Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3437959.3459249acmconferencesArticle/Chapter ViewAbstractPublication PagespadsConference Proceedingsconference-collections
research-article

Load-Aware Dynamic Time Synchronization in Parallel Discrete Event Simulation

Published: 01 June 2021 Publication History

Abstract

Traditional Parallel Discrete Event Simulation (PDES) systems employ a monolithic approach for choosing their thread synchronization protocol. They either implement a Time Window-based conservative synchronization or an optimistic event processing capability based on the Time Warp synchronization. In this paper, we show that this binary choice is suboptimal and unnecessary, particularly in the realistic situation where the load distribution across the simulation domain changes over time. We thus propose a new PDES synchronization scheme, called Hybrid PDES, that dynamically switches between conservative and optimistic synchronization protocols based on the simulation run time characteristics.
The primary objective of Hybrid PDES is to exploit the optimistic event processing as long as it is beneficial for the system performance and scalability. We implement Hybrid PDES in Python- and Lua-based Simian PDES engines and demonstrate up to 3X performance improvements on Intel Knights Landing and AMD EPYC processors based on the Phold, La-pdes and PPT-GPU simulation applications.

Supplementary Material

MP4 File (PADS_21_Recording_Ali.mp4)
Load-Aware Dynamic Time Synchronization in Parallel Discrete Event Simulation

