2011.09149v1 [cs.CV] 18 Nov 2020

arxXiv

DeepNAG: Deep Non-Adversarial Gesture Generation

Mehran Maghoumi'?, Eugene M. Taranta I1?, Joseph J. LaViola Jr.?
INVIDIA
ZUniversity of Central Florida

mehran@cs.ucf.edu

Abstract

Synthetic data generation to improve classification per-
formance (data augmentation) is a well-studied problem.
Recently, generative adversarial networks (GAN) have
shown superior image data augmentation performance, but
their suitability in gesture synthesis has received inade-
quate attention. Further, GANs prohibitively require simul-
taneous generator and discriminator network training. We
tackle both issues in this work. We first discuss a novel,
device-agnostic GAN model for gesture synthesis called
DeepGAN. Thereafter, we formulate DeepNAG by intro-
ducing a new differentiable loss function based on dynamic
time warping and the average Hausdorff distance, which al-
lows us to train DeepGAN’s generator without requiring a
discriminator. Through evaluations, we compare the utility
of DeepGAN and DeepNAG against two alternative tech-
niques for training five recognizers using data augmenta-
tion over six datasets. We further investigate the perceived
quality of synthesized samples via an Amazon Mechanical
Turk user study based on the HYPE ., benchmark. We find
that DeepNAG outperforms DeepGAN in accuracy, train-
ing time (up to 17X faster), and realism, thereby opening
the door to a new line of research in generator network de-
sign and training for gesture synthesis. Our source code is
available at https : //www.deepnag. con,

1. Introduction

Recently we observe that system designers are integrat-
ing gestures into almost every product with a user interface,
igniting the need for accurate gesture recognizers [37, 27].
As these recognizers get more sophisticated and accurate,
so does their need for more data. While the size of publicly
available datasets continues to grow, obtaining more task-
specific data is not always easy which highlights the impor-
tance of synthetic data generation. Among such methods,
generative adversarial networks (GAN)[12] have shown
great promise in various problem domains [31} 10, 47]], in-
cluding handwriting and gesture generation [49,|39]]. Typi-

etaranta@gmail.com

Jjl@cs.ucf.edu

Discriminator

128

Encoder Network

Generator

128

Decoder Network

Figure 1. Our proposed model for gesture generation. DeepGAN
consists of the discriminator and generator networks, whereas
DeepNAG only consists of the generator network. The genera-
tor takes a class-conditioned random noise vector as the input and
produces a gesture of the specified class. The discriminator (critic)
takes the raw gesture points as the input and produces a set of fea-
tures y; used in the computation of the Wasserstein loss [[14].

cally, these networks consist of a generator and a discrimi-
nator. The discriminator aims to determine if a given exam-
ple is real or fake, whereas the generator aims to fool the
discriminator into confusing fake examples with the real
ones. To our knowledge, such models have not received
much attention towards modality-agnostic gesture genera-
tion wherein gestures are represented by a sequence of 2D
or 3D positional features typically produced by touch inter-
faces, Kinect or similar input devices. Additionally, GANs
require the concurrent training of two networks, which
makes the training procedure long and challenging.

This work focuses on modality-agnostic gesture genera-
tion and aims to address the challenges involved with train-

https://www.deepnag.com

ing GANs. We start by discussing DeepGAN, our novel
GAN approach for dynamic gesture generation, through
which our deep recurrent gesture generator network is born.
We thereafter discuss our unique solution for alleviating the
difficulties associated with training GANs. Specifically, we
formulate a novel and intuitive loss function for training our
gesture generator. Our loss function, which is based on the
dynamic time warping (DTW) algorithm [35], completely
replaces DeepGAN’s discriminator network. This, trans-
forms the significantly complex adversarial training proce-
dure of a GAN to the much simpler non-adversarial train-
ing problem: train the generator by minimizing a loss func-
tion that directly maps the quality of the generated exam-
ples to their similarity to the real examples. We call this
approach DeepNAG (see Figure[T). We evaluate both meth-
ods by using their generated gestures in data augmentation
for improved gesture recognition across a variety of datasets
of different sizes and modalities, as well as different ges-
ture recognizers. We additionally conduct a user study to
evaluate the human’s perception of the realism of our gen-
erated results. Such evaluations, which have recently be-
come common practice in the literature of generative mod-
eling [21},150], provide insight into the visual quality of gen-
erated samples.

Contributions. Our main contributions are (1) a novel
recurrent GAN model for gesture generation that works
across a variety of datasets and modalities, (2) a novel and
intuitive loss function that completely replaces the discrim-
inator of our GAN model, which not only simplifies and
significantly speeds up the training process, but also yields
a generator that produces high quality examples, (3) an eval-
uation of the improvements in gesture recognition accuracy
when our generator is used for data augmentation.

2. Related Work

Synthetic data generation is an effective approach in ad-
dressing data shortage, which in turn can improve recog-
nition performance [41} [11} 43| 20]. Some data genera-
tion methods rely on perturbing existing samples to gen-
erate new ones. Taranta et al. [41] introduced GPSR which
works by selecting random points along a given gesture’s
trajectory and scaling the between-point distances to create
realistic gesture variations. Other perturbation models in-
clude the use of Perlin-noise [8]] or the Sigma-Lognormal
model [30} 22, 23]]. These works differ from ours in that we
do not rely on inputting existing gestures to produce new
ones. Rather, we built a generative model that generates
new samples from random noise.

Generative models often involve the use of deep
networks. One popular approach that predates GANs
is language modeling, a probabilistic technique for se-
quence prediction which works well for handwriting

generation [13]. More recently, GANs have gained pop-
ularity for such tasks [10]. Relevant examples include
GestureGAN [39] a model for hand gesture-to-gesture
translation. Given an image of a hand gesture and a target
skeleton pose, GestureGAN produces a new hand image
holding the target gesture. Yang et al. [46] presented a
pose-guided human video generation method in which
videos of a person performing a desired action are gen-
erated. Zhang’s et al. [49] proposed a recurrent GAN for
Chinese character generation which generates the temporal
pen movements. The problem domain of these works is
different from ours. We focus on modality agnostic gesture
generation to produce hand, full-body or 2D pen gestures.
Our model learns the representation of a given gesture and
produces new gestures in that same representation. Also,
our generator can be trained without a discriminator, which
sets us apart from the work of Zhang et al. [49].

Training generative models without a discriminator has
also been explored in the literature. Yu et al. [47] and
Guo et al. [15] proposed generating text sequences using
reinforcement learning techniques. Lin et al. [26] presented
the use of a ranking mechanism instead of a discriminator,
and Li et al. [23] introduced an adversarial optimization
procedure to train a text generator. All of these work
focus on generating sequences of discrete tokens (e.g.
text), whereas our goal is to generate real-valued and
continuous multi-dimensional gesture sequences, which
is highly challenging as data can take arbitrary values.
Lastly, our loss formulation is different from [25] in that
our formulation is non-adversarial in nature.

