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ABSTRACT
In recommender systems, modeling user-item behaviors is essen-
tial for user representation learning. Existing sequential recom-
menders consider the sequential correlations between historically
interacted items for capturing users’ historical preferences. How-
ever, since users’ preferences are by nature time-evolving and di-
versified, solely modeling the historical preference (without being
aware of the time-evolving trends of preferences) can be inferior
for recommending complementary or fresh items and thus hurt the
effectiveness of recommender systems. In this paper, we bridge the
gap between the past preference and potential future preference
by proposing the future-aware diverse trends (FAT) framework. By
future-aware, for each inspected user, we construct the future se-
quences from other similar users, which comprise of behaviors that
happen after the last behavior of the inspected user, based on a pro-
posed neighbor behavior extractor. By diverse trends, supposing
the future preferences can be diversified, we propose the diverse
trends extractor and the time-aware mechanism to represent the
possible trends of preferences for a given user with multiple vec-
tors. We leverage both the representations of historical preference
and possible future trends to obtain the final recommendation. The
quantitative and qualitative results from relatively extensive experi-
ments on real-world datasets demonstrate the proposed framework
not only outperforms the state-of-the-art sequential recommenda-
tionmethods across various metrics, but also makes complementary
and fresh recommendations.
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Figure 1: A diagramof ourmodel and basemodel. On the left
the light blue sequence is the historical sequence clicked by
the user. On the right the labels such as "History of Amer-
ica" indicate categories of items, while the part highlighted
in the yellow box below is fresh items whose types can’t be
found in the historical sequence but can be inferred from
trends.
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1 INTRODUCTION
Recommender systems assume a central part of many real-world
applications (e.g., e-commerce platforms [43, 57, 58]) with the preva-
lence of the Internet and information technology. On online plat-
forms, users interact with a series of items in a chronological order,
implying continuous and temporary correlation between each item.
In this scenario, the sequential recommenders have become indis-
pensable techniques in the recommendation area, which aim at
predicting the next item that the user may interact with by mod-
eling users’ preferences on the basis of sequential dependencies
among the users’ historical interactions.

Existing sequential recommendation algorithms model and rep-
resent user preferences in various manners. Most conventional
models such as Markov chain-based [24, 25, 38] and factorization-
based [31, 39, 60] ones have successfully captured users’ short-term
and long-term interests by adopting Markov chains and matrix
factorization respectively, but either failed to model intricate dy-
namics or ignored the time dependency. In contrast, deep learning
based techniques typically represent user preferences with low-
dimensional embedding vectors. For instance, the deep neural net-
work proposed for YouTube video recommendation(YouTubeDNN)
[11] represents each user by one fixed-length vector transformed
from the past practices of users, while not appropriate for modeling
various interests because of the dimension explosion. To tackle
this issue, Deep Interest Network (DIN)[61] makes the user repre-
sentation vary over different items with attention mechanisms to
capture the diversity of user interests. More recent works [8, 32]
propose to encode users’ historical behaviors into users’ varying in-
terests by leveraging capsule routing mechanism. Nevertheless, all
of these methods model user preferences only taking into account
the past behaviors of users, ignoring the potential future preference
and failing to capture the time-evolving trends of user diversified
preferences.

We argue that preferences changing over time of similar users is
an extra important factor to model future diverse preference trends
in addition to historical preference. Such trends can be summarized
from the relative future behaviors of users with similar interests.
Specifically, for an inspected user, other users with similar interests
tends to have common behaviors (e.g. click the same items) with
the inspected user, and the behaviors that happen after the com-
mon behavior can be viewed as the relative future behaviors. As
shown in 1, models that solely focus on users’ historical interests
tend to recommend similar and complementary items. In contrast,
the proposed future-aware diverse trends framework is capable of
recommending fresh items that may seem irrelevant to the user’s
historical preference, while in reality are consistent with one of the
preference trends that can be captured from the future behaviors
of users’ with similar interest (or at least similar behaviors).

In this paper, we focus on the problem of modeling diverse trends
of users for sequential recommendation. In order to overcome the
limitations of existing methods, we propose the future-aware di-
verse trends (FAT) framework for learning user representations
that reflect diverse trends of users preferences. To infer the user
representation vectors, we design an implicit neighbor behaviors
extractor(INBE) layer and a novel diverse trends capture layer. To

construct neighborhoods implicitly, the INBE module utilizes Pear-
son Correlation Coefficient [6] and an interaction-based users filter.
The diverse trends capture layer applies dynamic routing and time-
aware mechanism to adaptively aggregate neighbor user’s relative
future behaviors as user trend representation. The user representa-
tion is then computed by concatenating the user historical behav-
iors embedding from traditional sequence modeling and the user
trends embedding. The process of dynamic routing can be viewed
as soft-clustering, which groups similar users’ relative future be-
haviors into several clusters. Each cluster of future behaviors is
further used to infer the user trend representation vector according
to the time-varying attention of each trend corresponding to the
specific items. In this way, for a particular user, FAT outputs the
final user preference representations considering both the user past
preference and potential future preference. To summarize, the main
contributions of this work are as follows:

• To better infer the dynamics of user behaviors, we design a
FAT framework, which leverage the future information and
capture diverse trends of user preference.

