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Abstract
The Minimum Circuit Size Problem (MCSP) asks if a given truth table of a Boolean function f can
be computed by a Boolean circuit of size at most θ, for a given parameter θ. We improve several
circuit lower bounds for MCSP, using pseudorandom generators (PRGs) that are local; a PRG is
called local if its output bit strings, when viewed as the truth table of a Boolean function, can be
computed by a Boolean circuit of small size. We get new and improved lower bounds for MCSP that
almost match the best-known lower bounds against several circuit models. Specifically, we show
that computing MCSP, on functions with a truth table of length N , requires

N3−o(1)-size de Morgan formulas, improving the recent N2−o(1) lower bound by Hirahara and
Santhanam (CCC, 2017),

N2−o(1)-size formulas over an arbitrary basis or general branching programs (no non-trivial lower
bound was known for MCSP against these models), and

2Ω(N1/(d+2.01))-size depth-d AC0 circuits, improving the superpolynomial lower bound by Allender
et al. (SICOMP, 2006).

The AC0 lower bound stated above matches the best-known AC0 lower bound (for PARITY) up to
a small additive constant in the depth. Also, for the special case of depth-2 circuits (i.e., CNFs or
DNFs), we get an almost optimal lower bound of 2N1−o(1)

for MCSP.
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39:2 Circuit Lower Bounds for MCSP from Local PRGs

1 Introduction

Given the truth table of some Boolean function f and a size parameter θ, the minimum
circuit size problem (MCSP) asks whether f can be computed by a circuit of size at most θ.
Understanding the exact complexity of MCSP is an important open problem in computational
complexity theory, dating back to the 1950s [20].

It is easy to see that MCSP is in NP. A popular conjecture is that MCSP is also NP-hard.
However, despite serious efforts over the years, such a proof is still unknown. Given that it is
difficult to show that MCSP is hard, perhaps the problem is easy? It turns out that this cannot
be the case under some plausible cryptographic assumptions. More specifically, it is known
that if one-way functions exist, then MCSP is not in P [11]. As proving an unconditional lower
bound for MCSP seems far beyond the reach of currently known techniques, can we at least
prove unconditional lower bounds for MCSP against some restricted computational models?1

Two of the most studied restricted computational models in complexity theory are
constant-depth circuits (AC0) and de Morgan formulas. For AC0 circuits, the best-known
lower bound is about PARITY: PARITY on N variables requires depth-d AC0 circuits of size
2Ω(N1/(d−1)) [6]. For de Morgan formulas, the state-of-the-art lower bound is almost cubic,
namely N3−o(1), for some polynomial-time computable function [7, 18, 19, 5].

Notably, there are also lower bounds against these models for MCSP. Allender et al. [2]
showed that MCSP, on functions represented as a truth table of length N , cannot be computed
by polynomial-size constant-depth AC0 circuits. In fact, by a more careful analysis of their
argument, one can get a lower bound of 2N1/(c·d+O(1)) , for a constant c ≥ 2. However, such a
lower bound still has a worse dependence on the depth compared to the PARITY lower bound.
For de Morgan formulas, Hirahara and Santhanam [9] showed that computing MCSP requires
de Morgan formulas of size N2−o(1).

Given these two MCSP lower bounds and the best-known lower bounds against these two
models, it is natural to ask whether we can get MCSP lower bounds against small-depth
circuits and de Morgan formulas that match the state-of-the-art lower bounds against these
models. More specifically, can we show that computing MCSP requires depth-d AC0 circuits of
size 2N1/(d+O(1)) and de Morgan formulas of size N3−o(1)? Furthermore, can we show lower
bounds for MCSP against some other restricted models that match their state-of-the-art lower
bounds? In this paper, we answer these questions in the affirmative.

1.1 Our results
Our first result is an almost-cubic de Morgan formula lower bound for MCSP.

I Theorem 1. Any de Morgan formula computing MCSP on truth tables of length N must
have size at least N3/2O(log2/3 N).

We also get almost-quadratic lower bounds against formulas over an arbitrary basis as
well as general branching programs; these almost match the best-known lower bounds against
these models [12].

I Theorem 2. Let C be either a formula over any basis or a branching program that computes
MCSP on truth tables of length N . Then C must have size at least N2/2O

(√
logN

)
.

1 A recent line of research on hardness magnification [16, 14] provides another motivation for proving
relatively weak lower bounds for restricted circuit models against certain “gap variants” of MCSP. Such
lower bounds are shown to imply much stronger (superpolynomial) lower bounds.
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For small-depth circuits, we have the following improved lower bound for MCSP, which
its dependence on the depth matches the one in the PARITY lower bound, up to a small
additive constant.

I Theorem 3. For every d > 2 and every constant γ > 0, any depth-d AC0 circuit computing
MCSP on truth tables of length N must have size 2Ω(N1/(d+2+γ)).

For the special case of depth-2 circuits, we can have an almost optimal lower bound.

I Theorem 4. Any CNF or DNF computing MCSP on truth tables of length N must have size
2N/Õ(log2 N).