3. Gesture Generation with Deep Recurrent
Networks

In this section we present our proposed deep learning
approaches for gesture synthesis. We first discuss our
initial GAN approach from which the DeepNAG generator
is born. We then describe the intuition behind our loss
function, followed by its formal definition.

3.1. Notations and Problem Definition

In this work, we represent gestures as a temporal se-
quence of input device samples (e.g. 3D joint positions, 2D
touch coordinates). At time step ¢, the gesture data is the
column vector z; € RN, where N is the dimensionality of
the feature vector. Thus, the entire temporal sequence of a
single gesture sample is the matrix x € RV*L, where L
is the length of the sequence in time steps. For simplicity,
and as typical in most gesture recognition work [42}40], we
spatially resample all gesture samples to the same length IE]
as described in [44]. We denote the vector trajectory path of

a gesture x with X = {(z;, — z,_,), Va,., € x}. Lastly,

IWe use L = 64

we use |A| to denote the cardinality of a point set A, thus
|x| = Land |X|] =L — 1.

We define gesture generation as producing synthetic ex-
amples x' = {x{,z],...,2} _,} over a dataset of gestures
D such these samples mirror data-specific properties of the
samples in D, as if these examples were seemingly sampled
from . Formally, if pp is dataset’s distribution such that
x € D = x ~ pp, our goal is to synthesize x" where
x" ¢ D but x’ ~ pp. We aim to achieve this using a deep
recurrent network G which maps a class-conditioned latent
vector zz to a synthetic example x' = G(z¢;0g), where
O are the trainable parameters of G. Henceforth, we use
Gy(z¢) in place of G(zz;0¢), and use &£ to denote an ob-
jective function to minimize (a training loss function).

3.2. Gesture Generation with GANs

Our initial approach for gesture generation uses the well-
known GAN training setting comprised of a generator and
a discriminator. We call this recurrent model DeepGAN,
which we designed incrementally and was informed by the
latest developments in deep learning. Early on, the sim-
plicity and the recognition power of the recently proposed
DeepGRU model [27] inspired us to adopt it as our discrim-
inator. This encoder-style model has shown promising re-
sults in various recognition tasks [6} 37]. Through experi-
ments guided by an ablation study on DeepGRU [27], and
with the goal of managing design complexity, we settled for
the simpler uDeepGRU [6] variant as our discriminator. As
for our generator, we conducted experiments across differ-
ent datasets with generators consisting of both LSTM and
GRU units, as well as a varying number of recurrent layers.
We observed stabler training, less overfitting and more plau-
sible outputs with a decoder-style network resembling the
flipped version of our discriminator. A possible explanation
for this could be that this choice potentially benefits from
the balance between the two D and G networks. Figure [I]
depicts the architecture of DeepGAN, which we believe is
easy to understand and straightforward to implement in any
modern deep learning framework. A common design for
generators is the use of the tanh() activation function in the
last layer, which is what we use as well.

To generate a gesture sample x’ of class c, the class-
conditioned latent vector z; is fed to G where z; is defined
as Equation[I} Note that each time step z; € 2z is sampled
independently from the standard normal distributio and
class-conditioning is done by appending the one-hot repre-
sentation of c to each time step which avoids ignoring the
conditioning through forgetting [[10].

Zs = {[zz,é} : V2 ~N(0,1), ¢ = one-hot(c)} (1)

2The dimensionality of the latent space was fixed to 32 dimensions.

We experimented with different loss functions to train
DeepGAN. Even though training with the classic adver-
sarial loss [[12]] yielded plausible results, we observed im-
proved sample quality and better convergence with the im-
proved version [[14] of the Wasserstein loss (WGAN) [2],
which is what we settled on using for our evaluations. Fig-
ure[T]depicts DeepGAN’s architecture.

3.3. Non-Adversarial Gesture Generation

Although DeepGAN shows promising results (see Sec-
tion), it demonstrated a few shortcomings early on. Most
importantly, the need for training two networks simultane-
ously increases the training burden: changes in one network
may adversely affect the other and most hyperparameters
need to be tuned twice. Moreover, training times are long
and we observed that the model required tens of thousands
of generator iterations to converge. Aiming to reconcile
these challenges, we present our loss function that com-
pletely replaces the discriminator. We start by providing
an intuition for training a sequence generator without a dis-
criminator, then proceed with the formal definition of our
loss function.

Intuition. The key to simplify the network design is the an-
swer to a fundamental question: can we possibly train the
single network generator network G? A generator network
aims to learn the distribution of the underlying dataset D,
so that new examples can be sampled from the distribution,
which is typically done with the help of a discriminator (or
a critic, in the case of WGAN-based models). To simplify
the gesture generation procedure, we pose the problem in a
slightly different way: let us train a generator that aims to
produce gestures that are similar to their real counterparts.
The fundamental question then becomes, how to train a gen-
erator that increases the similarity between the generated
and the real gestures? The answer is surprisingly simple: by
reducing the dissimilarity between the two! Conveniently, a
well-studied dissimilarity metric for time-series (as well as
gestures [42]) is dynamic time warping (DTW) [35]]. A dif-
ferentiable formulation of DTW called soft DTW (sDTW)
was recently proposed by Cuturi and Blondel [7].

DTW is a dynamic programming algorithm that was
originally proposed for speech recognition [35]. It is a dis-
similarity measure of two time-series that can be used to
find their optimal alignment for various time-series analy-
sis tasks [32]. Given two time-series X = {x1, z2, ..., Zp}
and Y = {y1,y2, ..., Ym }, @ cost matrix A of size n x m
is built. Each element A;; is the matching cost of z; to y;,
computed via the following recursion:

Ay = f(zi,y;) + min{Ai—l,jaAi,j—hAi—l,j—l} 2

where f(z;,y;) is a problem-specific cost (distance) func-

tion. Although Euclidean distance (ED) is widely used,
Taranta et al. [42}140] demonstrated the superiority of using
the cosine similarity metric (COS) for gesture recognition
problems. Once A is fully computed, the value A,,,, is the
dissimilarity measure of X and Y, and the path through the
matrix that yields A, is the optimal alignment between
the two time-series. Cuturi and Blondel’s sDTW formula-
tion [7] replaces the min{} operator with a differentiable
(soft) minimum defined as:

min”>°{A1,A2,..., }:—fylogZe 3)

where ~y controls the smoothness (smaller v yields a closer
approximation of classic DTW). Cuturi and Blondel show
that the resulting A,,,,, would be the expected value of dis-
similarity between X and Y, over every possible align-
ment between them weighted by their probability under the
Gibbs distribution [7]]. Further, they formulate the deriva-
tive of SDTW using backpropagation through a computation
graph. A detailed explanation is available in [7].