• We first design a neighbor behavior module to extract rela-
tive future behaviors from similar users implicitly. We design
the diverse trends capture module, which utilizes dynamic
routing to adaptively aggregate neighbor’s future behaviors
into trend representation vectors. We then leverage time-
aware mechanism over trends to better model time-varying
user potential preferences.

• Compared with existing methods, FAT shows superior per-
formance on several public datasets over metrics such as
Recall and NDCG. In addition, we conduct experiments to
show that FAT can bring diversity of retrieved items better
than other baselines.

The remainder of this paper is organized as follows: related
works are reviewed in Section 2; Section 3 formulates the sequential
recommendation task and elaborates the technical details of FAT;
In Section 4, we detail the experiments for comparing FAT with
existing methods on several public benchmarks; The last section
gives conclusion and future work of this paper.

2 RELATEDWORK
2.1 Sequential Recommendation
Conventional sequential recommendation popular models usually
use matrix factorization and Markov chains to capture long-term
and short-term interests of users, respectively. The Markov chain-
based sequential recommendation algorithms use functions ob-
tained from past transactions to predict the user’s next interaction.
PersonalizedMarkov Chain Factorization (FPMC) [38] combines the
advantages of Markov Chain and Matrix Factorization. Since the op-
eration used is linear, FPMC cannot capture the interaction between
multiple factors, because each component independently affects the
user’s next interaction. Hierarchical Representation Model (HRM)
solves this problem by summarizing multiple interaction factors
through nonlinear maximum pooling operations[44]. HRM uses
continuous value representations of users and items, and builds a
mixed representation on users and items based on previous interac-
tions. Both FMPC and HRM only model local interactions between
successive transactions.
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Due to the strong representation learning capability [56], deep
learning techniques have also been adopted in the sequential rec-
ommendation in recent years. DREAM [51], based on Recurrent
Neural Network (RNN), learns the user’s dynamic representation
to reveal the user’s dynamic interest. DIN [61] designs a local acti-
vation unit to adaptively learn the representation of user interests
from past behaviors with respect to a certain ad. [52] proposes a
encoder-decoder networks to integrate future data into model train-
ing. [21] propose to model user intention from both ordered and
unordered facets simultaneously. Contextualized Temporal Atten-
tion Mechanism proposed in [46] learns to weigh historical actions’
influence considering different contexts.

2.2 User Modelling
Representing users as vectors is commonly used in recommender
system. Traditional methods assembles user preference as vectors
composed of interested items [2, 26, 41], keywords [7, 17] and top-
ics [50]. As the emergence of distributed representation learning,
user embeddings obtained by neural networks are widely used. [9]
employs RNN-GRU to learn user embeddings from the temporal
ordered review documents. [37] utilizes Stacked Recurrent Neu-
ral Networks to capture the evolution of contexts and temporal
gaps. [18] proposes the framework GraphRec to jointly capture
interactions and opinions in the user-item graph.

GRU4Rec [28] introduces recurrent neural networks for the rec-
ommender systems firstly. [4, 27, 42, 49] models behavior sequence.
[42] applies data augmentation to enhance training of GRU4Rec. [4]
considers the dwell time. [27] provides impressive top-k gains for
recurrent neural networks for session-based recommendation with
a proposed new class of loss functions coupled with an additional
sampling (combination of uniform sampling and popularity sam-
pling) for negative sampling in GRU4Rec. [29] considers additional
item information other than IDs(parallel RNN). [30] combines the
session-based KNNs with GRU4Rec using the methods of switching,
cascading, and weighted hybrid.

[59] proposes a RNN-based framework for click-through rate(CTR)
prediction in sponsor search. RRN [45] is the first recurrent rec-
ommender network that attempts to capture the dynamics of both
user and item representation. [3] further improves the RRN’s inter-
pretability by devising a time-varying neighborhood style explana-
tion scheme. [10] proposes a memory-augmented neural network
for the sequential recommendation, with analogous gains observed
in other domains [15, 16, 55]. [14, 36] use GRU to model users and
sessions. [12] uses RNN for the collaborative filtering task and con-
sidered two different objective functions in the RNN model. [40]
deploys a multi-layer GRU network to capture sequential dependen-
cies and user interest from both the inter-session and intra-session
levels. HNVM [47] models different levels of user preferences via a
unified hierarchical generative process.

NextItNet [53] is a generative CNN model with the residual
block structure for the sequential recommendation. RCNN pro-
posed in [48] utilizes the recurrent architecture of RNN and the
convolutional operation of CNN to extract long-term and short-
term patterns respectively.

3 METHODOLOGY
In this section, we first formulate the sequential recommendation
problem, then introduce the proposed framework in detail. We
lastly discuss the prediction and network training procedure of
FAT.

