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Maintaining Triangle Queries under Updates
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Abstract

We consider the problem of incrementally maintaining the triangle queries with arbitrary free variables
under single-tuple updates to the input relations.

We introduce an approach called IVMǫ that exhibits a trade-off between the update time, the space,
and the delay for the enumeration of the query result, such that the update time ranges from the square
root to linear in the database size while the delay ranges from constant to linear time.

IVMǫ achieves Pareto worst-case optimality in the update-delay space conditioned on the Online
Matrix-Vector Multiplication conjecture. It is strongly Pareto optimal for the triangle queries with zero
or three free variables and weakly Pareto optimal for the triangle queries with one or two free variables.

Acknowledgements This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 682588.

1 Introduction

In this article we consider the problem of incrementally maintaining triangle queries under single-tuple
updates to the input relations. We introduce an approach to this problem that expresses a trade-off between
the update time, space, and enumeration delay. The update time is the time needed to maintain the data
structure encoding the query result upon a single-tuple update. The space is the overall memory needed by
the used data structure. The enumeration delay is the maximal time needed from starting the enumeration
or reporting one result tuple to reporting the next result tuple or ending the enumeration.

We consider the triangle queries written in FAQ notation [2]. Let R, S, and T be relations that have
schemas (A,B), (B,C), and (C,A), respectively, and are given as functions mapping tuples over their
schemas to tuple multiplicities. The ternary triangle query

△3(a, b, c) = R(a, b) · S(b, c) · T (c, a)

returns each triangle and its multiplicity in the join of the three relations. The binary triangle query

△2(a, b) =
∑

c∈Dom(C)

R(a, b) · S(b, c) · T (c, a)

returns each (A,B)-pair that occurs in a triangle and its multiplicity. The unary triangle query

△1(a) =
∑

b∈Dom(B)

∑

c∈Dom(C)

R(a, b) · S(b, c) · T (c, a)

returns each A-value that occurs in a triangle and its multiplicity. Finally, the nullary triangle query

△0() =
∑

a∈Dom(A)

∑

b∈Dom(B)

∑

c∈Dom(C)

R(a, b) · S(b, c) · T (c, a)
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returns the number of triangles. There are further unary and binary triangle queries, e.g., △1(b) or △2(b, c),
yet they can be treated similarly since the join of the three relations is symmetric in A, B, and C.

The ternary triangle query has served as a milestone for the worst-case optimality of join algorithms in
the centralized and parallel settings. Likewise, the nullary triangle query is a working horse for randomized
approximation schemes for data processing. They showcase the suboptimality of mainstream join algorithms
used currently by virtually all commercial database systems. For a database D consisting of relations R, S,
and T , standard binary join plans implementing these queries may take O(|D|2) time, yet the ternary and

nullary triangle queries can be solved in O(|D|
3
2 ) [32] and respectively O(|D|1.41) time [3]. This observation

motivated a new line of work on worst-case optimal algorithms for arbitrary join queries [32]. Triangle
queries have also served as a yardstick for understanding the optimal communication cost for parallel query
evaluation in the Massively Parallel Communication model [29]. They have witnessed the development of
randomized approximation schemes with increasingly lower time and space requirements [18].

In our prior work we introduced a worst-case optimal approach for incrementally maintaining the exact
result of the nullary triangle query [24]. This article extends that work with an investigation of Pareto
worst-case optimality for the triangle queries in the update-delay space.

Incremental maintenance algorithms may benefit from a range of processing techniques whose com-
binations make it more challenging to reason about optimality. Such techniques include algorithms for
aggregate-join queries with low complexity developed for the non-incremental case [32]; pre-materialization
of views to reduce the maintenance of a query to that of subqueries [26]; and delta processing that allows to
only compute the change to the result instead of the entire result [12].

1.1 Existing Incremental View Maintenance (IVM) Approaches

The problem of incrementally maintaining triangle queries has received a fair amount of attention. We next
discuss the näıve approach, which recomputes the query result from scratch, and several IVM approaches.

We consider the single-tuple update δR = {(α, β) 7→ m} to a binary relation R that maps the tuple (α, β)
to a nonzero multiplicity m, which is positive for inserts and negative for deletes.

The näıve approach incurs constant-time updates: Each update is executed on a relation of the input
database D. Whenever we need the query result, we recompute it in time O(|D|

3
2 ) [3, 32]. The number of

distinct tuples in the result is at most |D|
3
2 [30].

We next exemplify the classical first-order IVM [12] on the nullary triangle query △0 under the aforemen-
tioned single-tuple update δR; all other triangle queries are treated similarly. The classical IVM approach
materializes the query result, computes on the fly a delta query δ△0, and then updates the query result:

δ△0() = δR(α, β) ·
∑

c∈Dom(C)

S(β, c) · T (c, α), △0() = △0() + δ△0().

The delta computation takes O(|D|) time since it needs to intersect two lists of possibly linearly many C-
values that are paired with β in S and with α in T (i.e., the multiplicity of such pairs in S and T is nonzero).
Since the query result is materialized, it can be enumerated with constant delay.

The recursive IVM [26] speeds up the delta computation by precomputing three auxiliary views repre-
senting the update-independent parts of the delta queries:

VST (b, a) =
∑

c∈Dom(C)

S(b, c) · T (c, a)

VTR(c, b) =
∑

a∈Dom(A)

T (c, a) · R(a, b)

VRS(a, c) =
∑

b∈Dom(B)

R(a, b) · S(b, c).

These three views take O(|D|2) space but allow to compute the delta query for single-tuple updates to the
input relations in O(1) time. Computing the delta δ△0() = δR(α, β) · VST (β, α) requires just a constant-
time lookup in VST ; however, maintaining the views VRS and VTR, which refer to R, still requires O(|D|)
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time. The factorized IVM [33] materializes only one of the three views, for instance, VST . In this case, the
maintenance under updates to R takes O(1) time, but the maintenance under updates to S and T still takes
O(|D|) time.

Further exact IVM approaches focus on acyclic conjunctive queries. For free-connex acyclic conjunctive
queries, the dynamic Yannakakis approach allows for enumeration of result tuples with constant delay after
single-tuple updates in linear time [20]. For databases with or without integrity constraints, it is known that
a strict, small subset of the class of acyclic conjunctive queries admit constant-time update, while all other
conjunctive queries have update times dependent on the size of the input database [6, 7].

A line of work relevant to our result unveils structure in the PTIME complexity class by giving lower
bounds on the complexity of problems under various conjectures [19, 39].

Definition 1 (Online Matrix-Vector Multiplication (OMv) [19]). We are given an n× n Boolean matrix M

and receive n column vectors of size n, denoted by v1, . . . ,vn, one by one; after seeing each vector vi, we
output the product Mvi before we see the next vector.

Conjecture 2 (OMv Conjecture, Theorem 2.4 in [19]). For any γ > 0, there is no algorithm that solves
OMv in time O(n3−γ).

The OMv conjecture has been used to exhibit conditional lower bounds for many dynamic problems,
including those previously based on other popular problems and conjectures, such as 3SUM and combinatorial
Boolean matrix multiplication [19]. This also applies to the nullary triangle query: For any γ > 0 and
database of domain size n, there is no algorithm that incrementally maintains the query result under single-
tuple updates with arbitrary preprocessing time, O(n1−γ) update time, and O(n2−γ) answer time, unless
the OMv conjecture fails [6]. All aforementioned prior approaches to maintaining triangle queries do not
meet this (conditional) lower bound and are thus not worst-case optimal.

1.2 Contributions of This Article

This article introduces IVMǫ, an IVM approach for triangle queries with arbitrary free variables that exhibits
a trade-off between the update time, the space, and the enumeration delay.

Theorem 3. Given a database D and ǫ ∈ [0, 1], IVMǫ incrementally maintains the triangle queries under

single-tuple updates to D with O(|D|
3
2 ) preprocessing time and O(|D|max{ǫ,1−ǫ}) amortized update time. The

space complexity and enumeration delay are given in Table 1:

△0 △1 △2 △3

Space O(|D|1+min{ǫ,1−ǫ}) O(|D|1+min{ǫ,1−ǫ}) O(|D|1+min{ǫ,1−ǫ}) O(|D|
3
2 )

Enumeration delay O(1) O(|D|2min{ǫ,1−ǫ}) O(|D|min{ǫ,1−ǫ}) O(1)

Table 1: IVMǫ’s space and enumeration delay for maintaining triangle queries.

The preprocessing time is the time to compute the query result on the initial database before the updates;
if we start with the empty database, then this is O(1). IVMǫ maintains triangle queries with repeating
relation symbols with the same complexities from Theorem 3.

IVMǫ uses a data structure that partitions each input relation based on the degrees of data values. The
degree of an A-value a in relation R is the number of B-values paired with a in R. The degree of B- and
C-values is defined analogously. Depending on whether a combination of relation parts includes data values
with high or low degrees, IVMǫ uses a different maintenance strategy. Thanks to this degree-based adaptive
processing, the overall update time of IVMǫ is kept sublinear. As the database evolves under updates,
IVMǫ needs to rebalance the relation partitions to account for updated degrees of data values. While this
rebalancing may take superlinear time, it remains sublinear per single-tuple update. The overall update time
is therefore amortized.
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Figure 1: IVMǫ’s amortized update time, space, and enumeration delay for maintaining triangle queries. |D|
is the database size. The complexities are parameterized by ǫ. The space and enumeration delay depend
on the arity of the query result. By setting ǫ to 0 or 1, IVMǫ recovers classical first-order IVM. For ǫ = 1

2 ,
IVMǫ computes the ternary triangle query worst-case optimally.

We distinguish two types of relation partitioning. In single partitioning, relations are partitioned based
on the degrees of data values in one column. In double partitioning, relations are partitioned based on the
degrees of data values in two columns. Unary and binary triangle queries require double partitioning to
obtain the complexity results in Theorem 3. For the nullary and ternary triangle queries, single partitioning
suffices to obtain these complexity results. Nevertheless, double partitioning can lower the space complexity
in case of the nullary triangle query, as stated next.

Proposition 4. Given a database D and ǫ ∈ [0, 1], IVMǫ incrementally maintains the nullary triangle query

under single-tuple updates to D with O(|D|
3
2 ) preprocessing time, O(|D|max{ǫ,1−ǫ}) amortized update time,

O(|D|max{1,min{1+ǫ,2−2ǫ}}) space complexity, and O(1) enumeration delay.

For ǫ = 0 and ǫ ≥ 1
2 , the space complexity needed by IVMǫ to maintain the nullary triangle query

becomes linear; its maximum is O(|D|4/3) for ǫ = 1
3 .

As depicted in Figure 1, IVMǫ defines a continuum of maintenance approaches that exhibit a trade-off
between amortized update time, enumeration delay, and space based on the parameter ǫ, which ranges from
0 to 1. We can recover the classical first-order IVM for all triangle queries by setting ǫ to 0 or 1. For ǫ = 1

2 ,

IVMǫ recovers the worst-case optimal time O(|D|
3
2 ) of non-incremental algorithms for computing all tuples

in the result of the ternary triangle query [32]. Whereas these static algorithms are monolithic and require
processing the input data in bulk and joining all relations at once, IVMǫ achieves the same complexity by
inserting |D| tuples one at a time in initially empty relations by using its update mechanism and binary join
plans. Using binary join plans in the static case is suboptimal, since they can lead to intermediate results
that are larger than the final result [32].

The following proposition shows that some combinations of update time and delay in the update-delay
space are not possible, conditioned on the OMv Conjecture 2.

Proposition 5. For any γ > 0 and database D, there is no algorithm that incrementally maintains the
result of any triangle query under single-tuple updates to D with arbitrary preprocessing time, O(|D|

1
2
−γ)

amortized update time, and O(|D|1−γ) enumeration delay, unless the OMv conjecture fails.

Figure 2 visualizes IVMǫ’s trade-offs between space complexity, amortized update time, and enumeration
delay for the maintenance of triangle queries. The preprocessing time is O(|D|

3
2 ) for all triangle queries. The

gray cuboid is infinite in the dimension of space complexity. Each point strictly included in the gray cuboid

4



log|D|delay

log|D|space

log|D|update time

0

1

0.5

1

0.5 1
1.5

△3
△0

A

△2

B

△1

C

ǫ Query
Pareto Amortized Enumeration

optimality update time delay

1
2

△0 and △3 strong (A) O(|D|
1
2 ) O(1)

1
2

△2 weak (B) O(|D|
1
2 ) O(|D|

1
2 )

1
2

△1 weak (C) O(|D|
1
2 ) O(|D|)

Figure 2: (left) IVMǫ’s trade-offs between space complexity, amortized update time, and enumeration delay

for the maintenance of triangle queries. The preprocessing time is O(|D|
3
2 ) for all triangle queries. There

is no algorithm that can maintain a triangle query with update time and enumeration delay representing a
point in the gray cuboid, unless the OMv conjecture fails (Proposition 5). The surface of the gray cuboid
corresponds to Pareto worst-case optimal combinations of amortized update time and enumeration delay.
(right) IVMǫ is strongly Pareto optimal at point A for △0 and △3 and weakly Pareto optimal at point B
and C for △2 and respectively △1. ǫ =

1
2 for points A, B, and C.

corresponds to a combination of some space complexity, O(|D|
1
2
−γ) amortized update time, and O(|D|1−γ)

enumeration delay for γ > 0 (note that γ may be different for update and delay). Due to Proposition 5,
there is no maintenance algorithm for triangle queries that admits a trade-off corresponding to a point in the
gray cuboid, unless the OMv conjecture fails. Each point on the surface of the gray cuboid corresponds to a
Pareto worst-case optimal trade-off between the amortized update time and enumeration delay. For ǫ = 1

2 ,

IVMǫ needs O(|D|
1
2 ) amortized update time and, depending on the query, an enumeration delay such that

the trade-off between these two measures is Pareto optimal. For the nullary and ternary triangle queries,
the delay is O(1) (Point A in Figure 2). IVMǫ is strongly Pareto worst-case optimal for these queries: There
can be no tighter upper bound for any of the update time or delay measures without loosening the upper
bound for the other measure. For the unary and binary triangle queries, the delay is O(|D|) (Point C in

Figure 2) and respectively O(|D|
1
2 ) (Point B in Figure 2). IVMǫ is only weakly Pareto worst-case optimal

for the unary and binary triangle queries: There are no tighter upper bounds for both the update time and
delay measures. Nevertheless, either the update time or the delay may still be lowered for the unary query
without contradicting the OMv conjecture. As for the binary query, only the update time may be lowered,
since the delay is already below the O(|D|) threshold from Proposition 5.

Corollary 6 summarizes the above discussion on the worst-case optimality of IVMǫ.

Corollary 6 (Theorem 3 and Proposition 5). Under a single-tuple update to the database D, IVMǫ with
ǫ = 1

2 is strongly Pareto worst-case optimal for the nullary and ternary triangle queries and weakly Pareto
worst-case optimal for the unary and binary triangle queries in the update-delay space, unless the OMv

conjecture fails.

1.3 Structure of This Article

Section 2 introduces the preliminaries. Sections 3 to 6 introduce IVMǫ for the nullary, ternary, binary,
and unary triangle queries. IVMǫ for the nullary triangle query needs three techniques to achieve the
complexities in Theorem 3: delta processing, materialization of auxiliary views, and adaptive maintenance
strategy depending on the degree of values in one of the columns of the input relations. For the ternary
triangle query IVMǫ additionally uses the concept of view trees. IVMǫ for unary and binary triangle queries
exploits the degree of values in both columns of relations. It also uses two union algorithms: one for
enumerating the distinct tuples in projections of views and one for enumerating the distinct tuples in unions
of views. The lower bound in Proposition 5 is proven in Section 9. Section 10 details how IVMǫ recovers
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existing dynamic and static approaches for triangle queries. Section 11 relates the results of this article to
existing work. Section 12 discusses several extensions of IVMǫ. Conclusion and future work are given in
Section 13.

2 Preliminaries

2.1 Data Model and Query Language

A schemaX = (X1, . . . , Xn) is a tuple of distinct variables. Each variableXi has a discrete domain Dom(Xi).
By F ⊆ X, we mean that F is a schema that consists of a subset of the variables in X. A tuple x over
schema X is an element from Dom(X) = Dom(X1)× . . .×Dom(Xn). We use uppercase letters for variables
and lowercase letters for data values. Likewise, we use bold uppercase letters for schemas and bold lowercase
letters for tuples of data values.

A relation K over schema X is a function K : Dom(X) → Z mapping tuples over X to integers such that
K(x) 6= 0 for finitely many tuples x. A tuple x is in K, denoted by x ∈ K, if K(x) 6= 0. The value K(x)
represents the multiplicity of x in K. The size |K| of K is the size of the set {x | x ∈ K}. A database D is
a set of relations, and its size |D| is the sum of the sizes of the relations in D.

Given a tuple x over schema X and F ⊆ X, we write x[F] to denote the restriction of x onto the
variables in F such that the values in x[F] follow the ordering in F. For instance, if the tuple (a, b, c) is
over the schema (A,B,C), then it holds (a, b, c)[(C,A)] = (c, a). For a relation K over X, and a tuple
t ∈ Dom(F), σF=tK denotes the set of tuples in K that agree with t on the variables in F, that is,
σF=tK = {x | x ∈ K ∧ x[F] = t }. We write πFK to denote the set of restrictions of the tuples in K onto
F, that is, πFK = {x[F] | x ∈ K }.

Query Language We express queries and view definitions in the language of functional aggregate queries
(FAQ) [2]. Compared to the original FAQ definition that uses several commutative semirings, we define
queries over the single commutative ring (Z,+, ·, 0, 1) of integers with the usual addition and multiplication1.
A query Q has one of the two forms:

1. Given a set {Xi}i∈[n] of variables and an index set S ⊆ [n], let XS denote a tuple (Xi)i∈S of variables
and xS denote a tuple of data values over the schema XS . Then,

Q(x[f ]) =
∑

xf+1∈Dom(Xf+1)

· · ·
∑

xn∈Dom(Xn)

∏

S∈M

KS(xS), where:

• M is a multiset of index sets.

• For every index set S ∈ M, KS : Dom(XS) → Z is a relation over the schema XS .

• X[f ] is the tuple of free variables of Q. The variables Xf+1, . . . , Xn are called bound.

2. Q(x) = Q1(x) +Q2(x), where Q1 and Q2 are queries over the same tuple of free variables.

In the following, we use
∑

xi
as a shorthand for

∑
xi∈Dom(Xi)

.

Updates and Delta Queries. An update δK to a relation K is a relation over the schema of K. A
single-tuple update, written as δK = {x 7→ m}, maps the tuple x to the nonzero multiplicity m ∈ Z and
any other tuple to 0; that is, |δK| = 1. The data model and query language make no distinction between

1Previous work shows how the data-intensive computation of different applications can be captured by application-specific
rings [33].
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inserts and deletes – these are updates represented as relations in which tuples have positive and negative
multiplicities2.

Given a query Q and an update δK, the delta query δQ defines the change in the query result after
applying δK to the database. The rules for deriving delta queries follow from the associativity, commutativity,
and distributivity of the ring operations. Recall that relations and queries are functions mapping tuples of
data values to multiplicities.

Query Q(x) Delta query δQ(x)

Q1(x1) ·Q2(x2) δQ1(x1) ·Q2(x2) +Q1(x1) · δQ2(x2) + δQ1(x1) · δQ2(x2)∑
x Q1(x1)

∑
x δQ1(x1)

Q1(x) +Q2(x) δQ1(x) + δQ2(x)

K ′(x) δK(x) when K = K ′ and 0 otherwise

2.2 Data Partitioning

Our maintenance approach partitions each input relation based on the degrees of its values and uses different
maintenance strategies for values of high and low frequency.

Definition 7 (Single Relation Partition). Given a relation K over schema X, a variable X from the schema
X, and a threshold θ, the pair (KH ,KL) of relations is a single partition of K on X with threshold θ if it
satisfies the following conditions:

(union) K(x) = KH(x) +KL(x) for x ∈ Dom(X)

(domain partition) πXKH ∩ πXKL = ∅

(heavy part) for all x ∈ πXKH : |σX=xK
H | ≥ 1

2 θ

(light part) for all x ∈ πXKL : |σX=xK
L| < 3

2 θ

The pair (KH ,KL) is called a strict partition of K on X with threshold θ if it satisfies the union and domain
partition conditions and the following strict versions of the heavy and light part conditions:

(strict heavy part) for all x ∈ πXKH : |σX=xK
H | ≥ θ

(strict light part) for all x ∈ πXKL : |σX=xK
L| < θ

The relations KH and KL are called the heavy and light parts of K.

Definition 7 admits multiple ways to (non-strictly) partition a relation K with threshold θ. For instance,
assume that |σX=xK| = θ for some X-value x in K. Then, all tuples in K with X-value x can be in either
the heavy or light part of K; but they cannot be in both parts because of the domain partition condition. If
the partition is strict, then all such tuples are in the heavy part of K. The strict partition of a relation K
is unique for a given threshold and can be computed in time linear in the size of K.