Also, in this paper (in the full version), we give a fine-grained analysis of the approach of
obtaining MCSP lower bounds from average-case hardness via the Nisan-Wigderson framework.

1.2 Our techniques
For a class C of N -variate Boolean functions, a pseudorandom generator (PRG) against C is
a deterministic efficiently-computable function G mapping short binary strings (seeds) to
longer binary strings so that every function in C accepts G’s output on a uniformly random
seed with about the same probability as that for an actual uniformly random string. A key
notion in this work is that of a local PRG. We say that a PRG is local if its N -bit output
(viewed as the truth table of some function) has small circuit complexity. More precisely,
for any fixed seed to the PRG, there exists a small circuit such that, given j ∈ [N ] as an
input, the circuit computes the j-th bit of the PRG output, where the size of the circuit is
measured relative to its input length, namely logN .

Local PRGs in the context of MCSP (and related problems) have been studied in previous
works (see, e.g., [2, 15, 9, 8]). In this work, we refine the previous approaches, and obtain
stronger circuit lower bounds by establishing strong locality properties of certain PRGs.2

MCSP lower bounds from local PRGs. Suppose we have a local PRG against some class
of circuits C of size s, and we want to show that MCSP cannot be computed by any size-s
circuit in C. Suppose some size-s circuit C in C computes MCSP. Using the fact that a
random function has almost maximum circuit complexity, we have that C will output false
on most of its inputs (by setting the size parameter θ to be a non-trivial quantity that is
asymptotically smaller than 2n/n, where n is the input length of the function). If we replace
the uniformly random inputs with the outputs of the local PRG, then, by the definition of
PRGs, C will still output false with large probability. However, since the PRG is local, all
of its outputs have circuit complexity smaller than the size parameter θ, and hence must be
accepted by C. A contradiction.

To get a strong lower bound, we would like to make the above argument to work for large
s. Note that the local complexity of the PRG, λ(s), is a function on the size of the circuit
C, and we need this local complexity to be “non-trivial” in order to reach a contradiction.
Therefore, we want to choose s so that this local complexity remains asymptotically smaller
than 2n/n. As a result, the final lower bound (i.e., the largest s that we can choose) is
determined by the local complexity λ. So the main question we study in our paper is: What
is the smallest local complexity of a PRG against a given circuit class?

2 Note that, as one of our reviewers pointed out, the notion of a local PRG can be also found in the
context of cryptography [4], where a PRG G : {0, 1}n → {0, 1}m is called k-local, for some constant
k > 0, if every output PRG bit G(x)j , for any x ∈ {0, 1}n and j ∈ [m], depends only on k input bits
xi1 , . . . , xik , for i1, . . . , ik ∈ [n]. In our work, however, locality refers to the circuit complexity of the
PRG at hand and the output bits of our PRGs may depend on a superconstant number of input bits.

ICALP 2019



39:4 Circuit Lower Bounds for MCSP from Local PRGs

MCSP lower bound against de Morgan formulas. Our formula lower bound for MCSP is
obtained by applying the framework described above to a local PRG against formulas. The
state-of-the-art PRG against formulas is given by Impagliazzo, Meka, and Zuckerman [10],
which we refer to as the IMZ PRG. Their PRG has a seed length of s1/3+o(1) for size s
formulas (note that such a PRG is useful against sub-cubic formulas only). If we want to
utilize the IMZ PRG to get an MCSP lower bound against formulas, we will need to argue
that the IMZ PRG is local.

In fact, in order to get an almost-cubic lower bound, we will need such a PRG to be
strongly local in the sense that any single output bit of the PRG (on any given fixed seed) can
be computed by a circuit of size comparable to its seed length, which is s1/3+o(1). However,
by inspecting the construction, the IMZ PRG does not seem to have such a property, and a
straightforward implementation seems to require a circuit of size at least s2/3 (see the full
version for more details), which yields a weaker lower bound for MCSP.

To overcome this issue, we present an alternative PRG useful against sub-cubic formulas
which is strongly local. The construction of this PRG can be viewed as a modification of
the IMZ PRG. At a high level, it is based on the Ajtai-Wigderson construction [1], which
is a framework for constructing PRGs against computations that can be simplified under
(pseudo)random restrictions. This framework is then combined with the ideas of reducing
(recycling) random bits using an extractor, by exploiting communication bottlenecks in
computations [13]. Our modification, particularly the utilization of the Ajtai-Wigderson
construction, allows us to compute any output bit of the PRG efficiently by reducing the
number of calls to the extractor. Using some crucial observations on the circuit complexity
of certain pseudorandom objects, we get a PRG that is locally computable by a s1/3+o(1)-size
circuit.3

MCSP lower bounds against formulas over an arbitrary basis or branching programs.
The MCSP lower bounds against formulas over an arbitrary basis or branching programs are
obtained similarly to those for de Morgan formulas. The idea is to construct strongly local
PRGs against these models by modifying the PRGs in [10]. Then, by applying our “MCSP
circuit lower bounds from local PRGs” framework, we get the desired lower bounds.

