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Abstract

Video Object Segmentation (VOS) is typically formulated
in a semi-supervised setting. Given the ground-truth seg-
mentation mask on the first frame, the task of VOS is to track
and segment the single or multiple objects of interests in the
rest frames of the video at the pixel level. One of the funda-
mental challenges in VOS is how to make the most use of the
temporal information to boost the performance. We present
an end-to-end network which stores short- and long-term
video sequence information preceding the current frame as
the temporal memories to address the temporal modeling in
VOS. Our network consists of two temporal sub-networks
including a short-term memory sub-network and a long-
term memory sub-network. The short-term memory sub-
network models the fine-grained spatial-temporal interac-
tions between local regions across neighboring frames in
video via a graph-based learning framework, which can
well preserve the visual consistency of local regions over
time. The long-term memory sub-network models the long-
range evolution of object via a Simplified-Gated Recurrent
Unit (S-GRU), making the segmentation be robust against
occlusions and drift errors. In our experiments, we show
that our proposed method achieves a favorable and compet-
itive performance on three frequently-used VOS datasets,
including DAVIS 2016, DAVIS 2017 and Youtube-VOS in
terms of both speed and accuracy.

1. Introduction

Video Object Segmentation (VOS) aims to separate the
foreground objects from the backgrounds in all frames of a
video sequence. The common approach casts the problem
into a semi-supervised learning task, i.e., the segmentation
ground truth of the target object in the first frame is provided
and the goal is to infer the segmentation masks of the object
in all other frames [2, 40, 33, 49, 50, 45, 39, 38, 19]. Fast
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Figure 1. Previous methods [33, 21, 5, 38, 47, 37] capture tempo-
ral dependencies in a short-term or long-term video sequence for
VOS (a,b). Our proposed method leverages both short- and long-
term temporal information (c). RNN is short for Recurrent Neural
Network.

and accurate VOS methods are beneficial to many applica-
tions such as video editing [26, 42], object tracking [4 1, 51]
and activity recognition [9].

Modelling the inter-frame temporal correlation is one
of the essential challenges in VOS. Some existing meth-
ods [33, 21, 5] model the short-term consistency of the
object appearance across neighboring frames in the video
(Figure 1 (a)). The predicted mask of the previous frame is
propagated to the current frame either by feature map ag-
gregation or by optical-flow-guided pixel matching. The
major issue with these methods is that they ignore the fine-
grained interactions between local regions over time. In
other words, the spatial regions in the predicted mask of
the previous frames are integrated into the corresponding
spatial regions in the current frame individually without ex-



ploring their spatial-temporal correlations. As a result, lo-
cal prediction errors may easily be propagated and ampli-
fied during temporal modeling, especially at the border of
object regions. Ideally, we need a mechanism to model the
fine-grained spatial-temporal interactions on the local frame
regions, so that the consistency of object can be preserved.

Other works [38, 47, 37] apply Convolutional Recurrent
Unit to capture the evolution of the frame’s convolutional
feature map over a long-term time range, and map the out-
put of the recurrent units into a segmentation map of the
current frame (Figure 1 (b)). These methods can get a long
view of the video sequence preceding the current frame so
that the long-range dynamics of the object can be captured,
making the network be robust against occlusions and drift
errors. Nevertheless, the major issue with these methods is
that the feature maps fed into the recurrent units describe the
holistic frame, which not only unnecessarily involves the
background region into the learning process, but also dra-
matically increases the computational complexity. In fact,
only the object mask regions are needed to model the evo-
lution of object in time.

Motivated by the above issues in VOS, we propose
an end-to-end Dual Temporal Memory Network (DTM-
Net) that stores both short-term and long-term video se-
quence information as memories to assist the segmentation
of a current frame (Figure. 1 (c)). In our network, the
short-term memory sub-network is designed as a spatial-
temporal feature correlation module to capture the fine-
grained inter-frame object appearance consistency. Given
a current frame, we collect a small window of the pre-
ceding frames as its short-term memory. The frame and
its memory frames are respectively encoded into a feature
map in which each spatial location denotes one local region
in the frame and the same feature location across different
frames naturally encodes the evolution of a region across
time. Then a spatial-temporal graph is built over all local re-
gions in which each region is a node and the edges are estab-
lished between regions within a local spatial-temporal win-
dow. The Graph Convolution [18] operation is performed
to update each region feature on the node according to its
relations to others. By doing this, we model the spatial-
temporal consistency of local regions across frames, leading
to an improved segmentation performance.