To improve the time and space complexity of our maintenance approach, we may partition input relations
based on the degrees of values of two variables.

Definition 8 (Double Relation Partition). Given a relation K over schema X, distinct variables X and Y
from the schema X, and a threshold θ, let (KH

X ,KL
X) and (KH

Y ,KL
Y ) be partitions of K on X and respectively

on Y with threshold θ, and let KHH = KH
X ∩KH

Y , KHL = KH
X ∩KL

Y , K
LH = KL

X ∩KH
Y , and KLL=KL

X ∩KL
Y .

The tuple (KHH ,KHL,KLH ,KLL) is a double partition of K on (X,Y ) with threshold θ.

Let (KH ,KL) be a single partition of a relation K on variable X and (KHH ,KHL,KLH ,KLL) a double
partition of K on the pair (X,Y ) with some threshold θ. We say that X is heavy in KH , KHH and KHL

2We restrict the multiplicities of tuples in the input relations and views to be strictly positive. Multiplicity 0 means the
tuple is not present. Deletes are expressed using negative multiplicities. A delete request for tuple t with multiplicity −m is
rejected if t’s multiplicity in the relation is less than m.
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and light in KL, KLH , and KLL. Similarly, Y is heavy in KHH and KLH and light in KHL and KLL.
Observe the following implications of Definitions 7 and 8 to the heavy variables in relation parts. It holds
|σX=xK

H | ≥ 1
2 θ for any X-value x in KH . However, if K ′ ∈ {KHH ,KHL} and x is an X-value in K ′, this

means that |σX=xK| ≥ 1
2θ, but not necessarily |σX=xK

′| ≥ 1
2θ. The same holds for the degrees of Y -values

in KHH and KLH .

Notation. Our maintenance approach focuses on triangle queries and constructs auxiliary views over parts
of relations R, S, and T . We use an indexing scheme for such views to capture which parts of R, S, and
T are used in their definition. We write V rst to denote a view V over the parts of R, S, and T specified
by components r, s, and t, respectively. For component r, H means RH ; L means RL; (HH) means RHH ;
similarly for (HL), (LH), and (LL); and symbol ⊟ means the entire relation R (i.e., the union of all parts of
R). A similar convention holds for s and t .

For example, V HHH denotes a view defined over the heavy parts of R, S, and T ; V ⊟HL denotes a view
defined over R, SH , and TL; V (LH)⊟H denotes a view defined over RLH , S, and TH .

2.3 Computational Model

We consider the RAM model of computation. Each relation (or materialized view) K over schema X

is implemented by a data structure that stores key-value entries (x,K(x)) for each tuple x over X with
K(x) 6= 0 and needs space linear in the number of such tuples. We assume that this data structure supports
(1) looking up, inserting, and deleting entries in constant time, (2) enumerating all stored entries in K with
constant delay, and (3) returning |K| in constant time. For instance, a hash table with chaining, where
entries are doubly linked for efficient enumeration, can support these operations in constant time on average,
under the assumption of simple uniform hashing.

Given a relationK over schemaX and a non-empty schema F ⊂ X, we assume there is an index structure
on F that allows: for any t ∈ Dom(F), (4) enumerating all entries in K matching σF=tK with constant
delay, (5) checking t ∈ πFK in constant time, and (6) returning |σF=tK| in constant time, and (7) inserting
and deleting index entries in constant time. Such an index structure can be realized, for instance, as a hash
table with chaining where each key-value entry stores a tuple t over F and a doubly-linked list of pointers
to the entries in K having the F-value t. Looking up an index entry given a tuple t over schema F takes
constant time on average, and its doubly-linked list enables enumeration of the matching entries in K with
constant delay. Inserting an index entry into the hash table additionally prepends a new pointer to the
doubly-linked list for a given t; overall, this operation takes constant time on average. For efficient deletion
of index entries, each entry in K also stores back-pointers to its index entries (as many back-pointers as
there are index structures for K). When an entry is deleted from K, locating and deleting its index entries
takes constant time per index.

Computation Time Our maintenance approach first constructs a data structure that represents the
result of a given triangle query on a database D and then maintains the data structure under a sequence
of single-tuple updates. In our analysis, we consider the following computation times: (1) the preprocessing
time is the time spent on initializing the data structure using D before any update is received, (2) the update
time is the time spent on updating the data structure after one single-tuple update, and (3) the enumeration
delay is the time spent until reporting the first tuple, the time between reporting two consecutive tuples,
and the time between reporting the last tuple and the end of enumeration. For the nullary triangle query,
the enumeration delay is the time spent on reporting the triangle count. We consider two types of bounds
on the update time: worst-case bounds, which limit the time each individual update takes in the worst case,
and amortized worst-case bounds, which limit the average worst-case time taken by a sequence of updates.
When referring to sublinear time, we mean O(|D|1−γ) for some γ > 0, where |D| is the database size.
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UnionNext(iterators I1, . . . , In) : tuple

1 if (n = 1) return In.Next()

2 if ( (t = UnionNext(I1, . . . , In−1)) 6= EOF )

3 if ( In.Contains(t) )

4 return In.Next()

5 else

6 return t

7 return In.Next()

Figure 3: Given iterators I1, . . . , In over (possibly non-disjoint) sets S1, . . . , Sn, UnionNext enumerates the
distinct elements in

⋃
i∈[n] Si. Each iterator Ii supports two functions: Ii.Next() returns the next element

in Si if it exists and EOF otherwise; and Ii.Contains(t) checks whether element t exists in the set Si.

2.4 Enumeration Algorithms

2.4.1 Iterators over Materialized Views

Each materialized view provides the iterator interface to allow the enumeration of its tuples. Each iterator
maintains a pointer to the last reported tuple and supports two functions: Next() returns the next tuple in
the view with a non-zero multiplicity if it exists or EOF otherwise; Contains(x) checks if a tuple x exists
in the view without altering the iterator’s pointer. The functions Next() and Contains(x) take constant
time. Enumerating all tuples in a view amounts to repeatedly invoking the function Next() on its iterator
until reaching EOF.

2.4.2 Enumerating Unions of Sets

Given possibly non-disjoint sets S1, . . . , Sn the union algorithm enumerates the distinct elements in
⋃

i∈[n] Si [17].
Figure 3 shows the function UnionNext that takes as input the iterators over S1, . . . , Sn and based on the
current iterator states (i.e., iterator pointers), returns the next element in

⋃
i∈[n] Si or EOF if none. The

case n = 1 simply returns the next element in Sn. For n = 2, the algorithm returns elements from S1 only
if they do not exist in S2 (Line 6); otherwise, it returns the next element from S2 (Line 4). The Next call
in Line 4 always succeeds as it is made |S1 ∩ S2| times before exhausting S1. After S1 is exhausted, the
algorithm returns the remaining elements from S2. The case n > 2 is reduced to the binary case by treating⋃

i∈[n−1] Si as the first set and Sn as the second set.

Lemma 9. Let I1, . . . , In be iterators over sets S1, . . . , Sn, respectively, such that each iterator Ii al-
lows lookups in Si in time O(l) and enumeration of the elements in Si with delay O(d). The function
UnionNext(I1, . . . , In) enumerates

⋃
i∈[n] Si with O(nl + nd) delay.

Proof. The case n = 1 follows trivially from the algorithm. We consider the case n = 2. Each element
in S1 − S2 is reported from S1 and all remaining elements from S2; hence, each element from S1 ∪ S2 is
reported exactly once. In the worst case, we need one Contains() call in S2 and two Next() calls before
reporting the next element. Thus, the enumeration delay is O(l + d). The general case n > 2 follows by
simple induction.

An alternative method for enumerating the distinct elements in a union of sets uses skip pointers [7].
This method allows “jumping” over already reported values when iterating over these sets. To capture
this idea, we first introduce the abstraction of a hop iterator, an extension of the classical iterator capable
of invalidating values and omitting them during iteration. We then show how to enumerate the distinct
elements in a union of sets using hop iterators.
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OpenHop( )

1 curr = BOF

NextHop( ): value

1 curr = Hop(C.Next(curr))

2 return curr

IsEmpty( ): bool

1 first = C.Next(BOF)

2 return Hop(first) = EOF

Hop(value x): value

1 if (x ∈ skipTo)

2 return skipTo[x ]

3 return x

HopBack(value x): value

1 if (x ∈ skippedFrom)

2 return skippedFrom [x ]

3 return x

Exclude(value x)

1 if (not C.Contains(x)) return

2 to = Hop(C.Next(x))

3 from = HopBack(x)

4 skipTo[from] = to

5 skippedFrom [to] = from

Figure 4: Hop iterator over a collection C of values with no duplicates. The iterator maintains a pointer
curr to the current value and two initially-empty dictionaries skipTo and skippedFrom mapping values to
values. BOF and EOF represent special values before the first and after the last value in C. The collection
C supports C.Contains(x) for checking the existence of x in C and C.Next(x) for finding the successor
of x in C.

2.4.3 Hop Iterators over Collections

Consider a collection C of values with no duplicates. The collection supports C.Contains(x) for checking
the existence of x in C and C.Next(x) for finding the successor of x in C. An iterator over C allows
enumerating the values in C using the standard Volcano-style Open( ) and Next( ) functions. In addition
to that, a hop iterator can invalidate an arbitrary value x in C using the Exclude(x) function. Such
invalidated values are omitted during iteration. The hop iterator also ensures a constant amount of work
per reported value.

Figure 4 defines the operations of a hop iterator over collection C. The hop iterator maintains a pointer
curr to the current value in C. Upon opening the iterator via OpenHop( ), curr points to before the first
element inC, denoted byBOF. The Next( ) function returns the next valid value from C if it exists or EOF

otherwise. The Exclude(x) procedure invalidates x ∈ C and records this information using dictionaries
skipTo and skippedFrom . The former consists of (x, y) pairs encoding that x is invalid and its next value is
y, while the latter is the inverse dictionary of the former. Exclude(x) computes a range of skipped values
that includes x but potentially also values before and after x, ensuring there are no consecutive ranges of
skipped values. This property guarantees that reporting the next valid value or EOF during iteration takes
constant time.

Lemma 10. Let C be a collection of values with no duplicates that allows lookups in time O(l) and returns
the successor of a value in time O(d). Constructing a hop iterator over C takes constant time, and the hop
iterator can exclude an arbitrary value from C in O(l+ d) time and enumerate the non-excluded values from
C with O(d) delay, using O(|C|) space.

Proof. Figure 4 defines the operations of a hop iterator. OpenHop( ), Hop(x), and HopBack(x) run in
constant time, assuming constant-time dictionary operations over skipTo and skippedFrom . Next( ) looks
for the valid successor of the current value in O(d) time. Exclude(x) checks if x exists in C, finds the
valid successor of x in C, and stores the range of skipped elements in O(l+ d) total time. The iterator state
includes the pointer curr of constant size and two dictionaries, skipTo and skippedFrom , of size at most
the size of C. The pointer curr is initialized to BOF, and the two dictionaries are initially empty. Thus,
constructing the iterator state takes constant time.

2.4.4 Enumerating Unions of Sets using Hop Iterators

We now design an iterator that uses hop iterators to enumerate the distinct elements in the union
⋃

i∈[n] Si

of possibly non-disjoint sets S1, . . . Sn. This union iterator first enumerates the elements from S1, then those
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Iterator state

buckets [i] = iterator over elements of set Si, i ∈ [n]

Ibuckets = iterator over buckets ,

Icurrent = iterator over elements of current bucket

Open( )

1 buckets = allocate iterators for sets {Si}i∈[n]

2 Ibuckets = create iterator over buckets

3 Ibuckets .OpenHop( )

4 Icurrent = Ibuckets .NextHop( )

5 Icurrent .OpenHop( )

Next( ): tuple

1 t = Icurrent .NextHop( )

2 if (t = EOF)

3 Icurrent = Ibuckets .NextHop( )

4 if (Icurrent = EOF) return EOF

5 Icurrrent .OpenHop( )

6 t = Icurrrent .NextHop( )

7 foreach i ∈ CandidateBuckets(t)

8 buckets [i].Exclude(t)

9 if (buckets [i].IsEmpty( ))

10 Ibuckets .Exclude(buckets [i])

11 return t

Figure 5: Iterator for enumerating the distinct elements in the union
⋃

i∈[n] Si of (possibly non-disjoint)

sets S1, . . . , Sn using hop iterators. Each set Si is an iterable collection (bucket) of values. The function
CandidateBuckets parameterizes the iterator and serves to restrict the set of buckets that may contain a
given element t; the default implementation of this function returns the set [n] for any element t.

from S2−S1, then those from S3−S2−S1, and so on. Using classical iterators, this strategy would incur an
enumeration delay linear in the size of these sets. Using hop iterators, however, this strategy can skip over
already reported elements, for example, omit the elements from S2 that also exist in S1 when enumerating
S2 − S1. The enumeration delay in this case would depend on the time needed to exclude a just reported
element from those sets containing that element.

Figure 5 defines the iterator for enumerating the distinct elements in the union of sets S1, . . . Sn. The
iterator state includes a collection of hop iterators, one for each set Si, called buckets, an iterator Ibuckets
over this collection, and an iterator Icurrent denoting the current hop iterator in this collection. The Open( )
procedure allocates the buckets and initializes Icurrent with the hop iterator for S1. The hop iterators are
lazily initialized on their first access to allow Open( ) to run in constant time. The Next( ) function reports
the next valid element using Icurrent . On exhausting the current iterator, Icurrent moves on to the next
bucket if it exists or returns EOF otherwise (Lines 2-6).

For each returned element t, Next( ) also excludes t from all the buckets containing t (Lines 7-10).
The CandidateBuckets(t) function identifies the set of buckets to be examined when excluding t. This
function is a parameter of the union iterator. Its default implementation returns the set [n] for any element
t, as in prior work [7]. However, providing a context-specific implementation of this function may restrict
the number of buckets that need to be examined to exclude t, further improving the enumeration delay, as
demonstrated in Sections 5.4 and 6.4. Excluding t may leave a hop iterator with no valid elements. In this
case, the hop iterator itself is also excluded from the collection of hop iterators (Lines 9-10).

Lemma 11. Let S1, . . . , Sn be collections of elements with no duplicates such that each collection Si allows
lookups in time O(l) and returns the successor of a value in time O(d). Let CandidateBuckets(t) be a
function that returns a set B ⊆ [n] in time O(b), for any value t. Constructing an iterator as per Figure 5
takes constant time, and the iterator can enumerate the elements from

⋃
i∈[n] Si with O(|B|l + |B|d + b)

delay, using O(
∑

i∈[n] |Si|) space.

Proof. Open( ) creates a hop iterator buckets [i] with a unique index i for each collection Si. The hop
iterators form an array with index-based constant-time lookup and successor operations. Each hop iterator
is initialized on its first access. Opening the iterator Ibuckets and getting the first hop iterator from the array
take constant time. Overall, Open( ) runs in constant time.

The Next( ) function gets the next tuple from Icurrent in O(d) time, per Lemma 10 (Lines 1 and 6).
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V

A B

a1 b1
a1 b2
a1 b3
a2 b1
a2 b4
a2 b5
a3 b2
a3 b3
a3 b5
a4 b4
a4 b6

buckets[1]

State after reporting B-values in

V (a1, B) = {b1, b2, b3}

skippedFrom [EOF]

skipTo[b1]

V (a1, B) V (a2, B) V (a3, B) V (a4, B)

b1

b2

b3

b4

b1

b5

b2

b5

b3

EOF

b6

b4

State after reporting B-values in

V (a2, B)− V (a1, B) = {b4, b5}

skippedFrom [V (a4, B)] skipTo[V (a3, B)]

V (a1, B) V (a2, B) V (a3, B) V (a4, B)

b1

b2

b3

b4

b1

b5

b2

b5

b3

EOF

b6

b4

EOF

Figure 6: Using a hop-based iterator to enumerate the distinct B-values from the non-materialized view V
over schema (A,B). Solid arrows represent the successor relationship among the values of V . Dotted and
bold dashed arrows are hops and back hops added by the iterator during the enumeration of the distinct
B-values in πBV .

Moving on to the next bucket if it exists or returning EOF otherwise take constant time (Lines 3-5). The
loop (Lines 7-10) runs |B| times, and each loop iteration takes O(l+d) time to exclude t from a bucket (Line
8), O(d) time to check if the bucket is empty (Line 9), and constant time to exclude that bucket (Line 10),
per Lemma 10. Given that CandidateBuckets runs in O(b) time, Next( ) takes O(|B|l + |B|d+ b) total
time. The overall space complexity directly follows from Lemma 10.

Example 12. We illustrate the iterators for enumerating unions of sets using hop iterators described in
Figures 4 and 5. Given the non-materialized view V with schema (A,B) presented in Figure 6, we show how
a hop-based iterator can enumerate the distinct B-values in πBV . We assume that the set {πBσA=ai

V |
ai ∈ πAV } and each set V (ai, B) = πBσA=ai

V of B-values for i ∈ [4] support the operators Next(x) for
returning the successor of x and Contains(x) for checking the existence of x.

Figure 6 visualizes two states of the hop-based iterator during the enumeration of the distinct B-values
from the given view V . A vertical or horizontal solid arrow from x to y means Next(x) = y. Dotted and
bold dashed arrows visualize hops: a dotted arrow from x to y represents skipTo[x] = y, while a bold dashed
arrow from y to x represents skippedFrom [y] = x.

The B-values are reported in three stages. In Stage 1, the iterator for πBV reports all B-values paired
with a1; in Stage 2, it reports all B-values paired with a2 but not with a1; in Stage 3, it reports all B-values
paired with a4 but not with a1, a2, or a3. Since all B-values paired with a3 are also paired with a1 or a2,
there is no stage for reporting B-values paired with a3. The first state in Figure 6 visualizes the hop iterators
at the end of Stage 1, and the second state shows the hop iterators at the end of Stages 2 and 3. We explain
the three stages in more detail.

Stage 1: The Open procedure from Figure 4 initializes the iterator state by allocating an iterator
buckets[i] for each set in {V (ai, B)}i∈[4] and positioning Ibuckets at buckets [1] and Icurrent before b1 in
the bucket for V (a1, B). The iterator then reports b1, b2, and b3 from V (a1, B) and excludes b1 from
buckets [2], and b2 and b3 from buckets[3] by adding hops to their candidate buckets. At the end of Stage
1, buckets[2] contains skipTo[b1] = b5 and skippedFrom [b5] = b1, and buckets [3] contains skipTo[b2] = b5,
skippedFrom [b5] = b2, skipTo[b3] = EOF, and skippedFrom [EOF] = b3.

Stage 2: The iterator moves Ibuckets to buckets[2] and Icurrent to b4 in V (a2, B). Then, it reports the
values b4 and b5 in V (a2, B) but skips b1 using the hop at this value. It excludes b4 from buckets[4] and b5
from buckets[3]; for the latter, since b5 has a hop back to b2, and its successor b3 has a hop to EOF, the
iterator connects b2 and EOF. Since all the B-values in buckets[3] are now excluded, the iterator excludes
V (a3, B) from Ibuckets.
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Materialized View Definition Space Complexity

△0() =
∑

r,s,t∈{H,L}

∑
a,b,c

Rr(a, b) · Ss(b, c) · T t(c, a) O(1)

VRS(a, c) =
∑

b R
H(a, b) · SL(b, c) O(|D|1+min { ǫ,1−ǫ })

VST (b, a) =
∑

c S
H(b, c) · T L(c, a) O(|D|1+min { ǫ,1−ǫ })

VTR(c, b) =
∑

a T
H(c, a) ·RL(a, b) O(|D|1+min { ǫ,1−ǫ })

Figure 7: The definition and space complexity of the materialized views V = {△0, VRS , VST , VTR} for the
nullary triangle query. The set V is part of an IVMǫ state of a database D partitioned for ǫ ∈ [0, 1].

Stage 3: The iterator Ibuckets skips V (a3, B) and reaches V (a4, B). The iterator then reports b6 while
skipping b4. The value b6 does not appear under other A-value, hence, no hop has to be added. Since the
set of A-values is exhausted, the iterator returns EOF and terminates.

3 Maintaining the Nullary Triangle Query

In this section, we present our strategy for maintaining the nullary triangle query

△0() =
∑

a,b,c

R(a, b) · S(b, c) · T (c, a)

under a single-tuple update. We start with a high-level overview. Consider a database D consisting of three
relations R, S, and T with schemas (A,B), (B,C), and (C,A), respectively. We partition R, S, and T on
variables A, B, and C, respectively, for a given threshold. We then decompose the nullary triangle query
into eight skew-aware views expressed over these relation parts:

△rst
0 () =

∑

a,b,c

Rr(a, b) · Ss(b, c) · T t(c, a), for r, s, t ∈ {H,L}.

The nullary triangle query is then the sum of these skew-aware views: △0() =
∑

r,s,t∈{H,L} △
rst
0 ().