References

[1]
P. Andelfinger, Y. Xu, W. Cai, D. Eckhoff, and A. Knoll. 2018. Fast-Forwarding Agent States to Accelerate Microscopic Traffic Simulations. In Proceedings of the 2018 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation (Rome, Italy). ACM, 113--124.
[2]
Y. Arafa, A. A. Badawy, G. Chennupati, N. Santhi, and S. Eidenbenz. 2019. PPTGPU: Scalable GPU Performance Modeling. IEEE Computer Architecture Letters 18, 1 (2019), 55--58.
[3]
K. Bahulkar, J. Wang, N. Abu-Ghazaleh, and D. Ponomarev. 2012. Partitioning on Dynamic Bahavior for Parallel Discrete Event Simulation. In 26th IEEE/ACM/SCS Workshop on Principles of Advanced and Distributed Simulations (PADS).
[4]
D. Bauer, C. Carothers, and A. Holder. 2009. Scalable Time Warp on Bluegene Supercomputer. In Proc. of the ACM/IEEE/SCS Workshop on Principles of Advanced and Distributed Simulation (PADS).
[5]
S. Carnà, S. Ferracci, E. De Santis, A. Pellegrini, and F. Quaglia. 2019. Hardware- Assisted Incremental Checkpointing in Speculative Parallel Discrete Event Simulation. In 2019 Winter Simulation Conference (WSC). 2759--2770.
[6]
H. Chen, Y.Yao, andW. Tang. 2015. Can MIC Find Its Place in theWorld of PDES?. In Proceedings of International Symposium on Distributed Simulation and Real Time Systems (DS-RT).
[7]
G. Chennupati, N. Santhi, and S. Eidenbenz. 2019. Scalable Performance Prediction of Codes with Memory Hierarchy and Pipelines. In Proceedings of the 2019 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation (Chicago, IL, USA). 13--24.
[8]
G. Chrysos. 2012. Intel Xeon Phi x100 Family Coprocessor - the Architecture. In Intel white paper.
[9]
NVIDIA Corporation. Jun. 2017. Volta Tesla V100 GPU Architecture Whitepaper. http://images.nvidia.com/content/volta-architecture/pdf/volta-architecturewhitepaper. pdf
[10]
E. Deelman and B. K. Szymanski. 1998. Dynamic load balancing in parallel discrete event simulation for spatially explicit problems. In Proceedings. Twelfth Workshop on Parallel and Distributed Simulation PADS '98. 46--53.
[11]
A. S. Dhodapkar and J. E. Smith. 2003. Comparing program phase detection techniques. In Proceedings. 36th Annual IEEE/ACM International Symposium on Microarchitecture, 2003. MICRO-36. 217--227.
[12]
P. M. Dickens, D. M. Nicol, P. F. Reynolds, and J. M. Duva. 1996. Analysis of Bounded Time Warp and Comparison with YAWNS. ACM Trans. Model. Comput. Simul. 6, 4 (Oct. 1996), 297--320.
[13]
A. Eker, B. Williams, K. Chiu, and D. Ponomarev. 2019. Controlled Asynchronous GVT: Accelerating Parallel Discrete Event Simulation on Many-Core Clusters. In Proceedings of 48th International Conference on Parallel Processing (ICPP 2019). 1--10.
[14]
A. Eker, B. Williams, K. Chiu, and D. Ponomarev. 2020. Demand-Driven PDES: Exploiting Locality in Simulation Models. In Proceedings of the 2020 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation. ACM.
[15]
A. Eker, B. Williams, N. Mishra, D. Thakur, K. Chiu, D. Ponomarev, and N. Abu- Ghazaleh. 2018. Performance Implications of Global Virtual Time Algorithms on a Knights Landing Processor. In 2018 IEEE/ACM 22nd International Symposium on Distributed Simulation and Real Time Applications (DS-RT). 1--10.
[16]
R. Fujimoto. 1989. Time Warp on a Shared Memory Multiprocessor. Transactions of Society for Computer Simulation (July 1989), 211--239.
[17]
R. Fujimoto. 1990. Parallel Discrete Event Simulation. Commun. ACM 33, 10 (Oct. 1990), 30--53.
[18]
R. Fujimoto. 1990. Performance of Time Warp under synthetic workloads. Proceedings of the SCS Multiconference on Distributed Simulation 22, 1 (Jan. 1990), 23--28.
[19]
E. Galli, L. Cuéllar, S. Eidenbenz, M. Ewers, S. Mniszewski, and C. Teuscher. 2009. ActivitySim: Large-Scale Agent-Based Activity Generation for Infrastructure Simulation. In Proceedings of the 2009 Spring Simulation Multiconference. Society for Computer Simulation International, Article 16, 9 pages.
[20]
S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos. 2012. Auto-tuning a high-level language targeted to GPU codes. In Innovative Parallel Computing (InPar '12). 1--10. https://doi.org/10.1109/InPar.2012.6339595
[21]
T. R. Henderson, S. Roy, S. Floyd, and G. F. Riley. 2006. Ns-3 Project Goals. In Proceeding from the 2006 Workshop on Ns-2: The IP Network Simulator (Pisa, Italy). ACM, Article 13.
[22]
M. Ianni, R. Marotta, D. Cingolani, A. Pellegrini, and F. Quaglia. 2018. The Ultimate Share-Everything PDES System. In 2018 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation. 73--84.
[23]
D. Jagtap, K. Bahulkar, D. Ponomarev, and N. Abu-Ghazaleh. 2012. Characterizing and understanding pdes behavior on tilera architecture. In 2012 ACM/IEEE/SCS 26thWorkshop on Principles of Advanced and Distributed Simulation. IEEE, 53--62.
[24]
D. Jagtap, N.Abu-Ghazaleh, and D.Ponomarev. 2012. Optimization of Parallel Discrete Event Simulator for Multi-core Systems. In International Parallel and Distributed Processing Symposium.
[25]
D. Jefferson, B. Beckman, F. Wieland, L. Blume, M. Di Loreto, P. Hontalas, P. Laroche, K. Sturdevant, J. Tupman, V. Warren, J. Wedel, H. Younger, and S. Bellenot. 1987. Distributed Simulation and the Time Warp Operating System. In Proceedings of the 12??? SIGOPS - Symposium of Operating Systems Principles. 77--93.
[26]
D. R. Jefferson and P. D. Barnes. 2017. Virtual time III: Unification of conservative and optimistic synchronization in parallel discrete event simulation. In 2017 Winter Simulation Conference (WSC). 786--797.
[27]
P. D. Barnes Jr, C. D. Carothers, D. R. Jefferson, and J. M. LaPre. 2013. Warp speed: executing time warp on 1,966,080 cores. In Proceedings of the 2013 ACM SIGSIM conference on Principles of advanced discrete simulation. ACM, 327--336.
[28]
L. Kroc, S. Eidenbenz, and J. P. Smith. 2009. Sessionsim: Activity-based session generation for network simulation. In Proceedings of the 2009 Winter Simulation Conference (WSC). IEEE, 3169--3180.
[29]
L. Li and C. Tropper. 2007. A design-driven partitioning algorithm for distributed verilog simulation. In 21st International Workshop on Principles of Advanced and Distributed Simulation (PADS'07). IEEE, 211--218.
[30]
J. Linden, P. Bauer, S. Engblom, and B. Jonsson. 2019. Exposing Inter-process Information for Efficient PDES of Spatial Stochastic Systems on Multicores. ACM Transactions on Modeling and Computer Simulation 29, 2, 0--25.
[31]
B. D. Lubachevsky. 1989. Efficient Distributed Event-Driven Simulations of Multiple-Loop Networks. Commun. ACM 32, 1 (Jan. 1989), 111--123.
[32]
E. J. Martello, A. Terra, R. Parizotto, and B. Mello. 2020. Closing the Gap Between Lookahead and Checkpointing to Provide Hybrid Synchronization. In Anais do XLVII Seminário Integrado de Software e Hardware (Cuiabá). SBC, Porto Alegre, RS, Brasil, 104--115.
[33]
F. Mattern. 1993. Efficient Algorithms for Distributed Snapshots and Global Virtual Time Approximation. J. Parallel and Distrib. Comput. 18, 4 (Aug. 1993), 423--434.
[34]
Eric Mikida and Laxmikant V Kale. 2018. Adaptive methods for irregular parallel discrete event simulation workloads. In Proceedings of the 2018 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation. ACM.
[35]
E. Park, S. Eidenbenz, N. Santhi, G. Chapuis, and B. Settlemyer. 2015. Parameterized benchmarking of parallel discrete event simulation systems: Communication, computation, and memory. In 2015 Winter Simulation Conference (WSC). 2836-- 2847.
[36]
K. S. Perumalla, A. J. Park, and V. Tipparaju. 2014. Discrete Event Execution with One-Sided and Two-Sided GVT Algorithms on 216,000 Processor Cores. ACM Trans. Model. Comput. Simul. 24, 3, Article 16 (June 2014), 25 pages.
[37]
K. S. Perumalla and S. K. Seal. 2012. Discrete event modeling and massively parallel execution of epidemic outbreak phenomena. SIMULATION 88, 7 (2012), 768--783.
[38]
F. Quaglia, A. Pellegrini, and R. Vitali. 2014. Reshuffling PDES platforms for multi/many-coremachines: A perspective with focus on load sharing. In Modeling and Simulation-Based Systems Engineering Handbook, Daniele Gianni, Andrea D'Ambrogio, and Andreas Tolk (Eds.). CRC Press, 203--232.
[39]
D. M. Rao. 2014. Accelerating Parallel Agent-Based Epidemiological Simulations. In Proceedings of the 2nd ACM SIGSIM Conference on Principles of Advanced Discrete Simulation (Denver, Colorado, USA). ACM, 127--138.
[40]
N. Santhi, S. Eidenbenz, and J. Liu. 2015. The Simian concept: Parallel Discrete Event Simulation with interpreted languages and just-in-time compilation. In 2015 Winter Simulation Conference (WSC). 3013--3024.
[41]
A. Sodani, R. Gramunt, J. Corbal, H. Kim, K. Vinod, S. Chinthamani, S. HUtsell, R. Agarwal, and Y. Liu. 2016. Knights Landing: Second-Generation Intel Xeon Phi Product. In IEEE Micro.
[42]
S. Srinivasan and P. F. Reynolds. 1998. Elastic Time. ACM Trans. Model. Comput. Simul. 8, 2 (April 1998), 103--139.
[43]
S. Thulasidasan, S. Kasiviswanathan, S. Eidenbenz, E. Galli, S. Mniszewski, and P. Romero. 2009. Designing systems for large-scale, discrete-event simulations: Experiences with the FastTrans parallel microsimulator. In 2009 International Conference on High Performance Computing (HiPC). IEEE, 428--437.
[44]
S. Thulasidasan, S. Kasiviswanathan, S. Eidenbenz, and P. Romero. 2010. Explicit spatial scattering for load balancing in conservatively synchronized parallel discrete event simulations. In 2010 IEEE Workshop on Principles of Advanced and Distributed Simulation. IEEE, 1--8.
[45]
J. Wang, D. Jagtap, N. Abu-Ghazaleh, and D. Ponomarev. 2014. Parallel discrete event simulation for multi-core systems: Analysis and optimization. IEEE Transactions on Parallel and Distributed Systems 25, 6 (2014), 1574--1584.
[46]
B. Williams, D. Ponomarev, N. Abu-Ghazaleh, and P. Wilsey. 2017. Performance characterization of parallel discrete event simulation on knights landing processor. In Proceedings of the 2017 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation. ACM, 121--132.
[47]
L. F. Wilson and W. Shen. 1998. Experiments in load migration and dynamic load balancing in speedes. In 1998 Winter Simulation Conference, Vol. 1. IEEE, 483--490.