3.1 Problem Formulation
In a typical recommendation scenario, we have a set of users and
a set of items which can be denoted as 𝑈 = {𝑢1, 𝑢2, ..., 𝑢 |𝑈 |} and
𝑉 = {𝑣1, 𝑣2, ..., 𝑣 |𝑉 |}, respectively. Let 𝑋𝑢 = {𝑥𝑢1 , 𝑥

𝑢
2 , ..., 𝑥

𝑢
|𝑋𝑢 |} de-

note the sequence of interacted items from user 𝑢 ∈ 𝑈 sorted in a
chronological order: 𝑥𝑢𝑡 denotes the item that the user 𝑢 has inter-
acted with at time step 𝑡 . Given the user historical behaviors, the
goal of the sequential recommendation task considered in this paper
is to retrieve a subset of items from the pool 𝑉 for each user in 𝑈
such that the user is most likely to interact with the recommended
items. Notations are summarized in 1.

Table 1: Notations.

Notation Description
u a user
v an item
x an interaction
d the dimension of user/item embeddings
t the number of trends
U the set of users
V the set of items
X the set of interactions
T the trends set
N the number of retrieved items

Specifically, each instance is represented by a tuple (𝑋𝑢 ,𝑇𝑢 , 𝐴𝑖 ),
where 𝑋𝑢 denotes the set of items interacted by user 𝑢, 𝑇𝑢 denotes
the relative future sequence set extracted from similar users, detail
will be illustrated in the Section 3.4, 𝐴𝑖 the features of target item 𝑖

including the information of interaction time and item ID.
To model diverse user preferences dynamically, FAT learns a

function 𝑓 for mapping user’s corresponding interactions 𝑋𝑢 and
trend set 𝑇𝑢 into user representations, which can be formulated as

−→𝑒𝑢 = 𝑓 (𝑋𝑢 ,𝑇𝑢 ) (1)
where −→𝑒𝑢 ∈ R𝑑×1 denotes the representation vector of user u, d the
dimension. Besides, the representation vector of target item 𝑖 is
obtained by an embedding function 𝑔 as

−→𝑒𝑖 = 𝑔(𝐴𝑖 ) (2)
where −→𝑒𝑖 ∈ R𝑑×1 denotes the representation vector of item i, and
the detail of 𝑔 will be illustrated in the Section 3.3.

When user representation vector and item representation vec-
tor are learned, top-N items are recommended according to the
likelihood function 𝑝 as

𝑝 (𝑖 |𝑈 ,𝑉 ,𝑋 ) = 𝑃 (−→𝑒𝑢 ,−→𝑒𝑣 ,−→𝑒𝑥 ) (3)
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where N is the predefined number of items to be retrieved. −→𝑒𝑣
is the embedding of item v from set of items V. Our framework
outputs the probabilities for all the items, which represent how
likely the specific user will engage with the items, and retrieves
top-N candidate items.

The objective function for training our model is to maximize the
following log-likelihood:

𝑙 =
∑︁

(𝑖,𝑈 ,𝑉 ,𝑋 ) ∈𝑆
log 𝑝 (𝑖 |𝑈 ,𝑉 ,𝑋 ) (4)

We use the Adam optimizer to train our method.

3.2 Framework
The overall structure of our proposed framework FAT is illustrated
in Figure 2, which is composed of a sequence modeling layer, an
implicit neighbor behavior extractor, a diverse trends capture mod-
ule, a time-aware attention layer and a final prediction layer. As
the relative future sequence for current user is actually the history
sequence for the neighbors, the future and history sequences can be
modeled using shared parameters. Thus, we applied the sequential
model for neighbors and users in the same manner. The framework
takes the user historical interactions set 𝑋 and item features set 𝐹
as input. As for the extremely high dimension of item ID features,
we adopt the widely-used embedding technique to embed these ID
features into low-dimensional dense vectors. Here, we use 𝑠𝑢 and 𝑆𝑢
represent testing and training data of interactions sequence of user
u respectively. For target item IDs from the set of 𝑆𝑢 , embeddings
are presented as −−→𝑒𝑆𝑢 .

The implicit neighbor behavior extractor constructs neighbors
set for each user by filtering out the users that have interactions
with the target items in the past, and then select the relative future
sequences of each neighbor user. The target items can be selected
from the user historical interaction 𝑋𝑢 , for simplicity, we only
choose the last one in the list, details are illustrated in Section 4.4.
The relative future behaviors are defined as the interacted items
following the target item in the chronological order, aiming at
representing dynamic preference for the user based on the intuition
that the user tend to have similar preference trend as users with
similar historical behaviors, and that the user can have diverse
trends of preferences.

The diverse trends capture module is developed to obtain the
neighbor centroids according to diverse motivation of specific inter-
actions of the items. Then we learn high dimensional embeddings
for the historical behaviors and future-aware diverse trends behav-
iors separately. Furthermore, the future sequence representation
acquired by time-aware attention layer is concatenated with the
historical behavior representation to generate the dynamic user
preference representation vector. Finally we compute the user’s
preferences over different items from the pool by the prediction
decoder. Each part will be elaborated in the following.