IVMǫ adapts its maintenance strategy to each skew-aware view △rst
0 to allow for amortized update time

that is sublinear in the database size. While most of these views may admit sublinear delta computation
over the relation parts, few exceptions require linear-time maintenance in worst case. For these exceptions,
IVMǫ precomputes the update-independent parts of the delta queries as auxiliary materialized views and
then exploits these views to speed up the delta computation.

One such exception is the view △HHL
0 . Consider a single-tuple update δRH = {(α, β) 7→ m} to the heavy

part RH of relation R, where α and β are fixed data values. Computing the delta view δ△HHL
0 () = δRH(α, β)·∑

c S
H(β, c) · T L(c, α) requires iterating over all the C-values c paired with β in SH and with α in T L; the

number of such C-values can be linear in the size of the database. To avoid this iteration, IVMǫ precomputes
the view VST (b, a) =

∑
c S

H(b, c) · T L(c, a) and uses this view to evaluate δ△HHL
0 () = δRH(α, β) · VST (β, α)

in constant time.
Such auxiliary views, however, also require maintenance. All such views created by IVMǫ can be main-

tained in sublinear time under single-tuple updates to the input relations. Figure 7 summarizes these views
used by IVMǫ to maintain the nullary triangle query: VRS , VST and VTR. They serve to avoid linear-time
delta computation for updates to T , R, and S, respectively. IVMǫ also materializes the result of the nullary
triangle query, which ensures constant enumeration delay.

We now describe our strategy in detail. We start by defining the state that IVMǫ initially creates and
maintains upon each update. Then, we specify the procedure for processing a single-tuple update to any input
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relation, followed by the space complexity analysis of IVMǫ. Section 7 gives the procedure for rebalancing
the partitions after a sequence of such updates.

Definition 13 (IVMǫ State). Let D = {R,S, T } be a database, △ a triangle query and ǫ ∈ [0, 1]. An IVMǫ

state of D supporting the maintenance of △ is a tuple Z = (ǫ,N,P,V), where:

• N is a natural number such that the size invariant
⌊
1
4N

⌋
≤ |D| < N holds. N is called the threshold

base.

• P = R∪ S ∪ T where R, S, and T are partitions of the database relations R, S, and T , respectively,
with threshold θ = N ǫ.

• V is a set of materialized views.

The initial state Z of D has N = 2 · |D|+ 1 and the three partitions R, S, and T are strict.

By construction, |P| = |D|. The size invariant implies |D| = Θ(N) and, together with the heavy and
light part conditions, it facilitates the amortized analysis of IVMǫ in Section 8.

For the nullary triangle query, the IVMǫ state has: the partitions P = {RH, RL, SH , SL, TH, T L} of R, S,
and T on variables A, B, and C; and the set of materialized views V = {△0, VRS , VST , VTR} as defined in
Figure 7. Definition 7 provides two essential upper bounds for each relation partition in an IVMǫ state: The
number of distinct A-values in RH is at most N

1
2
Nǫ = 2N1−ǫ, that is, |πAR

H | ≤ 2N1−ǫ, and the number of

tuples in RL with an A-value a is less than 3
2N

ǫ, that is, |σA=aR
L| < 3

2N
ǫ, for any a ∈ Dom(A). The same

bounds hold for B-values in {SH , SL} and C-values in {TH, T L}.

3.1 Preprocessing Stage

The preprocessing stage for the nullary triangle query constructs the initial IVMǫ state given a database D

and ǫ ∈ [0, 1].

Proposition 14. Given a database D and ǫ ∈ [0, 1], constructing the initial IVMǫ state of D supporting the

maintenance of the nullary triangle query takes O(|D|
3
2 ) time.

Proof. We analyze the time to construct the initial state Z = (ǫ,N,P,V) of D. Retrieving the size |D| and
computing N = 2 · |D| + 1 take constant time. Strictly partitioning the input relations from D using the
threshold N ǫ, as described in Definition 7, takes O(|D|) time. Computing the result of the nullary triangle

query on D (or P) using the algorithms Leapfrog TrieJoin or Recursive-Join takes O(|D|
3
2 ) time [32].

Computing the auxiliary views VRS , VST , and VTR takes O(|D|1+min{ǫ,1−ǫ}) time, as shown next. Consider
the view VRS(a, c) =

∑
b R

H(a, b) · SL(b, c). To compute VRS , one can iterate over all (a, b) pairs in RH and
then find the C-values in SL for each b. The relation part SL contains at most N ǫ distinct C-values for
any B-value, which gives an upper bound of |RH | · N ǫ on the size of VRS . Alternatively, one can iterate
over all (b, c) pairs in SL and then find the A-values in RH for each b. The relation part RH contains at
most N1−ǫ distinct A-values, which gives an upper bound of |SL| ·N1−ǫ on the size of VRS . The number of
steps needed to compute this result is upper-bounded by min{ |RH| · N ǫ, |SL| · N1−ǫ } < min{N · N ǫ, N ·
N1−ǫ } = N1+min{ǫ,1−ǫ}. From |D| = Θ(N) follows that computing VRS on the database partition P takes
O(|D|1+min{ǫ,1−ǫ}) time; the analysis for VST and VTR is analogous. Note that maxǫ∈[0,1]{1+min{ǫ, 1−ǫ}} =
3
2 . Overall, the initial state Z of D can be constructed in O(|D|

3
2 ) time.

The preprocessing stage of IVMǫ happens before any update is received. In case we start from an empty
database, the preprocessing cost of IVMǫ is O(1).
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3.2 Space Complexity

We analyze the space complexity of the IVMǫ maintenance strategy for the nullary triangle query.

Proposition 15. Given a database D and ǫ ∈ [0, 1], an IVMǫ state of D supporting the maintenance of the
nullary triangle query takes O(|D|1+min{ǫ,1−ǫ}) space.

Proof. We consider a state Z = (ǫ,N,P,V) of database D. N and ǫ take constant space and |P| = |D|.
Figure 7 summarizes the space complexity of the materialized views △0, VRS , VST , and VTR from V.
The result of △0 takes constant space. As discussed in the proof of Proposition 14, to compute the view
VRS(a, c) =

∑
b R

H(a, b) · SL(b, c), we can use either RH or SL as the outer relation:

|VRS | ≤ min{ |RH| · max
b∈πBSL

|σB=bS
L|, |SL| · max

b∈πBRH
|σB=bR

H | } < min{N ·
3

2
N ǫ, N · 2N1−ǫ }

The size of VRS is thus O(N1+min{ǫ,1−ǫ}). From |D| = Θ(N) follows that VRS takesO(|D|1+min{ǫ,1−ǫ}) space;
the space analysis for VST and VTR is analogous. Overall, the state Z of D supporting the maintenance of
the nullary triangle query takes O(|D|1+min{ǫ,1−ǫ}) space.

3.3 Processing a Single-Tuple Update

We describe the IVMǫ strategy for maintaining the nullary triangle query under a single-tuple update to
the relation R. This update can affect either the heavy or light part of R partitioned on A, hence we write
δRr, where r stands for H or L. We can check in constant time whether the update affects RH or RL (cf.
computational model in Section 2.3). The update is represented as a relation δRr = { (α, β) 7→ m }, where
α and β are data values and m ∈ Z. Due to the symmetry of the nullary triangle query and auxiliary views,
updates to S and T are handled similarly.

Figure 8 gives the procedure ApplyUpdate that takes as input a current IVMǫ state Z and the update
δRr, and returns a new state that results from applying δRr to Z. The procedure computes the deltas
of the skew-aware views referencing Rr, which are δ△rHH

0 (Line 3), δ△rHL
0 (Line 4), δ△rLH

0 (Line 5), and
δ△rLL

0 (Line 6), and uses these deltas to maintain the nullary triangle query (Line 7). These skew-aware
views are not materialized, but their deltas facilitate the maintenance of the nullary triangle query. If the
update affects the heavy part RH of R, the procedure maintains VRS (Line 9) and RH (Line 12); otherwise,
it maintains VTR (Line 11) and RL (Line 12). The view VST remains unchanged as it has no reference to
RH or RL.

Figure 8 also gives the time complexity of computing these deltas and applying them to Z. This com-
plexity is either constant or dependent on the number of C-values for which matching tuples in the parts of
S and T have nonzero multiplicities.

Proposition 16. Given a database D, ǫ ∈ [0, 1], and an IVMǫ state Z of D supporting the mainte-
nance of the nullary triangle query, IVMǫ maintains Z under a single-tuple update to any input relation
in O(|D|max{ǫ,1−ǫ}) time.

Proof. We analyze the running time of the procedure from Figure 8 given a single-tuple update δRr =
{(α, β) 7→ m} and a state Z = (ǫ,N,P,V) of D. Since the query and auxiliary views are symmetric, the
analysis for updates to S and T is similar.

We first analyze the evaluation strategies for the deltas of the skew-aware views △rst
0 :

• (Line 3) Computing δ△rHH
0 requires summing over C-values (α and β are fixed). The minimum

degree of each C-value in TH is 1
2N

ǫ, which means the number of distinct C-values in TH is at most
N

1
2
Nǫ = 2N1−ǫ. Thus, this delta evaluation takes O(N1−ǫ) time.

• (Line 4) Computing δ△rHL
0 requires constant-time lookups in δRr and VST .
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ApplyUpdate(update δRr, state Z ) Time

1 let δRr = {(α, β) 7→ m}

2 let Z = (ǫ,N, {RH, RL, SH , SL, TH , T L}, {△0, VRS , VST , VTR})

3 δ△rHH
0 () = δRr(α, β) ·

∑
c S

H(β, c) · TH(c, α) O(|D|1−ǫ)

4 δ△rHL
0 () = δRr(α, β) · VST (β, α) O(1)

5 δ△rLH
0 () = δRr(α, β) ·

∑
c S

L(β, c) · TH(c, α) O(|D|min {ǫ,1−ǫ})

6 δ△rLL
0 () = δRr(α, β) ·

∑
c S

L(β, c) · T L(c, α) O(|D|ǫ)

7 △0() = △0() + δ△rHH
0 () + δ△rHL

0 () + δ△rLH
0 () + δ△rLL

0 () O(1)

8 if (r is H)

9 VRS(α, c) = VRS(α, c) + δRH(α, β) · SL(β, c) O(|D|ǫ)

10 else

11 VTR(c, β) = VTR(c, β) + TH(c, α) · δRL(α, β) O(|D|1−ǫ)

12 Rr(α, β) = Rr(α, β) + δRr(α, β) O(1)

13 return Z

Total update time: O(|D|max{ǫ,1−ǫ})

Figure 8: (left) Maintaining the nullary triangle query under a single-tuple update. ApplyUpdate takes as
input an update δRr to one of the parts RH and RL of relation R, hence r ∈ {H,L}, and the current IVMǫ

state Z of a database D partitioned using ǫ ∈ [0, 1]. It returns a new state that results from applying δRr

to Z. Lines 3-6 compute the deltas of the affected skew-aware views, and Line 7 maintains △0. Lines 9 and
11 maintain the auxiliary views VRS and VTR, respectively. Line 12 maintains the affected part Rr. (right)
The time complexity of computing and applying deltas. The evaluation strategy for computing δ△rLH

0 in
Line 5 may choose either SL or TH to bound C-values, depending on ǫ. The total time is the maximum of
all individual times. The maintenance procedures for S and T are similar.

• (Line 5) Computing δ△rLH
0 can be done in two ways, depending on ǫ: either sum over at most 2N1−ǫ

C-values in TH for the given α or sum over at most 3
2N

ǫ C-values in SL for the given β. This delta

computation takes at most min{2N1−ǫ, 3
2N

ǫ} constant-time operations, thus O(Nmin {ǫ,1−ǫ}) time.

• (Line 6) Computing δ△rLL
0 requires summing over at most 3

2N
ǫ C-values in SL for the given β. This

delta computation takes O(N ǫ) time.

Maintaining the nullary triangle query using these deltas takes constant time (Line 7). The views VRS and
VTR are maintained for updates to distinct parts of R. Maintaining VRS requires iterating over at most 3

2N
ǫ

C-values in SL for the given β (Line 9); similarly, maintaining VTR requires iterating over at most 2N1−ǫ

C-values in TH for the given α (Line 11). Finally, maintaining the part of R affected by δRr takes constant
time (Line 12). The total update time is O(max{1, N ǫ, N1−ǫ, Nmin{ǫ,1−ǫ}}) = O(Nmax{ǫ,1−ǫ}). From the
invariant |D| = Θ(N) follows the claimed time complexity O(|D|max{ǫ,1−ǫ}).

3.4 Improving Space by Double Partitioning

We show how the space complexity of maintaining △0 can be improved to O(|D|max{1,min{1+ǫ,2−2ǫ}}) by
double partitioning each input relation (cf. Proposition 4). This partitioning strategy allows us to obtain
tighter bounds on the sizes of the materialized views. For ǫ = 0 and ǫ ≥ 1

2 , the space complexity becomes

linear; for ǫ = 1
3 it reaches its maximum O(|D|4/3). Recall that the maximum space complexity under single

partitioning is O(|D|3/2) (Proposition 15).
We double partition the input relations R, S, and T on (A,B), (B,C), and (C,A), respectively, with the
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Materialized View Definition Space Complexity

△0() =
∑

r,s,t∈{H,L}2

∑
a,b,c

Rr(a, b) · Ss(b, c) · T t(c, a) O(1)

VRS(a, c) =
∑

b R
HL(a, b) · SLH(b, c) O(|D|min{1+ǫ,2−2ǫ})

VST (b, a) =
∑

c S
HL(b, c) · T LH(c, a) O(|D|min{1+ǫ,2−2ǫ})

VTR(c, b) =
∑

a T
HL(c, a) ·RLH(a, b) O(|D|min{1+ǫ,2−2ǫ})

Figure 9: The definition and space complexity of the materialized views for the nullary triangle query under
double partitioning. The set of views are part of an IVMǫ state of database D partitioned for ǫ ∈ [0, 1].

threshold N ǫ. We decompose the nullary triangle query into a union of skew-aware views:

△rst
0 () =

∑

a,b,c

Rr(a, b) · Ss(b, c) · T t(c, a), for r, s, t ∈ {H,L}2.

Figure 9 gives the definitions of the materialized views under double partitioning. Under this refined
partitioning strategy, each of the auxiliary views VRS , VST , and VTR has both of its free variables heavy in
one of the relation parts defining the view. For instance, the view VRS has the free variable A heavy in RHL

and the free variable C heavy in SLH .
The IVMǫ state supporting the maintenance of the nullary triangle query under double partitioning has

the partitions P = {Rr, Ss, T t}r,s,t∈{H,L}2 of R, S, and T on (A,B), (B,C), and (C,A), respectively; and
the materialized views V = {△0, VRS , VST , VTR} defined in Figure 9.

The complexity analysis of maintaining the nullary triangle query under double partitioning is similar
to that from the proofs of Propositions 14, 15, and 16. The preprocessing time and the maintenance time
under a single-tuple update are the same as in the case of single partitioning. But the space complexity
under double partitioning is improved.

Proposition 17. Let D be a database and ǫ ∈ [0, 1].

• The initial IVMǫ state with double partitioning for the maintenance of the nullary triangle query can
be constructed in O(|D|

3
2 ) time.

• Any IVMǫ state with double partitioning for the maintenance of the nullary triangle query takes
O(|D|max{1,min{1+ǫ,2−2ǫ}}) space.

Proof. Consider an IVMǫ state Z = (ǫ,N,P,V) of D with double partitioning. Assume first that Z is the
initial IVMǫ state. We analyze the time to construct Z. Retrieving the database size |D| and computing
N = 2 · |D| + 1 take constant time. For each input relation, strictly partitioning on both variables and
then intersecting the relation parts to form the double partition (see Definition 8) take linear time. Thus,
computing the partitions from P takes linear time. The materialized views in V can be computed in time
O(N

3
2 ) using the same strategies as in the proof of Proposition 14 and treating R, S, and T as partitioned

only on A, B, and C, respectively.
Now, assume that Z is any IVMǫ state of D. We investigate its space complexity. The components

ǫ and N need constant space, and |P| = |D|. Figure 9 gives the definition and space complexity of each
materialized view from V. The size of △0 is constant.

We analyze the space complexity of the view VRS(a, c) =
∑

b R
HL(a, b) · SLH(b, c). From the proof of

Proposition 15 follows that the size of VRS under single partitioning is bounded by O(N1+min{ǫ,1−ǫ}). The
double partitioning of R and S tightens this upper bound. Since A is heavy in RHL and C is heavy in
SLH , the number of (A,C)-values in the result of VRS is bounded by 2N1−ǫ · 2N1−ǫ = 4N2−2ǫ. Then, the
size of VRS is O(min{N1+min{ǫ,1−ǫ}, N2−2ǫ}), which simplifies to O(Nmin{1+ǫ,2−2ǫ}) since 2− 2ǫ ≤ 2− ǫ for
ǫ ∈ [0, 1]. The analyses for VST and VTR are similar.
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Considering all the components of state Z, the size of Z is O(max{1, N,Nmin{1+ǫ,2−2ǫ}}), which simplifies
to O(Nmax{1,min{1+ǫ,2−2ǫ}}).

From |D| = Θ(N) follows the claimed preprocessing time and space complexity.

Proposition 18. Given a database D, ǫ ∈ [0, 1], and an IVMǫ state Z of D supporting the maintenance
of the nullary triangle query with double partitioning, IVMǫ maintains Z under a single-tuple update to any
input relation in O(|D|max{ǫ,1−ǫ}) time.

Proof. Consider an IVMǫ state Z = (ǫ,N,P,V) and an update δRr = {(α, β) 7→ m}, for r ∈ {H,L}2. Most
deltas of the skew-aware views can be computed in time O(Nmax{ǫ,1−ǫ}) using the same strategies as in the
proof of Proposition 16 and treating the relations as single partitioned. The refined partitioning strategy
splits the problematic case involving SH and T L into new cases involving SHH and SHL on one side and T LH

and T LL on the other side. We next analyze the complexity of computing the deltas in these four cases:

• Computing δ△
r(HH)(LH)
0 and δ△

r(HH)(LL)
0 requires summing over at most 2N1−ǫ C-values paired with

β in SHH ; thus, computing these deltas takes O(N1−ǫ) time.

• Computing δ△
r(HL)(LL)
0 requires summing over less than 3

2N
ǫ C-values paired with α in T LL; thus,

computing this delta takes O(N ǫ) time.

• Computing δ△
r(HL)(LH)
0 requires a constant-time lookup in the view VST from Figure 9.

From |D| = Θ(N) follows that Z can be maintained in time O(|D|max{ǫ,1−ǫ}) under the single-tuple
update δRr. The analyses for updates to S and T are analogous.

3.5 Summing Up

Materializing the query result in the IVMǫ state ensures constant-delay enumeration of the result. Then,
our main result in Theorem 3 for the nullary triangle query follows from Propositions 14, 15, and 16 shown
in the previous subsections, complemented by Proposition 33, which shows that the amortized rebalancing
time is O(|D|max{ǫ,1−ǫ}).

Proposition 4, which gives an improved space complexity for the maintenance of the nullary triangle
query using double partitioning, follows from Propositions 17, 18, and 33.