Loss formulation. To increase the similarity of a real ex-
ample x and a fake example x’, one could naively decide to
learn 6 by minimizing £ = sDTW (Gy(z:),x; f) where f
is the cost function of Equation 2] Unfortunately, this for-
mulation merely states that generated samples x’ should be
as similar to the real samples x as possible, ignoring inter-
class variations. A trivial solution to this formulation, that
was easily achievable in our tests, is the per-class centroid
sample. To overcome this issue and account for inter-class
variability, we formulate the loss function as a coverage
measure (point set similarity) of a set of fake and real exam-
ples. For this, we propose using the Hausdorff distance, a
well-studied measure for point set similarity [9] that can be
easily implemented and computed. Conveniently, the aver-
age Hausdorff distance (denoted as dy) between two point
sets A and B is differentiable [33] and is defined as:

roECEHENC

acA
Bl Z??E d()

where d(a, b; f) is the distance (dissimilarity) between two
points a and b parameterized by f. We use d(a, b; f) =
sDTW(a, b; f), and will discuss the choice of f (sDTW’s
cost function) shortly. Finally, we propose the following as
DeepNAG’s loss function to minimize. To our knowledge,
this is the very first formulation of a single loss metric to
train a deep recurrent neural network for generating syn-
thetic gesture sequences:

d},(A,B) =

gf(X/,X) = d,}f{ (Xll,Xl) + ‘d;_[(Xll,X/Q) — d,{{ (Xl,XQ)'

Similarity term Variation term

()
where X' = {x'1, x'2} (two generated examples), and
X = {x1, x2} (two real examples), and both examples

sets belong to the same gesture class. We only use the
derivative 0% ;/0x'1 during training since it yielded good
results and was faster. Intuitively, Equation [5] expresses
that training GG should aim to increase the similarity of fake
and real example (similarity term), while maintaining
the similarity balance between two batches of fake and
real examples (variation term). The former term ensures
real and generated samples are similar, while the latter
term ensures generated examples maintain proper overall
inter-class variations, effectively avoiding pitfalls such as
mode-collapse typically encountered in GANs.

Practical notes. When computing sDTW(a, b) we ensure
class-awareness: the value is only computed if samples a
and b belong to the same gesture class. As for the choice
of sDTW’s internal cost function f, we started with ED,
but the benefits of using COS quickly became apparent
to us: minimizing £, yielded high-quality results but
convergence was slow. Conversely, minimizing %o led
to much faster convergence with sometimes noisier results.
In the end, we settled for minimizing both and leave a
thorough study on the effects of each cost function to future
work. Lastly, recall our use of fixed-length sequences
(L = 64) where the points in the sequence are equidistant.
To enforce the production of such sequences by G we
add an additional term Zy...,. to our objective. Putting
everything together, the following is the loss function that
we minimize for our experiments:

‘%DeepNAG (X/J X) = ‘%ED (X/, X) + -%COS (X/, X) + (6)
« - '§£Resamp1e (Xll)

Ly () = ;,' 2 {

E "

L(x) = = Z H

Vi, €X

W
Ly

- Z(x/)>2

where L(x) is the length of each #; € X after x is resampled
to L equidistant points. Thus, Ly.um. Simply enforces that
points in x’ be equidistant with « as its regularizer. Note
that minimizing %, alone (Equation[5) yields good-quality

3In other words decrease their dissimilarity

results in most cases. However, we achieved faster con-
vergence and better data augmentation performance using
Equation[§]

As we discuss shortly, a generator trained with our loss
function demonstrates promising results compared to when
the same generator is trained in a GAN setting. In addition
to these two training configurations, we considered training
our generator in a variational autoencoder (VAE) [18]
setting. To our knowledge, no prior work has discussed the
adaptation of a recurrent VAE for gesture generation. Al-
though we successfully generated gesture sequences using
our proposed VAE, the quality and the variety of our pro-
duced samples were sub-par compared to either DeepGAN
or DeepNAG. Refer to Appendix |A|for more details.

4. Evaluation

We evaluate DeepGAN and DeepNAG from two aspects.
First, we conduct experiments to determine the efficacy of
either model in data augmentation tasks, focusing on sce-
narios with limited training data. We then discuss the eval-
uation of the perceived realism of our synthetic gestures
through a user study on Amazon Mechanical Turk based
on a recently introduced benchmark [50].

4.1. Data Augmentation Performance

Our experiment design for this study is as follows. Given
a dataset of gestures collected from multiple participants,
we simulate small training sets by splitting the data into
training (50%), validation (20%) and test (30%) sets. Our
experiments are all subject-independent; i.e. the data of
each participant only appears in one of these sets. This is
a more challenging and realistic evaluation protocol, as it
ensures that during training, the recognizer never sees any
data from the participant that it will be evaluated on during
the validation and testing phases.

We begin by training a gesture recognizer on the training
set, and use the validation set for model selection. We eval-
uate the best performing model on the test set and record
its recognition error (baseline). Next, we augment the train-
ing set with a selected data generation method and repeat
the experiment: train the recognizer with this new training
set, use the validation data for model selection, and evaluate
the best model on the test set. We record the recognizer’s
recognition error again, which will be the error after aug-
menting the training set. Comparing this number with the
baseline benchmarks the synthetic data generation method.
In total we perform 150 experiments: we train five gesture
recognizers on six different datasets to evaluate four syn-
thetic data generation methods against the baseline.

Datasets. We selected six datasets among the ones fre-
quently studied in the literature. They vary in size and
span across gesture modalities and input devices: JK2017

(Kinect) [42] (14 full-body fighting gestures of 20 partic-
ipants with Kinect v2), JK2017 (Leap Motion) [42] (eight
hand-gestures of 20 participants with Leap Motion), UT-
Kinect [45] (ten full-body daily activities of ten participants
with Kinect v1), MSR Action 3D [24]] (20 full-body actions
of ten participants with Kinect v1), SBU Kinect Interac-
tions [48] (8 two-person interaction of seven participants
with Kinect v1) and $1-GDS [44] (16 2D pen gestures of
ten participants).

Recognizers. We selected five gesture recognizers: support
vector machine (SVM), random forest, naive Bayes, Deep-
GRU [27] and Jackknife [42]. These represent classic ma-
chine learning algorithms, deep learning as well as rapid
prototyping [42] approaches, which are common choices
for gesture recognizers. The first three methods require ex-
plicit feature extraction for which we use the Rubine [34]
feature set extended to 3D gestures [36]. Jackknife [42] is
a l-nearest neighbor DTW-based template matching recog-
nizer.