3.3 Sequence Modeling
We first computes user embeddings from user historical behaviors
and then the diverse trends embeddings from the implicit neighbor
relative future behaviors. To capture the dynamics of interaction
sequences, we apply RNN to compute embeddings for users. The

input of our sequence modeling module is the user historical be-
havior sequence or the relative future behavior sequences from the
extracted neighbors, which contains a list of item IDs representing
the user’s interactions with items in time order. The number of
item IDs is about billions, thus we adopt the widely-used embed-
ding technique to embed these ID features into low-dimensional
dense vectors, which significantly reduces the number of parame-
ters and eases the learning process. The item IDs are fed into an
embedding layer and transformed into item embeddings. To cap-
ture time-varying preferences of users, we then apply Recurrent
Neural Network(RNN) to model the variable-length sequence data
to compute the user embeddings. Particularly, we use Long Short-
Term Memory cell as the basic RNN unit, which captures temporal
dynamics. Each LSTM unit at time 𝑡 consists of a memory cell 𝑐𝑡 , an
input gate 𝑖𝑡 , a forget gate 𝑓𝑡 , and an output gate 𝑜𝑡 . These gates are
computed from previous hidden state ℎ𝑡−1 and the current input
𝑥𝑡 :

[𝑓𝑡 , 𝑖𝑡 , 𝑜𝑡 ] = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊 [ℎ𝑡−1, 𝑥𝑡 ]) (5)
The memory cell 𝑐𝑡 is updated by partially forgetting the existing
memory and adding a new memory content 𝐼𝑡 :

𝐼𝑡 = 𝑡𝑎𝑛ℎ(𝑉 [ℎ𝑡−1, 𝑥𝑡 ])𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 · 𝐼𝑡 (6)

Once the memory content of the LSTM unit is updated, the hidden
state at time step 𝑡 is given by:

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑐𝑡 ) (7)

At time step 𝑡 , the new states of the user can be inferred as:

ℎ𝑢𝑖,𝑡 = 𝐿𝑆𝑇𝑀 (ℎ𝑢𝑖,𝑡−1, 𝑧
𝑢
𝑖,𝑡 ) (8)

where ℎ𝑢
𝑖,𝑡

denote hidden states for the user. Note that LSTM can
be replaced by other options, such as a Gated Recurrent Unit. In
this paper, we select LSTM as it is a popular and general choice in
previous works [45, 48, 54, 62].

Specifically, item embedding and user historical behavior embed-
ding can be represented as𝐸𝑉 = {−→ev, 𝑣 ∈ 𝑉 } and𝐸𝑋 = {−→hux, 𝑥 ∈ 𝑋𝑢 },
respectively. 𝐹𝑛 denotes the relatively future sequence of neighbors
n.𝐸𝑁 = {−→fnx , 𝑛 ∈ 𝑁𝑢 , 𝑥 ∈ 𝐹𝑛} represent the implicit similar users fu-
ture behavior embedding, which is the input of the future-aware
diverse trends capture module, output diverse motivations behind
behaviors representing diverse trends of user dynamic preferences,
and then through the attention layer, we obtain a single aggregated
trend representation vector of a specific user.

Lastly, corresponding user historical behavior embedding and
the trend behavior embedding are concatenated to form the user
preference embedding 𝐸𝑢 .

3.4 Implicit Neighbor Behavior Extractor
Inspired by some works [19, 20], which extract social relationships
in absence of explicit social networks [34] , we compare the simi-
larity among users via collaborative filtering to extract neighbor
behaviors implicitly based on the historical interactions.

We adopt Pearson Correlation Coefficient [6] as:

𝑠𝑖 𝑗 =

∑
𝑘∈𝐼 (𝑖)∩𝐼 ( 𝑗)

(𝑟𝑖𝑘 − 𝑟 𝑖 ) · (𝑟 𝑗𝑘 − 𝑟 𝑗 )√︂ ∑
𝑘∈𝐼 (𝑖)∩𝐼 ( 𝑗)

(𝑟𝑖𝑘 − 𝑟 𝑖 )2 ·
√︂ ∑
𝑘∈𝐼 (𝑖)∩𝐼 ( 𝑗)

(𝑟 𝑗𝑘 − 𝑟 𝑗 )2
(9)
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Figure 2: Network Architecture of FAT. The left part of FAT illustrates the network of our base model. The Base model takes
user historical behaviors as inputs, and outputs user preference representation vectors ℎ𝑢 for prediction decoder. The right
part of FAT consists of an Implicit Neighbor Behavior Extractor, a sequence modeling module same as the left part which
outputs relative future preference 𝐹𝑢 , a diverse trends capture layer and a time-aware attention layer.

where 𝐼 (𝑖) is a set of items that interacted/rated by user 𝑖 , 𝑟𝑖𝑘 and 𝑟 𝑖
represents the rate of user 𝑖 over item 𝑘 and the average rate of user
𝑖 . The user similarity 𝑠𝑖 is ranging from [−1, 1], and the similarity
between users 𝑖 and 𝑗 is proportional to the value according to
this definition. Following [33], we employ a mapping function
𝑓 (𝑥) = (𝑥 + 1)/2 to bound the range of PCC similarities into [0, 1].