4 Maintaining the Ternary Triangle Query

We now focus on the maintenance of the ternary triangle query

△3(a, b, c) = R(a, b) · S(b, c) · T (c, a)

under a single-tuple update. We employ a similar adaptive maintenance strategy as with the nullary triangle
query. We first partition the relations R, S, and T on variables A, B, and C, respectively, with the threshold
N ǫ. We then decompose △3 into skew-aware views defined over the relation parts:

△HHH
3 (a, b, c) = RH(a, b) · SH(b, c) · TH(c, a),

△LLL
3 (a, b, c) = RL(a, b) · SL(b, c) · T L(c, a),

△⊟HL
3 (a, b, c) =

∑

r∈{H,L}

Rr(a, b) · SH(b, c) · T L(c, a),

△L⊟H
3 (a, b, c) =

∑

s∈{H,L}

RL(a, b) · Ss(b, c) · TH(c, a),

△HL⊟

3 (a, b, c) =
∑

t∈{H,L}

RH(a, b) · SL(b, c) · T t(c, a).
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Materialized View Definition Space Complexity

△HHH
3 (a, b, c) = RH(a, b) · SH(b, c) · TH(c, a) O(|D|

3
2 )

△LLL
3 (a, b, c) = RL(a, b) · SL(b, c) · T L(c, a) O(|D|

3
2 )

View tree for △HL⊟

3 (a, b, c) =
∑

t∈{H,L} R
H(a, b) · SL(b, c) · T t(c, a)

VRS(a, b, c) = RH(a, b) · SL(b, c) O(|D|1+min { ǫ,1−ǫ })

V̂RS(a, c) =
∑

b VRS(a, b, c) O(|D|1+min { ǫ,1−ǫ })

V HL⊟(a, c) =
∑

t∈{H,L} V̂RS(a, c) · T t(c, a) O(|D|)

View tree for △⊟HL
3 (a, b, c) =

∑
r∈{H,L} R

r(a, b) · SH(b, c) · T L(c, a)

VST (b, c, a) = SH(b, c) · T L(c, a) O(|D|1+min { ǫ,1−ǫ })

V̂ST (b, a) =
∑

c VST (b, c, a) O(|D|1+min { ǫ,1−ǫ })

V ⊟HL(a, b) =
∑

r∈{H,L} R
r(a, b) · V̂ST (b, a) O(|D|)

View tree for △L⊟H
3 (a, b, c) =

∑
s∈{H,L} R

L(a, b) · Ss(b, c) · TH(c, a)

VTR(c, a, b) = TH(c, a) ·RL(a, b) O(|D|1+min { ǫ,1−ǫ })

V̂TR(c, b) =
∑

a VTR(c, a, b) O(|D|1+min { ǫ,1−ǫ })

V L⊟H(b, c) =
∑

s∈{H,L} S
s(b, c) · V̂TR(c, b) O(|D|)

View tree for △HL⊟

3

V HL⊟(a, c)

V̂RS(a, c)
∑

t∈{H,L}

T t(c, a)

VRS(a, b, c)

RH(a, b) SL(b, c)

View tree for △⊟HL
3

V ⊟HL(a, b)

V̂ST (b, a)
∑

r∈{H,L}

Rr(a, b)

VST (b, c, a)

SH(b, c) T L(c, a)

View tree for △L⊟H
3

V L⊟H(b, c)

V̂TR(c, b)
∑

s∈{H,L}

Ss(b, c)

VTR(c, a, b)

TH(c, a) RL(a, b)

Figure 10: (top) The materialized viewsV = {△HHH
3 ,△LLL

3 , VRS , V̂RS , V
HL⊟, VST , V̂ST , V

⊟HL, VTR, V̂TR, V
L⊟H}

supporting the maintenance of the ternary triangle query. The set V is part of an IVMǫ state of database D.
The views △HHH

3 and △LLL
3 are materialized, while the views △HL⊟

3 , △⊟HL
3 , and △L⊟H

3 allow for enumeration
with constant delay using their auxiliary views denoted by indentation. (bottom) The view trees supporting
the maintenance and enumeration of the results of △HL⊟

3 , △⊟HL
3 , and △L⊟H

3 .

The result of △3 is the union of the disjoint results of these skew-aware views. To enumerate the result of
△3, we can thus enumerate the results of these views one after the other.

As with the nullary triangle query, IVMǫ customizes the maintenance strategy for each of these skew-
aware views and relies on auxiliary views to speed up the view maintenance.

The IVMǫ strategy for the nullary triangle query, however, fails to achieve sublinear maintenance time
for most of these skew-aware views. Consider for instance the view △⊟HL

3 and a single-tuple update δRH =
{(α, β) 7→ m} to the heavy part RH of relation R. The delta δ△⊟HL

3 (α, β, c) = δRH(α, β) ·SH(β, c) ·T L(c, α)
iterates over linearly many C-values in the worst case. Precomputing the view VST (b, c, a) = SH(b, c)·T L(c, a)
and rewriting the delta as δ△⊟HL

3 (α, β, c) = δRH(α, β) ·VST (β, c, α) makes no improvement in the worst-case
running time. In contrast, for the nullary triangle query, the view VST (b, a) = SH(b, c) · T L(c, a) enables
computing δ△HHL

0 in constant time.
The skew-aware views of the ternary triangle query can be maintained in sublinear time by avoiding
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the listing (tabular) form of the view results. For that purpose, the result of a skew-aware view can be
maintained in factorized form: Instead of using one materialized view, a hierarchy of materialized views
is created such that each of them admits sublinear maintenance time and all of them together guarantee
constant-delay enumeration of the result of the skew-aware view. Factorized evaluation has been previously
used in the context of incremental view maintenance [6, 20, 33].

Figure 10 (top) presents the views used by IVMǫ to maintain the ternary triangle query under updates
to the base relations. The results of the skew-aware views △HHH

3 and △LLL
3 are materialized in listing

form. The remaining skew-aware views △HL⊟

3 , △⊟HL
3 , and △L⊟H

3 avoid materialization altogether but ensure
constant-delay enumeration of their results using other auxiliary materialized views (denoted by indentation).

Figure 10 (bottom) shows for each of the skew-aware views △HL⊟

3 , △⊟HL
3 , and △L⊟H

3 , the materialized
auxiliary views needed to maintain the results of the skew-aware view in factorized form. These auxiliary
views make a view tree with input relations as leaves and updates propagating in a bottom-up manner. The
result of △HL⊟

3 is distributed among two auxiliary materialized views, V HL⊟ and VRS . The former stores all
(a, c) pairs that would appear in the result of △HL⊟

3 , while the latter provides the matching B-values for each
(a, c) pair. The two views together provide constant-delay enumeration of the result of △HL⊟

3 . In addition
to them, the view V̂RS serves to support constant-time updates to T t. The view trees for △⊟HL

3 and △L⊟H
3

are analogous.
The IVMǫ state supporting the maintenance of the ternary triangle query has the partitions P =

{RH, RL, SH , SL, TH, T L} of R, S, and T on variables A, B, and C; and the materialized views V =
{△HHH

3 ,△LLL
3 , VRS , V̂RS , V

HL⊟, VST , V̂ST , V
⊟HL, VTR, V̂TR, V

L⊟H}.

4.1 Preprocessing Stage

The preprocessing stage builds the initial IVMǫ state Z = (ǫ,P,V, N) of database D. This step partitions
the input relations and computes the materialized views in V from Figure 10 before processing any update.

Proposition 19. Given a database D and ǫ ∈ [0, 1], constructing the initial IVMǫ state of D supporting the

maintenance of the ternary triangle query takes O(|D|
3
2 ) time.

Proof. Partitioning the input relations takes O(|D|) time. The queries △HHH
3 and △LLL

3 can be computed

using a worst-case optimal join algorithm like Leapfrog TrieJoin or Recursive-Join in O(|D|
3
2 ) time [32]. The

remaining skew-aware views △HL⊟

3 , △⊟HL
3 , and △L⊟H

3 are not materialized but represented using auxiliary
views. Consider the views in the view tree for △HL⊟

3 . Computing VRS and V̂RS takes O(|D|1+min{ǫ,1−ǫ})
time, as explained in the proof of Proposition 14. The view V HL⊟ is computed by intersecting V̂RS and T in
linear time. The same holds for the views in the view trees of △⊟HL

3 and △L⊟H
3 . Overall, the preprocessing

time is O(|D|
3
2 ).

4.2 Space Complexity

We analyze the space complexity of the IVMǫ maintenance strategy for the ternary triangle query.

Proposition 20. Given a database D, an IVMǫ state of D supporting the maintenance of the ternary
triangle query takes O(|D|

3
2 ) space.

Proof. Let Z = (ǫ,P,V, N) be a state of D. The size of ǫ and N is constant while the size of P is
O(|D|). Figure 10 summarizes the space complexities of the materialized views in V. The size of each of

the skew-aware views △HHH
3 and △LLL

3 is upper-bounded by N
3
2 , the maximum number of triangles in a

database of size N [30]. The space complexity of the auxiliary views VRS , V̂RS , VST , V̂ST , VTR, and V̂TR is
O(N1+min{ǫ,1−ǫ}), as discussed in the proof of Proposition 15. The sizes of the auxiliary views V HL⊟, V ⊟HL,
and V L⊟H are upper-bounded by the sizes of T , R, and S, respectively; hence, these auxiliary views take
O(|D|) space. From the invariant |D| = Θ(N) follows the claimed space complexity O(|D|

3
2 ).
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ApplyUpdate(update δRr, state Z ) Time

1 let δRr = {(α, β) 7→ m}

2 let Z = (ǫ,N, {RH, RL, SH , SL, TH, T L},

{△HHH
3 ,△LLL

3 , VRS , V̂RS , V
HL⊟, VST , V̂ST , V

⊟HL, VTR, V̂TR, V
L⊟H})

3 if (r is H)

4 △HHH
3 (α, β, c) = △HHH

3 (α, β, c) + δRH(α, β) · SH(β, c) · TH(c, α) O(|D|1−ǫ)

5 VRS(α, β, c) = VRS(α, β, c) + δRH(α, β) · SL(β, c) O(|D|ǫ)

6 V̂RS(α, c) = V̂RS(α, c) + δRH(α, β) · SL(β, c) O(|D|ǫ)

7 V HL⊟(α, c) = V HL⊟(α, c) +
∑

t∈{H,L} δR
H(α, β) · SL(β, c) · T t(c, α) O(|D|ǫ)

8 else

9 △LLL
3 (α, β, c) = △LLL

3 (α, β, c) + δRL(α, β) · SL(β, c) · T L(c, α) O(|D|ǫ)

10 VTR(c, α, β) = VTR(c, α, β) + TH(c, α) · δRL(α, β) O(|D|1−ǫ)

11 V̂TR(c, β) = V̂TR(c, β) + TH(c, α) · δRL(α, β) O(|D|1−ǫ)

12 V L⊟H(β, c) = V L⊟H(β, c) +
∑

s∈{H,L} T
H(c, α) · δRL(α, β) · Ss(β, c) O(|D|1−ǫ)

13 V ⊟HL(α, β) = V ⊟HL(α, β) + V̂ST (β, α) · δRr(α, β) O(1)

14 Rr(α, β) = Rr(α, β) + δRr(α, β) O(1)

15 return Z

Total update time: O(|D|max{ǫ,1−ǫ})

Figure 11: (left) Maintaining an IVMǫ state under a single-tuple update to support constant-delay enumer-
ation of the result of the ternary triangle query. ApplyUpdate takes as input an update δRr to the heavy
or light part of R, hence r ∈ {H,L}, and the current IVMǫ state Z of database D. It returns a new state
that results from applying δRr to Z. (right) The time complexity of computing and applying deltas. The
procedures for updates to S and T are similar.

4.3 Processing a Single-Tuple Update

Figure 11 shows the procedure for maintaining a current state Z of the ternary triangle query under an
update δRr(a, b). If the update affects the heavy part RH of R, the procedure maintains △HHH

3 (Line 4) and
propagates δRH through the view tree for △HL⊟

3 (Lines 5-7). If the update affects the light part RL of R,
the procedure maintains △LLL

3 (Line 9) and propagates δRL through the view tree for △L⊟H
3 (Lines 10-12).

Finally, it updates V ⊟HL (Line 13) and the part of R affected by δRr (Line 14). The views VST and V̂ST

remain unchanged as they have no reference to RH or RL.

Proposition 21. Given a database D, ǫ ∈ [0, 1], and an IVMǫ state Z of D supporting the mainte-
nance of the ternary triangle query, IVMǫ maintains Z under a single-tuple update to any input relation in
O(|D|max{ǫ,1−ǫ}) time.

Proof. Figure 11 shows the time complexity of each maintenance statement in the ApplyUpdate procedure,
for a given single-tuple update δRr = {(α, β) 7→ m} with r ∈ {H,L} and a state Z = (ǫ,P,V, N) of D.
This complexity is determined by the number of C-values that need to be iterated over during computing
and applying the deltas of skew-aware views.

We first analyze the case when δRr affects the heavy part RH of R. The skew-aware view △HHH
3 (Line 4)

is maintained by iterating over C-values paired with α in TH and for each such C-value, doing constant-
time lookups in the other relations and views in the maintenance statement. Since TH is heavy on C,
the number of distinct C-values iterated over in TH is at most 2N1−ǫ. Hence, the maintenance requires
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O(N1−ǫ) time. Each of the auxiliary views VRS , V̂RS , and V HL⊟ (Lines 5-7) is maintained by iterating over
the C-values paired with β in SL and doing constant-time lookups in the remaining relations and views in
the corresponding maintenance statement. Since SL is light on B, the B-value β is paired with less than
3
2N

ǫ C-values in SL. Thus, the auxiliary views VRS , V̂RS , and V HL⊟ are maintained in O(N ǫ) time.
We now consider the case when δRr affects the light part RL of R. Maintaining △LLL

3 (Line 9) requires
iterating over less than 3

2N
ǫ distinct C-values paired with β in SL, which means that the maintenance

requires O(N ǫ) time. Maintaining each of the auxiliary views VTR, V̂TR, and V L⊟H (Line 10) requires
iterating over at most 2N1−ǫ distinct C-values paired with α in TH. Thus, these views can be maintained
in time O(N1−ǫ).

Maintaining V ⊟HL and the part of R affected by δRr takes constant time. Then, the total execution time
of the procedure ApplyUpdate in Figure 11 is O(Nmax{ǫ,1−ǫ}). From the invariant |D| = Θ(N) follows
the claimed time complexity O(|D|max{ǫ,1−ǫ}). Due to the symmetry of the triangle query, the analysis for
updates to parts of relations S and T is similar.

4.4 Enumeration Delay

The materialized views stored in an IVMǫ state allow us to enumerate the tuples in the result of the ternary
triangle query with constant delay.

Proposition 22. Given an IVMǫ state Z supporting the maintenance of the ternary triangle query, IVMǫ

enumerates the result of the query from Z with O(1) delay.

Proof. The results of skew-aware views are disjoint, so the result of the ternary triangle query can be
enumerated by enumerating the result of each skew-aware view, one after the other. Since the number of
such skew-aware views is independent of the data size, it suffices to show that the result of each skew-aware
view can be enumerated with constant delay to achieve an overall constant delay enumeration for the ternary
triangle query.

The results of the skew-aware views △HHH
3 and △LLL

3 are materialized using the listing representation,
so they admit constant-delay enumeration.

We next focus on the enumeration of the result of the skew-aware view △HL⊟

3 . The remaining skew-aware
views, △⊟HL

3 and △L⊟H
3 , are treated similarly. The enumeration of the result of △HL⊟

3 is supported by the
materialized views in its view tree from Figure 10 (left). The root V HL⊟ materializes the set of all tuples
(a, c) in the projection of the result of △HL⊟

3 onto (A,C). The view VRS serves to retrieve all B-values in
the result that are paired with a given tuple (a, c). Thus, enumerating the result of △HL⊟

3 requires iterating
over the (A,C)-values in V HL⊟, and for each such tuple (a, c), iterating over the B-values paired with (a, c)
in VRS . Based on our computational model (see Section 2.3), the B-values paired with (a, c) in VRS are
enumerable with constant delay. For each obtained triple (a, b, c), IVMǫ retrieves the correct multiplicity by
looking up the multiplicities of the tuples (a, b), (b, c), and (c, a) in the leaf relations RH , SL, and T (i.e.,
the sum of the multiplicities of (c, a) in TH and T L), respectively, and multiplying them. These lookups are
constant-time operations. Hence, the overall enumeration delay is constant.

4.5 Summing Up

Our main result in Theorem 3 for the ternary triangle query follows from Propositions 19, 20, 21, and
22 shown in the previous subsections, complemented by Proposition 33, which shows that the amortized
rebalancing time is O(|D|max{ǫ,1−ǫ}).

5 Maintaining the Binary Triangle Query

We now consider the maintenance of the binary triangle query

△2(a, b) =
∑

c

R(a, b) · S(b, c) · T (c, a)
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Materialized View Definition Space Complexity

△HHH
2 (a, b) =

∑
s,t∈{H,L}

∑
cR

H(a, b) · SHs(b, c) · THt(c, a) O(|D|min{1,2−2ǫ})

△LLL
2 (a, b) =

∑
s,t∈{H,L}

∑
c R

L(a, b) · SLs(b, c) · T Lt(c, a) O(|D|)

△
H(LL)⊟
2 (a, b) =

∑
t∈{H,L}2

∑
c R

H(a, b) · SLL(b, c) · T t(c, a) O(|D|)

△
L⊟(HH)(a,b)=

∑
s∈{H,L}2

∑
c
RL(a,b)·Ss(b,c)·THH(c,a)

2 O(|D|)

View tree for △
H(LH)⊟
2 (a, b) =

∑
t∈{H,L}2

∑
c R

H(a, b) · SLH(b, c) · T t(c, a)

VRS(a, b, c) = RH(a, b) · SLH(b, c) O(|D|1+min { ǫ,1−ǫ })

V̂RS(a, c) =
∑

b VRS(a, b, c) O(|D|1+min { ǫ,1−ǫ })

V H(LH)⊟(a, c) =
∑

t∈{H,L}2 V̂RS(a, c) · T
t(c, a) O(|D|)

V̂ H(LH)⊟(c) =
∑

a V
H(LH)⊟(a, c) O(|D|1−ǫ)

View tree for △⊟HL
2 (a, b) =

∑
r,s∈{H,L}

∑
c R

r(a, b) · SHs(b, c) · T L(c, a)

VST (b, a) =
∑

s,t∈{H,L}

∑
c S

Hs(b, c) · T Lt(c, a) O(|D|1+min { ǫ,1−ǫ })

V ⊟HL(a, b) =
∑

r∈{H,L} R
r(a, b) · VST (b, a) O(|D|)

View tree for △
L⊟(HL)
2 (a, b) =

∑
s∈{H,L}2

∑
c R

L(a, b) · Ss(b, c) · THL(c, a)

VTR(c, a, b) = THL(c, a) · RL(a, b) O(|D|1+min { ǫ,1−ǫ })

V̂TR(c, b) =
∑

a VTR(c, a, b) O(|D|1+min { ǫ,1−ǫ })

V L⊟(HL)(b, c) =
∑

s∈{H,L}2 Ss(b, c) · V̂TR(c, b) O(|D|)

V̂ L⊟(HL)(c) =
∑

b V
L⊟H(b, c) O(|D|1−ǫ)

View tree for △
H(LH)⊟
2

V̂ H(LH)⊟(c)

V H(LH)⊟(a, c)

V̂RS(a, c)
∑

t∈{H,L}2

T t(c, a)

VRS(a, b, c)

RH(a, b) SLH(b, c)

View tree for △⊟HL
2

V ⊟HL(a, b)

∑
r∈{H,L}

Rr(a, b)VST (b, a)

∑
s∈{H,L}

SHs(b, c)
∑

t∈{H,L}

T Lt(c, a)

View tree for △
L⊟(HL)
2

V̂ L⊟(HL)(c)

V L⊟(HL)(b, c)

V̂TR(c, b)
∑

s∈{H,L}2

Ss(b, c)

VTR(c, a, b)

THL(c, a) RL(a, b)

Figure 12: (top) The materialized views V = {△HHH
2 , △LLL

2 , △
H(LL)⊟
2 , △

L⊟(HH)
2 , VRS , V̂RS , V H(LH)⊟,

V̂ H(LH)⊟, VST , V
⊟HL, VTR, V̂TR, V

L⊟(HL), V̂ L⊟(HL)} supporting the maintenance of the binary triangle query.
The set V is part of an IVMǫ state of database D. (bottom) The view trees supporting the maintenance

and enumeration of the results of △
H(LH)⊟
2 , △⊟HL

2 , and △
L⊟(HL)
2 .

under a single-tuple update. Compared to the strategy for the ternary triangle query, the maintenance
of the binary query faces two new challenges. First, the results of the skew-aware views are not disjoint
anymore, which causes difficulties in the enumeration of distinct (A,B)-values with correct multiplicities.
Second, among the view trees created for the ternary triangle query from Figure 10, only the view tree for
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△⊟HL
3 allows constant-delay enumeration of (A,B)-values, while the view trees for △HL⊟

3 and △L⊟H
3 allow

constant-delay enumeration of (A,C)- and respectively (B,C)-values but not (A,B)-values.
To overcome the first difficulty, we use the union algorithm [17] presented in Section 2.4.2. We modify

this algorithm to report distinct tuples in the union of the skew-aware views together with their multiplicity.
Since the number of skew-aware views is independent of the data size, the overall enumeration delay is the
maximum delay of the individual skew-aware views.

To overcome the second difficulty, we observe that the view trees for △HL⊟

3 and △L⊟H
3 from Figure 10 both

support constant-time lookups and constant-delay enumeration of (A,B)-values for a fixed C-value. Based
on this observation, we can decompose each of the two view trees into a union of view trees instantiated for
the distinct C-values appearing at its root view. For each union of instantiated view trees, we can use the
union algorithm to enumerate the distinct (A,B) pairs with the delay that is linear in the number of these
view trees, that is, the number of distinct C-values at the root view. In the view tree for △HL⊟

3 , the number
of distinct C-values at the root can be linear in the database size; thus, the enumeration delay for △HL⊟

3 is
O(N). In the view tree for △L⊟H

3 , the number of distinct C-values is at most 2N1−ǫ due to the heavy part
condition on C in TH; thus, the enumeration delay for △L⊟H

3 is O(N1−ǫ). Overall, the enumeration delay in
this case is linear.