MCSP lower bounds against AC0. We use a local PRG against AC0 to get MCSP lower
bounds. To get a lower bound matching the one in Theorem 3, we can use the state-of-the-art
PRG against AC0 by Trevisan and Xue [21], which has a seed length of (log s)d+O(1) for size-s
depth-d AC0 circuits. By a careful analysis of the construction of this PRG, we can show that
the Trevisan-Xue PRG is strongly local and can be used to get an MCSP lower bound that is
close to the one stated in Theorem 3. However, in this paper, we will present a more direct
proof of such a lower bound by using the pseudorandom switching lemma for constant-depth
circuits, which is due to Trevisan and Xue [21], as well, and is a key ingredient in their PRG.

The idea is to show that for any small-depth circuit of size less than the claimed lower
bound, there is some locally computable restriction that turns the circuit into a constant
function, but leaves many variables unrestricted. However, MCSP cannot be constant under
such a restriction, because depending on the partial assignment to the unrestricted variables,
the resulting input function (which is composed of the restriction and the partial assignment)
can be either easy or hard. Such an approach based on pseudorandom restrictions can also
be applied to depth-2 circuits and yield almost optimal CNF (and DNF) MCSP lower bounds.

3 It is also possible to use the original IMZ PRG to obtain an almost-cubic formula lower bound for MCSP.
We can show that the IMZ PRG, although not fully strongly local, is “almost strongly local” in the
sense that most of its outputs have very small circuit complexity; see the full version.
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1.3 Remainder of the paper
We give the necessary background in Section 2. In Section 3, we describe our framework of
using local PRGs to obtain lower bounds for MCSP. We prove the almost-cubic de Morgan
formula lower bound for MCSP (Theorem 1) in Section 4, and the almost-quadratic lower
bound against formulas over an arbitrary basis and branching programs (Theorem 2) in
Section 5. The improved AC0 lower bounds for MCSP (Theorem 3 and Theorem 4) are proved
in Section 6. Finally, we give some open problems in Section 7. Due to space limitations we
relegated some material to the full version, like some omitted proofs and the framework of
proving MCSP lower bounds from average-case hardness.

2 Preliminaries

2.1 Notation
For any computational model, we use the term size to refer to its complexity measure. For
example, if the model is circuits of some fixed depth, then the size is the number of gates in
the circuit.

For a positive integer n, that is a power of two, we use the following notation: [n] denotes
the set {1, 2, . . . , n} ∼= {0, 1}logn, Fn denotes the field with n elements, where the elements
in Fn are represented by (logn)-bit strings, Un denotes the uniform distribution over {0, 1}n,
and, for a function f : {0, 1}n → {0, 1}, tt(f) ∈ {0, 1}N=2n denotes the truth table of f .

2.2 Pseudorandomness
I Definition 5 (Pseudorandom generators). Let G : {0, 1}r → {0, 1}n be a function, F be a
class of Boolean functions, and 0 < ε < 1. We say that G is a pseudorandom generator of
seed length r that ε-fools F if, for every function f ∈ F , it is the case that∣∣Ez∼{0,1}r [f(G(z))]− Ex∼{0,1}n [f(x)]

∣∣ ≤ ε.
IDefinition 6 (k-wise independence). A distribution X over [m]n is called k-wise independent
if for any 1 ≤ i1 ≤ i2 ≤ · · · ≤ ik ≤ n and every b1, b2, . . . , bk ∈ [m], we have

Pr[Xi1 = b1, Xi2 = b2, . . . , Xik = bk] = m−k.

The following simple fact (proved in the full version) will be convenient for us.

I Lemma 7. Let X and Y be two random variables that take values in {0, 1} and E be some
event. If |E[X | E ]− E[Y | E ]| ≤ ε1 and Pr[¬E ] ≤ ε2, then |E[X]− E[Y ]| ≤ ε1 + ε2.

2.3 Random restrictions
A restriction for a n-variate Boolean function f , usually denoted as ρ ∈ {0, 1, ∗}n, specifies a
way of fixing the values of some subset of variables for f . We denote by fρ the restricted
function after the variables are restricted according to ρ, and denote by ρ−1(∗) the set of
unrestricted variables. A random restriction is then a distribution over restrictions, which can
be specified by a pair (σ, β) ∈ {0, 1}n × {0, 1}n, where σ (as a characteristic string) specifies
the set of unrestricted variables, and β specifies the values for fixing the restricted variables.
We say that a random restriction (or random selection) is p-regular if each variable is left
unrestricted with probability p. One way to generate a p-regular random restriction is to leave
each variable, independently, unrestricted with probability p, and otherwise assign to it a 0 or

ICALP 2019



39:6 Circuit Lower Bounds for MCSP from Local PRGs

a 1, uniformly at random. Such a random restriction is called a (truly) p-random restriction.
Note that to sample such a restriction, we can first pick a string in {0, 1}n·log(1/p) ∼= [1/p]n
to specify the selection of the unrestricted variables, where a coordinate is unrestricted if
and only if all of its corresponding log(1/p) bits are 0, and then a string in {0, 1}n to specify
the values assigned to each of the restricted variables. So sampling a restriction in this way
requires n · log(1/p) + n random bits.