The long-term sub-network models the evolution of ob-
ject across a long-time range. Given a current frame, we
collect all preceding frames from the beginning of the video
as its long-term memory. Instead of using the convolutional
features of frames in the memory to model the dynamics of
object over time, we propose to pool an object-orientated
feature vector from the object mask on each frame, and ap-
ply the Simplified-Gated Recurrent Unit (S-GRU) to learn a
hidden-state vector to characterize the evolution of the ob-
ject over a long-time range in the memory. This relieves

the distractions of the background regions and significantly
reduces the computational complexity.

The outputs from the short-term and the long-term sub-
networks are sent to the segmentation sub-network as sup-
portive information to perform object segmentation. Exten-
sive evaluations on three benchmark VOS datasets demon-
strate that our DTMNet yields state-of-the-art performance
in terms of both speed and accuracy. Our main contributions
include:

(1) DTMNet for VOS, through which both the short-term
spatial-temporal local region consistency and the long-term
object evolution can be exploited.

(2) A graph-based learning framework to model the
short-term spatial-temporal interactions of the local regions
from neighboring frames in the video.

(3) An object-orientated feature based S-GRU module to
model object evolution over a long-time range.

2. Related Work

Video Object Segmentation. There is a line of research
on unsupervised VOS which leverages visual saliency [ 14,

], point trajectory [3] and motion [32] to segment objects
from the background. Many semi-supervised VOS meth-
ods heavily rely on online fine-tuning on the first-frame
mask to predict the masks on other frames during testing.
OSVOS [2] and its extensions [40] ignore the temporal
dimension and fine-tune a pre-trained fully convolutional
network on the first frame to remember the object appear-
ance. MHP-VOS [49] proposes a novel method called Mul-
tiple Hypotheses Propagation to defer the decision until a
global view can be established. Other methods take fem-
poral information into consideration. MSK [33] and Lu-
cidTracker [21] use the predicted mask of the last frame
as additional input of the current frame. PReMVOS [28]
combines four different sub-networks to achieve impressive
performance. Although online fine-tuning boosts test ac-
curacy, it badly sacrifices running efficiency for practical
applications.

A growing line of research attempts to avoid the time-
consuming online fine-tuning at the expense of a little accu-
racy reduction. VideoMatch [15] explores pixel-level em-
bedding matching. OSMN [50] uses two novel modulators
to capture visual and spatial information of the target object
and injects them into the segmentation branch. FAVOS [4]
utilizes tracking to obtain object bounding boxes and per-
forms segmentation within the boxes. AGAM-VOS [19]
learns a probabilistic generative model to find a representa-
tion of the target and background appearance. Our method
shares the same spirit of not performing online fine-tuning
as these methods, but the key difference is that we design
a dedicated dual temporal memory mechanism to make the
VOS accuracy even higher than some state-of-the-art online
fine-tuning methods (see Table 1).
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Figure 2. Pipeline of the proposed DTMNet for VOS. The network includes three key components: (a) A short-term memory sub-network to
capture the spatial-temporal consistency of local regions over time; (b) A long-term memory sub-network to model the evolution of object
over a long-time range to ensure robustness against occlusions and drift errors; (c) A segmentation sub-network that seamlessly fuses the
short- and long-term memory information and the ground-truth information from the first frame to accurately predict the segmentation

mask.

Temporal Modeling in VOS. Temporal sequence mod-
eling plays an important role in VOS. Some methods try
to model the long-term object dynamics in the video se-
quence using Recurrent Neural Networks (RNNs). RNN
is designed to sequence modeling by propagating and ac-
cumulating a hidden state over time [8, 20]. Gated Re-
current Unit (GRU) [6] and Long Short-Term Memory
(LSTM) [12] are the two classic RNN components, both of
which have been extended to CNNs. The existing methods
introduce ConvLSTM and ConvGRU to model the long-
term temporal dynamics in the video sequence. [37] de-
signs a visual memory module based ConvGRU to cap-
ture the evolution of object mask over times. RVOS [38]
presents a spatial-temporal recurrence module and applies
ConvLSTM as the decoder. [47] proposes a sequence-to-
sequence network by ConvLSTM. Without any RNN unit,
STCNN [46] designs a novel temporal coherence branch
inspired by video predict task, and is also able to model
the long-term dynamics in video. STMN [31] stores the
first, intermediate and previous frame in the memory and

uses them as reference to infer the object mask of the cur-
rent frame. The advantage of modeling long-term temporal
dynamics is to allow the network to get the long view of
the video sequence preceding the current frame, making the
network be robust against occlusions and drift errors.