In the case of users with only one common item in history, PCC
similarity gets 1 when the users’ preferences over the common
item are similar and −1 when not, which encourages diversity of
neighbors while damaging the fairness of similarity calculation. To
tackle this issue, we only kept less than 20% of such neighbors to
seek the balance.

In addition to the PCCmethod, we also design a filter with simple
schema to extract similar users. For each user, if the historical inter-
actions 𝐼𝑢 is split into two pieces, {𝑆𝑢1:𝑡 (𝑡 < |𝐼𝑢 |)} for training data,
and {𝑠𝑢

𝑡+1: |𝐼𝑢 |} for testing data, the item 𝑠𝑢
𝐾
is defined as the last K

target items, K could be any value less than or equal to |𝑆𝑢 |, while
in practice 𝐾 = 1 can achieve good enough performance with sim-
plicity, details would be illustrated in the Section 4.4 where we do
an ablation of K. We extracted a list of users 𝑁 = {𝑛1, 𝑛2, ..., 𝑛 |𝑁 |}
from the item-user map using the target item as key, which stands
for all the users who have interacted with the target item. Further-
more, we constructed the future sequence of each neighbor user 𝑢

relative to the target item 𝑠𝑡 ′ as:

𝐹𝑢 = {𝑠𝑖 , 𝑠𝑖 ∈ 𝐼𝑛, 𝑅(𝑠𝑖 ) ≥ 𝑅(𝑠𝑡 ′)} (10)

where Timestamp is denoted as 𝑅 and 𝑠𝑡 ′ is the same item as 𝑠𝑢𝑡 .

3.5 Future-Aware Diverse Trends
We argue that representing user neighbors by one representation
vector can be a bottleneck for capturing diverse neighbors of users,
because we have to compress all information related with diverse
neighbors of users into one representation vector. Thus, all infor-
mation about diverse neighbors of users is mixed together, causing
inaccurate neighbor retrieval and then the inaccurate item retrieval
for the matching stage. Instead, we adopt multiple representation
vectors to express distinct neighbors of users separately. By this
way, diverse neighbors of users are considered separately in the
matching stage, enabling more accurate neighbor retrieval as well
as the item retrieval for every aspect of reasons.

We utilize clustering process to group neighbors(represented
by historical behaviors of user’s diverse) extracted via previous
multi-hop filter into several clusters. Neighbors from one cluster
are expected to be closely related and collectively represent one
particular aspect of user behaviors. Here, we design the multi-
neighbor extractor layer for clustering historical behaviors and
inferring representation vectors for resulted clusters.
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Since the design of multi-neighbor extractor layer is inspired by
MIND[8], which has already revisited essential basics of dynamic
routing for representation learning in capsule network, we’ll explain
how our designed multi-neighbor extractor layer work based on it.

The objective of the multi-neighbor extractor layer is to learn
representations for expressing properties of user behaviors as well
as whether corresponding behaviors exist. The semantic connection
between capsules and neighbor representations motivates us to re-
gard the neighbor representations as neighbor capsules and employ
dynamic routing to learn interest capsules from neighbor capsules.
nevertheless, the original routing algorithm proposed for image
data is not directly applicable for processing user neighbor data. So,
we propose Neighbor-to-interest dynamic routing for adaptively
aggregating user’s neighbors into interest representation vectors,
and it differs from original routing algorithm in three aspects.

Let 𝑒𝑖 be the capsule 𝑖 of the primary layer. We then give the
computation of the capsule 𝑗 of the next layer based on primary
capsules. We first compute the prediction vector as:

𝑒 𝑗 |𝑖 =𝑊𝑖 𝑗𝑒𝑖 (11)
where𝑊𝑖 𝑗 is a transformation matrix. Then the total input to the
capsule 𝑗 is the weighted sum over all prediction vectors 𝑒 𝑗 |𝑖 as:

𝑠 𝑗 =
∑︁
𝑖

𝑐𝑖 𝑗𝑒 𝑗 |𝑖 (12)

where 𝑐𝑖 𝑗 are the coupling coefficients that are determined by the
iterative dynamic routing process.

We use "routing softmax" to calculate the coupling coefficients
using initial logits 𝑏𝑖 𝑗 as:

𝑐𝑖 𝑗 =
𝑒𝑥𝑝 (𝑏𝑖 𝑗 )∑
𝑘 𝑒𝑥𝑝 (𝑏𝑖𝑘 )

(13)

where 𝑏𝑖 𝑗 represents the log prior probability that capsule 𝑖 should
be coupled to capsule 𝑗 . To ensure short vectors and long vectors
to get shrunk to almost zero length and a length slightly below 1.
Then the vector of capsule 𝑗 is computed by:

𝑣 𝑗 = 𝑠𝑞𝑢𝑎𝑠ℎ(𝑠 𝑗 ) =
𝑠 𝑗 2

1 +
𝑠 𝑗 2 𝑠 𝑗𝑠 𝑗  (14)

where 𝑠 𝑗 is the total input of capsule 𝑗 .
The output trend capsules of the user 𝑢 are then formed as a

matrix 𝑉𝑢 = [𝑣1, ..., 𝑣𝐾 ] ∈ R𝑑×𝐾 for downstream task.