We can improve this enumeration delay using the enumeration algorithm with hop iterators described in
Section 2.4.4. In this case, this algorithm can enumerate the distinct (A,B) pairs with the delay determined
by the CandidateBuckets function, see Lemma 11. The CandidateBuckets function takes any (A,B)-
value and returns a set of indices that identify the instantiated view trees that may contain the given (A,B)-
value. The default implementation of this function considers all such view trees, but exploiting the skew
information can asymptotically reduce their number. For the view tree for △HL⊟

3 and a fixed (A,B)-value,
CandidateBuckets can compute the matching C-values in the materialized view VRS joining RH and SL

and retain only those C-values that exist in the root V HL⊟. For a fixed (A,B)-value, the number of such C-
values is less than 3

2N
ǫ due to the light part condition on B in SL, which gives the O(N ǫ) enumeration delay

for the view △HL⊟

3 . Similarly, for the view tree for △L⊟H
3 and a fixed (A,B)-value, CandidateBuckets

can compute the matching C-values in the materialized view VTR joining TH and RL and retain only those
C-values that exist in the root V L⊟H . The number of such C-values is at most 2N1−ǫ due to the heavy
part condition on C in TH, which gives the O(N1−ǫ) enumeration delay for the view △L⊟H

3 . Overall, the
enumeration algorithm with hop pointers in this case gives O(Nmax{ǫ,1−ǫ}) delay.

To further improve the enumeration delay to O(Nmin{ǫ,1−ǫ}) in both cases, we refine our partitioning
strategy to use double partitioning for S on (B,C) and for T on (C,A). This refinement allows us to further
decompose the skew-aware view △HL⊟

3 into two parts: one part that involves SLH and ensures the number
of distinct C-values paired with any (A,B)-value, thus also the enumeration delay, is O(Nmin{ǫ,1−ǫ}); and
another part that involves SLL and ensures the number of B-values paired with any C-value in SLL is
O(N ǫ), which enables the materialization of this refined skew-aware view and enumeration with constant
delay. Similarly, we decompose the skew-aware view △L⊟H

3 into one part that involves THL and guarantees
O(Nmin{ǫ,1−ǫ}) enumeration delay, and another part that involves THH and enables its materialization and
constant-delay enumeration. Overall, our maintenance strategy for the binary triangle query that uses double
partitioning for S and T achieves O(Nmin{ǫ,1−ǫ}) enumeration delay.

We explain the IVMǫ strategy for the binary triangle query in more detail. The strategy uses single
partitioning for relation R and double partitioning for relations S and T . The partition threshold is the
same as for the nullary triangle query. Figure 12 shows the definition and space complexity of the views

supporting the maintenance of the binary triangle query. The skew-aware views △HHH
2 , △LLL

2 , △
H(LL)⊟
2 ,

△
L⊟(HH)
2 , and △⊟HL

2 are materialized and enumerable with constant delay. The views △
H(LH)⊟
2 and △

L⊟(HL)
2

are represented as view trees consisting of auxiliary views that support the maintenance and enumeration of

the results of △
H(LH)⊟
2 and △

L⊟(HL)
2 .

The IVMǫ state supporting the maintenance of the binary triangle query has the partitions P = {RH , RL,
SHH , SHL, SLH , SLL, THH , THL, T LH , T LL} of R on A, of S on (B,C), and of T on (C,A); V = {△HHH

2 ,△LLL
2 ,

△
H(LL)⊟
2 ,△

L⊟(HH)
2 , VRS , V̂RS , V

H(LH)⊟, V̂ H(LH)⊟, VST , V
⊟HL, VTR, V̂TR, V

L⊟(HL), V̂ L⊟(HL)}.
The following complexity results follow mainly from the analysis of the IVMǫ algorithm for the ternary
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triangle query in the proofs of Propositions 19, 20, and 21.

5.1 Preprocessing Stage

The preprocessing stage builds the initial IVMǫ state Z = (ǫ,P,V, N) of database D supporting the main-
tenance of the binary triangle query. This step first partitions R on A, S on (B,C), and T on (C,A) and
then computes the materialized views in V from Figure 12 before processing any update.

Proposition 23. Given a database D and ǫ ∈ [0, 1], constructing the initial IVMǫ state of D supporting the

maintenance of the binary triangle query takes O(|D|
3
2 ) time.

Proof. Partitioning the input relations takes O(N) time. The materialized skew-aware views △
H(LL)⊟
2 and

△
L⊟(HH)
2 can be computed in time O(N3/2) using Leapfrog TrieJoin or Recursive-Join [32]. All other ma-

terialized views can be computed using the same strategies as in the proof of Proposition 19 and ignoring
that S and T are double partitioned. Overall, the initial IVMǫ state can be computed in time O(N

3
2 ) and

the result follows from N = Θ(|D|).

5.2 Space Complexity

We analyze the space complexity of the IVMǫ maintenance strategy for the binary triangle query.

Proposition 24. Given a database D and ǫ ∈ [0, 1], an IVMǫ state of D supporting the maintenance of the
binary triangle query takes O(|D|1+min{ǫ,1−ǫ}) space.

Proof. Figure 12 gives the space complexity of the materialized views. The space complexities of the auxiliary
views follow from the proof of Proposition 20. The sizes of V H(LH)⊟, V ⊟HL, and V L⊟(HL) are upper bounded
by the sizes of T , R, and S, respectively, while the sizes of V̂ H(LH)⊟ and V̂ L⊟(HL) are upper bounded by the
number of distinct C-values in SLH and respectively THL.

5.3 Processing a Single-Tuple Update

We analyze the time complexity of maintaining an IVMǫ state for the binary triangle query under a single-
tuple update.

Proposition 25. Given a database D, ǫ ∈ [0, 1], and an IVMǫ state Z of D supporting the mainte-
nance of the binary triangle query, IVMǫ maintains Z under a single-tuple update to any input relation
in O(|D|max{ǫ,1−ǫ}) time.

Proof. Almost all the materialized views from Figure 12 can be maintained in time O(Nmax{ǫ,1−ǫ}) under
single-tuple updates by following the maintenance strategies described in the proof of Proposition 21. The

only new challenge is to maintain the refined views △
H(LL)⊟
2 and △

L⊟(HH)
2 .

We analyze the maintenance time for △
H(LL)⊟
2 . For updates to RH , we need to iterate over less than 3

2N
ǫ

C-values in SLL for a fixed B-value from δRH and do lookups in T . For updates to T , we need to iterate
over less than 3

2N
ǫ B-values in SLL for a fixed C-value from δT and do lookups in RH. For updates to SLL,

we need to iterate over at most 2N1−ǫ distinct A-values in RH and do lookups in T . Thus, △
H(LL)⊟
2 can be

maintained in O(Nmax{ǫ,1−ǫ}) time.

We now consider the maintenance time for △
L⊟(HH)
2 . For updates to RL, we need to iterate over at

most 2N1−ǫ C-values in THH and do lookups in S. For updates to S, we need to iterate over at most
2N1−ǫ A-values in THH and do lookups in RL. For updates to THH , we need to iterate over less than 3

2N
ǫ

B-values in RL for a fixed A-value from δTHH and do lookups in S. Thus, △
L⊟(HH)
2 can be maintained in

O(Nmax{ǫ,1−ǫ}) time.
The proposition follows from the above analysis and the invariant N = Θ(|D|).
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EnumerateBinary(state Z)

1 let Z = ( ǫ,N, {RH, RL, SHH , SHL, SLH , SLL, THH , THL, T LH , T LL},

{△HHH
2 , △LLL

2 , △
H(LL)⊟
2 , △

L⊟(HH)
2 , V ⊟HL } ∪V )

2 I1 = {△HHH
2 .iter(), △LLL

2 .iter(), △
H(LL)⊟
2 .iter(), △

L⊟(HH)
2 .iter(), V ⊟HL.iter() }

3 I2 = {△
H(LH)⊟
2 .iter

(
CandidateBuckets

H(LH)⊟
)
, △

L⊟(HL)
2 .iter

(
CandidateBuckets

L⊟(HL)
)
}

4 while ( ((α, β) = UnionNext( I1 ∪ I2 )) 6= EOF )

5 m1 = △HHH
2 (α, β) +△LLL

2 (α, β) +△
H(LL)⊟
2 (α, β) +△

L⊟(HH)
2 (α, β) + V ⊟HL(α, β)

6 m2 =
∑

t∈{H,L}2

∑
c R

H(α, β) · SLH(β, c) · T t(c, α)

7 m3 =
∑

s∈{H,L}2

∑
c R

L(α, β) · Ss(β, c) · THL(c, α)

8 output (α, β) 7→ (m1 +m2 +m3)

Figure 13: Enumerating the result of the binary triangle query given an IVMǫ state of database
D. Line 2 creates iterators over materialized skew-aware views. Line 3 creates hop-based itera-
tors over the non-materialized skew-aware views, parameterized by the CandidateBuckets

H(LH)⊟ and
CandidateBuckets

L⊟(HL) functions. Lines 5-7 compute the multiplicity of pair (α, β) reported by the
union algorithm.

5.4 Enumeration Delay

We construct an iterator for each skew-aware view of the binary triangle query and use the union algorithm
from Section 2.4.2 to enumerate the distinct tuples in the union of these views. For the materialized skew-

aware views △HHH
2 , △LLL

2 , △
H(LL)⊟
2 , △

L⊟(HH)
2 , and △⊟HL

2 (materialized by V ⊟HL), we construct iterators
with constant lookup time and enumeration delay (see Section 2.4.1). For each of the non-materialized views

△
H(LH)⊟
2 and △

L⊟(HL)
2 , we first instantiate its view tree for the distinct C-values appearing at its root and

then construct a hop-based iterator (see Section 2.4.4) to enumerate the distinct (A,B)-values in the union
of these instantiated view trees.

Given a materialized view V , we write V.iter( ) to denote the iterator for V . We also call the function

△
H(LH)⊟
2 .iter(CandidateBuckets

H(LH)⊟) to get the hop-based iterator for △
H(LH)⊟
2 parameterized by the

CandidateBuckets
H(LH)⊟ function. This function intersects the C-values from the root V̂ H(LH)⊟ and the

C-values paired with a given (A,B)-value in the view VRS . Similarly, the hop-based iterator for △
L⊟(HL)
2

uses the CandidateBuckets
L⊟(HL) function that intersects the C-values from the root V̂ L⊟(HL) and the

C-values paired with a given (A,B)-value in the view VTR. Both functions return a set of indices that
identify the view trees instantiated for the computed C-values.

The procedure EnumerateBinary from Figure 13 enumerates the result of the binary triangle query
given an IVMǫ state Z. The procedure first creates the iterators over the (possibly non-disjoint) results of
the skew-aware views. The union algorithm from Figure 3 takes these iterators as input and reports distinct
(A,B)-values as output. For each reported (a, b), EnumerateBinary computes the multiplicity of (a, b) by
summing up the multiplicities in each skew-aware view.

Proposition 26. Given a database D, ǫ ∈ [0, 1], an IVMǫ state Z of D supporting the maintenance
of the binary triangle query, IVMǫ enumerates the result of the query with O(|D|min{ǫ,1−ǫ}) delay and
O(|D|1+min{ǫ,1−ǫ}) additional space.

Proof. We analyze the procedure EnumerateBinary in Figure 13. Creating the iterators over materialized
views takes constant time (Line 2); the same holds for the hop-based iterators in I2, per Lemma 10 (Line 3).
The iterators in I1 allow constant-time lookups and constant-delay enumeration of (A,B)-values. The hop-

based iterator for △
H(LH)⊟
2 is over at most 2N1−ǫ view trees instantiated for the distinct C-values appearing
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at the root V̂ H(LH)⊟. Each view tree supports constant-time lookups and constant-delay enumeration of
(A,B)-values. CandidateBuckets

H(LH)⊟ intersects at most min{ 3
2N

ǫ, 2N1−ǫ} C-values from VRS for a

fixed (A,B)-value and at most 2N1−ǫ C-values from V̂ H(LH)⊟; thus, the returned set of indices is of size
at most min{ 3

2N
ǫ, 2N1−ǫ}. This function runs in O(Nmin{ǫ,1−ǫ}) time. Per Lemma 11, the enumeration

delay of the hop-based iterator for △
H(LH)⊟
2 is O(Nmin{ǫ,1−ǫ}). A similar analysis for △

L⊟(HL)
2 gives the same

enumeration delay.
The iterators over materialized views need constant space during enumeration. The hop-based iterators

over △
H(LH)⊟
2 and △

L⊟(HL)
2 need space linear in the total number of their (A,B)-values, per Lemma 10.

This number is upper bounded by the size of VRS for the former and by the size of VTR for the latter. By
Proposition 24, both of these views take O(N1+min{ǫ,1−ǫ}) space.

Computing the total multiplicity m of a pair (α, β) requires computing the multiplicity of (α, β) in the
result of each skew-aware view. For the materialized views with schema (A,B), this operation takes constant

time (Line 5). For the non-materialized views △
H(LH)⊟
2 and △

L⊟(HL)
2 , computing the multiplicities of (α, β)

requires iterating over the matching C-values in SLH and respectively THL (Lines 6-7). In both cases, the
number of distinct C-values for a fixed (α, β) is at most min{ 3

2N
ǫ, 2N1−ǫ}. Thus, the multiplicity of the

pair (α, β) can be computed in O(Nmin{ǫ,1−ǫ}) time.
Overall, EnumerateBinary enumerates the result of △2 from Z with O(Nmin{ǫ,1−ǫ}) delay and

O(N1+min{ǫ,1−ǫ}) additional space. The proposition follows from the invariant N = Θ(|D|).

5.5 Summing Up

The additional space used during the enumeration of the result of the binary triangle query is linear in the
size of the maintained views. Hence, our main result in Theorem 3 for the binary triangle query follows from
Propositions 23, 24, 25, and 26 shown in the previous subsections, complemented by Proposition 33, which
shows that the amortized rebalancing time is O(|D|max{ǫ,1−ǫ}).

6 Maintaining the Unary Triangle Query

We now focus on the maintenance and enumeration of the unary triangle query

△1(a) =
∑

b,c

R(a, b) · S(b, c) · T (c, a)

under a single-tuple update. As with the binary triangle query, the results of the skew-aware views in the
unary case are not necessarily disjoint. To report only the distinct A-values in the union of skew-aware
views, we again rely on the union algorithm, presented in Section 2.4.2.

We discuss the enumeration of distinct A-values in the result of skew-aware views that are not materialized
but represented as view trees. As a starting point for our discussion, we consider the view trees created for
the ternary triangle query, see Figure 10. The view trees for △HL⊟

3 and △⊟HL
3 contain A-values at the root,

thus they can support the enumeration of A-values in constant time. The view tree T for △L⊟H
3 , however,

contains (B,C)-values at its root, meaning that we need to find the distinct A-values that occur under
(B,C)-values. The number of distinct (B,C)-values paired with any given A-value can be linear, meaning
that a hop-based iterator from Section 2.4.4 would enumerate distinct A-values with at least linear delay.

To improve the enumeration delay for the skew-aware view △L⊟H
3 , we refine our partitioning strategy to

get a tighter bound on the number of (B,C)-values paired with any given A-value. We double partition
relation R on (A,B) and relation T on (C,A) while keeping S partitioned on B. This refinement further
divides △L⊟H

3 into three skew-aware views. One skew-aware view involves RLH and THL and ensures that
the number of distinct (B,C)-values paired with any A-value is bounded by O(N2min{ǫ,1−ǫ}) since A is light
in both relation parts and each of the variables B and C is heavy in at least one of the relation parts. The
other two skew-aware views either involve RLL or involve RLH and THH , which enables their materialization
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Materialized View Definition Space Complexity

△HHH
1 (a) =

∑
r,t∈{H,L}

∑
b,c R

Hr(a, b) · SH(b, c) · THt(c, a) O(|D|1−ǫ)

△LLL
1 (a) =

∑
r,t∈{H,L}

∑
b,c R

Lr(a, b) · SL(b, c) · T Lt(c, a) O(|D|)

△
(LL)⊟H

1 (a) =
∑

s,t∈{H,L}

∑
b,c R

LL(a, b) · Ss(b, c) · THt(c, a) O(|D|)

△
(LH)⊟(HH)
1 (a) =

∑
s∈{H,L}

∑
b,cR

LH(a, b) · Ss(b, c) · THH(c, a) O(|D|1−ǫ)

View tree for △HL⊟

1 (a) =
∑

r∈{H,L}

∑
t∈{H,L}2

∑
b,cR

Hr(a, b) · SL(b, c) · T t(c, a)

VRS(a, c) =
∑

r∈{H,L}

∑
b R

Hr(a, b) · SL(b, c) O(|D|1+min { ǫ,1−ǫ })

V HL⊟(a) =
∑

t∈{H,L}2

∑
c VRS(a, c) · T t(c, a) O(|D|1−ǫ)

View tree for △⊟HL
1 (a) =

∑
r∈{H,L}2

∑
t∈{H,L}

∑
b,cR

r(a, b) · SH(b, c) · T Lt(c, a)

VST (b, a) =
∑

t∈{H,L}

∑
c S

H(b, c) · T Lt(c, a) O(|D|1+min { ǫ,1−ǫ })

V ⊟HL(a) =
∑

r∈{H,L}2

∑
b R

r(a, b) · VST (b, a) O(|D|)

View tree for △
(LH)⊟(HL)
1 (a) =

∑
s∈{H,L}

∑
b,c R

LH(a, b) · Ss(b, c) · THL(c, a)

VTR(c, a, b) = THL(c, a) ·RLH(a, b) O(|D|1+min { ǫ,1−ǫ })

V̂TR(c, b) =
∑

a VTR(c, a, b) O(|D|1+min { ǫ,1−2ǫ })

V (LH)⊟(HL)(b, c) =
∑

s∈{H,L} S
s(b, c) · V̂TR(c, b) O(|D|min{1,2−2ǫ})

View tree for △HL⊟

1

V HL⊟(a)

∑
t∈{H,L}2

T t(c, a)VRS(a, c)

∑
r∈{H,L}

RHr(a, b) SL(b, c)

View tree for △⊟HL
1

V ⊟HL(a)

∑
r∈{H,L}2

Rr(a, b)VST (b, a)

SH(b, c)
∑

t∈{H,L}

T Lt(c, a)

View tree for △
(LH)⊟(HL)
1

V (LH)⊟(HL)(b, c)

V̂TR(c, b)
∑

s∈{H,L}

Ss(b, c)

VTR(c, a, b)

THL(c, a) RLH(a, b)

Figure 14: (top) The materialized viewsV = {△HHH
1 ,△LLL

1 ,△
(LL)⊟H

1 ,△
(LH)⊟(HH)
1 , VRS , V

HL⊟, VST , V
⊟HL, VTR, V̂TR,

V (LH)⊟(HL)} supporting the maintenance of the unary triangle query. The set V is part of an IVMǫ state of

database D. (bottom) The view trees supporting the maintenance of △HL⊟

1 , △⊟HL
1 , and △

(LH)⊟(HL)
1 .

and enumeration with constant delay. Overall, our maintenance strategy for the unary triangle query with
double partitioning for R and T achieves O(N2min{ǫ,1−ǫ}) enumeration delay, which is sublinear for ǫ 6= 1

2 .
Figure 14 shows the definition and space complexity of the views supporting the maintenance of the unary

triangle query. The IVMǫ state supporting the maintenance of the unary triangle query has the partitions
P = {RHH , RHL, RLH , RLL, SH , SL, THH , THL, T LH , T LL} of R on (A,B), of S on B, and of T on (C,A);

V = {△HHH
1 ,△LLL

1 ,△
(LL)⊟H

1 ,△
(LH)⊟(HH)
1 , VRS , V

HL⊟, VST , V
⊟HL, VTR, V̂TR, V

(LH)⊟(HL)}.

6.1 Preprocessing Stage

The preprocessing stage builds the initial IVMǫ state Z = (ǫ,P,V, N) of database D supporting the main-
tenance of the unary triangle query.
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Proposition 27. Given a database D and ǫ ∈ [0, 1], constructing the initial IVMǫ state of D supporting the

maintenance of the unary triangle query takes O(|D|
3
2 ) time.

Proof. The proof is similar to the proof of Proposition 23.

6.2 Space Complexity

We analyze the space complexity of the IVMǫ maintenance strategy for the unary triangle query.

Proposition 28. Given a database D and ǫ ∈ [0, 1], an IVMǫ state of D supporting the maintenance of the
unary triangle query takes O(|D|1+min{ǫ,1−ǫ}) space.

Proof. Figure 14 gives the definition and space complexity of the materialized views. The complexity results
follow mainly from the proof of Proposition 20. The remaining views take either linear space because of their
unary schema or sublinear space because of the heavy part condition on A in one of the relation parts. Two
notable cases are the views V̂TR and V (LH)⊟(HL). The size of V̂TR is upper bounded by the size of VTR, which
is O(N1+min{ǫ,1−ǫ}) as discussed in the proof of Proposition 20, but also by at most 4N2−2ǫ (B,C)-values
created by pairing the distinct heavy B-values from RLH and the distinct heavy C-values from THL. Thus,
the view V̂TR takes O(N1+min{ǫ,1−2ǫ}) space. The view view V (LH)⊟(HL) is further upper bounded by the
size of S, which gives its O(Nmin{1,2−2ǫ}) space. The proposition follows from the invariant N = O(|D|).