Data generation methods. We compare four data genera-
tion methods against the baseline: random Gaussian noises,
GPSR [41], DeepGAN and DeepNAG. Although GPSR
was originally used for 2D gestures, its effectiveness for 3D
gestures has been demonstrated [27 6]

Implementation. We implemented DeepGAN and Deep-
NAG with the PyTorch [28] framework which we have pub-
licly released. Additionally, our implementation require-
ments yielded multiple other standalone projects, which
we have made public in the hope of benefiting the deep
learning community. Inspired by [51]], we implemented a
CUDA version of sDTW with a PyTorch interface using
Numba [19]. Our novel implementation parallelizes both
forward and backward passes, and runs more than 100x
faster than any other publicly available implementation that
we know of. Additionally, we implemented fast GRU units
using PyTorch’s just-in-time (JIT) compilation features to
allow computing their higher-order derivatives, a feature
that is missing in PyTorc Such derivatives are required
to implement the improved WGAN loss [14] for GRUs.

Hyperparameters. All hyperparameters were tuned
across different datasets, but the same set of parameters
were used for every experiment. Both DeepGAN and
DeepNAG were trained on the 50% split training set,
and shared most hyperparameter settings. We use the
Adam [17] solver (81 = 0.5, B2 = 0.9), with a learning rate
of 10~* and a mini-batch size of 64. DeepGAN-specific
hyperparameters were chosen from [14], as they performed
the best in our validation runs. Other parameters were

4To our knowledge, the cuDNN framework is missing this feature.
Thus, at the time of this writing one cannot compute higher-order deriva-
tives for GPU-based GRUs in any deep learning framework that relies on
cuDNN.

B Baseline

mmm Random Noise
GPSR

B DeepGAN

20 mmm DeepNAG

©
25 o
~

22.6

Recognition Error (%)

Naive Bayes Random Forest DeepGRU Jackknife

(a) JK2017 (Kinect) [42]

[Baseline

B Random Noise
GPSR

mm DeepGAN

. DeepNAG

20.0

20

15

Recognition Error (%)

SVM Naive Bayes Random Forest DeepGRU Jackknife

(c) UT-Kinect [43]]

mmm Baseline
mmm Random Noise
40 n GPSR

m B DeepGAN
W DeepNAG

30

20

Recognition Error (%)

10

SVM Naive Bayes Random Forest DeepGRU

(e) SBU Kinect Interactions [48]]

Jackknife

W Baseline

mmE Random Noise
GPSR

-

-

9.4

DeepGAN
DeepNAG

Recognition Error (%)

Naive Bayes Random Forest DeepGRU Jackknife

(b) JK2017 (Leap Motion) [42]

I Baseline
60 B Random Noise
GPSR

B DeepGAN
-

50 DeepNAG

40

Recognition Error (%)

20

10

Naive Bayes ~ Random Forest DeepGRU Jackknife

(d) MSR Action3D [24]]

W Baseline

mmm Random Noise
GPSR

B DeepGAN

B DeepNAG

©

o
30 o
25

20

15

Recognition Error (%)

10

Naive Bayes Random Forest DeepGRU Jackknife

(f) $1-GDS [44]

Figure 2. Results of evaluation across six datasets (best viewed in color).

chosen via cross-validation as follows. For DeepNAG we
used v = 0.1 and o = 10%. GPSR parameters were set to
r = 2,0 = 0.25 and the magnitude of random noise was
set to 2% of the bounding box of each feature.

Results and discussion. Figure 2]depicts the results of our
experimentsﬂ In many cases the use of some form of data
augmentation decreases the recognition error, indicating

5A video demo of generated gestures is available in an accompanying
video. Visithttps://www.deepnag.com

that our 50% split to simulate small training sets is working
as expected. To better contrast the generation methods we
employ a scoring scheme that quantifies whether the use of
a given augmentation method is both warranted and effec-
tive. Data augmentation is only warranted if a recognizer
trained with the additional data outperforms the baseline.
Additionally, a method is effective only if it outperforms
random noise. We start with a score of zero for a given gen-
erator. In each experiment set, we increment this score by
one if the method outperforms all other methods in addition

https://www.deepnag.com

Generator Score

Generator Score

Dataset Recognizer
GPSR DeepGAN DeepNAG GPSR DeepGAN DeepNAG

JK2017 (Kinect) [42]] 0 2 2 SVM 2 0 4
JK2017 (LeapMotion) [42] 0 1 Naive Bayes 1 3 2
UT-Kinect [45]] 0 1 2 Random Forest 2 1 3
MSR Action3D [24] 1 0 3 DeepGRU [27] 0 1 3
SBU Kinect 2 0 0 Jackknife [42] 0 0 2
$1-GDS [44] 1 1

Total Score 5 5 12 5 5 14

Table 1. Generator scores aggregated over dataset and recognizer.

to the baseline and random noise. Ties are only counted if
the method outperforms both random noise and the base-
line, and we use the cumulative score for comparison.

Table |I| presents the computed score aggregates over
each dataset and recognizer. We observe that across both
aggregate groups, DeepNAG outperforms other methods by
a large margin, suggesting its suitability for data augmenta-
tion regardless of the choice of dataset or recognizer. In a
few cases, DeepNAG reduced the recognition error to zero,
which further supports its suitability. Compared to GPSR,
these results are notable as DeepNAG generates new ex-
amples purely from random noise. Conversely, GPSR per-
turbs existing examples to generate new ones. This pro-
cess leaves some characteristics of the original gesture (e.g.
bounding box size) largely unchanged, which benefits rec-
ognizers that rely on such features.

Figure 2] also shows cases wherein data augmentation
seems harmful. In particular, we observe increased errors in
almost all cases where data generation is used with multi-
actor gestures (Figure[2e). This suggests that our generators
may not be suitable for generating multi-actor gestures,
which we confirmed by visual inspection. In some cases,
both DeepGAN and DeepNAG confuse the main and the
secondary actors, yielding malformed gestures. We intend
to study the generation of such gestures in future work.
We additionally inspected some of the generated examples
of Figure Pf wherein our generators increased recognition
errors. Most synthetic examples were visually fine which
suggests that the use of domain adaptation techniques may
be helpful [[1,152} [29]]. We plan to explore this in the future.

During visual inspection, we did not observe any mode-
collapse issues with DeepNAG. We observed healthy vari-
ations across all gesture classes and datasets with minimal
amounts of degenerate samples (except for the few cases
noted above). Lastly, factors such as ease of training and
training times compel the use of DeepNAG over Deep-
GAN as the former offers a significant reduction in train-
ing times. Training DeepGAN on a Tesla V100 GPU takes
between 3-5 days depending on the dataset size, whereas

DeepNAG takes around 3-7 hours under the same condi-
tions, a speedup of 12—17x.