3.6 Time-Aware Attention Layer
For history sequence representation, we simply use the output
of the sequence modeling layer given the input of user’s history
interactions list, which contains 𝐾 future potential sequence rep-
resentations. Then we utilize the time-aware attention to activate
the weight of diverse trends to capture the timeliness of each trend.
Specifically, the attention function takes the interaction time of item
𝑖 , the interaction time of trends and trend embeddings as the query,
key and value respectively. We compute the final future sequence
representation of user 𝑢 as:

𝐻𝐹𝑢 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(−→𝑇𝑖 ,
−→
𝑇𝑡𝑟 ,

−→
𝑡𝑢 ) = −→

𝑡𝑢𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑝𝑜𝑤 (−→𝑇𝑖 ,
−→
𝑇𝑡𝑟 )) (15)

where Attention denotes the attention function, 𝑇𝑖 represents the
interaction time of item 𝑖 , [𝑇𝑡𝑟 ] represents the average interaction

time of items related to the trend, −→𝑡𝑢 represents the embedding of
the trend.

3.7 Prediction
After computing the trend embeddings from activated trends through
time-aware attention layer, we concatenate it with the user histori-
cal behavior embedding to form a user preference embedding. Given
a training sample 𝑢, 𝑖 with the user preference embedding and item
embedding, we can predict the possibility of the user interacting
with the item as

𝑝 (𝑖 |𝑈 ,𝑉 ,𝑋 ) = 𝑒𝑥𝑝 (−→𝑒𝑢𝑇−→𝑒𝑖 )∑
𝑣∈𝑉 𝑒𝑥𝑝 (−→𝑒𝑢𝑇−→𝑒𝑣 )

(16)

4 EXPERIMENTS
In this section, we first cover the dataset and experimental settings.
And then we conduct extensive experiments and in-depth analysis
to verify the performance of FAT for recommendation.

4.1 Dataset
We used three large benchmark datasets. The statistics of the three
datasets are shown in 2.

• Amazon Books: This dataset contains product reviews and
metadata from Amazon, including 142.8 million reviews
spanning May 1996 - July 2014. It includes reviews (ratings,
text, helpfulness votes), product metadata (descriptions, cat-
egory information, price, brand, and image features), and
links (also viewed/also bought graphs).

• Steam: This dataset contains more than 40k games from
steam shop with detailed data including reviews and infor-
mation about which games were bundled together.

• Movielens-1M[22]: One of the currently releasedMovieLens
datasets, which contains 1,000,209 movie ratings from 6,040
users across 3,900 movies.

Table 2: Statistics of the Datasets.

Dataset users items interactions
Amazon Books 459,133 313,966 8,898,041
Steam 2,567,538 15,474 7,793,069
MovieLens-1M 6,040 3,416 999,611

In each dataset, we partition user’s interactions into training,
validation and test set by the proportion of 8 : 1 : 1. To avoid data
sparsity, we filter out the users and items with only few interactions
in our experiment. In the Movielens dataset, we keep users and
items with at least 10 and 3 records respectively. In the Amazon
Books dataset, we select users and items with at least 10 records
each. In detail, we adopt a common setting of training sequential
recommendation models. Let the behavior sequence of user 𝑢 be
𝑋𝑢 = {𝑠𝑢1 , 𝑠

𝑢
2 , ..., 𝑠

𝑖
|𝑋𝑢 |}. Each training sample uses the first 𝑘 behav-

iors of𝑢 to predict the (𝑘 + 1) − 𝑡ℎ behavior, where 𝑘 = 1, 2, ..., |𝑋𝑢 |.
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To evaluate, we randomly select an interacted item by the user
as target item for each user, while the items interacted before the
target item are collected as the user behaviors.

4.2 Evaluation Metrics
To compare the performance of different models,we useRecall@N
and NDCG@N(Normalized Discounted Cumulative Gain), where
N is set to 20, 50 respectively as metrics for evaluation. In all these
three metrics, a larger value implies better performance. Besides,
we adopt per-user average for each metric.

• Recall: Number of corrected recommended items divided
by the total number of all recommended items.

𝑅𝑒𝑐𝑎𝑙𝑙@𝑁 =
1

|𝑈 |
∑︁
𝑢∈𝑈

|𝐼𝑢,𝑁 ∩ 𝐼𝑢 |
|𝐼𝑢 |

(17)

where 𝐼𝑢,𝑁 denotes the set of top-N recommended items for
user u and 𝐼𝑢 is the set of testing items for user u.

• Normalized Discounted Cumulative Gain(NDCG): NDCG
not only measures the percentage of correct recommended
items, but takes the positions of correct recommended items
into consideration.