6.3 Processing a Single-Tuple Update

We analyze the time complexity of maintaining an IVMǫ state for the unary triangle query under a single-
tuple update.

Proposition 29. Given a database D, ǫ ∈ [0, 1], and an IVMǫ state Z of D supporting the mainte-
nance of the unary triangle query, IVMǫ maintains Z under a single-tuple update to any input relation
in O(|D|max{ǫ,1−ǫ}) time.

Proof. Almost all materialized views in Figure 14 can be maintained following the same strategies as in the
proof of Proposition 21 and by ignoring the double partitioning of R and T . The only notable cases are the

refined skew-aware views △
(LL)⊟H

1 and △
(LH)⊟(HH)
1 , considered next.

We analyze the time to maintain △
(LL)⊟H

1 . For updates to RLL, we need to iterate over at most 2N1−ǫ

C-values in TH and do lookups in S. For updates to S, we need to iteration over less than 3
2N

ǫ A-values
in RLL for a fixed B-value from δS and do lookups in TH. For updates to TH , we need to iterate over less

than 3
2N

ǫ B-values for a fixed A-value from δTH and do lookups in S. Thus, maintaining △
(LL)⊟H

1 takes

O(Nmax{ǫ,1−ǫ}) time.

The maintenance strategies for △
(LH)⊟(HH)
1 differ from the strategies above only in case of updates to S.

For an update S, we iterate over at most 2N1−ǫ A-values in THH and do lookups in RLH . This implies that
the maintenance time is O(N1−ǫ).

Hence, the overall maintenance time is O(Nmax{ǫ,1−ǫ}). The result follows from N = O(|D|).

6.4 Enumeration Delay

The enumeration procedure for the unary triangle query is similar to that of the binary triangle query.

The skew-aware views from Figure 14 are all materialized except △
(LH)⊟(HL)
1 . For each materialized view,

we construct an iterator with constant lookup time and enumeration delay. For the non-materialized view

△
(LH)⊟(HL)
1 , we first instantiate its view tree for the distinct (B,C)-values appearing at the root V (LH)⊟(HL)

and then construct a hop-based iterator for enumerating the distinct A-values in the union of these view
trees. The hop-based iterator is parameterized by the CandidateBuckets

(LH)⊟(HL) function that restricts
the set of instantiated view trees to be explored during enumeration for a fixed A-value. This function first
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EnumerateUnary(state Z)

1 let Z = ( ǫ,N, {RHH , RHL, RLH , RLL, SH , SL, THH , THL, T LH , T LL},

{△HHH
1 , △LLL

1 , △
(LL)⊟H

1 , △
(LH)⊟(HH)
1 , V HL⊟, V ⊟HL } ∪V )

2 I1 = {△HHH
1 .iter(), △LLL

1 .iter(), △
(LL)⊟H

1 .iter(), △
(LH)⊟(HH)
1 .iter(), V HL⊟.iter(), V ⊟HL.iter(), }

3 I2 = {△
(LH)⊟(HL)
1 .iter

(
CandidateBuckets

(LH)⊟(HL)
)
}

4 while ( (α = UnionNext( I1 ∪ I2 )) 6= EOF )

5 m1 = △HHH
1 (α) +△LLL

1 (α) +△
(LL)⊟H

1 (α) +△
(LH)⊟(HH)
1 (α) + V HL⊟(α) + V ⊟HL(α)

6 m2 =
∑

s∈{H,L}

∑
b,cR

LH(α, b) · Ss(b, c) · THL(c, α)

7 output α 7→ (m1 +m2)

Figure 15: Enumerating the result of the unary triangle query given an IVMǫ state of database D. Line 2
creates six iterators over the results of materialized views with schema A. Line 3 creates a hop-based iterator

over the non-materialized skew-aware view △
(LH)⊟(HL)
1 , parameterized by the CandidateBuckets

(LH)⊟(HL)

function. Lines 5 and 6 compute the multiplicity of α reported by the union algorithm.

computes the (B,C)-values that exist in both the materialized view VTR for the given A-value and the root
V (LH)⊟(HL), and then returns a set of indices that identify the view trees instantiated for those (B,C)-values.

The procedure EnumerateUnary from Figure 15 enumerates the result of the unary triangle query
given an IVMǫ state Z. The procedure first creates the iterators for all skew-aware views (Lines 2-3). The
union algorithm (see Section 2.4.2) takes these iterators as input and reports distinct A-values as output. For
each reported A-value α, EnumerateUnary sums up the multiplicity of α in each of the skew-aware views,
which involves lookups in the materialized views with schema A (Line 5) and an aggregation of (B,C)-values

over the relation parts from △
(LH)⊟(HL)
1 (Line 6).

Proposition 30. Given a database D, ǫ ∈ [0, 1], an IVMǫ state Z of D supporting the maintenance
of the unary triangle query, IVMǫ enumerates the query result from Z with O(|D|2min{ǫ,1−ǫ}) delay and
O(|D|1+min{ǫ,1−ǫ}) additional space.

Proof. Creating the iterators over materialized and the hop-based iterator over △
(LH)⊟(HL)
1 takes constant

time (Line 2-3), The iterators over the materialized views with schema A allow constant-time lookups and
constant-delay enumeration of A-values. The hop-based iterator reports the distinct A-values from the union
of at most min{N, 4N2(1−ǫ)} view trees instantiated for the distinct (B,C)-values in the root V (LH)⊟(HL).
Each such a view tree allows constant-time lookups and constant-delay enumeration of A-values.

The CandidateBuckets
(LH)⊟(HL) function, which parameterizes the hop-based iterator, first intersects

the (B,C)-values from VTR for a fixed A-value and from the root V (LH)⊟(HL). The number of (B,C)-values
in VTR is at most 4N2−2ǫ due to the heavy part conditions on B in RLH and on C in THL, and less than
9
4N

2ǫ for a fixed A-value due to the light part conditions on A in RLH and on A in THL. The number of

(B,C)-values in V (LH)⊟(HL) is further upper bounded by the size of S. Thus, computing the intersection and
returning a set of indices that identify the matching view trees take O(N2min{ǫ,1−ǫ}) time. The returned
set of indices is of size at most min{N, 4N2−2ǫ, 9

4N
2ǫ}. Per Lemma 11, the enumeration delay for the view

△
(LH)⊟(HL)
1 is O(N2min{ǫ,1−ǫ}).
The iterators over materialized views require constant space during enumeration. The hop-based iterator

over △
(LH)⊟(HL)
1 requires space linear in the total number of its A-value, per Lemma 10. This number is

upper bounded by the size of VTR, which takes O(N1+min{ǫ,1−ǫ}) space by Proposition 28.
Computing the total multiplicity of each reported A-value α requires constant-time lookups in the ma-

terialized views with schema A (Line 5) and iteration over the distinct (B,C)-values appearing in the join
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of RLH , S, and THL (Line 6); since A is light in RLH and THL, and each of the variables B and C is heavy
in one of these relation parts, the number of such (B,C)-values is O(N2min {ǫ,1−ǫ}). Thus, the multiplicity
of the output value α can be computed in O(N2min {ǫ,1−ǫ}) time.

Overall, EnumerateUnary enumerates the result of △1 from Z with O(N2min {ǫ,1−ǫ}) delay and
O(N1+min {ǫ,1−ǫ}) additional space. The proposition follows from the invariant |D| = Θ(N).

6.5 Summing Up

The additional space used by the enumeration algorithm for the unary triangle query is linearly bounded
by the overall space complexity of maintained views. We conclude that our main result in Theorem 3 for
the unary triangle query follows from Propositions 27, 28, 29, and 30 shown in the previous subsections,
complemented by Proposition 33, which shows that the amortized rebalancing time is O(|D|max{ǫ,1−ǫ}).

7 Rebalancing Relation Partitions

The partition of a relation may change after updates. For instance, an insert δRL = {(α, β) 7→ 1}may violate
the size invariant

⌊
1
4N

⌋
≤ |D| < N in an IVMǫ state or may violate the light part condition |σA=αR

L| < 3
2N

ǫ

on data value α and require moving all tuples with A-value α from RL to RH . As the database evolves under
updates, IVMǫ performs major and minor rebalancing steps to ensure that the size invariant and the heavy
and light part conditions always hold. This rebalancing also ensures that the upper bounds on the number
of data values, such as the number of B-values paired with α in RL and the number of distinct A-values in
RH , are valid. The rebalancing cost is amortized over multiple updates.

The rebalancing procedures introduced in this section operate on IVMǫ states supporting any triangle
query discussed in the previous sections. The maintenance procedure ApplyUpdate used by major and
minor rebalancing is polymorphic in the sense that its definition depends on the maintained triangle query
and used partitioning scheme (single or double partitioning). Sections 3.3 and 4.3 show the procedures
ApplyUpdate for the nullary triangle query under single partitioning and respectively the ternary triangle
query. Sections 3.4, 5.3, and 6.3 describe how to adapt these procedures for the nullary triangle query under
double partitioning, the binary triangle query, and the unary triangle query, respectively.

Major Rebalancing If an update causes the database size to fall below ⌊ 1
4N⌋ or reach N , IVMǫ halves or,

respectively, doubles the threshold base N , and calls the procedure MajorRebalance shown in Figure 16.
The procedure strictly repartitions the database relations with the new thresholdN ǫ (Line 2) and recomputes
the materialized views using the new relation parts (Line 3).

Proposition 31. Given a database D, major rebalancing of an IVMǫ state of D supporting the maintenance
of any triangle query takes O(|D|

3
2 ) time.

Proof. Let Z = (ǫ,N,P,V) be an IVMǫ state supporting the maintenance of any triangle query. Consider
the procedure MajorRebalance from Figure 16. The procedure strictly repartitions the relations in P

using the threshold N ǫ and recomputes the materialized views in V based on the new relation partitions.
Strictly partitioning the input relations takes O(|D|) time. Propositions 14, 17, 19, 23, and 27 state that the

computation of the initial IVMǫ state supporting the maintenance of any triangle query takes O(|D|
3
2 ) time.

From the proofs of these propositions follows that the views in V can be recomputed in O(|D|
3
2 ) time.

The superlinear time of major rebalancing is amortized over Ω(N) updates. After a major rebalancing
step, it holds that |D| = 1

2N (after doubling), or |D| = 1
2N− 1

2 or |D| = 1
2N−1 (after halving, i.e., setting N

to
⌊
1
2N

⌋
− 1; the two options are due to the floor functions in the size invariant and halving expression). To

violate the size invariant
⌊
1
4N

⌋
≤ |D| < N and trigger another major rebalancing, the number of required

updates is at least 1
4N . Section 8 proves the amortized O(|D|

1
2 ) time of major rebalancing.
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MajorRebalance(state Z)

1 let Z = (ǫ,N,P,V)
2 P = StrictPartition(P, N ǫ)
3 V = Recompute(V,P)
4 return Z

MoveTuples(variable X, value x,Ksrc �Kdst , state Z)

foreach x ∈ σX=xKsrc do

Z = ApplyUpdate(δKdst = {x 7→ Ksrc(x) },Z)
Z = ApplyUpdate(δKsrc = {x 7→ −Ksrc(x) },Z)

return Z

MinorRebalance(relation K, variable X, value x, variable Y, value y, state Z)

1 if (K is single partitioned)

2 if ( x ∈ πXKH and |σX=xK
H | < 1

2N
ǫ)

3 Z = MoveTuples(X, x,KH
�KL,Z)

4 else if ( x ∈ πXKL and |σX=xK
L| ≥ 3

2N
ǫ)

5 Z = MoveTuples(X, x,KL
�KH ,Z)

6 else if (K is double partitioned)

7 if ( x ∈ (πXKHH ∪ πXKHL) and |σX=xK| < 1
2N

ǫ)

8 Z = MoveTuples(X, x,KHH
�KLH ,Z); Z = MoveTuples(X, x,KHL

�KLL,Z)

9 else if ( x ∈ (πXKLH ∪ πXKLL) and |σX=xK| ≥ 3
2N

ǫ)

10 Z = MoveTuples(X, x,KLH
�KHH ,Z); Z = MoveTuples(X, x,KLL

�KHL,Z)

11 if ( y ∈ (πY K
HH ∪ πY K

LH) and |σY =yK| < 1
2N

ǫ)

12 Z = MoveTuples(Y, y,KHH
�KHL,Z); Z = MoveTuples(Y, y,KLH

�KLL,Z)

13 else if ( y ∈ (πY K
HL ∪ πY K

LL) and |σY =yK| ≥ 3
2N

ǫ)

14 Z = MoveTuples(Y, y,KHL
�KHH ,Z); Z = MoveTuples(Y, y,KLL

�KLH ,Z)

15 return Z

Figure 16: MajorRebalance(Z) performs major rebalancing on a state Z = (ǫ,N,P,V) supporting the
maintenance of a triangle query. StrictPartition(P, N ǫ) strictly repartitions the relations in P with
threshold N ǫ, and Recompute(V,P) recomputes the views in V using the partitions in P. Given a
relation K with schema (X,Y ), an X-value x and a Y -value y, MinorRebalance(K,X, x, Y, y,Z) moves
tuples between relation parts to ensure that the heavy and light part conditions on values x and y hold.
MoveTuples(X, x,Ksrc � Kdst ,Z) uses ApplyUpdate to move all tuples with X-value x from relation
part Ksrc to relation part Kdst . ApplyUpdate depends on the maintained triangle query, see Sections 3.3,
3.4, 4.3, 5.3, and 6.3.

Minor Rebalancing After each update δR = {(α, β) 7→ m}, IVMǫ checks whether the light and heavy
part conditions still hold for α and β. If R is partitioned on variable A, the relation partition consists of
the heavy part RH and the light part RL. By Definition 7, the heavy and light part conditions on α are
|σA=αR

H | ≥ 1
2N

ǫ and |σA=αR
L| < 3

2N
ǫ, respectively. If the first condition is violated, all tuples in RH

with the A-value α are moved to RL and the affected views are updated; similarly, if the second condition is
violated, all tuples with the A-value α are moved from RL to RH , followed by updating the affected views.

If R is double partitioned on (A,B), the relation partition consists of the parts RHH , RHL, RLH , and
RLL. Then, the heavy and light part conditions must be checked not only for the A-value α but also for the
B-value β. From Definition 8, the heavy and light part conditions on α are |σA=αR| ≥ 1

2N
ǫ and respectively

|σA=αR| < 3
2N

ǫ, where R is obtained by taking the union of the parts of R. If the update δR violates
the first condition, all tuples with A-value α are moved from the relation parts in which A is heavy to the
relation parts in which A is light, that is, from RHH and RHL to RLH and RLL, respectively. If the update
violates the second condition, all tuples with A-value α are moved in the opposite direction, from RLH and
RLL to RHH and RHL. In both cases, the affected views are updated. The heavy and light part conditions
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on B-value β are ensured in a similar way. As a result of an update, both values α and β might change from
light to heavy or vice-versa, but it is impossible that one value changes from light to heavy and the other
one from heavy to light. The minor rebalancing steps followed by updates to the other relations S and T
are analogous.

The procedure MinorRebalance in Figure 16 describes a minor rebalancing step on an IVMǫ state
following an update δK = {(x, y) 7→ m} to a relation K over schema (X,Y ). If K is single partitioned, the
heavy and light part conditions are checked for X-value x only (Lines 1-5). If it is double partitioned, the
conditions are checked for both X-value x and Y -value y (Lines 6-14). Tuples are moved between relation
parts using the procedureMoveTuples in Figure 16. Given a variable X in the schema of relation K, an X-
value x, a source relation part Ksrc, and a target relation part Kdst , the procedure MoveTuples moves all
tuples with X-value x from Ksrc to part Kdst . A tuple x is moved from Ksrc to Kdst by using the procedure
ApplyUpdate that updates the multiplicities of x in Kdst and Ksrc and maintains the materialized views
in the IVMǫ state. Sections 3.3, 3.4, 4.3, 5.3, and 6.3 give the definition of ApplyUpdate for each triangle
query. If K is single partitioned, MoveTuples is called at most once in MinorRebalance. If K is double
partitioned, MoveTuples can be called up to four times, two times per x and y, to meet the heavy and
light part conditions.

Proposition 32. Given a database D and ǫ ∈ [0, 1] minor rebalancing of an IVMǫ state of D supporting
the maintenance of any triangle query takes O(|D|ǫ+max{ǫ,1−ǫ}) time.

Proof. Consider an IVMǫ state Z = (ǫ,N,P,V) and an update δR = {(α, β) 7→ m} to relation R. The
analysis for updates to S and T is similar. If R is single partitioned, MinorRebalance calls MoveTuples

at most once; if R is double partitioned,MinorRebalance callsMoveTuples at most four times. Consider
the worst case when R is double partitioned and both values α and β change from heavy to light or vice-
versa. If they change from heavy to light, the procedure moves fewer than 1

2N
ǫ tuples with A-value α and

fewer than 1
2N

ǫ tuples with B-value β. If the two values change from light to heavy, the procedure moves
fewer than 3

2N
ǫ + 1 tuples with A-value α and fewer than 3

2N
ǫ + 1 tuples with B-value β. Each tuple move

performs one delete and one insert by executing ApplyUpdate. From Propositions 16, 18, 21, 25, and
29 follows that, regardless of the maintained triangle query, ApplyUpdate runs in time O(|D|max{ǫ,1−ǫ}).
Since there are O(N ǫ) such operations, the procedure MinorRebalance requires O(|D|ǫ+max{ǫ,1−ǫ}) time.
As |D| = Θ(N), minor rebalancing runs in time O(|D|ǫ+max{ǫ,1−ǫ}).

The (super)linear time of minor rebalancing is amortized over Ω(N ǫ) updates. This lower bound on the
number of updates comes from the relation partition conditions (see Definition 7), namely from the gap
between the two thresholds in these conditions. Section 8 proves the amortized O(|D|max{ǫ,1−ǫ}) time of
minor rebalancing.

Figure 17 gives the trigger procedure OnUpdate that maintains an IVMǫ state of a database D under a
single-tuple update δR = {(α, β) 7→ m} to relation R and, if necessary, rebalances partitions; the procedures
for updates to S and T are analogous. The procedure first calls AffectedPart to determine in constant
time which part Rr of R is affected by the update. We first consider the case when R is single partitioned.
The update targets RH if this relation part already contains a tuple with the same A-value α, or ǫ is set to 0;
otherwise, the update targets RL. When ǫ = 0, all tuples are in RH , while RL remains empty. Although this
behavior is not required by IVMǫ (without the condition ǫ = 0, RL would contain only tuples whose A-values
have the degree of 1, and RH would contain all other tuples), it allows us to recover existing IVM approaches,
such as classical IVM for the nullary and ternary triangle queries; by setting ǫ to 0, IVMǫ ensures that all
tuples are in RH . The case when R is double partitioned is analogous. The update targets RHH if RHH

contains the tuple (α, β) or ǫ = 0; the update targets RHL or RLH if they already contain (α, β); otherwise,
the update targets RLL. The procedure OnUpdate then invokes ApplyUpdate. If the update causes a
violation of the size invariant

⌊
1
4N

⌋
≤ |D| < N , the procedure invokes MajorRebalance from Figure 16

to recompute the relation partitions and auxiliary views. Otherwise, if any heavy or light part condition
is violated, it calls MinorRebalance from Figure 16 to move tuples between the parts of relation R and
ensure that these conditions hold again.

33



OnUpdate(update δR, state Z)

1 let δR = {(α, β) 7→ m}

2 let Z = (ǫ,N,P,V)

3 let Rr = AffectedPart(δR,Z)

4 ApplyUpdate(δRr = {(α, β) 7→ m},Z)

5 if (|D| = N)

6 N = 2N

7 Z = MajorRebalance(Z)

8 else if (|D| <
⌊
1
4N

⌋
)

9 N =
⌊
1
2N

⌋
− 1

10 Z = MajorRebalance(Z)

11 else if (A is light in Rr and |σA=αR| ≥ 3
2N

ǫ or

12 B is light in Rr and |σB=βR| ≥ 3
2N

ǫ or

13 A is heavy in Rr and |σA=αR| < 1
2N

ǫ or

14 B is heavy in Rr and |σB=βR| < 1
2N

ǫ)

15 Z = MinorRebalance(R,A, α,B, β,Z)

16 return Z

AffectedPart(update δR, state Z)

1 let δR = {(α, β) 7→ m}

2 let Z = (ǫ,N,P,V)

3 if (R is single partitioned)

4 if (α ∈ πAR
H or ǫ = 0)

5 return RH

6 else

7 return RL

8 else if (R is double partitioned)

9 if ((α, β) ∈ RHH or ǫ = 0)

10 return RHH

11 else if ((α, β) ∈ RHL)

12 return RHL

13 else if ((α, β) ∈ RLH)

14 return RLH

15 else

16 return RLL

Figure 17: Maintaining an IVMǫ state supporting the maintenance of any triangle query under a single-
tuple update and performing rebalancing. The procedure OnUpdate takes as input an update δR and an
IVMǫ state Z of database D and returns a new state that results from applying δR to Z and, if necessary,
rebalancing partitions. The procedure AffectedPart determines the relation part in Z affected by the
update. ApplyUpdate depends on the maintained triangle query, see Sections 3.3, 3.4, 4.3, 5.3, and 6.3.
MajorRebalance and MinorRebalance are given in Figure 16. The OnUpdate procedures for updates
to S and T are analogous.