Overall, our results indicate that DeepNAG outperforms
DeepGAN on data augmentation tasks, regardless of the
choice of dataset or recognizer. These results are notable,
as the generator model in both DeepGAN and DeepNAG
is exactly the same. In other words, the generator which
is trained using our novel loss function outperforms the
same generator trained in a GAN setting with the improved
Wasserstein loss. Additionally, our loss function trains the
generator in a much shorter period of time.

4.2. User Study

Qualitative evaluation of generative models through user
studies has become a common practice in the literature [21}
50]. We therefore turn our focus to the comparison of
DeepGAN and DeepNAG based on the perceived quality
of the generated samples using human evaluators based on
the HYPE,, [50] benchmark. This benchmark defines the
gold standard for evaluating generative realism on crowd-
sourcing platforms.

To compare different generative models, HYPE, de-
fines an experiment with 30 participants: each participant
only sees the results from one of the models. For a given
generative model, every participant is shown a total of 100
samples comprised of 50 fake and 50 real samples. Given
each sample, participants are asked to indicate whether they
think that sample is real or computer-generated. Partici-
pants have an infinite amount of time to make this binary
choice. Afterwards, the percentage of the samples that were
judged incorrectly is computed for every participant. Ob-
tained values are averages over 30 participants and the final
result is reported as the HYPE, score for the understudied
generative model. Zhou et al. [50] showed that this protocol
ensures repeatability and maintains the separability between
different generative models and can be used as a reliable
measure of the generative model’s quality.

Using this protocol, we conduct our user study on Ama-
zon Mechanical Turk for a given dataset D and a generator

Q1 What is your gender?

Q2 What is the highest level of education that you
have completed?

Q3 What is your age?
Q4 Do you play video games?

Qs How many hours per day do you play video
games? (only asked if the participant plays video games)

Table 2. Pre-study questionnaire. Except for age, all other ques-
tions are multiple-choice.

G. We first train the G on D to convergence. Using the
trained model, we then sample as many fake samples as the
real samples in D. The 100 samples needed to show a given
participant are randomly drawn from the pool of all avail-
able samples. We recruit 30 participants for every combina-
tion of D and G. Participants begin by studying the purpose
of the study and answering demographic questions as de-
tailed in Table[2] We then randomly show them each of the
100 samples and ask them to indicate whether they think a
given sample is produced by human or computer-generated
(see Figure[3). Every gesture sequence is drawn in the form
of a looping gif animation with a framerate of 32. Between
each animation loop, we display a countdown with a dura-
tion of 0.25 seconds. This was inspired by [50] and was
done to avoid confusing participants who may be unaware
that they are watching an infinitely-looping animation.

Participants are given an infinite amount of time to
respond to each question. Similar to the HYPE., bench-
mark, we reveal the correct answer to the participant upon
submitting a response to every question. Every participant
is allowed to participate in our study only once, which
ensures unique responses across all experiment conditions.
At the end of the study, we reveal the overall accuracy of the
participant in our task and pay them $2 for their time [50].

When posting our study on the Mechanical Turk plat-
form, we created a list of criteria to ensure the selection of
a pool of high-quality workers. We refined and validated
these criteria through trials on Mechanical Turk prior to
starting our actual study. First, participants must have an
approval rating of at least 97% to participate in our study
to filter out low-quality workers. Our next participation re-
quirement is that workers must have completed at least 5000
studies. This criterion filters out participants who may have
high approval ratings because they recently joined the plat-
form. Lastly, participants must be Mechanical Turk Masters
to be eligible to participate in our study. Amazon uses pro-
prietary criteria to grant top-performing workers this qual-
ification. Although the exact criteria is not publicly dis-
closed, Amazon claims they continuously monitor the per-
formance of master workers across different user studies on

Gesture Realism Evaluation

Question 10

This gesture was produced by a ...

Human

Machine

Submit

Figure 3. The interface of our user study application. Participants
are shown the gesture animation and are asked to select either “hu-
man” or “machine”. Once “submit” is clicked, the correct answer
is revealed.

the platform to ensure consistent performanceﬂ

Our study consisted in evaluating each of DeepGAN
and DeepNAG on three datasets covering different ges-
ture modalities: Kinect (JK-2017 [42]), Leap Motion (JK-
2017 [42])) and Pen gestures ($1-GDS [44]]). Thus our gen-
erator factor has two levels and our dataset factor has three
levels, yielding a total of six experiments.

Results and discussion. In total, we recruited 180 partic-
ipants with an average age of 41 years (¢=10.8). Figure [4]
depicts the demographics of our participants. A majority of
our participants indicated that that they played video games.
Those who did, played an average of 2.2 hours per day
(0=1.8). Across all tasks, participants spent an average of
12.3 minutes (0=3.8), and each question was answered in
7.4 seconds on average (0=2.3). Considering a payment of
$2 per study, our participants were compensated well above
the minimum wage specified by the United States federal
guidelines ($7.25 per hour at the time of this writing).

Table [3] presents the results of our user study. In all
experiments, we observe higher HYPE, scores for Deep-
NAG compared to DeepGAN. Unpaired t-tests confirm that
the difference is significant in all experiments: #(58)=3.3,
p=0.001 (JK2017-Kinect [42]), t(58)=12.4, p <0.001
(JK2017-Leap Motion [42]) and #(58)=2.8, p=0.006 ($1-
GDS [44]).

Focusing on the results with JK2017 (Leap Motion) [42]
dataset, we observe a large HYPE, score gap between the
two generators. Notably, DeepNAG achieves hyper-realism

SDetails available atfht tps: / /www.mturk.com/worker/help

https://www.mturk.com/worker/help

GENDER

Other (0.6%)

Female (42.2%)

Male (57.2%)

EDUCATION

Ph.D. (1.7%) High School
(13.3%)

Grad Work
(2.2%)

CONTINENT

Europe (1.1%)

Asia (16.6%)

America (82.2%)

VIDEO GAMES

No (15.6%)

Yes (84.4%)

Figure 4. Demographics of our user study participants (best viewed in color).

Dataset Generator HYPE, Std. Fake Errors Real Errors
JK2017 (Kinect) [42] DeepNAG 48.1 8.8 53.9 42.3
DeepGAN 38.4 12.9 44.3 32.5
JK2017 (LeapMotion) [42] DeepNAG 51.0 4.3 56.1 45.8
DeepGAN 22.7 11.4 23.9 21.4
$1-GDS [44] DeepNAG 50.0 6.7 56.3 43.7
DeepGAN 44.4 8.3 49.5 39.3

Table 3. Amazon Mechanical Turk user study results. Reported values are percentages (averaged over 30 participants). The top performing

model on each dataset (with statistical significance) is boldfaced.

on this dataset: its fake samples look more realistic to hu-
mans than the real ones. These results correlate well with
those in Section .1} on the Leap Motion dataset, Deep-
NAG significantly outperformed DeepGAN in reducing the
recognition error (Table [I)) and in some cases, DeepNAG
reduced the recognition error to zero (Figure 2).