The other VOS methods model the short-term vi-
sual consistency across neightboring frames in the video.
MSK [33] uses the predicted mask of the last frame as
additional input of the current frame to help with the
mask prediction. RGMP [45] utilizes a Siamese encoder-
decoder network to extract the first, previous and current
feature to propagate the previous predicted mask to current
frame. Optical flow is also commonly used to match the
pixel correspondence between successive frames, through
which the object mask of sequential frames can be esti-
mated [21, 5, 28]. It turns out that modeling short-term vi-
sual consistency is an important prior to enhance the per-
formance of VOS, and is commonly applied in the VOS
works [33, 45,21, 5, 28]. In contrast to these existing meth-
ods, we integrate the long- and short-term temporal model-



ing into a unified framework, and each sub-network in our
network design is dedicated to resolve the issues of the ex-
isting methods.

3. Proposed Method
3.1. Framework Overview

Given a video sequence with ¢ frames Z} = {I,}i_,
and the binary ground-truth mask M; € {0, 1}**" of the
first frame I; with width w and height h, our task is to
predict the segmentation masks of the subsequent frames
7%, denoted as M4 = {M;}!_,. To this end, we de-
velop the DTMNet for VOS, as illustrated by Figure 2. Our
DTMNet is composed of three seamless components: (a) A
short-term memory sub-network; (b) A long-term memory
sub-network and (c) A segmentation sub-network. Among
them, the segmentation module takes full advantages of the
complementary characteristics of the rich supportive infor-
mation provided by the short- and the long-term memory
modules, i.e., good adaptation to appearance changes and
robustness against occlusions and drift errors, thereby en-
abling to predict an accurate segmentation mask.

Specifically, when segmenting video frame I;, we take it
as the query frame and the preceding k frames If:,i with

their masks M.~ as the short-term memories. The frames
I} _, are fed into the backbone network as the encoder to
extract features X! , = {X;}!_, ., where the feature map
X; € Rw*hXd with d channels. Afterwards, as shown in
Figure 2(a), the features X/_, are fed into a spatial-temporal
graph convolutional filtering (GCF) module, generating the
refined features XY/ € R¥*"*d for the query frame I;.
The GCF leverages Laplacian smoothing to compute X7 of
that can be viewed as a low-pass filtering process [24]. The
smoothing makes the features in the same cluster similar,
facilitating the subsequent classification task in the segmen-
tation sub-network.

Meanwhile, as shown by Figure 2(b), we leverage S-
GRU to model the long-term memory that simplifies the
GRU proposed by [6] with only one update gate left. The
output of S-GRU is a d-dimensional hidden-state vector
h,_; € RY that can memorize all object appearances
{x; f;i appearing before frame I, where x; € R¢ denotes
the object representation at frame I;,. The S-GRU updates
its states A L2y hy--- plint ¢ h;_1 incrementally across the
video frames, which can effectively capture the long-range
dynamics of the object that are robust against occlusions
and drifting with less memory overhead.

Finally, as shown in Figure 2(c), the learned hidden-state
vector h;_1 is correlated with the query image features X;
to generate a target-specific attention map Mftt € Rwxh,
which highlights the target-specific region while suppress-
ing other distractors. Then, we concatenate the attention
map M¢* and the GCF features X/’ to further refine the

target-specific features of the query image. Moreover, we
also concatenate features X; and its ground-truth mask My
from the first frame to further strengthen the target-specific
feature representation. Finally, the concatenated features
M @ X9 @& My @ X, are fed into the decoder mod-
ule to produce the final segmentation mask M,, with skip-
connections to fuse multi-scale features of different layers
like U-Net [36].