Cited By

View all
  • (2023)A Parallel Algorithm to Accelerate DEVS Simulations in Shared Memory ArchitecturesIEEE Transactions on Parallel and Distributed Systems10.1109/TPDS.2023.325608334:5(1609-1620)Online publication date: 1-May-2023
  • (2023)Fast and Scalable Gate-Level Simulation in Massively Parallel Systems2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD)10.1109/ICCAD57390.2023.10323959(1-9)Online publication date: 28-Oct-2023
  • (2021)GVT-Guided Demand-Driven Scheduling in Parallel Discrete Event SimulationProceedings of the 50th International Conference on Parallel Processing10.1145/3472456.3472470(1-10)Online publication date: 9-Aug-2021

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGSIM-PADS '21: Proceedings of the 2021 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation
May 2021
181 pages
ISBN:9781450382960
DOI:10.1145/3437959
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 June 2021

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. conservative
  2. many-core processors
  3. optimistic
  4. parallel discrete event simulation
  5. synchronization
  6. time warp
  7. time window

Qualifiers

  • Research-article

Conference

SIGSIM-PADS '21
Sponsor:

Acceptance Rates

Overall Acceptance Rate 398 of 779 submissions, 51%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)20
  • Downloads (Last 6 weeks)5
Reflects downloads up to 25 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2023)A Parallel Algorithm to Accelerate DEVS Simulations in Shared Memory ArchitecturesIEEE Transactions on Parallel and Distributed Systems10.1109/TPDS.2023.325608334:5(1609-1620)Online publication date: 1-May-2023
  • (2023)Fast and Scalable Gate-Level Simulation in Massively Parallel Systems2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD)10.1109/ICCAD57390.2023.10323959(1-9)Online publication date: 28-Oct-2023
  • (2021)GVT-Guided Demand-Driven Scheduling in Parallel Discrete Event SimulationProceedings of the 50th International Conference on Parallel Processing10.1145/3472456.3472470(1-10)Online publication date: 9-Aug-2021

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media