Similar to [30], we report a breakdown of the error on
the real and fake samples. We observe higher fake errors
with DeepNAG in all cases. Inline with Zhou et al.’s obser-
vation [30]], real and fake errors track each other. This in-
dicates participants become more confused when fake sam-
ples are particularly hard to distinguish from the real ones.

To investigate whether there is an association between
playing video games and the ability to distinguish between
real and fake samples, we performed a multiple regression

analysis using dataset, generator and play video games as
predictors. The results show that there is no statistically
significant association between playing video games and
accuracy when controlled for dataset and generator (co-
eff=0.01, p=0.51, CI (95%)=(-0.029, 0.058))

In summary, our study shows that it is harder for eval-
uators to distinguish DeepNAG’s synthetic samples from
the real samples compared to those produced by Deep-
GAN. This trend holds regardless of the dataset and gesture
modality. Additionally, DeepNAG not only outperformed
DeepGAN in every experiment, but it also achieved hyper-
realism on the Leap Motion dataset. These results correlate
well with our data augmentation performance evaluations in
Section[4.T]and are notable considering that DeepNAG and
DeepGAN both use the same underlying generator.

5. Conclusion

We discussed modality-agnostic gesture generation with
recurrent neural networks. We first presented DeepGAN,
our GAN model for synthetic gesture generation across
various datasets and gesture modalities. To reduce the
training complexity, we formulated a novel loss function
based on the dynamic time warping (DTW) algorithm
and the average Hausdorff distance. Our loss function
obviated the need for a separate discriminator network,
and led to 12-17x faster training. We called this approach
DeepNAG and evaluated it from two aspects. Our first
evaluations focused on the use of either model towards
data augmentation for improved gesture recognition. In
these evaluations, DeepNAG outperformed DeepGAN,
along with other synthetic gesture generators across various
datasets and recognizers. Next, we evaluated the perceived
quality of the synthetic samples produced by DeepGAN
and DeepNAG using human evaluators. Our user study,
which was based on the HYPE_, benchmark and was con-
ducted using Amazon Mechanical Turk, demonstrated that
DeepNAG consistently outperformed DeepGAN in terms
of the realism of the synthetic samples. Users confused
DeepNAG’s samples with the real ones more frequently,
and on one of our studied datasets, DeepNAG achieved
hyper-realism by obtaining a HYPE, score of 51%.

In the future, we plan to more deeply explore the gener-
ation of multi-actor gestures, as well as the use of domain
adaptation techniques to further improve data augmentation
performance. Lastly, we aim to explore the application of
our loss function in problem domains besides gestures such
as time-series generation.

A. Appendix: Gesture Generation with Varia-
tional Autoencoders

Thus far, we have shown that training our proposed
RNN-based gesture generator using our novel loss function
outperforms the same generator that is trained with the
improved Wasserstein loss in a GAN training setting. In
this section we investigate whether our generator can be
trained in a variational autoencoder setting.

A.l. Background

Variational autoencoders (VAE) [18]] are a class of au-
toencoders [3}16] designed for generative modeling. Sim-
ilar to autoencoders, VAEs consist of encoder and decoder
networks. However, the goal of VAE:s is to model the distri-
bution of the input data by learning a latent representation
thereof. As such, the encoder network maps the input data x
to a probability distribution (latent space) while the decoder
network aims to reconstruct the original data from a vector
z in that latent space. Once training concludes, the decoder
network can be used to generate synthetic samples. The

10

loss function for VAEs consists of reconstruction as well as
regularization terms. The reconstruction term ensures that
the reconstructed data closely resembles the input data. The
regularization term ensures that the learned distribution of
the latent space is as close to some known distribution as
possible (typically the standard normal distribution). As-
suming that ¢ and 6 denote the trainable parameters of the
encoder and decoder respectively, the following is the loss
function that is minimized [5]]:

.%(9,(,25;X,Z) = 7Eq¢(z‘x) Dngg(X|Z)] + (7)

reconstruction

D1 (q4(2lx) || p(2))

regularization

where Dy (||) is the Kullback-Leibler (KL) divergence
between two probability distributions. Equation [/| simply
aims to minimize the reconstruction error as well as the
KL divergence between the learned latent space and the
standard normal distribution (p(z) = AN(0,1)). Note that
in this formulation, class labels are not considered, which
means one cannot control what sample class is produced
for a given z. Sohn et al. [38] proposed conditional VAEs
in which a conditioning criteria is applied to the input data
x as well as the latent vector z similar to conditional GANs
as described in Section[3.2]

A.2. Model Architecture and Objective Function

We iteratively designed our VAE’s overall architec-
ture. Given our goal of training the generator of Deep-
GAN/DeepNAG in a VAE framework, we reused the afore-
said generator as the decoder in our VAE network. As for
the encoder, we started with using the uDeepGRU model
as the encoder. This way, our overall VAE network closely
resembled that of DeepGAN’s. After running some pre-
liminary experiments, we observed that the choice of the
encoder architecture did not result in perceptible difference
in the model’s performance. In fact, adding or removing
layers in either the encoder or the decoder made little dif-
ference in the produced results, inline with what Bowman et
al. [4] observed. We ultimately decided to carry on with an
architecture similar to Figure[T}

We now discuss our proposed training objective function
which can be used to train our RNN-based generator in a
VAE framework. As previously mentioned, the VAE objec-
tive function typically consist of reconstruction and regular-
ization terms. We can conveniently reuse the regularization
term of Equation [/ as it simply ensures that the learned
latent space follows the standard normal distribution. The
reconstruction term, however, is domain-specific. To our

knowledge, no reconstruction loss term for generating ges-
tures has been previously discussed in the literature. Re-
call that the this term ensures that the output of the decoder
(generator) closely resembles the input data. Conveniently,
a differentiable metric that can be used for this purpose is
sDTW. Thus, we propose the following loss function as the
objective to minimize during the training our gesture gener-
ating VAE:

L(0,¢;x,2:) = sDTW(x,Gy(ze); f) +
Drcr(go(zelx) || p(2e)

®)

where f is sDTW’s internal cost function and z; is the la-
tent vector conditioned on the class label c. In simple terms,
we define the reconstruction error as the sDTW dissimilar-
ity between the input data and the output of the generator.
As mentioned in Section [3.3] Cuturi and Blondel show that
the computed sDTW value would be the expected value of
dissimilarity between two time-series, over every possible
alignment between them weighted by their probability un-
der the Gibbs distribution [7]. This closely resembles the
original reconstruction term of VAEs (Equation [7). To our
knowledge, our proposed loss function is novel, and we are
the first to formulate such function for gesture generation
using VAEs.