3.2. Short-term Memory Sub-network

As aforementioned, the short-term memory sub-network
is to model the inter-frame temporal correlation. Previous
works achieve this by propagating the mask from previous
frame to current frame, either by directly concatenating the
previously predicted mask and the current frame [33, 45, 19,

] or depending on the optical-flow guided pixel match-
ing between two sequential frames [13, 5, 37, 27]. How-
ever, the former is easy to introduce noisy backgrounds
into the object regions, especially on the object bound-
aries, leading to sub-optimal accuracy. Although the lat-
ter seems reasonable, there exist two limitations: First, it
is very computationally expensive to estimate optical flows.
Second, estimating optical flows needs to compute point-
to-point mapping between two pixels, which is too restric-
tive [25]. For the high-level feature maps, they involve
both the strength of the responses and their spatial loca-
tions [10], where each feature corresponds to a single site
in the predicted mask. Hence, mask propagation can be im-
plemented via feature propagation. Moreover, due to the
fact that each feature in the high-level feature maps repre-
sents a local region inside the receptive field of the CNN fil-
ter instead of a single image pixel, a linear combination of
these features to implement feature propagation serves well
to model the spatial-temporal interactions between the local
regions across video frames, thereby enabling to well pre-
serve their spatial-temporal consistency across the frames.
Motivated by this analysis, we propose to propagate fea-
tures by spatial-temporal GCF, that is, using graph convolu-
tions to linearly combine spatial-temporal neighbors.

Notations. As shown in Figure 2(a), given the short-term
memory set X/ ., we define the spatial-temporal graph as
G = (V,&,A,X) [44], where V = {v;}¥, denotes the
node set with size N = (k 4+ L)wh, £ = {e;;}];_, is
the edge set, where e;; models the pairwise relations be-
tween any two nodes i and j, A € RV*N is the adja-
cency matrix whose entry A (3, j) is the weight of edge e;;,
X = [x{;...;x%] € RVX9 ig the feature matrix con-
structed by set Xtt_ x> Where x; € R< denotes the feature
representation of node v;.

Sparse Adjacency Matrix A. For each node v; € V,
we construct its edge set {e;;,j € N (i) = N5(1) UN"(i)}
to capture the spatial-temporal interactions of the pair-wise
local regions across video frames, where A/%(4) is an w; x



Figure 3. Laplacian smoothing effect of GCF features. Top: three
query frames selected from sequence pigs in DAVIS 2017 val
dataset [35]; bottom: the corresponding GCF feature responses,
showing that the features of the same object across frames well
preserve spatial-temporal consistency.

hs window centered at node v; at the current frame, N t(i)
denotes an w; x h; window centered at node v; at the next
frame. The number of none-zero edges in £ is N(wshs +
wihy) < N2, leading to a sparse A with less computational
cost. To learn task-specific similarity between nodes 7 and
7 for adaptive graph learning, we define the weight of edge
€i5 aS

A(i, j) = o((Wix;) " (Wax;)), (1)

where 0(2) = 7=,z € R is the sigmoid function,
X;,X; € R? denote node features, Wi, Wy € R™>4 are
learnable weight matrices.

Spatial-temporal GCEF. To perform GCF, we apply the
graph convolutional networks (GCNs) proposed in [23]. We

design one-layer graph convolution in our DTMNet as
z=X%w, 0)

where w € R? denotes the weight vector of the FC layer
and

-

~ 1 . __
X9 =D 2AD °X, (3)

where A = A + 1, I~den0tes the identity matrix, Disa
diagonal matrix with D(i, 1) = 3, A(i, j).

After GCF using (3), the ¢-th node representation x
can be formulated as

gcf

i

Y AG)

D Dy
i=1 y/D()D(, j)

X5 +x;. (4)

It is obvious that x/°/ in (4) is a linear combination of the

nodes in its spatial-temporal neighborhood A/ (7), thereby
expressing feature propagation more accurately than exist-
ing optical-flow-based methods [13, 5, 37, 27] that are lim-
ited by restrictive point-to-point mappings. Moreover, (4) is
a Laplacian smoothing process [24] that calculates the new
features x*/ as the weighted average of its neighboring fea-
tures in N(¢) and itself x;. The smoothing makes the fea-
tures in the same cluster similar that favorably preserves the
spatial-temporal consistency of the segmented object across
frames as illustrated by Figure 3, rendering a great benefit

to the downstream pixel-wise classification task in the seg-
mentation sub-network (§ 3.4).