𝐷𝐶𝐺@𝑁 =
1

|𝑈 |
∑︁
𝑢∈𝑈

∑︁
𝑟 ∈𝑅

𝛿𝑁 (𝑟 )
𝑙𝑜𝑔2 (𝑖𝑟 + 1) , (18)

𝑁𝐷𝐶𝐺@𝑁 =
𝐷𝐶𝐺@𝑁

𝐼𝐷𝐶𝐺@𝑁
(19)

where G denotes the ground-truth list. 𝑖𝑟 is the index of r in
R. 𝛿𝑁 (·) is an indicator function which returns 1 if item r is
in top-N recommendation, otherwise 0. IDCG is the DCG
of ideal ground-truth list which refers to the descending
ranking of ground-truth list in terms of predicted scores.

4.3 Competitors
• GRU4Rec[28]: A typical sequential recommendation baseline
being the first to propose the usage of recurrent neural net-
works in recommendation systems.

• YoutubeDNN[11]: One of predominant deep learning models
based on collaborative filtering systems incorporating with
text and image information which have been successfully
applied under industrial scenario.

• MIND[32]: A novel industrial applicable recommendation
model to capture users’ multi-interest.

• ComiRec[8]: A novel controllable multi-interest framework
which can be used in sequential recommendation.

• Base Model: We construct a base model of FAT by ignoring
the diverse trends capture module and simply modeling user
preferences from historical behaviors.

4.4 Results
We have trained our model with Adam utilizing the TensorFlow
distributed machine learning system using 4 replicas on a Nvidia
GPU. The model performance for the sequential recommendation
is shown in Table 3. We run experiments to dissect the effectiveness
of our recommendation model. We compare the performance of
FAT with a baseline model of FAT and four state-of-the-art models:
GPU4Rec, YouTube DNN, MIND and ComiRec. All these models

are running on the three datasets introduced above: Amazon Books,
Steam and MovieLens. According to the results shown in Table 3,
our model FAT obtain better performance on all evaluation metrics
of all the tasks than other models.

As shown in Table 3, Recall and NDCG for the dataset MovieLens
of all the models are higher than that for dataset Amazon Books and
Steam. It’s caused by the unbalanced size between the datasets that
size of the MovieLens is much smaller than the other two datasets.

Table 4 reports the performance of our model FAT in different
parameter setting by changing number of trends T. We list the
performance result of our model for the three datasets setting T to
2, 4, 6 and 8. Our model achieves improvements on T = 6 over T = 4,
which may caused by insufficient trends for the dataset. However,
it did not show much importance when we change T from 6 to
8 showing clustering sequences to 8 trends in these datasets is
redundant and to 6 trends is just suitable.

Table 5 compares the result of setting target item from the first
to last item, the third to last item and the fifth to last one. The
largest improvements appear on increasing K from 1 to 3. This
demonstrates that by adding the number of target items, our model
can capturemore trend information and bemore powerful to predict
future sequences. Increasing target item number from 3 to 5 does
not gain much improvement. This implies our model is efficient to
capture much trend information by few historical items of the user.

Table 6 summarizes the recommend diversity performance of
baseline models and our models on the three datasets.

The computational complexity of sequence layer modeling user
and neighbors is𝑂 (𝑘𝑛𝑑2), where 𝑘 denotes the number of extracted
neighbors, 𝑛 denotes the average sequence length and 𝑑 denotes the
dimension of item’s representation. Capsule layer’s computational
complexity depends on kernel size and number of trends. Average
time complexity of capsule layer scales 𝑂 (𝑛𝑇𝑟2), where 𝑟 denotes
kernel size of capsule layer and𝑇 denotes the number of trends. For
large-scale applications, our proposed model could reduce compu-
tational complexity by two measures: (1)encode neighbors with a
momentum encoder[23].(2)adopt a light-weight Capsule network.

Figure 3: Heatmap of coupling factors for items recalled by
each trend. Each item has the coupling factor on the corre-
sponding trend. The color depth is proportional to the nu-
merical value of the coupling factor.

4.5 Recommendation Diversity
In addition to achieving high accuracy of recommendation, the
diversity is also a critical part for user experience. Recommendation
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Table 3: Model Performance on public datasets: Amazon books, Steam and MovieLens. FAT is our model and Base model is
FAT without diverse trends. Here, we set K = 1 and T = 6

Amazon Books Steam MovieLens
Model Metrics@20 Metrics@50 Metrics@20 Metrics@50 Metrics@20 Metrics@50

Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG
GRU4Rec 3.670 5.575 5.328 7.075 2.771 3.601 3.415 4.224 23.028 23.875 33.233 33.636
YouTube DNN 3.933 5.703 6.612 7.623 2.812 3.711 3.667 4.373 23.676 24.102 33.592 33.847
MIND 4.102 5.933 6.638 7.830 3.213 4.331 3.671 4.591 24.750 25.853 33.685 34.783
ComiRec 4.853 6.185 7.203 8.120 3.464 4.142 3.977 4.792 24.883 25.896 33.955 34.984
Base Model 3.126 4.912 4.872 6.721 2.481 3.812 3.217 4.123 23.101 23.879 33.315 33.132
FAT 4.923 6.612 7.882 8.882 3.428 4.543 4.017 4.954 25.016 26.502 34.288 35.166