A.3. Results

As previously mentioned, changes in the architecture
of our model made little difference in the produced results.
Although training plots showed a steady decrease of the loss
value and training converged, the generated results lacked
visual quality and diversity. Most gesture trajectories were
rather noisy. Again, we observed this trend regardless of
the architecture of encoder or decoder networks, various
hyperparameter settings, the choice of f (we tried ED and
COS) or even the gesture dataset. We additionally experi-
mented with alternative reconstruction terms. Specifically,
we experimented with the mean squared error (MSE) of
both the Euclidean distance as well as the cosine similarity
of gesture paths (X) between the input and reconstructed
samples. These alternate formulations performed worse
than our sDTW-based reconstruction term.

Some samples produced by our VAE model when trained
on the $1-GDS dataset [44], along with overlayed sam-
ples for each of the real and synthetic data are depicted
in Figure 5] These results show that the produced samples
lack sufficient diversity when compared to the real samples.
Given the visual quality of the results, we hypothesize that
our proposed VAE framework is not suitable for training our
generator to produce good synthetic samples.

11

A X OOV AP AT DOV X o2& L
AXKTO OV A T AT TV XX E 2 LR
A X O 0O v A T AD OV X £ F oA L2
A XD O VAT AC OV X TP &K L
A X3 O NPT 3V X T3 K 0
A X 0O 0 v AT AC 3V X I 3R L
A X DOD VAP AT IV X T oK L
(a) VAE (samples)
A X O O v AP A FEC JV X T 3 &£ L
A M O © &« A ® A K T ¥V X E B %, 4

(b) VAE (overlays)

Figure 5. Synthetic gestures produced by our VAE-based generator
trained on $1-GDS [44] dataset. Note that most samples are noisy
and lack visual fidelity. We further show overlayed rendering of
synthetic samples from our VAE model (b — top), and real samples
(b —bottom). Each overlay consists of 16 samples per class. Note
the lack of variety in the synthetic results compared to the real
samples.

References

[1] Cycada: Cycle consistent adversarial domain adaptation.
In International Conference on Machine Learning (ICML),
2018.

Martin Arjovsky, Soumith Chintala, and Léon Bottou.
Wasserstein generative adversarial networks. In Proceedings
of the 34nd International Conference on Machine Learning,
ICML 2017, Sydney, Australia, 2017.

Dana H. Ballard. Modular learning in neural networks. In
Proceedings of the Sixth National Conference on Artificial
Intelligence - Volume 1, AAAI’87, page 279-284. AAAI
Press, 1987.

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew M.
Dai, Rafal Jozefowicz, and Samy Bengio. Generating sen-
tences from a continuous space, 2015.

(2]

(3]

(4]

[5] Christopher P. Burgess, Irina Higgins, Arka Pal, Loic
Matthey, Nick Watters, Guillaume Desjardins, and Alexan-
der Lerchner. Understanding disentangling in -vae, 2018.
F. M. Caputo, S. Burato, G. Pavan, T. Voillemin, H. Wan-
nous, J. P. Vandeborre, M. Maghoumi, E. M. Taranta II, A.
Razmjoo, J. J. LaViola Jr., F. Manganaro, S. Pini, G. Borghi,
R. Vezzani, R. Cucchiara, H. Nguyen, M. T. Tran, and A. Gi-
achetti. Online Gesture Recognition. In Eurographics Work-
shop on 3D Object Retrieval, 2019.

Marco Cuturi and Mathieu Blondel. Soft-dtw: a differen-
tiable loss function for time-series. In Proceedings of the
34th International Conference on Machine Learning-Volume
70, pages 894-903. JIMLR. org, 2017.

Kenny Davila, Stephanie Ludi, and Richard Zanibbi. Us-
ing off-line features and synthetic data for on-line handwrit-
ten math symbol recognition. In Frontiers in Handwriting
Recognition (ICFHR), 2014 14th International Conference
on, pages 323-328. IEEE, 2014.

M. . Dubuisson and A. K. Jain. A modified hausdorff dis-
tance for object matching. In Proceedings of 12th Interna-

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

[14]

[15]

(16]

[17]

(18]

(19]

(20]

(21]

[22]

(23]

[24]

tional Conference on Pattern Recognition, volume 1, pages
566-568 vol.1, Oct 1994.

Cristobal Esteban, Stephanie L. Hyland, and Gunnar Ratsch.
Real-valued (medical) time series generation with recurrent
conditional gans, 2017.

Andreas Fischer, Muriel Visani, Van Cuong Kieu, and
Ching Y. Suen. Generation of learning samples for historical
handwriting recognition using image degradation. In Pro-
ceedings of the 2Nd International Workshop on Historical
Document Imaging and Processing, HIP *13, pages 73-79,
New York, NY, USA, 2013. ACM.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Advances
in neural information processing systems, pages 2672-2680,
2014.

Alex Graves. Generating sequences with recurrent neural
networks. CoRR, abs/1308.0850, 2013.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent
Dumoulin, and Aaron Courville. Improved training of
wasserstein GANs. In Proceedings of the 31st Interna-
tional Conference on Neural Information Processing Sys-
tems NIPS’17,2017.

Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong Yu, and
Jun Wang. Long text generation via adversarial training with
leaked information. arXiv preprint arXiv:1709.08624,2017.
G. E. Hinton and R. R. Salakhutdinov. Reducing the
dimensionality of data with neural networks. Science,
313(5786):504-507, 2006.

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes, 2013.

Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba:
A llvm-based python jit compiler. In Proceedings of the Sec-
ond Workshop on the LLVM Compiler Infrastructure in HPC,
LLVM ’15. ACM, 2015.

Do-Hoon Lee and Hwan-Gue Cho. A new synthesiz-
ing method for handwriting korean scripts. International
Journal of Pattern Recognition and Artificial Intelligence,
12(01):45-61, 1998.

Luis A. Leiva. Large-scale user perception of synthetic
stroke gestures. In Proceedings of the 2017 Conference on
Designing Interactive Systems, page 1135-1140. Associa-
tion for Computing Machinery, 2017.

Luis A. Leiva, Daniel Martin-Albo, and Réjean Plamon-
don. Gestures A go go: Authoring synthetic human-like
stroke gestures using the kinematic theory of rapid move-
ments. ACM Trans. Intell. Syst. Technol., 7(2):15:1-15:29,
Nov. 2015.

Luis A. Leiva, Daniel Martin-Albo, and Réjean Plamondon.
The kinematic theory produces human-like stroke gestures.
Interacting with Computers, 29(4):552-565, July 2017.

W. Li, Z. Zhang, and Z. Liu. Action recognition based on a
bag of 3d points. In 2010 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition - Work-
shops, 2010.