Semi-supervised Classification. When training our
model, we assume that in set Xff &> the ground-truth masks
Mi:}f are given that correspond to the labeled nodes V; €
V), while the query image mask M is to be propagated from
nodes V;. We leverage a one-layer GCN which applies a
softmax classifier on the output features z in (2)

y = softmax(z). Q)

The loss function is defined as the cross-entropy error over
all the labeled nodes

»Csem - — Zy(z) log(jl(z)), (6)

i€V

where y(i) € {0, 1} denotes the ground-truth label of node
i€V

3.3. Long-term Memory Sub-network

Using short-term memory for VOS can deal with target
appearance changes well. However, it suffers from drifting
problem under challenging scenarios such as severe occlu-
sion or fast motion between sequential frames. To address
this issue, we further develop the S-GRU module to capture
long-term memory information as a complement, as illus-
trated by Figure 2(b).

For frame I,_;, given its features X;_; and segmen-
tation mask M;_;, we first mask out object features as
X:—1 ® M;_1, where ® denotes pixel-wise product. Then,
we feed the object features into a global average pooling
(GAP) layer, yielding

x:—1 = GAP(X;—1 ® My_1), (N

which captures global context information that is robust
against object appearance variations. Next, the S-GRU
leverages x;—1 in (7) and the previous state k;_5 to com-
pute the new state h;_1. The state vector h plays a key role
in S-GRU since it well captures the long-term dynamics of
the object across frames. Then, the learning process is for-
mulated as

2t—1 = o(Wxi_1; he2]),

(8
hi 1 =1—-24-1)Oht_2 +24-1 Ox4_1,

where ® denotes the element-wise multiplication, ¢ is the
sigmoid function, W € R%*24 is a learnable weight matrix.
Different from the ConvGRU [37] that consists of update
and reset gates, our S-GRU in (8) only has update gate z;, 1,
which reduces computational complexity significantly. In
(8), the new state h;_1 is a weighted sum of the current
object representation x;_; and the previous state h;_o that
memorizes the dynamic object appearances across all pre-
vious frames. If the update gate z;_; is close to one, the
memories encoded in h;_o will be forgotten.



Table 1. Comparison of our DTMNet with the state of the arts on DAVIS 2016 val. Red and blue bold fonts indicate the best, the

second-best performance respectively.

Method OL | J&F 1| J Meant J Recallt J Decay | | F Meant F Recallt F Decay | | Time (s) J
MSK [33] v | 776 79.7 93.1 8.9 75.4 87.1 9.0 12
LIP [29] v | 785 78.0 88.6 5.0 79.0 86.8 6.0 -
0OSVOS [2] v | 802 79.8 93.6 14.9 80.6 92.6 15.0 9
Lucid [21] v | 836 84.8 . . 82.3 - - >30
STCNN [46] v | 838 83.8 96.1 4.9 83.8 91.5 6.4 3.9
CINM [1] vV | 842 83.4 94.9 12.3 85.0 92.1 14.7 >30
OnAVOS [40] v | 85 86.1 96.1 5.2 84.9 89.7 5.8 13
OSVOS-S[30] || v | 866 85.6 96.8 5.5 87.5 95.9 8.2 4.5
PReMVOS [28] || v/ | 86.8 84.9 96.1 8.8 88.6 94.7 9.8 >30
MHP-VOS [49] || v/ | 86.9 85.7 96.6 - 88.1 94.8 - >14
VPN [16] X | 619 70.2 823 12.4 65.5 69.0 14.4 0.63
OSMN [50] X | 7135 74.0 87.6 9.0 72.9 84.0 10.6 0.14
VideoMatch [15] || X . 81.0 - - - - - 0.32
FAVOS [4] X | 810 82.4 96.5 4.5 79.5 89.4 55 1.8
FEELVOS [39] || X | 817 81.1 90.5 13.7 82.2 86.6 14.1 0.45
RGMP [45] X | 818 81.5 91.7 10.9 82.0 90.8 10.1 0.13
AGAM-VOS [19] || X | 81.8 81.4 93.6 9.4 82.1 90.2 9.8 0.07
DTMNet X | 854 85.9 96.0 4.7 84.9 92.0 5.7 0.12

Figure 4. Illustration of the target-specific attention maps. The
same query frames are shown in Figure 3, including three pigs (ID
numbers: (D), @), 3) to be segmented.