We can also generate a restriction in a pseudorandom manner, which may use fewer
random bits. For example, one way to do this is to use a limited-independence distribution
over [1/p]n, so that each variable is left unrestricted with probability p and any k variables
are independent. Also, we can let each variable be assigned a 0 or a 1, uniformly at random,
in a way such that any k of the variables are independent; this again can be done using a
k-wise independent distribution on {0, 1}n.

2.4 Simple facts about Boolean circuits
I Proposition 8. A Boolean circuit of size s can be specified using O(s log s) bits. Hence
there are at most 2O(s log s) = sO(s) distinct circuits of size at most s.

I Theorem 9 ([17]). The fraction of functions on n variables that have a circuit of size less
than 2n/(3n) is o(1).

The following lemma is proved in the full version.

I Lemma 10. For any integer t > 0, there exists a circuit C of size Õ(t) such that, given
any string x ∈ {0, 1}t, the circuit does the following: If x = 0t, then C outputs (0, 0log t) and
if x 6= 0t, then C outputs (1, q), where q ∈ {0, 1}log t is the index of the first bit in x that is
not 0.

The following circuit upper bound for the addressing (storage access) function is well-
known (see, e.g., [22]); we include a proof, in the full version, for completeness.

I Lemma 11. For any integers t,m > 0, there exists a circuit of size O(tm) such that, given
any string y = (y1, y2, . . . , yt), where yi ∈ {0, 1}m for each i, and an index i ∈ {0, 1}log t, the
circuit outputs yi.

3 The “MCSP circuit lower bounds from local PRGs” framework

We first describe how to use local PRGs to obtain MCSP lower bounds.

I Definition 12 (Local PRGs). Let λ : N × N → N be a size function. For any Boolean
computational model and size s > 0, we say that a function G : {0, 1}r=r(N,s) → {0, 1}N is a
(N, s, λ(N, s))-local PRG against the model if G 1/3-fools every device f on N variables of
size s in the model; that is,∣∣∣Ez∼{0,1}r [f(G(z))]− Ex∼{0,1}N [f(x)]

∣∣∣ ≤ 1/3,

and for any seed z ∈ {0, 1}r, the function g : {0, 1}logN → {0, 1}, defined as gz(j) = G(z)j,
can be computed by a general circuit of size at most λ(N, s).

Note that λ(N, s) is at least r(N, s), by a counting argument (neglecting log λ(N, s)
factors). This is to ensure that, for any function g, on n variables, which may be output by
G, there is some λ(N, s)-size circuit that computes g.
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I Theorem 13. There exists a constant c > 0 such that the following holds. For any
computational model, let s be such that MCSP on truth tables of length N can be computed
by a device of size s in the model. If there exists some (N, s, λ(N, s))-local PRG against the
model, then λ(N, s) ≥ N

c logN .

Proof. Let C be a device in the computational model such that C computes MCSP on truth
tables of length N . Suppose C has size s, and let G be a (N, s, λ(N, s))-local PRG against
C with some seed length r.

For the sake of contradiction, suppose that λ(N, s) < N
c logN . On the one hand, since

most functions require circuits of size greater than N
c logN (Theorem 9) and C computes

MCSP, we have µ = Prtt(f)∼{0,1}N [C(tt(f) , λ(N, s)) = 0] ≥ 1/2. Also, since G fools C, we
have Prz∼{0,1}r [C(G(z), λ(N, s)) = 0] ≥ µ − 1/3 ≥ 1/6. On the other hand, because G is
(N, s, λ(N, s))-local, we must have C(G(z), λ(N, s)) = 1, for every z. A contradiction. J

4 Almost-cubic de Morgan formula lower bounds for MCSP

In this section, we present our almost-cubic de Morgan formula lower bound for MCSP. By
saying “formula” within this section, we refer to formulas over the de Morgan basis (AND,
OR, and NOT). By size of a formula, we mean its usual leaf complexity, i.e., the number of
leaves in the tree representation of the formula.

I Theorem 14 (Theorem 1 restated). Any de Morgan formula computing MCSP on truth
tables of length N must have size at least N3/2O(log2/3 N).

We will construct a strongly local PRG useful against sub-cubic formulas. That is, given
as input an index j, the j-th bit of the PRG can be computed by a circuit of size that is
comparable to its seed length, which in our case is around s1/3 for size s formulas.

I Lemma 15. For any s ≥ N , there exists a
(
N, s, s1/3 · 2O(log2/3 s)

)
-local PRG against de

Morgan formulas.

Given the local PRG in Lemma 15, we can combine it with our Theorem 13 to obtain a
formula lower bound for MCSP.

Proof of Theorem 14. Let s be such that MCSP on truth tables of length N can be computed
by some formula of size s. We can assume that s ≤ N3 since, otherwise, the result trivially
holds. By Theorem 13 and Lemma 15, we have s1/3 · 2O(log2/3 s) ≥ N/(c logN); then,
s ≥ N3/

(
2O(log2/3 N)c3 log3N

)
. J

The rest of this section is devoted to proving Lemma 15.