8 Amortizing Rebalancing Time

Sections 3-6 show that any IVMǫ state supporting the maintenance of a triangle query can be maintained in
sublinear time under a single-tuple update. The sublinear maintenance time requires that the size invariant
and the heavy and light part conditions are preserved for the relation partitions in IVMǫ states. To guarantee
this, IVMǫ performs major and minor rebalancing steps, which can take superlinear time as stated in
Propositions 31 and 32. We nevertheless show in this section that the amortized rebalancing costs and
thus the overall amortized maintenance time over a sequence of updates remains sublinear.

Proposition 33. Given a database D, ǫ ∈ [0, 1], and an IVMǫ state Z of D supporting the maintenance
of any triangle query, IVMǫ maintains Z under a single-tuple update to any input relation and performs
rebalancing in O(|D|max{ǫ,1−ǫ}) amortized time.

Proof. Let Z0 = (ǫ,N0,P0,V0) be the initial IVMǫ state of a database D0 and u0, u1, . . . , un−1 a sequence

of arbitrary single-tuple updates. The application of this update sequence to Z0 yields a sequence Z0
u0−→

Z1
u1−→ . . .

un−1

−→ Zn of IVMǫ states, where Zi+1 is the result of executing the procedure OnUpdate(ui,Zi)
from Figure 17, for 0 ≤ i < n. Let ci denote the actual execution cost of OnUpdate(ui,Zi). For some
Γ > 0, we can decompose each ci as:

ci = capplyi + cmajor
i + cminor

i + Γ, for 0 ≤ i < n,

where capplyi , cmajor
i , and cminor

i are the actual costs of the subprocedures ApplyUpdate, MajorRebal-

ance, and MinorRebalance, respectively, in OnUpdate. If update ui causes no major rebalancing, then
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cmajor
i = 0; similarly, if ui causes no minor rebalancing, then cminor

i = 0. These actual costs admit the
following worst-case upper bounds:

capplyi ≤ γN
max{ǫ,1−ǫ}
i (by Propositions 16, 18, 21, 25, 29),

cmajor
i ≤ γN

3
2

i (by Proposition 31), and

cminor
i ≤ γN

ǫ+max{ǫ,1−ǫ}
i (by Proposition 32),

where γ is a constant derived from their asymptotic bounds, and Ni is the threshold base of Zi. The costs
of major and minor rebalancing can be superlinear in the database size.

The crux of this proof is to show that assigning a sublinear amortized cost ĉi to each update ui accumulates
enough budget to pay for expensive but less frequent rebalancing procedures. For any sequence of n updates,
our goal is to show that the accumulated amortized cost is no smaller than the accumulated actual cost:

n−1∑

i=0

ĉi ≥
n−1∑

i=0

ci. (1)

The amortized cost assigned to an update ui is ĉi = ĉapplyi + ĉmajor
i + ĉminor

i + Γ, where

ĉapplyi = γN
max{ǫ,1−ǫ}
i , ĉmajor

i = 4γN
1
2

i , ĉminor
i = 4γN

max{ǫ,1−ǫ}
i , and

Γ and γ are the constants used to upper bound the actual cost of OnUpdate. As it will be explained in
more detail, the number of updates between a major rebalancing step caused by update ui and the previous
major rebalancing step can be as less as 1

4Ni. In order to accumulate enough budget to pay for the major

rebalancing cost triggered by update ui, the amortized cost ĉmajor
i is defined as γN

3
2

i / 1
4Ni = 4γN

1
2

i . Given
that ui is of the form δR = {(α, β) 7→ m} and invokes minor rebalancing for α, the number of updates since
the previous minor rebalancing step for α can be as less as 1

2N
ǫ. Hence, to pay for the minor rebalancing

step for α invoked by ui, our budget must be at least γN
ǫ+max{ǫ,1−ǫ}
i / 1

2N
ǫ = 2γN

max{ǫ,1−ǫ}
i . Since we also

need to take the rebalancing costs for β into account, we define the amortized minor rebalancing cost ĉminor
i

as 4γN
max{ǫ,1−ǫ}
i . In contrast to the actual costs cmajor

i and cminor
i , the amortized costs ĉmajor

i and ĉminor
i

are always nonzero.
We prove that such amortized costs satisfy Inequality (1). Since ĉapplyi ≥ capplyi for 0 ≤ i < n, it suffices

to show that the following inequalities hold:

(amortizing major rebalancing)
n−1∑

i=0

ĉmajor
i ≥

n−1∑

i=0

cmajor
i and (2)

(amortizing minor rebalancing)
n−1∑

i=0

ĉminor
i ≥

n−1∑

i=0

cminor
i . (3)

We prove Inequalities (2) and (3) by induction on the length n of the update sequence.

Major rebalancing.

• Base case: We show that Inequality (2) holds for n = 1. The preprocessing stage sets N0 = 2 · |D0|+1.
If the initial database D0 is empty, then N0 = 1 and u0 triggers major rebalancing (and no minor

rebalancing). The amortized cost ĉmajor
0 = 4γN

1
2

0 = 4γ suffices to cover the actual cost cmajor
0 ≤

γN
1+ 1

2

0 = γ. If the initial database is nonempty, u0 cannot trigger major rebalancing (i.e., violate the
size invariant) because

⌊
1
4N0

⌋
=

⌊
1
2 |D0|

⌋
≤ |D0|− 1 (lower threshold) and |D0|+1 < N0 = 2 · |D0|+1

(upper threshold); then, ĉmajor
0 ≥ cmajor

0 = 0. Thus, Inequality (2) holds for n = 1.
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• Inductive step: Assumed that Inequality (2) holds for all update sequences of length up to n−1, we show
it holds for update sequences of length n. If update un−1 causes no major rebalancing, then ĉmajor

n−1 =

4γN
1
2

n−1 ≥ 0 and cmajor
n−1 = 0, thus Inequality (2) holds for n. Otherwise, if applying un−1 violates the

size invariant, the database size |Dn| is either
⌊
1
4Nn−1

⌋
− 1 or Nn−1. Let Zj be the state created after

the previous major rebalancing or, if there is no such step, the initial state. For the former (j > 0), the
major rebalancing step ensures |Dj | =

1
2Nj after doubling and |Dj | =

1
2Nj−

1
2 or |Dj | =

1
2Nj −1 after

halving the threshold base Nj ; for the latter (j = 0), the preprocessing stage ensures |Dj | =
1
2Nj −

1
2 .

The threshold base Nj changes only with major rebalancing, thus Nj = Nj+1 = . . . = Nn−1. The
number of updates needed to change the database size from |Dj | to |Dn| (i.e., between two major
rebalancing) is at least 1

4Nn−1 since min{ 1
2Nj − 1− (

⌊
1
4Nn−1

⌋
− 1), Nn−1 −

1
2Nj} ≥ 1

4Nn−1. Then,

n−1∑

i=0

ĉmajor
i ≥

j−1∑

i=0

cmajor
i +

n−1∑

i=j

ĉmajor
i (by induction hypothesis)

=

j−1∑

i=0

cmajor
i +

n−1∑

i=j

4γN
1
2

n−1 (Nj = . . . = Nn−1)

≥

j−1∑

i=0

cmajor
i +

1

4
Nn−1 4γN

1
2

n−1 (at least
1

4
Nn−1 updates)

=

j−1∑

i=0

cmajor
i + γN

3
2

n−1

≥

j−1∑

i=0

cmajor
i + cmajor

n−1 =

n−1∑

i=0

cmajor
i (cmajor

j = . . . = cmajor
n−2 = 0).

Thus, Inequality (2) holds for update sequences of length n.

Minor rebalancing. When the degree of a value in a partition changes such that the heavy or light part
condition no longer holds, minor rebalancing moves the affected tuples between the relation parts. To prove
Inequality (3), we decompose the cost of minor rebalancing per relation and data value over a variable in
the schema of the relation.

cminor
i =

∑

a∈Dom(A)

(cR,a
i + cT,a

i ) +
∑

b∈Dom(B)

(cR,b
i + cS,bi ) +

∑

c∈Dom(C)

(cT,c
i + cR,c

i )

ĉminor
i =

∑

a∈Dom(A)

(ĉR,a
i + ĉT,a

i ) +
∑

b∈Dom(B)

(ĉR,b
i + ĉS,bi ) +

∑

c∈Dom(C)

(ĉT,c
i + ĉR,c

i )

We write cR,α
i and ĉR,α

i to denote the actual and respectively amortized costs of minor rebalancing caused
by update ui, for relation R and an A-value α. Recall that if update ui is of the form δR = {(α, β) 7→ m}
and R is single partitioned, the update can cause minor rebalancing for A-value α. If R is double partitioned,
the update can cause minor rebalancing for A-value α, or B-value β, or for both. Hence, if ui is of the form

δR = {(α, β) 7→ m} and causes any rebalancing, we have cR,α
i + cR,β

i = cminor
i ≤ γN

ǫ+max{ǫ,1−ǫ}
i ; otherwise,

cR,α
i = cR,β

i = 0. If ui is of the form δR = {(α, β) 7→ m}, we set ĉR,α
i = ĉR,β

i = 1
2 ĉ

minor
i = 2γN

max{ǫ,1−ǫ}
i

regardless of whether ui causes minor rebalancing or not; otherwise, ĉR,α
i = ĉR,β

i = 0. The actual costs cS,bi ,

cS,ci , cT,c
i , and cT,a

i and the amortized costs ĉS,bi , ĉS,ci , ĉT,c
i , and ĉT,a

i are defined similarly.
We prove that for R and any a ∈ Dom(A), the following inequality holds:

n−1∑

i=0

ĉR,a
i ≥

n−1∑

i=0

cR,a
i . (4)
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The proof of the inequality
∑n−1

i=0 ĉR,b
i ≥

∑n−1
i=0 cR,b

i for any b ∈ Dom(B) and the inequalities for the other
two relations S and T are analogous. Inequality (3) follows directly from these inequalities.

We prove Inequality (4) for an arbitrary a ∈ Dom(A) by induction on the length n of the update sequence.

• Base case: We show that Inequality (4) holds for n = 1. Assume that update u0 is of the form

δR = {(α, β) 7→ m}; otherwise, ĉR,α
0 = cR,α

0 = 0, and Inequality (4) follows trivially for n = 1. If

the initial database is empty, u0 triggers major rebalancing but no minor rebalancing, thus ĉR,α
0 =

2γN
max{ǫ,1−ǫ}
0 ≥ cR,α

0 = 0. If the initial database is nonempty, each relation is partitioned using the
threshold N ǫ

0 . For update u0 to trigger minor rebalancing for A-value α, the degree of α in R has to
either decrease from ⌈N ǫ

0⌉ to
⌈
1
2N

ǫ
0

⌉
− 1 (heavy to light) or increase from ⌈N ǫ

0⌉ − 1 to
⌈
3
2N

ǫ
0

⌉
(light

to heavy). The former happens only if ⌈N ǫ
0⌉ = 1 and update u0 removes the last tuple with the A-

value α from R, thus no minor rebalancing is needed; the latter cannot happen since update u0 can
increase |σA=αR| to at most ⌈N ǫ

0⌉, and ⌈N ǫ
0⌉ <

⌈
3
2N

ǫ
0

⌉
. In any case, ĉR,α

0 ≥ cR,α
0 , which implies that

Inequality (4) holds for n = 1.

• Inductive step: Assumed that Inequality (4) holds for all update sequences of length up to n − 1,
we show that it holds for update sequences of length n. Consider that update un−1 is of the form
δR = {(α, β) 7→ m} and causes minor rebalancing for α; otherwise, ĉR,α

n−1 ≥ 0 and cR,α
n−1 = 0, and

Inequality (4) follows trivially for n. Let Zj be the state created after the previous major rebalancing
or, if there is no such step, the initial state. The threshold changes only with major rebalancing, thus
Nj = Nj+1 = . . . = Nn−1. Depending on whether there exist minor rebalancing steps since state Zj ,
we distinguish two cases:

Case 1: There is no minor rebalancing caused by an update of the form δR = {(α, β′) 7→ m ′} since state

Zj ; thus, we have cR,α
j = . . . = cR,α

n−2 = 0. From state Zj to state Zn, the number of tuples with

the A-value α either decreases from at least
⌈
N ǫ

j

⌉
to

⌈
1
2N

ǫ
n−1

⌉
−1 (heavy to light) or increases from

at most
⌈
N ǫ

j

⌉
− 1 to

⌈
3
2N

ǫ
n−1

⌉
(light to heavy). For this change to happen, the number of updates

needs to be greater than 1
2N

ǫ
n−1 since Nj = Nn−1 and min{

⌈
N ǫ

j

⌉
− (

⌈
1
2N

ǫ
n−1

⌉
− 1),

⌈
3
2N

ǫ
n−1

⌉
−

(
⌈
N ǫ

j

⌉
− 1)} > 1

2N
ǫ
n−1.

Case 2: There is at least one minor rebalancing step for α caused by an update of the form δR = {(α, β′) 7→
m ′} since state Zj . Let Zℓ denote the state created after the previous minor rebalancing for α

caused by an update of this form; thus, cR,α
ℓ = . . . = cR,α

n−2 = 0. The minor rebalancing steps
creating Zℓ and Zn move tuples with the A-value a between the relation parts of R in opposite
directions with respect to heavy and light. From state Zℓ to state Zn, the number of such tuples
either decreases from

⌈
3
2N

ǫ
l

⌉
to

⌈
1
2N

ǫ
n−1

⌉
− 1 (heavy to light) or increases from

⌈
1
2N

ǫ
l

⌉
− 1 to⌈

3
2N

ǫ
n−1

⌉
(light to heavy). For this change to happen, the number of updates needs to be greater

than N ǫ
n−1 since Nl = Nn−1 and min{

⌈
3
2N

ǫ
l

⌉
− (

⌈
1
2N

ǫ
n−1

⌉
− 1),

⌈
3
2N

ǫ
n−1

⌉
− (

⌈
1
2N

ǫ
l

⌉
− 1)} > N ǫ

n−1.

Let k = j if Case 1 holds and k = ℓ if Case 2 holds. By the above analysis, there must be more than
1
2N

ǫ
n−1 updates between Zk and Zn. Hence,
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n−1∑

i=0

ĉR,α
i ≥

k−1∑

i=0

cR,α
i +

n−1∑

i=k

ĉR,α
i (by induction hypothesis)

=
k−1∑

i=0

cR,α
i +

n−1∑

i=k

2γN
max{ǫ,1−ǫ}
n−1 (Nk = . . . = Nn−1)

>

k−1∑

i=0

cR,α
i +

1

2
N ǫ

n−12γN
max{ǫ,1−ǫ}
n−1 (more than

1

2
N ǫ

n−1 updates)

≥
k−1∑

i=0

cR,α
i + cR,α

n−1 =

n−1∑

i=0

cR,α
i (cR,α

k = . . . = cR,α
n−2 = 0).

This implies that Inequality (4) holds for update sequences of length n.

The inductive analysis shows that Inequality (1) holds when the amortized cost of OnUpdate(ui,Zi) is

ĉi = γN
max{ǫ,1−ǫ}
i + 4γN

1
2

i + 4γN
max{ǫ,1−ǫ}
i + Γ, for 0 ≤ i < n,

where Γ and γ are constants. The amortized cost ĉmajor
i of major rebalancing is 4γN

1
2

i , and the amortized

cost ĉminor
i of minor rebalancing is 4γN

max{ǫ,1−ǫ}
i . From the size invariant

⌊
1
4Ni

⌋
≤ |Di| < Ni follows that

|Di| < Ni < 4(|Di|+1) for 0 ≤ i < n, where |Di| is the database size before update ui. This implies that for

any database D, the amortized major rebalancing time is O(|D|
1
2 ), the amortized minor rebalancing time is

O(|D|max{ǫ,1−ǫ}), and the overall amortized update time of IVMǫ is O(|D|max{ǫ,1−ǫ}).

9 A Lower Bound on the Maintenance of Triangle Queries

In this section we prove Proposition 5, which states a lower bound on the trade-off between amortized update
time and enumeration delay for the maintenance of triangle queries, conditioned on the OMv conjecture [19].

Proposition 5. For any γ > 0 and database D, there is no algorithm that incrementally maintains the
result of any triangle query under single-tuple updates to D with arbitrary preprocessing time, O(|D|

1
2
−γ)

amortized update time, and O(|D|1−γ) enumeration delay, unless the OMv conjecture fails.

The proof relies on the Online Vector-Matrix-Vector Multiplication (OuMv) conjecture, which is implied
by the OMv conjecture (Conjecture 2). First, we give the definition of the OuMv problem and state the
corresponding conjecture.

Definition 34 (Online Vector-Matrix-Vector Multiplication (OuMv) [19]). We are given an n× n Boolean
matrix M and receive n pairs of Boolean column-vectors of size n, denoted by (u1,v1), . . . , (un,vn); after
seeing each pair (ui,vi), we output the product uT

i Mvi before we see the next pair.

Conjecture 35 (OuMv Conjecture, Theorem 2.7 in [19]). For any γ > 0, there is no algorithm that solves
OuMv in time O(n3−γ).

The following proof of Proposition 5 reduces the OuMv problem to the problem of incrementally main-
taining a triangle query. This reduction implies that if there is an algorithm that incrementally maintains a
triangle query under single-tuple updates with arbitrary preprocessing time, O(|D|

1
2
−γ) amortized update

time, and O(|D|1−γ) enumeration delay for some γ > 0 and database D, then the OuMv problem can be
solved in subcubic time. This contradicts the OuMv conjecture and, consequently, the OMv conjecture.

Proof of Proposition 5. The proof is inspired by the lower bound proof for maintaining non-hierarchical
Boolean conjunctive queries [6]. Let △ be a triangle query of arbitrary arity. For the sake of contradiction,
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SolveOuMv(matrix M, vectors u1,v1, . . . ,un,vn)

1 let Z = initial IVMǫ state of the empty database
2 foreach (i, j) ∈ M do

3 δS = { (i, j) 7→ M(i, j) }
4 Z = OnUpdate(δS,Z)
5 foreach r = 1, . . . , n do

6 foreach i = 1, . . . , n do

7 δR = { (a, i) 7→ (ur(i)−R(a, i)) }
8 Z = OnUpdate(δR,Z)
9 δT = { (i, a) 7→ (vr(i)− T (i, a)) }

10 Z = OnUpdate(δT,Z)
11 output (△ 6= ∅)

Figure 18: The procedure SolveOuMv solves the OuMv problem using an incremental algorithm that
maintains a triangle query △ of arbitrary arity under single-tuple updates. The state Z is the initial IVMǫ

state of a database with empty relations R, S and T . The procedure OnUpdate is given in Figure 17 and
maintains the triangle query under single-tuple updates.

assume that there is an incremental maintenance algorithm A that maintains △ under single-tuple updates
with arbitrary preprocessing time, O(|D|

1
2
−γ) amortized update time, and O(|D|1−γ) enumeration delay,

for some γ > 0. We show that this algorithm can be used to design an algorithm B that solves the OuMv

problem in subcubic time, which contradicts the OuMv conjecture.

The reduction Figure 18 gives the pseudocode of the algorithm B, which processes an OuMv input
(M, (u1,v1), . . . , (un,vn)). We denote the entry of M in row i and column j by M(i, j) and the i-th
component of v by v(i). The algorithm first constructs the initial IVMǫ state Z from a database D =
{R,S, T } with empty relations R, S, and T . Then, it executes at most n2 updates to the relation S such
that S = { (i, j) 7→ M(i, j) | i, j ∈ [n] }. In each round r ∈ [n], the algorithm executes at most 2n updates
to the relations R and T such that R = { (a, i) 7→ ur(i) | i ∈ [n] } and T = { (i, a) 7→ vr(i) | i ∈ [n] }, where
a is some constant. By construction, uT

r Mvr = 1 if and only if there exist i, j ∈ [n] such that ur(i) = 1,
M(i, j) = 1, and vr(j) = 1, which is equivalent to R(a, i) · S(i, j) · T (j, a) = 1 at the end of round r. Thus,
the algorithm outputs 1 at the end of round r if and only if the result of the triangle query is nonempty.
Nonemptiness of the query result can be checked by triggering enumeration and checking whether at least
one output tuple is reported.