3.4. Segmentation Sub-network

Figure 2(c) illustrates the architecture of our segmen-
tation sub-network. Similar to U-Net [36], our segmenta-
tion network uses skip-connections to fuse multi-scale fea-
tures from the encoder to the decoder modules. The en-
coder uses the ResNet101 backbone network [11] with di-
lated convolutions to set the stride of the deepest layer to
16. For query frame I, the deepest layer outputs feature
maps X;. Then, we correlate X; with the hidden-state vec-
tor h;_1 learned from the long-term memory sub-network,
yielding the target-specific attention map M = X, Oh;_;.
As illustrated by Figure 4, the learned M?** can effectively
highlight the target-specific regions while suppressing other
distractors such as other objects and backgrounds. Next, af-

ter achieving the GCF features X?°/ from the short-term
memory sub-network, we feed the concatenated features
X9 @ M?* ¢ X, @ My into the decoder. Meanwhile, we
leverage skip-connections to concatenate the feature maps
from the decoder and its counterparts from the encoder,
which are then gradually upscaled by a factor of two at a
time. Afterwards, they are concatenated with the following
layer features. Finally, the aggregated features are fed into a
convolutional layer following a softmax layer to predict the
object mask Mt. As the short-term memory sub-network,
the loss function here is also defined as the cross-entropy
loss for pixel-wise classification task:

Lop=—3_ > M(i,j)logM(i,j), )
t g

where M; € {0,1}*>*" denotes the ground-truth mask of
frame I;.
Finally, the loss function for the whole network training
is defined as
L= ﬁsem + )\ﬁsupa (10)

where L, is defined in (6), A > 0 is a pre-defined trade-
off parameter.

4. Experimental Results
4.1. Implementation Details

Following AGAME-VOS [19], the training process of
our DTMNet is divided into two stages:

Stage 1. Firstly, we train our DTMNet using the Adam
optimizer [22] to minimize the loss £ in (10) on DAVIS



2017 [35] and YouTube-VOS [48] datasets for 80 epochs,
where all training images are resized to 240 x 432 pixels.
Each batch contains 4 videos, where 8 frames are randomly
selected for training in each video. The hyperparameters in
our DTMNet are set empirically as learning rate = le — 4,
learning rate decay = 0.95 and weight decay = 1le — 5.

Stage 2. Next, we fine-tune the trained model at Stage
1 on the same datasets for 100 epochs but the images are
resized to 480 x 864 pixels which is twice the size of the
input images at Stage 1. Each batch contains 2 videos with
randomly selected 5 frames in each video. The parameters
are also set empirically as learning rate = le — 5, learning
rate decay = 0.985 and weight decay = le — 6.

The DTMNet is implemented in Pytorch and an Nvidia
GTX 2080Ti is used for acceleration. All of the training
procedures can be completed within one day.

4.2. Datasets and Evaluation Metrics

Datasets. We train and evaluate the DTMNet on three
VOS benchmark datasets, including DAVIS 2016 [34],
DAVIS 2017 [35] and YouTube-VOS [48]. The DAVIS
2016 is a densely-annotated VOS dataset, which contains 30
training and 20 validation video sequences of high-quality
with 3,455 highly accurate pixel-wise annotation in total.
The DAVIS 2017 enlarges the DAVIS 2016 by introduc-
ing more additional videos with multi-objects. The DAVIS
2017 contains a training set with 60 sequences, a validation
set with 30 sequences, a test-dev set with 30 sequences and
a test-challenge set with 30 sequences. The YouTube-VOS
is the first large-scale VOS dataset, which is more than 30
times larger than existing largest dataset at that time. The
YouTube-VOS consists of 3,471 videos in the training set,
474 videos in the validation set with 65 seen categories, and
26 unseen categories in the training set.