4.1 Almost-linear-size k-independent generators
The PRG in Lemma 15 will use k-wise independent distributions. Recall that a multidi-
mensional distribution is called k-wise independent if any k coordinates of the distribution
are uniformly distributed (see Definition 6). We say that a function G is a k-independent
generator if, for random inputs, the distribution of the outputs of G is k-wise independent.

We will need a k-independent generator that is strongly local.

I Lemma 16. For any integer k > 0, there exists a k-independent generator G : {0, 1}r →
[m]N , with r = k ·max{logN, logm}, such that the following holds. There exists a circuit of
size k ·max{Õ(logN), Õ(logm)} such that, given j ∈ {0, 1}logN and a seed z ∈ {0, 1}r, the
circuit computes the j-th coordinate of G(z) (as an element of {0, 1}logm).

ICALP 2019



39:8 Circuit Lower Bounds for MCSP from Local PRGs

The above k-independent generator is constructed using finite fields (see the full version).
Its efficiency crucially depends on the fact that finite field arithmetic can be done using
almost linear-size Boolean circuits.

4.2 Almost-linear-size extractors
Our PRG will make use of randomness extractors. Here, we describe an extractor that is
computable by a circuit of size that is almost linear in the length of its input. We start by
reviewing the definitions of some basic notions regarding extractors.

I Definition 17 (ε-closeness and statistical distance). Let 0 ≤ ε ≤ 1. We say two distributions
X and Y (over some universe D) are ε-close if their statistical distance, defined as

max
T :D→{0,1}

|Pr[T (X) = 1]−Pr[T (Y ) = 1]| ,

is at most ε.

I Definition 18 (Min-entropy). Let X be a random variable. The min-entropy of X, denoted
by H∞(X), is the largest real number k such that Pr[X = x] ≤ 2−k for every x in the range
of X. If X is a distribution over {0, 1}ℵ with H∞(X) ≥ k, then X is called a (ℵ, k)-source.

I Definition 19 (Extractors). A function E : {0, 1}ℵ×{0, 1}d → {0, 1}m is an (k, ε)-extractor
if, for any (ℵ, k)-source X, the distribution E(X,Ud) is ε-close to Um.

We now state the extractor, which for a high min-entropy source extracts a constant
fraction of min-entropy, using seeds of polylogarithmic length. The construction and circuit
complexity of this extractor are presented in the full version.

I Lemma 20 (Almost-linear-size extractors, following [13]). There exists some randomness
extractor E : {0, 1}ℵ × {0, 1}d → {0, 1}m that is an (ℵ/2, ε)-extractor with m = Ω(ℵ) and
d = polylog(ℵ/ε). Moreover, E can be computed by a circuit of size ℵ · polylog(ℵ/ε).

4.3 Strongly local PRG useful against sub-cubic de Morgan formulas
For a formula F , let L(F ) denote the size (which is measured by the number of leaves) of
F . We need the following pseudorandom shrinkage lemma for de Morgan formulas, which
says that there exists a p-regular restriction, where the unrestricted variables are selected
pseudorandomly and the restricted variables are fixed truly-randomly, such that with high
probability the size of the restricted formula will “shrink” by a factor of p2.

I Lemma 21 (Pseudorandom shrinkage lemma, Lemma 4.8 of [10]4). There exists a constant
c0 > 0 such that the following holds. For any constant c > c0, any s ≥ N , p ≥ s−1/2, and
any de Morgan formula F on N variables of size s, there exists a p-regular pseudorandom
selection D over N variables, that is samplable using r = 2O(log2/3 s) random bits, such that

Prσ∼D,x∼{0,1}N
[
L
(
F(σ,x)

)
≥ 23·c·log2/3 s · p2 · s

]
≤ s−c.

Moreover, there exists a circuit of size 2O(log2/3 s) such that, given j ∈ {0, 1}logN and a seed
z ∈ {0, 1}r, the circuit computes the j-th bit of D(z).

4 The pseudorandom shrinkage lemma in [10] is not stated in this form, but rather selects the unrestricted
variables and fixes the restricted variables both pseudorandomly (based on limited independence).
However, our version here follows from the proof of the original version in Section 4.2 of [10] by noting
that limited-independence distributions can be computed locally.
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We are now ready to show our PRG in Lemma 15.

Proof of Lemma 15. The construction is as follows: We first sample a p-regular pseu-
dorandom selection from Lemma 21. Then, we fill the star coordinates, specified by the
pseudorandom selection, in the output string with the output of some extractor which takes
a min-entropy source sample and a short seed (in fact, it is the output of some limited-
independence generator that takes the output of the extractor as a seed). We then sample
another pseudorandom selection, and fill the star coordinates specified by this pseudorandom
selection but this time only for those that have not been filled in previous steps, again with
the output of the same extractor using the same min-entropy source sample but a different
short seed. We continue this way until all the coordinates are filled.

