative analysis
Style transfer results.We evaluate our approach with five state-
of-the-art methods: AdaIN [14], Style-Aware [32], AAMS [40], Style
Swap [7] and WCT [22]. Noting that style aware includes two sub-
sequent works [20, 21] and their effects are not much different. For
simplicity, we use style aware to represent this type of method. We
pick the most representative paintings from training style portfo-
lios as the style images to represent the portfolio. By comparing
the zoomed in cut-outs in Fig. 7, our method shows much more
stunning effect than other competitors. The details of the semantic
contents ( e.g the clock on the clock tower) are accurately pre-
served and the characteristic of target styles are vividly maintained.
Although results of Style-Aware have the most prominent style



Single Scale w/o ASM Multi Scale w/o ASM Multi Scale with ASM

Figure 10: Comparison of the Multi-Scale Projection Dis-
criminator and the Single-Scale Projection Discriminator.

characteristics, but details in the results are unrecognizable with
excessive distortion, caused by the coarse granularity. It can be seen
that the example based methods (WCT, AdaIN, Style Swap, AAMS)
cannot effectively learn the characteristics of style. Their results
only show strong tone changes and irregular details distortion. And
these changes strongly depend on the example image.

4.4 Ablation Studies
The indispensable two components of our framework are the ASM
and the Multi-Scale Projection Discriminator. We study the effec-
tiveness of these two modules by individually removing them. First,
by removing the ASM, our model degenerates into a multi-artist
style transfer framework. The degraded model is trained using the
same conditions as described in implementation details section, and
the transfer results are shown in Fig. 8. Compared to other meth-
ods, our approach retains the most complete details. In addition, we
place ASM on different layers in Generator, and use ASM1, ASM2,
and ASM3 to represent 1/2 downsampling, 1/4 downsampling,
and 1/8 downsampling positions, respectively. It can be seen from
the figure that the details of the bench gradually become blurred,
which indicates that ASM can automatically integrate features from
different scales so that our model can automatically use different
stylized strokes in different areas.

Then, we remove the multi-scale style learning module from
the Multi-Scale Projection Discriminator. Using this Single-Scale
Projection Discriminator, we train the model on the portfolios men-
tioned above. The results are shown in Fig. 10. In the figure, the
first column is the stylization result of the Single-Scale Discrim-
inator. Although the results contain some characteristics of the
corresponding style, while its details are over-smooth. It is because
the discriminator lacks the use of shallow features, thus losing the
ability to judge details. The results confirm that multi-scale style
learning module is an indispensable part of our framework. The
above two ablation experiments demonstrate the necessity and
effectiveness of the two modules.

4.5 Quantitative analysis
User study.We use 200 groups of images, each consists of the input
content image, the target style set and 5 results from [7, 14, 32, 40]
and ours. The user studies include two parts in terms of the style
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Figure 11: Our method achieves the best average classifica-
tion accuracy.

transfer effect and anisotropic semantic preserving effect. In the
first study, the participants are asked to score the results by the
degree of style reduction, from 0 to 10 (10 is the best, 0 is the worst),
i.e. Style Deception Score. In the second study, the participants score
the results by the degree of detail retention of the semantic content,
i.e. Semantic Retention Score. We calculate the mean value of two
scores of each method over all participants, as shown in Tab. 1.
The studies show that our multiple artists stylized results achieve
approximate equivalent effect as the stylized results in [32], which
is better than other methods. And our method outperforms others
on the semantic detail retention.

Content Discrepancy. We carefully picked 200 pictures with
abundant semantic information (e.g., portraits, buildings, etc.) from
the Place365 to form the benchmark. We estimate SSR based on
this benchmark. It can be seen from Fig. 9 that style-swap has the
highest score, but its stylization effect is too poor. Our method can
achieve good semantic retention no matter where ASM is placed.

Style Accuracy.We generate 200 result images for each artist’s
style, and measure the Style Accuracy of the stylization by sending
these result images to the style classifier. The higher the accuracy
of the classification result, the closer the class is to the correspond-
ing painting style. However, style is a perceptual concept, so this
indicator can only be used as a reference. The classification results
are shown in Fig. 11.

5 CONCLUSION
In this paper, we propose a novel Multi-Scale Projection Discrimi-
nator, which overcomes the limitation of Single-Scale Projection
Discriminator and gives our discriminator ability to deal with the
multi-scale characteristics of style. Moreover, the ASM is able to
dynamically adjust the strokes based on the semantic information
of the picture. With the help of ASM, our model can retain the vital
semantic information of the picture while transferring the style.
Experimental results demonstrate the effectiveness and delicate
visual performance of our method.
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A CONTENT
In this supplementary material, we elaborate on the specific struc-
tures of the networks used and the training details. We also provide
more generated paintings of different artists style to show the ef-
fectiveness of our method.