Evaluation Metrics. We use the standard metrics pro-
vided by the DAVIS challenge [35], including the region
similarity 7, contour accuracy J and the mean of the two
metrics J&F. Given the estimated segmentation mask M
and the ground-truth mask M, the region similarity is cal-
[MMm|
[Mum|
by the F-measure F between the contour-based precision P

and recall R as F = 7237;7722

culated as J = The contour accuracy is measured

4.3. Comparison with the State-of-the-arts

We compare our DTMNet with some state-of-the-art
online-learning (OL) VOS methods and some offline ones
on the DAVIS 2016, the DAVIS 2017 and the YouTube-
VOS benchmark datasets. It is worth noting that the our
DTMNet does not resort to any post-processing or OL tech-
nique.

Results on DAVIS 2016. Table 1 lists the evaluation re-
sults on DAVIS 2016 by our DTMNet and 17 state-of-the-

Table 2. Comparison of our DTMNet with the state of the arts on
DAVIS 2017 val.

Method OL | J&F 1 | J Mean T | F Mean 1 | Time (s) |
MSK [33] vV | 543 51.2 573 15
OSVOS [2] v | 603 56.6 63.9 11
LIP [29] v | 611 59.0 63.2
STCNN [46] v | 617 58.7 64.6 6
OnAvVOS [40] || v/ | 654 61.6 69.1 26
0SVOS-S[30] || v/ | 68.0 64.7 713 8
CINM [1] v | 706 67.2 74.0 50
MHP-VOS [49] || v/ | 75.3 71.8 78.8 20
OSMN [50] X | 548 52.5 57.1 0.28
SiamMask [41] || X | 564 543 58.5 0.02
FAVOS [4] X | 582 54.6 61.8 12
VideoMatch [15] || X | 624 56.6 68.2 0.35
RANet [43] X | 657 63.2 68.2 -
RGMP [45] X | 667 64.8 68.6 0.28
AGSS-VOS[27] || X | 674 64.9 69.9 -
AGAM-VOS [19] || X | 700 67.2 727 -
DMM-Net [52] || X | 707 68.1 733 0.13
FEELVOS [39] || X | 716 69.1 74.0 0.51
DTMNet X | 7s 69.1 73.9 0.17

art OL and offline VOS methods in comparison. Among
the offline methods, our DTMNet achieves the best per-
formance in terms of J&F (85.4%), J Mean (85.9%), F
Mean (84.9%) and F Recall (92.0%), the second-best per-
formance with 7 Recall of 96.0%, J Decay of 4.7% and
F Decay of 5.7%. Furthermore, the DTMNet is the first
runner-up with a fast speed of 0.12 s/frame, closely fol-
lowing the AGAM-VOS that runs at 0.07 s/frame. Even
compared with the OL methods, the DTMNet still has a
competing J&F of 85.4%, which is only slightly lower
than the best-performing MHP-VOS with 7&F of 86.9%
by 1.5%. Besides, the DTMNet runs at 0.12 s/frame, which
is much faster than the MHP-VOS at a speed of more than
14 s/frame.

Results on DAVIS 2017. The DAVIS 2017 considers
multi-object scenarios, making it more challenging than the
DAVIS 2016 that is only for single-object segmentation. Ta-
ble 2 lists the comparison results of our DTMNet with 18
state-of-the-art OL and off-line methods. Among them, we
can observe that our DTMNet has the best performance in
terms of J Mean (69.1%), and the second-best J&F of
71.5% and F Mean of 73.9%, closely following the best-
performing FEELVOS in terms of J&JF (71.6%) and F
Mean (74.0%) with only a small gap of 0.1%, but our DTM-
Net runs at 0.17 s/frame on DAVIS 2017 val, which is much
faster than FEELVOS that is 0.51 s/frame. Furthermore, the
DTMNet even outperforms the second best-performing of-
fline method CINM in terms of 7 &F and J Mean by 0.9%
and 1.9%, respectively, demonstrating the effectiveness of



Table 3. Comparison of our DTMNet with the state of the arts on
YouTube-VOS dataset.