More formally, our PRG uses the following parameters:5
p = 1/s1/3, the expected fraction of unrestricted variables in each of the pseudorandom
selections;
ε = 1/poly(N) and ε0 = ε/(10t), which specify the error of the PRG;
t = ln(2N/ε)/p = s1/3 ·O (logN), the number of steps needed so that all the coordinates
will be filled with probability except ε/2;
s0 = p2 · s · 2O(log2/3 s) = s1/3 · 2O(log2/3 s), the size of the formula after being simplified
by a pseudorandom restriction;
k ≥ s0 = s1/3 · 2O(log2/3 s), the amount of independence needed to fool the simplified
formula, and rk = k · logN the seed length for the k-independent generator;
ℵ, the length of the min-entropy source for the extractor, which is such that ℵ ≥
2 · (log(1/ε0) + c · s0 · log s0), where c > 0 is some constant, and that ℵ = Ω(rk). We can
take ℵ = s1/3 · 2O(log2/3 s);
d = polylog(ℵ/ε0) = polylog(N), the seed length of the extractor;
` = 2O(log2/3 s), the number of random bits for sampling a pseudorandom selection.

Construction. The PRG takes a seed (X,Y1, Y2, . . . , Yt, γ1, γ2, . . . , γt) ∈ {0, 1}r, where
X ∈ {0, 1}ℵ is the min-entropy source sample of an extractor,
Yi ∈ {0, 1}polylog(N), for each i ∈ [t], is the seed of an extractor, and
γi ∈ {0, 1}`, for each i ∈ [t], is the seed for sampling a pseudorandom selection.

The construction of the PRG proceeds in the following two stages.
1. Compute a sequence of t p-regular pseudorandom selections σ1, . . . , σt, using Lemma 21,

with the seeds γ1, . . . , γt. Below, we denote the star coordinates in σi by σ−1
i (∗). Let

S1, . . . , St ⊆ [N ] be t disjoint sets defined by

Si = σ−1
i (∗) \ (S1 ∪ S2 ∪ · · · ∪ Si−1).

2. Define Z1, Z2, . . . , Zt ∈ {0, 1}N by

Zi = Gk(E(X,Yi)),

where E : {0, 1}ℵ × {0, 1}d → {0, 1}Ω(ℵ) is an (ℵ/2, ε0)-extractor and Gk : {0, 1}rk →
{0, 1}N is a k-independent generator. The final output of our PRG is the binary string
that has the values Zi|Si in the positions indexed by Si, for all i ∈ [t], where Zi|Si denotes
the bit values of Zi projected to the set Si. (We fix those positions that are not in any of
the Si’s to be 0.) Stage 2 of the PRG construction is depicted in Figure 1.

5 In fact, there are mainly two types of parameters here. Those that are close to s1/3, which are
1/p, t, s0, k,N , and those that are close to No(1), which are d and `.
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∨
S1

Z1

St

Zt

Zt ∧ 1StZ1 ∧ 1S1

· · ·X

Y1 Yt

E E

GkGk

G =

. . .

. . .

. . .

Figure 1 Construction of the PRG in Lemma 15, Stage 2. For each i ∈ [t], 1Si ∈ {0, 1}
N denotes

the characteristic Boolean vector of the set Si, where Si ⊆ [N ] is the set of star coordinates in the
i-th pseudorandom selection that did not appear in the preceding sets S1, . . . , Si−1. Also, ∧ denotes
a coordinate-wise AND operation (i.e., coordinate-wise multiplication of Boolean vectors) and

∨
is

a coordinate-wise OR operation.

Correctness. Next, we show that the above PRG ε-fools N -variate formulas f of size s.
First, note that, by our choice of t, with probability except ε/2, S1 ∪ S2 ∪ · · · ∪ St covers all
coordinates. For the rest of the argument, we will assume that this is the case. By Lemma 7,
conditioning on this assumption contributes at most ε/2 to the error of the constructed PRG.

We continue the correctness analysis using a hybrid argument. Let G denote the distribu-
tion given by the PRG described above. Let U be the uniform distribution. Note that if in
the above construction we replace Zi, for all i ∈ [t], with U , then we would get a uniform
distribution. Now we can start from there and gradually replace U with the Zi’s step-by-step
for a total of t steps. We will argue that after each replacement step, the expected value of
the function does not change by much. Let Ai be the distribution so that we have replaced
U with Zi in the first i steps. That is,

Ai =
(
Z1|S1

, . . . , Zi|Si , U |Si+1
, . . . , U |St

)
=
(
Z1|S1

, . . . , Zi|Si , U | Si+1∪···∪St

)
.

For the sake of contradiction, suppose there exists an N -variate size-s formula f such that

|E[f(U)]− E[f(G)]| = |E[f(A0)]− E[f(At)]| > ε/2.