12

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

Zhongliang Li, Tian Xia, Xingyu Lou, Kaihe Xu, Shaojun
Wang, and Jing Xiao. Adversarial discrete sequence gener-
ation without explicit neuralnetworks as discriminators. In
Kamalika Chaudhuri and Masashi Sugiyama, editors, Pro-
ceedings of Machine Learning Research, volume 89 of Pro-
ceedings of Machine Learning Research, pages 3089-3098.
PMLR, 2019.

Kevin Lin, Dianqi Li, Xiaodong He, Zhengyou Zhang, and
Ming-Ting Sun. Adversarial Ranking for Language Genera-
tion. In Proceedings of the 31st International Conference on
Neural Information Processing Systems, NIPS’17, 2017.
Mehran Maghoumi and Joseph J. LaViola. DeepGRU: Deep
Gesture Recognition Utility. In Advances in Visual Comput-
ing, pages 16-31. Springer International Publishing, 2019.
Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. In NIPS-W, 2017.

Luis Perez and Jason Wang. The effectiveness of data aug-
mentation in image classification using deep learning, 2017.
Réjean Plamondon and Moussa Djioua. A multi-level rep-
resentation paradigm for handwriting stroke generation. Hu-
man movement science, 25(4):586-607, 2006.

Alec Radford, Luke Metz, and Soumith Chintala. Unsuper-
vised representation learning with deep convolutional gener-
ative adversarial networks, 2015.

Thanawin Rakthanmanon, Bilson Campana, Abdullah
Mueen, Gustavo Batista, Brandon Westover, Qiang Zhu,
Jesin Zakaria, and Eamonn Keogh. Searching and mining
trillions of time series subsequences under dynamic time
warping. In Proceedings of the 18th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Min-
ing (KDD ’12),2012.

Javier Ribera, David Giiera, Yuhao Chen, and Edward J.
Delp. Locating objects without bounding boxes. Pro-
ceedings of the Computer Vision and Pattern Recognition
(CVPR), June 2019. Long Beach, CA.

Dean Rubine. Specifying gestures by example. In Proceed-
ings of the 18th Annual Conference on Computer Graph-
ics and Interactive Techniques, SIGGRAPH ’91, pages 329—
337, 1991.

H. Sakoe and S. Chiba. Dynamic programming algorithm
optimization for spoken word recognition. [EEE Transac-
tions on Acoustics, Speech, and Signal Processing, 26(1):43—
49, February 1978.

Jia Sheng. A study of adaboost in 3d gesture recognition. De-
partment of Computer Science, University of Toronto, 2003.
S. Shin and W. Kim. Skeleton-based dynamic hand gesture
recognition using a part-based gru-rnn for gesture-based in-
terface. IEEE Access, 8:50236-50243, 2020.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning
structured output representation using deep conditional gen-
erative models. In C. Cortes, N. D. Lawrence, D. D. Lee, M.
Sugiyama, and R. Garnett, editors, Advances in Neural In-
formation Processing Systems 28, pages 3483-3491. Curran
Associates, Inc., 2015.

Hao Tang, Wei Wang, Dan Xu, Yan Yan, and Nicu Sebe.
GestureGAN for Hand Gesture-to-Gesture Translation in the

[40]

(41]

[42]

[43]

[44]

(45]

[46]

[47]

(48]

[49]

[50]

Wild. In Proceedings of the 26th ACM International Confer-
ence on Multimedia, MM ’ 18, pages 774-782. ACM, 2018.
Eugene M. Taranta, II and Joseph J. LaViola, Jr. Penny
pincher: A blazing fast, highly accurate $-family recognizer.
In Proceedings of the 41st Graphics Interface Conference
(GI ’15), 2015.

Eugene M Taranta II, Mehran Maghoumi, Corey R Pittman,
and Joseph J LaViola Jr. A rapid prototyping approach to
synthetic data generation for improved 2d gesture recogni-
tion. In Proceedings of the 29th Annual Symposium on User
Interface Software and Technology, pages 873-885. ACM,
2016.

Eugene M. Taranta II, Amirreza Samiei, Mehran Maghoumi,
Pooya Khaloo, Corey R. Pittman, and Joseph J. LaViola Jr.
Jackknife: A reliable recognizer with few samples and many
modalities. In Proceedings of the 2017 CHI Conference on
Human Factors in Computing Systems (CHI ’17), 2017.
Tamds Varga, Daniel Kilchhofer, and Horst Bunke.
Template-based synthetic handwriting generation for the
training of recognition systems. In Proceedings of the
12th Conference of the International Graphonomics Society,
pages 206211, 2005.

Jacob O Wobbrock, Andrew D Wilson, and Yang Li. Ges-
tures Without Libraries, Toolkits or Training: A $1 Recog-
nizer for User Interface Prototypes. In Proceedings of the
20th Annual ACM Symposium on User Interface Software
and Technology, UIST *07, 2007.

L. Xia, C.C. Chen, and JK Aggarwal. View invariant human
action recognition using histograms of 3d joints. In Com-
puter Vision and Pattern Recognition Workshops (CVPRW),
2012 IEEE Computer Society Conference on, pages 20-27.
IEEE, 2012.

Ceyuan Yang, Zhe Wang, Xinge Zhu, Chen Huang, Jianping
Shi, and Dahua Lin. Pose guided human video generation. In
Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and
Yair Weiss, editors, Computer Vision — ECCV 2018, pages
204-219, Cham, 2018. Springer International Publishing.
Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Se-
qGAN: Sequence Generative Adversarial Nets with Policy
Gradient. In Proceedings of the Thirty-First AAAI Confer-
ence on Artificial Intelligence, AAAI’17, pages 2852-2858.
AAAI Press, 2017.

Kiwon Yun, Jean Honorio, Debaleena Chattopadhyay,
Tamara L. Berg, and Dimitris Samaras. Two-person interac-
tion detection using body-pose features and multiple instance
learning. In Computer Vision and Pattern Recognition Work-
shops (CVPRW), 2012 IEEE Computer Society Conference
on. IEEE, 2012.

X. Zhang, F. Yin, Y. Zhang, C. Liu, and Y. Bengio. Drawing
and recognizing chinese characters with recurrent neural net-
work. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 40(4):849-862, April 2018.

Sharon Zhou, Mitchell Gordon, Ranjay Krishna, Austin Nar-
comey, Li F Fei-Fei, and Michael Bernstein. Hype: A
benchmark for human eye perceptual evaluation of genera-
tive models. In Advances in Neural Information Processing
Systems, pages 3449-3461, 2019.

13

[51]

(52]

H. Zhu, Z. Gu, H. Zhao, K. Chen, C. Li, and L. He. Develop-
ing a pattern discovery method in time series data and its gpu
acceleration. Big Data Mining and Analytics, 1(4):266-283,
2018.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In Computer Vision (ICCV),
2017 IEEE International Conference on, 2017.