The contents are given in the following sequence:
(1) The network structure of ASMA-GAN. This section con-

tains two sub-sections: 1) detailed network structure; 2) The
training strategy of generator and discriminator.

(2) The paintings generated by the single network we proposed
under the style of eleven painters. In this section, we provide
the generation effect of more high-definition and large-size
images.

Images are best viewed in color and zoomed in. Our source code
will be made available soon in Github. And more generated pictures
are in the compressed package.

B IMPLEMENT DETAILS OF ASMA-GAN
B.1 Detailed Network Structure
The structure of ASMA-GAN (mentioned in our paper) is given.
The structure of the generator is shown in Fig. 12. The structure of
the discriminator is shown in Fig. 13.

B.2 Training Strategy.
The three components of our framework are jointly trained. As the
SNs make the discriminator training process become more diffi-
cult. We alternately train the Multi-Scale Projection Discriminator
and the Conditional Generator, where 3 times for the Multi-Scale
Projection Discriminator and once for the Conditionals Generator.
Due to memory limitations, we start training the framework at
the resolution of 2562. After the 105 steps training, we increase

ASMA Generator 𝐺𝐺 𝒈𝒈

323 64 128 256 256Channel

Conv2d+IN+LeakyRelu
Conv2d: ks=3;stride=2.

64

256256 128 64 32 3

DeConv2d+IN+ LeakyRelu
DeConv2d: up-sampe 2 + Conv2d
Conv2d: ks=3;stride=1.

128

…

Resblock
Style label

Conv2d+Tanh

Figure 12: Network structure and parameter details of
ASMA-GAN generator, where ks means the kernel size of
convolution layers.

Multi-scale Discriminator 𝐷𝐷 𝒈𝒈

3 32 64 128 256 256 512

Conv2d+spectral_norm+LeakyRelu
Conv2d: ks=3;stride=2;padding=2.

Conv2d+LeakyRelu
+AdaptiveAvgPool2d
Conv2d: ks=5.

64 32

256 32

32512

label

Embedding+ spectral_norm

Multi-Scale
Weight

Real
Fake

Figure 13: Network structure and parameter details of
ASMA-GAN discriminator.

the resolution to 5122 and continue training 105 steps. Finally, we
increase the resolution to 7682.

C RESULTS OF DIFFERENT STYLE TRANSFER
METHODS

In the text, due to space limitations, we only show the details of the
results of different style transfer methods. In Fig. 15, we provide
the global result images of different methods on the same image of
Munch’s style.

D EXTRA RESULTS OF ASMA-GAN
We provide more generated HD paintings using our method under
eleven artists styles. Each generated image has aminimal side size of
1600 pixels. In Fig. 15 to Fig. 35, we show the results of style transfer
of eleven painter styles using ASMA-GAN. We select multiple types
of pictures including portraits, woods, mountains, and buildings to
show the generalization and flexibility of our method.

For each picture, the name of the picture is corresponding to
the artist, the small picture in the upper left corner is the original
picture, and the small picture in the lower left corner is one of the
representative works of the artist.

From the results, we can see that the proposed ASMA-GAN re-
alizes the style transfer while retaining the anisotropic semantic
information. On one hand, the generated images realistically re-
store the original painter’s style. By enlarging the picture, we can
observe that the proposed method not only changes the color of
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Figure 14: Results produced for different artist style from different style transfer methods.



the picture, but also imitates the stroke of the artists, which is the
really meaning of style. And the differences between the gener-
ated styles of different artists are big by using just single network
we proposed. On the other hand, the semantic information of the

original image is easily discarded because of the excessive transfer
of style. Our proposed method achieves a compromise between
style and content. The content retained in the generated picture is
consistent with the artist’s drawing habits.



Figure 15: Picasso



Figure 16: Samuel



Figure 17: Samuel



Figure 18: Morisot



Figure 19: Munch



Figure 20: Munch



Figure 21: Nicholas



Figure 22: Cezanne



Figure 23: Samuel



Figure 24: Samuel



Figure 25: Vangogh



Figure 26: Morisot



Figure 27: Munch



Figure 28: Munch



Figure 29: Monet
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Figure 32: Samuel



Figure 33: Samuel



Figure 34: vangogh



Figure 35: Vangogh
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