By the triangle inequality, there exists an 0 ≤ i < t such that

|E[f(Ai)]− E[f(Ai+1)]| > ε/(2t). (1)

Let us say that the expectations in Equation (1) are over σ1, . . . , σi+1, Y1, . . . , Yi+1, X, U,

and we may remove the absolute value without loss of generality. Then, we have

Eσ1,...,σi,
Y1,...,Yi,

X

[
Eσi+1,Yi+1,U [f(Ai)]− Eσi+1,Yi+1,U [f(Ai+1)]

]
> ε/(2t). (2)
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LetWi = (σ1, . . . , σi, Y1, . . . , Yi, X), and let f ′ be the random function (where the randomness
is over Wi) defined as f ′ = f(Z1|S1 , . . . , Zi|Si , · ). That is, f ′ is the restricted function
after the first i steps. Then, the left hand side of Equation (2) becomes

EWi

[
Eσi+1,U

[
f ′(U |Si+1 , U | Si+2∪···∪St)

]
− Eσi+1,Yi+1,U

[
f ′(Zi+1|Si+1 , U | Si+2∪···∪St)

] ]
. (3)

Note that, at this point, we can view ρi+1 = (σi+1, U) as a pseudorandom restriction (in
the sense of Lemma 21) applied to f ′. Next, let f ′′ be the random function defined as the
restricted function of f ′ under ρi+1 (note that the randomness is over Wi, and also the
pseudorandom restriction ρi+1). Now Equation (3) becomes

EWi,ρi+1

[
EU [f ′′(U)]− EYi+1 [f ′′(Zi+1)]

]
. (4)

Note that in the above, we abuse notation and use U and Zi+1 to denote U |Si+1 and Zi+1|Si+1 ,
respectively.

Next we want to show that the difference between the two expectations in Equation (4)
is at most 3ε0 = 3ε/ (10t) ≤ ε/ (2t), which would give a contradiction, by Equation (2). The
intuition is the following. On the one hand, f ′′ is obtained by a pseudorandom restriction
ρi+1, and so, with high probability, it has size at most s0. On the other hand, Zi+1 is obtained
using an extractor that is supposed to extract enough random bits for an s0-independent
generator.

The issue, however, is that f ′′ depends onX, the source sample of the extractor. Therefore,
f ′′ may contain information about X, so that X is not truly random anymore. Nonetheless,
being a formula of size at most s0, f ′′ cannot contain too much information, and so cannot
take too much entropy away from X. We make this argument more formal next.

Let us define the set of good functions for f ′′, namely

F =
{
g | L(g) ≤ s0 and PrWi,ρi+1 [f ′′ = g] ≥ ε0/s

cs0
0
}
,

where c is some constant. Let E denote the event f ′′ ∈ F . We first show the following.

B Claim 22. It is the case that Pr[¬E ] ≤ 2ε0.

Proof of Claim 22. We have

Pr[¬E ] = Pr[(f ′′ /∈ F) ∧ (L(f ′′) > s0)] + Pr[(f ′′ /∈ F) ∧ (L(f ′′) ≤ s0)]
≤ Pr[(L(f ′′) > s0)] + Pr[(f ′′ /∈ F) ∧ (L(f ′′) ≤ s0)].

Note that, by the pseudorandom shrinkage lemma (Lemma 21), we have Pr[L(f ′′) > s0] ≤ ε0.

Also note that under the condition that L(f ′′) ≤ s0, there can be at most sO(s0)
0 choices

for f ′′, since a formula of size s0 can be specified using O(s0 log s0) bits (Proposition 8).
Therefore, Pr[(f ′′ /∈ F) ∧ (L(f ′′) ≤ s0)] ≤ sO(s0)

0 · ε0/s
cs0
0 ≤ ε0. C

Let us now analyze Equation (4) while conditioning on the event E . We show the following.

B Claim 23. It is the case that E [f ′′(U) | E ]− E [f ′′(Zi+1) | E ] ≤ ε0.

Proof of Claim 23. First note that conditioning on E , X still has large min-entropy. More
precisely, for every g ∈ F it is the case that H∞(X | f ′′ = g) ≥ ℵ/2. This is because, for
every x in the range of X, we have

Pr[X = x | f ′′ = g] ≤ Pr[X = x]
Pr[f ′′ = g] ≤

2−ℵ

ε0/s
c·s0
0

= 2−(ℵ−log(1/ε0)−c·s0·log s0) ≤ 2−ℵ/2.
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Then, by the definition of the extractor, we have E [f ′′(Gk(U)) | E ]− E [f ′′(Zi+1) | E ] ≤ ε0.

Finally, note that E [f ′′(Gk(U)) | E ] = E [f ′′(U) | E ] , since s0-wise independent distributions
fool size-s0 formulas. C

Combining Claim 22, Claim 23, and Lemma 7, we get that the quantity in Equation (4)
is at most 3ε0, which leads to a contradiction. This completes the proof of correctness.