Time analysis Constructing the initial state from a database with empty relations takes constant time.
The construction of relation S from M requires at most n2 updates. Given that the amortized time for
each update is O(|D|

1
2
−γ) and the database size |D| stays O(n2), the overall time for constructing relation

S is O(n2 · n2·( 1
2
−γ)) = O(n3−2γ). In each round, the algorithm performs at most 2n updates and needs

O(|D|1−γ) time to report the first result tuple or to signalize that the result is empty. Hence, the time to

execute the updates in a single round is O(2n · n2·( 1
2
−γ)) = O(n2−2γ). The time to report the first result

tuple or signalize emptiness is O(n2·(1−γ)) = O(n2−2γ). Thus, the overall execution time is O(n2−2γ) per
round and O(n3−2γ) for n rounds. Hence, algorithm B needs O(n3−2γ) time to solve the OuMv problem,
which contradicts the OuMv conjecture and, consequently, the OMv conjecture.
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10 Recovering Existing Dynamic and Static Approaches

We next show how IVMǫ recovers the classical first-order IVM [12] on triangle queries (Section 10.1) and
the worst-case optimal time of non-incremental algorithms for computing the result of the ternary triangle
query (Section 10.2).

10.1 Classical First-Order IVM

We start with a brief description of classical first-order IVM on the ternary triangle query △3. The other
triangle queries are treated analogously. Classical first-order IVM materializes the query result. Given a
single-tuple update δR = {(α, β) 7→ m} to relation R, it maintains query △3 under the update by computing
the delta query

δ△3(α, β, c) = δR(α, β) · S(β, c) · T (c, α)

and updating the query result by setting △3(α, β, c) := △3(α, β, c) + δ△3(α, β, c) for each C-value c in δ△3.
The maintenance of the query requires the iteration over possibly linearly many C-values paired with β in
relation S and with α in relation T . Hence, the update time is O(|D|). The evaluation of updates to the
relations S and T is analogous. The preprocessing phase uses a worst-case optimal join algorithm to compute
the initial query result in O(|D|

3
2 ) time [32]. Since the query result is materialized, the enumeration delay

is constant. The space complexity is dominated by the size O(|D|
3
2 ) of the query result [30].

IVMǫ becomes the classical first-order IVM algorithm by setting ǫ to 0 or 1.
We first consider the case ǫ = 1 and explain it for the ternary triangle query; the other triangle queries

are treated analogously. If ǫ = 1, then all tuples are in the light parts of the relations and the results of all
materialized views in Figure 10 become empty except for the skew-aware view

△LLL
3 (a, b, c) = RL(a, b) · SL(b, c) · TL(c, a),

whose result becomes exactly that of △3.
We next explain in more detail. The preprocessing stage sets the threshold base N of the initial IVMǫ

state to 2 · |D| + 1 and strictly partitions each relation with threshold N ǫ = N . Since for each relation
K ∈ {R,S, T }, variable X in the schema of K, and value x in the domain of X , it holds |σX=xK| < N ,
all tuples in K end up in the light part of K. Consequently, all materialized views in Figure 10 besides
△LLL

3 stay empty, since each of them refers to at least one heavy relation part. The only materialized
view that is possibly non-empty is △LLL

3 . This also means that the result of query △3 and △LLL
3 are

equal. Given an update, the procedure OnUpdate in Figure 17 never performs minor rebalancing, since
the degrees of data values can never reach 3

2N , due to the size invariant
⌊
1
4N

⌋
≤ |D| < N . The procedure

MajorRebalancing, which might be invoked by OnUpdate, does not move tuples to the heavy relation
parts, since the threshold for strict partitioning is always greater than the database size. This implies that
the views in Figure 10 besides △LLL

3 stay empty after any update.
The case of ǫ = 0 is symmetric and IVMǫ becomes the classical first-order IVM algorithm. In the

preprocessing stage, the input relations are strictly partitioned with threshold N ǫ = 1, which means that all
light relation parts and materialized views referring to these parts become empty. Only one skew-aware view
is constructed and its result is equal to that of the triangle query under consideration. IVMǫ materializes
this view and allows for constant-delay enumeration from it.

We next discuss in more detail the ternary triangle query. The result of the skew-aware view△HHH
3 (a, b, c) =

RH(a, b)·SH(b, c)·TH(c, a) is equal to the result of △3. The condition ǫ = 0 in the third line of the procedure
AffectedPart in Figure 17 avoids that any update affects the light relation parts. Since the degrees of
data values in the heavy relation parts can never fall below 1

2N
ǫ = 1

2 , minor rebalancing is never invoked.
Based on the threshold for strict relation partitioning, major rebalancing does not move tuples to the light
relation parts.

40



10.2 Computing the Ternary Triangle Query in a Static Database

The worst-case optimal time to compute the result of the ternary triangle query over the database D is
O(|D|

3
2 ) [32]. IVMǫ recovers this computation time in the static case by using its update mechanism as

follows. We fix ǫ = 1
2 and insert all tuples from D, one at a time, into a database D′ that is initially empty.

For each insert, we call the procedure OnUpdate from Figure 17. The preprocessing time is constant. By
Theorem 3, IVMǫ guarantees O(M

1
2 ) amortized update time, where M is the size of D′ at update time.

Thus, the total time to insert all tuples into D′ is

O(

|D|−1∑

M=0

M
1
2 ) = O(|D| · |D|

1
2 ) = O(|D|

3
2 ).

Finally, we enumerate the query result with constant delay. Since the number of tuples in the result is
bounded by |D|

3
2 [30], the overall enumeration takes O(|D|

3
2 ) time. Overall, we compute the result of the

ternary triangle query in O(|D|
3
2 ) time.

To avoid rebalancing while inserting the tuples into the empty database, we can preprocess the input
relations in D to decide for each tuple its final relation part. For instance, if for an A-value a, it holds
|σA=aR| ≥ |D|

1
2 , the tuple is inserted to the heavy part of R, otherwise to the light part. Since we do not

perform any rebalancing, the worst-case (and not only amortized) time of each insert is O(|D|
1
2 ).

11 Related Work

Triangle queries in the static setting The problems of finding, counting, and listing of given-length
cycles in graphs have been extensively investigated since the 70s [21, 11, 40]. One important result that
falls into the scope of this work is that, given a graph with n vertices and m edges, finding a triangle if
one exists and counting all triangles can be done in time O(nω) where ω < 2.373 is the exponent of matrix

multiplication [21]. The same problem can be solved in time O(m
2ω

ω+1 ) ≤ O(m1.41), which is better than the
former time bound on sparse graphs [3]. The problem of computing for each edge the number of triangles
using this edge can be solved in time O(m1.41) [16]. This problem corresponds to computing the result of
the binary triangle query over the ring of integers. Given a number k, a flavor of the triangle listing problem
asks for the listing of k triangles if the graph has at least k triangles and all triangles otherwise. This
problem can be solved in time Õ(n2.373 + n1.568t0.478) on dense graphs and in time Õ(m1.408 +m1.222t0.186)

on sparse graphs, where Õ suppresses multiplicative factors of size no(1) [8]. All time bounds mentioned
above rely on algebraic fast matrix multiplication. IVMǫ’s preprocessing phase relies on an algorithm like
Leapfrog TrieJoin or Recursive-Join that does not use matrix multiplication and runs in time O(|D|

3
2 ) [32]

to compute the initial query result on a database D. Further works approximate the triangle count in
large graphs [37, 5, 27] and assess the practicability of triangle counting and listing algorithms in massive
networks [13, 35].

Complexity gap between single-tuple and bulk updates Our main result states that for ǫ = 1
2 ,

IVMǫ maintains the triangle count (unary triangle query) under single-tuple updates to a database D with

O(|D|
1
2 ) amortized update time and O(1) enumeration delay (Theorem 3), which is worst-case optimal under

the OMv conjecture (Proposition 5). We also know that triangle counting on a graph with m edges can be
solved in O(m1.41) time [3]. Corroborating these two results, we conclude that there is a gap in the worst-
case complexity of counting triangles between the static and the dynamic case (or equivalently between bulk
updates and single-tuple updates). If the tuples in D come as a stream of inserts and we do one insert at a

time, the overall time to compute the triangle count on D is O(|D| · |D|
1
2 ) = O(|D|

3
2 ). This is worse than

O(|D|1.41), which is achieved by processing all tuples in D in bulk. For the ternary triangle query, however,
IVMǫ recovers the worst-case optimal time to list all triangles in the static setting, cf. Section 10.2.
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Dynamic set intersection A prior result [28] on the dynamic evaluation of a class of Boolean queries
is closely related to the maintenance of the nullary triangle query. Assume that F is a family of sets that
are subject to inserts and deletes and N is the overall size of these sets. Given two sets from F , the
emptiness query answers whether their intersection is empty. There is a dynamic algorithm that uses O(N)

space, executes updates to the sets in F in O(N
1
2 ) expected time, and answers emptiness queries in O(N

1
2 )

expected time. The proof of this result reveals that the algorithm categorizes the sets in F into small and
large sets using some threshold and maintains the intersection size for any two large sets in a lookup table.
The emptiness query for two sets, where one of the sets is small, is answered by iterating over the elements in
the small set and checking for each element its containment in the other set. For two large sets, the emptiness
query is answered by using the intersection-size table. Although not stated in that work, the intersection-size
table can be constructed in O(N

3
2 ) expected time in the preprocessing phase. The algorithm can be adapted

to allow for an unbounded number of sets in F and to return the intersection size for any two sets from F .
This prior work can be used to recover a restricted instance of IVMǫ for the nullary query. Given a database
D = {R(A,B), S(B,C), T (C,A)}, an A-value a ∈ πAR, and a B-value b ∈ πBR, we denote by RB

a and RA
b

the set of B-values paired with a in R and respectively the set of A-values paired with b in R. The sets SC
b ,

SB
c , T A

c , and T C
a are defined analogously. Let F consist of these sets for all data values in the database.

Assuming that the current triangle count on D is materialized, we can obtain the new triangle count upon
an insert of a tuple (a, b) to relation R as follows. If RB

a is already contained in F , we extend this set by
b, otherwise we create a new set RB

a = {b}. The set RA
b is updated or created analogously. Then, we ask

for the intersection size SC
b ∩ T C

a . The new triangle count is the sum of the previous count and the size

of this intersection. Updating the sets in F and computing the intersection size require O(|D|
1
2 ) expected

time [28]. Deletes to R and updates to the other relations are handled analogously. Since the triangle count is
materialized, it allows constant-time access. Hence, we obtain a maintenance strategy for the nullary triangle
query with O(|D|

3
2 ) expected preprocessing time, O(|D|) space, O(|D|

1
2 ) expected update time, and O(1)

enumeration delay. While meeting the complexity bounds of Proposition 4 (for ǫ = 1
2 ), this alternative

approach does not support tuple multiplicities or arbitrary rings beyond the ring of integers.

Fine-grained lower bounds Investigations on fine-grained complexity have led to important conjectures
and hypotheses on finding and listing triangles in graphs that have served as conditional lower bounds for
many other problems [34, 1]. The strong triangle conjecture states that in the word-RAM model with words
of length O(log n), there is no algorithm that decides whether a graph with n nodes and m edges contains

a triangle in O(min{nω−γ ,m
2ω

ω+1
−γ}) expected time for any γ > 0, where ω is the exponent of matrix

multiplication. Moreover, there is no combinatorial algorithm that solves this problem in O(m
3
2
−γ) time,

for any γ > 0. According to this conjecture, the best known algorithms for this problem, the combinatorial
ones as well as those based on fast matrix multiplication, are optimal. The OMv conjecture (Conjecture 1)
[19] was used to derive conditional lower bounds on the maintenance of conjunctive queries [6]. It states
that for any γ > 0, there is no algorithm that solves the OMv problem (Definition 34) in O(n3−γ) time. The

best known algorithm solving the OMv problem runs in O( n3

log2 n
) time [38]. Let Q be a Boolean conjunctive

query whose homomorphic core is not q-hierarchical [6]. Then, for any γ > 0 and database of domain
size n, there is no algorithm that incrementally maintains the result of Q under single-tuple updates with
arbitrary preprocessing time, O(n1−γ) update time, and O(n2−γ) answer time, unless the OMv conjecture
fails [6]. Triangle queries are not q-hierarchical and their homomorphic cores are the queries themselves
in case they do not have repeating relation symbols. Hence, the above lower bound holds for all triangle
queries without repeating relation symbols. The proof of this lower bound is similar to that for the query
ϕ = ∃x∃y(S(x)∧E(x, y)∧T (y)), which is the simplest Boolean conjunctive query that is not q-hierarchical [6].
Our lower bound proof in Section 9 adapts the proof for ϕ to triangle queries, strengthens it to allow for
amortized update time, and expresses complexities in terms of the database size.

Enumeration with skip pointers Skip pointers have been previously used for constant-delay enumer-
ation of distinct elements in the union of a fixed number of sets [7]. Section 2.4.4 introduces this approach
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using the abstraction of hop iterators. Our approach extends the original method [7] with second-level skip
pointers and parameterizes it by a search function to enable tighter bounds on enumeration delay. We use
iterators with skip pointers in the enumeration procedures for the binary and unary triangle queries.

Approximation schemes in the dynamic setting A distinct line of work investigates randomized
approximation schemes with an arbitrary relative error for counting triangles in a graph given as a stream of
edges [4, 22, 10, 31, 14]. Each edge in the data stream corresponds to a tuple insert, and tuple deletes are not
considered. The emphasis of these approaches is on space efficiency, and they express the space utilization
as a function of the number of nodes and edges in the input graph and of the number of triangles. The space
utilization is generally sublinear but may become superlinear if, for instance, the number of edges is greater
than the square root of the number of triangles. The update time is polylogarithmic in the number of nodes
in the graph. There is also work estimating the number of triangles in graph streams with both edge inserts
and deletes [9].

Dynamic descriptive complexity Further away from our line of work is the development of dynamic
descriptive complexity, starting with the DynFO complexity class and the much-acclaimed result on FO
expressibility of the maintenance for graph reachability under edge inserts and deletes, see a recent survey [36].
The k-clique query can be maintained under edge inserts by a quantifier-free update program of arity k − 1
but not of arity k − 2 [41].

12 Extensions

Relations over task-specific rings Different rings can be used as the domain of tuple multiplicities (or
payloads). We used here the ring (Z,+, ·, 0, 1) of integers to support counting. Previous work shows how
the data-intensive computation of many applications can be captured by application-specific rings, which
define sum and product operations over data values [33]. The relational data ring supports payloads with
listing and factorized representations of relations, and the degree-m matrix ring supports payloads that can
be used for maintaining gradients of square loss functions for linear regression models [33].

IVMǫ variants IVMǫ can be used to maintain triangle queries with repeating relation symbols, the count-
ing versions of any query built using three relations and the 4-path query [23] in worst-case optimal update
time. The same conditional lower bound on the update time shown for the triangle count (nullary triangle
query) applies for most of the mentioned queries, too. This leads to the striking realization that, while in the
static setting the counting versions of the cyclic query computing triangles and the acyclic query computing
paths of length 3 have different complexities and pose distinct computational challenges, they share the same
complexity and can use a very similar approach in the dynamic setting.

LoomisWhitney queries The IVMǫ maintenance strategies also naturally extend from triangle to Loomis
Whitney (LW) queries. LW queries generalize triangle queries from cliques of degree three to cliques of degree
n ≥ 3; they encode the Loomis Whitney inequality [30]. Let A1, . . . , An be the query variables and R1, . . . , Rn

relations over schemas X1, . . . ,Xn, where ∀i ∈ [n] : Xi = (A((i+j) mod n)+1)−1≤j≤n−3. That is, the schema
of R1 is (A1, . . . , An−1), whereas the schema of Rn is (An, A1, . . . , An−2). The n-ary LW query of degree n
has the form

♦n(x) = R1(x1) · · ·Rn(xn),

where x = (aj)j∈[n] and for all i ∈ [n], xi = (a((i+j) mod n)+1)−1≤j≤n−3 is a value from the domain of the
tuple Xi of variables. As for triangle queries, a LW query of degree n and arity 0 ≤ k ≤ n− 1 has the same
body as for arity n but only keeps the first k values in the result. For instance, for n = 4 the binary LW
query is

♦2(a1, a2) =
∑

a3,a4

R1(a1, a2, a3) ·R2(a2, a3, a4) ·R3(a3, a4, a1) ·R4(a4, a1, a2).
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In case n = 3, each LW query ♦k becomes the triangle query △k, for 0 ≤ k ≤ 3.
IVMǫ achieves the following complexities for LW queries of degree n (stated without proof):

• The preprocessing and amortized update time are the same as for triangle queries: O(|D|
3
2 ) prepro-

cessing time and O(|D|max{ǫ,1−ǫ}) amortized update time.

• In case all variables are free, the space complexity is the same as for the ternary triangle query, namely,
O(|D|

3
2 ); otherwise, the space complexity is O(|D|1+min{ǫ,1−ǫ}).

• For the nullary and n-ary LW queries, the enumeration delay is constant; for k-ary LW queries where
0 < k < n, the enumeration delay is O(|D|min{1,(n−k)·(1−ǫ)}). The delay hence improves with increasing
arity. For n = 3, we get exactly the same enumeration delay as for the triangle queries.

• The lower bound on the update-delay trade-off for triangle queries stated in Proposition 5 carry over
to LW queries. This means that at ǫ = 1

2 , IVM
ǫ is strongly Pareto worst-case optimal for the nullary

and n-ary LW queries and weakly Pareto worst-case optimal for all other LW queries.

The result of the n-ary LW query ♦n of degree n has size O(|D|
n

n−1 ) [30]. It can also be computed in the
static setting in the same time, which is thus worst-case optimal [32]. IVMǫ cannot be used to recover the

optimality in the static case, since it takes O(|D|
1
2 ) amortized time per each single-tuple update and there

are |D| tuples to insert. Since the combination of O(|D|
1
2 ) amortized time and O(1) delay is strongly Pareto

worst-case optimal, it means that no dynamic algorithm can achieve a lower amortized single-tuple update
time for the n-ary LW query. This shows the limitation of single-tuple updates. To achieve the overall
O(|D|

n
n−1 ) time for |D| tuple inserts, one would need to process several inserts at the same time, that is,

in bulk, such that the amortized time per insert should be O(|D|
1

n−1 ). A characterization of the difference
between bulk updates and single-tuple updates remains an interesting open problem.

13 Conclusion and Future Work

This article introduces IVMǫ, an incremental maintenance approach for triangle queries under updates that
exhibits a trade-off between the update time on one hand and the space and enumeration delay on the other
hand. IVMǫ captures classical first-order IVM as a special case that has suboptimal linear update time.

There are worst-case optimal algorithms for join queries in the static setting [32]. In contrast, IVMǫ is
worst-case optimal for the nullary and ternary triangle join queries in the dynamic setting. The dynamic
setting case poses challenges beyond the static setting. First, the optimality argument for static join algo-
rithms follows from their runtime being linear(ithmic) in their output size; this argument does not apply
to our nullary triangle query, since its output is a scalar and hence of constant size. Second, optimality in
the dynamic setting requires a more fine-grained argument that exploits the skew in the data for different
evaluation strategies, view materialization, and delta computation; in contrast, there are static worst-case
optimal join algorithms that do not need to exploit skew, materialize views, nor delta computation.

We conclude with a discussion on possible directions for future work.

Worst-case optimal dynamic query evaluation This article opens up a line of work on worst-case
optimal dynamic query evaluation algorithms. The goal is a complete characterization of the complexity
of incremental maintenance for arbitrary functional aggregate queries [2]. We would first like to find a
syntactical characterization of all queries that admit incremental maintenance in (amortized) sublinear time.
Using known (first-order, fully recursive, or factorized) incremental maintenance techniques, cyclic and even
acyclic joins require at least linear update time. Our intuition is that this characterization is given by a
notion of diameter of the query hypergraph. This class strictly contains the q-hierarchical queries, which
admit constant-time updates [6]. A first step towards this goal is a characterization of the update-delay
trade-off for hierarchical queries with arbitrary free variables [25].
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Space-delay trade-off IVMǫ does not admit any trade-off between the space complexity and the enumer-
ation delay: for all queries, there is either no or positive correlation between the two measures (cf. Figure 1).
Prior work investigates the trade-off between space and delay for the evaluation of conjunctive queries in
the static setting [15]. An interesting future direction is to design a maintenance approach with focus on the
space-delay trade-off.

Implementation of IVMǫ We would like to implement IVMǫ and benchmark against existing IVM
systems. The implementation of IVMǫ may pose some challenges. For instance, maintaining the exact
heavy-light partitions of relations is computationally expensive. One way to handle this problem is to loosen
the partition thresholds so that relation partitions are rebalanced less frequently while accepting temporarily
suboptimal maintenance strategies. A further challenge is the maintenance of the index structures of IVMǫ.
For each materialized view V with some schemaX and sub-schemaY ⊆ X, IVMǫ assumes the existence of an
index that allows to check containment of any tuple y over Y in πYV in constant time and to enumerate all
tuples in V matching y with constant delay We need to address the trade-off between the cost of maintaining
this indices and the cost of access times without them.
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