Method OL| Gt |Ts M| Fs | Tut| Fu?
MSK [33] v 531599 [595] 450 | 479
OnAvOS [40] || v/ | 552 60.1 | 62.7 | 46.6 | 514
OSVOS [2] v 588|598 | 605 | 542 | 60.7
S28 [47] v | 644|710 | 70.0 | 555 | 61.2
OSMN [50] X [512] 600 | 60.1 | 40.6 | 44.0
DMM-Net [52] || X |51.7| 583 | 60.7 | 41.6 | 46.3
SiamMask [41] || X | 52.8 | 60.2 | 582 | 45.1 | 47.7
RGMP [45] X 538|595 ]| - | 452 -
RVOS [38] X | 568|636 | 672 455 | 51.0
CapsuleVOS [7] || X | 62.3| 67.3 | 68.1 | 53.7 | 59.9
DTMNet X | 656 66.1 | 68.9 | 60.5 | 66.8

the dual temporal memory learning strategy in our DTM-
Net.

Results on YouTube-VOS. The YouTube-VOS com-
putes J and F on seen and unseen categories, denoted as
Ts» Fs» Ju, Fu in Table 3. The seen categories are in-
cluded in both the training and the validation sets while the
unseen categories only exist in the validation set. As listed
by Table 3, our DTMNet achieves the best global mean
G of 65.6%, outperforming the second best-performing
CapsuleVOS (G = 62.3%) by a large margin. Besides,
our DTMNet even outperforms the best-performing offline
method S2S by 1.2% in terms of G. Especially, our DTM-
Net achieves excellent performance on the unseen cate-
gories with J, = 60.5% and F, = 66.8%, signifi-
cantly outperforming the second-best method CapsuleVOS
by 6.8% and 6.9% and even outperforming the best OL
method S2S by 5.0% and 5.6%, respectively. The ex-
perimental results demonstrate the favorable generalization
capability of our DTMNet to unseen categories. We ar-
gue that this is due to the fact that the short-term memory
sub-network learning is guided by the semi-supervised loss

‘[':SGTTL (6)'
4.4. Ablation Study

We compare three variants of our DTMNet, includ-
ing those without long-term memory sub-net (DTMNet-L),
short-term memory sub-net (DTMNet-S) and graph learn-
ing model (DTMNet-W denotes removing the weights in
(1)). We evaluate them on the DAVIS 2016 val and list
their results in Table 4. The DTMNet-S achieves a J of
81.5%, which is lower than the DTMNet by 4.4%, which
verifies the effectiveness of the short-term temporal infor-
mation that can help to boost the accuracy of VOS. More-
over, the DTMNet-L only has a 7 of 71%, which is signif-
icantly lower than the DTMNet by 14.9%. This shows the
key role of the long-term temporal information that makes
the model robust against occlusions and drifting, which sig-

Table 4. Ablative experiments of our DTMNet on DAVIS 2016
val. DTMNet-A, A=S, L, W, denotes the DTMNet without short-
memory, long-memory and graph learning modules, respectively.

Metric || DTMNet | DTMNet-S | DTMNet-L | DTMNet-W
J 85.9 81.5 71 85.2

nificantly affects the performance of our model. Finally, we
can observe that J is dropped from 85.9% to 85.2% when
removing the weights of the adjacency matrix in (1), which
verifies the effectiveness of using graph learning structure
that can also help to boost the performance of our model to
some extent.

4.5. Qualitative Results

Figure 5 shows some qualitatively visual results on
DAVIS 2016, DAVIS 2017 and YouTube-VOS datasets. We
select some challenging videos from these three datasets.
We can observe that our DTMNet still achieves favorable
segmentation results when the targets suffer from various
challenges like fast motion (the first column top), large-
scale variations (the first column bottom and the second
column top) and interacting objects (the second column bot-
tom).

5. Conclusions

In this paper, we have proposed an end-to-end DTMN-
net for VOS which mainly includes a short-term and a
long-term memory sub-networks. The former models the
fine-grained spatial-temporal interactions between local re-
gions across neighboring frames via a graph-based learning
framework, which can well preserve the visual consis-
tency of local regions over time. The latter models the
long-range dynamics of object via an S-GRU, making the
segmentation robust against occlusions and drift errors. Ex-
tensive evaluations on three benchmark datasets including
DAVIS 2016, DAVIS 2017 and YouTube-VOS demon-
strate favorable performance of our method over state-
of-the-art methods in terms of both speed and accuracy.
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