Table 4: Model Performance of parameter sensitivity. T de-
notes the number of trends. T = 2 means relative future se-
quence from neighbors are clustered to two trends

Amazon Books Steam MovieLens
Metrics@50 Recall NDCG Recall NDCG Recall NDCG
FAT(T = 2) 4.042 4.428 2.232 2.623 20.329 22.981
FAT(T = 4) 5.993 6.728 3.017 3.693 27.981 28.989
FAT(T = 6) 7.882 8.882 4.017 4.954 34.288 35.166
FAT(T = 8) 6.982 7.842 3.107 4.125 31.973 32.887

Table 5: Model Performance of Implicit Neighbor Behavior
Extractor with ablation of K for the target items(setting T =
6). K = 3 means the last item, the second to last time and the
third to last time are taken into consideration

Amazon Books Steam MovieLens
Metrics@50 Recall NDCG Recall NDCG Recall NDCG
FAT(K = 1) 7.882 8.882 4.017 4.954 34.288 35.166
FAT(K = 3) 8.512 9.343 5.431 5.735 35.890 36.192
FAT(K = 5) 8.482 8.912 5.117 5.654 35.588 35.894

Table 6: Model Recommendation Diversity with 𝐾 = 4

Amazon Books Steam MovieLens
Metrics@50 Diversity Diversity Diversity
GRU4Rec 36.783 40.648 20.875
YouTube DNN 38.604 42.831 23.654
MIND 39.967 44.984 27.502
ComiRec 42.915 45.947 28.961
Base Model 33.946 35.484 15.751
FAT 43.591 46.653 29.274

systems are trained to help users to select items which would be
interesting to them without much historical interactions between
the user and the items. Recommender systems tracks the interaction

Figure 4: The distribution of items recalled by each trend
(trend 0,1,2,3)and base model without trend(no trend). The
coordinates indicate the recommendation level of items,
where 1 signifies that the corresponding item is most rec-
ommended while 0 matches to the least recommended one.
The radius of each circle is proportional to the number of
items.

between the users and their selected items. This information is then
processed to train the recommendation model which can not only
recommend similar items but also recommend items of similar
hidden connection.
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Many authors have undertaken research developing new diver-
sification algorithms [1, 5, 13, 35]. Our proposed module can learn
the diverse trends of user preference and provide recommendation
with diversity. Following [8], we use the following definition of
individual diversity:

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦@𝑁 =

∑𝑁
𝑗=1

∑𝑁
𝑘=𝑗+1 𝛿 (𝐶𝐴𝑇𝐸 (�̂�𝑢,𝑗 ) ≠ 𝐶𝐴𝑇𝐸 (�̂�𝑢,𝑘 ))

𝑁 × (𝑁 − 1)/2
(20)

where 𝐶𝐴𝑇𝐸 represents the category of the item. �̂�𝑢 denotes item
recommended for user 𝑢, 𝑗 and 𝑘 represents the order of the rec-
ommended items. 𝛿 (·) is an indicator function.

Table 6 shows the diversity of models on different datasets when
we control the factor𝐾 = 4. From the table, our module FAT achieve
the optimum diversity indicating the recommendation it provide
can effectively take neighbors’ interests into account.

4.6 Case Study
4.6.1 Coupling Factors. The coupling factors between trends and
items are proportional to the correspondence between them. In this
section, we visualize these factors to show that the trend capture
process is interpretable.

As shown in Figure 3, the coupling factors associated to the user
randomly selected from Amazon Book dataset, where each row
corresponds to one trend capsule and each column corresponds to
one interaction after the selected target item. It shows that user
X has interacted with 3 kinds of books (history, science, art) after
interacting with the books of history category. Each of the future
interactions has the max coupling factors on one trend capsule and
forms the corresponding trend.

4.6.2 Distribution. We draw a trend distribution Figure 4 of rec-
ommended items recalled by each trend interest based on their
similarity to the corresponding interest. Figure 4 shows the recom-
mended item distribution for a user. X axis is the similarity and
images are recommended item. The size of the circle demonstrate
the recommended rate. As shown, the items recalled are correlated
with trend interests.

5 CONCLUSIONS
In this paper, we propose a novel Future-Aware Diverse Trend(FAT)
framework to capture diverse trends of user preference dynami-
cally. Our frame work leverages a neighbor behavior extractor to
generate relative future interactions from similar users implicitly
and utilizes diverse trends module to capture intrinsic varying dy-
namics of user preferences. To improve the expressive ability of
trend representation, we utilize time-aware attention layer to make
the duration between prediction time and target item interaction
time choose which trend is more relative. Experimental results
demonstrate that our models can achieve significant improvements
over state-of-the-art models on three challenging datasets. For the
future, we plan to leverage multi-hop user-item graphs to address
limited interaction issues and incorporate multi-behavior data into
neighbors extraction to better model potential trends.
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