Locality. To see that the j-th bit of the PRG can be computed using a circuit of size
s1/3 · 2O(log2/3 s), we observe the following equivalent construction:
1. Compute the j-th bits of the t pseudorandom selections (σ1)j , (σ2)j , . . . , (σt)j .
2. Retrieve Yq, where q is the smallest integer such that (σq)j is a star.
3. Compute (Zq)j = Gk(E(X,Yq))j , as the j-th bit of the PRG.
Note that Step 1 can be done using a circuit of size t · 2O(log2/3 s) = s1/3 · 2O(log2/3 s), by the
pseudorandom shrinkage lemma (Lemma 21). Also, Step 2 can be done by first computing q
from the sequence ((σi)j)i∈[t], using a circuit of size Õ(t) (Lemma 10), and then outputting Yq
from (Yi)i∈[t], using a circuit of size t ·polylog(N) (Lemma 11). Finally, Step 3 can be done by
a circuit of size Õ(ℵ), using the efficient extractor (Lemma 20) and the limited-independence
generator (Lemma 16). J

5 Almost-quadratic lower bounds against arbitrary basis formulas and
branching programs

The MCSP lower bounds against formulas, over an arbitrary basis, and branching programs
are obtained similarly to those for de Morgan formulas in the previous section. The idea is
to construct strongly local PRGs against these models by modifying the PRGs in [10].

I Lemma 24. For any s ≥ n, there exists a
(
N, s, s1/2 · 2O

(√
log s
))

-local PRG against

size-s formulas over an arbitrary basis (or branching programs).

The MCSP lower bound in Theorem 2 follows from Lemma 24 and Theorem 13.

6 Improved AC0 lower bounds for MCSP

In this section, we show improved lower bounds for MCSP against constant-depth circuits.

6.1 The case of depth d > 2
We first show the improved lower bound against circuits of depth d > 2 that almost matches
the lower bound for PARITY.

I Theorem 25 (Theorem 3 restated). For every d > 2 and every constant γ > 0, any depth-d
AC0 circuit computing MCSP on truth tables of length N must have size 2Ω(N1/(d+2+γ)).

The above result is proved using the following structural property of small-depth circuits,
which says that for any such circuit, there exists some locally computable restriction that
simplifies the circuits to be a constant while leaving many variables unrestricted.

I Lemma 26. For any size-s depth-d circuit C, there exists a restriction ρ ∈ {0, 1, ∗}N such
that Cρ is a constant function,

∣∣ρ−1(∗)
∣∣ ≥ N

O(log s)d−2 − log s, and there exists a circuit of size
d · log(N) · Õ

(
log3 s

)
such that, given j ∈ {0, 1}logN , the circuit computes the j-th coordinate

of ρ.
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The proof of Lemma 26, presented in the full version, uses the pseudorandom switching
lemma due to Trevisan and Xue [21], which says that a depth-2 circuit is likely to be simplified
after hit by a pseudorandom restriction. We now prove Theorem 25.

Proof of Theorem 25. Let C be a depth-d AC0 circuit on {0, 1}N × {0, 1}logN such that C
computes MCSP on truth tables of length N , and let s be the size of C.

For a size parameter λ = d · log(N) · Õ
(
log3 s

)
, let C ′ = C(·, λ). Let ρ be a restriction

from Lemma 26 for C ′. By Lemma 26, we have that C ′ρ is a constant function. First note
that C ′ρ(0|ρ

−1(∗)|) = 1. To see this, note that C ′ρ(0|ρ
−1(∗)|) = C(tt(f) , λ), where C computes

MCSP and f : {0, 1}logN → {0, 1} is the following:

f(j) =
{

0, if ρj = 0 or ρj = ∗,
1, else if ρj = 1.

By Item 3 of Lemma 26, such a function f can be computed by a λ-size circuit. On the
other hand, there can be 2|ρ−1(∗)| different functions corresponding to the different partial
assignments to the unrestricted variables. Since there are at most O(λ log λ) different circuits
of size at most λ, in order for C ′ρ to be the constant 1, we must have 2O(λ logλ) ≥ 2|ρ−1(∗)| =
2

N

O(log s)d−2−log s
, which, by a simple calculation, implies s = 2Ω(N1/(d+2+γ)), for any γ > 0. J

6.2 The case of depth 2
Here we show that computing MCSP requires depth-2 circuits of almost maximum size.

I Theorem 27 (Theorem 4 restated). Any CNF or DNF computing MCSP on truth tables of
length N must have size 2N/Õ(log2 N).

The proof uses a variant of Lemma 26 which says that a depth-2 circuit can be made
constant via a more efficient restriction. Given such a local restriction, it is straightforward
to prove Theorem 27 following the argument in the proof of Theorem 25.

7 Open problems

Our de Morgan formula lower bound for MCSP is still slightly weaker than the state-of-the-art
de Morgan formula lower bound due to Tal [19], which is Ω

(
N3/

(
logN · (log logN)2)). Can

the MCSP lower bound be improved? Are there better constructions of local PRGs against
formulas? Or, are there alternative proofs that do not rely on local PRGs?

A similar question can be asked for small-depth circuits. In particular, can we show that
MCSP requires depth-2 circuits (i.e., CNFs or DNFs) of size 2Ω(N), as in the case of PARITY?

What are other restricted models of computation against which we can show MCSP lower
bounds using local PRGs? The recent “random walk PRG” by Chattopadhyay, Hatami,
Hosseini, and Lovett [3] is also local and can be used to get MCSP lower bounds. However, as
a general PRG that can be used to fool a variety of restricted models, it has sub-optimal
usefulness (which is determined by its seed length) compared to the best-known lower bounds
for most of those models.
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