
Pathfinder Discovery Networks for Neural Message Passing

Benedek Rozemberczki
∗

The University of Edinburgh

benedek.rozemberczki@ed.ac.uk

Peter Englert
†

Google Research

Amol Kapoor

Google Research

ajkapoor@google.com

Martin Blais

Google Research

blais@google.com

Bryan Perozzi

Google Research

bperozzi@acm.org

ABSTRACT
In this work we propose Pathfinder Discovery Networks (PDNs), a
method for jointly learning a message passing graph over a mul-

tiplex network with a downstream semi-supervised model. PDNs

inductively learn an aggregated weight for each edge, optimized to

produce the best outcome for the downstream learning task. PDNs

are a generalization of attentionmechanisms on graphs which allow

flexible construction of similarity functions between nodes. They

also support edge convolutions and cheap multiscale mixing layers.

We show that PDNs overcome weaknesses of existing methods

for graph attention (e.g. Graph Attention Networks), such as the

diminishing weight problem.

Our experimental results demonstrate competitive predictive

performance on academic node classification tasks. Additional re-

sults from a challenging suite of node classification experiments

show how PDNs can learn a wider class of functions than existing

baselines. We analyze the relative computational complexity of

PDNs, and show that PDN runtime is not considerably higher than

static-graph models. Finally, we discuss how PDNs can be used to

construct an easily interpretable attention mechanism that allows

users to understand information propagation in the graph.

ACM Reference Format:
Benedek Rozemberczki, Peter Englert, Amol Kapoor,Martin Blais, and Bryan

Perozzi. 2021. Pathfinder Discovery Networks for Neural Message Passing.

In Proceedings of the Web Conference 2021 (WWW ’21), April 19–23, 2021,
Ljubljana, Slovenia. ACM, New York, NY, USA, 12 pages. https://doi.org/10.

1145/3442381.3449882

1 INTRODUCTION
Recently, there has been a surge of interest in applying neural net-

works to graph data. The last few years have seen the development

of a wide variety of approaches, ranging from graph embedding

[15, 35, 37, 42], to graph convolutional networks [17, 22], to message

∗
Work done while interning at Google.

†
Now at Amazon Japan (englertp@amazon.co.jp)

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8312-7/21/04.

https://doi.org/10.1145/3442381.3449882

passing neural networks [14]. Though powerful, many of these ap-

proaches have a serious limitation: they assume that the underlying

graph is static, provided as an immutable input parameter where

edges between node-pairs have only a single weight. However, in

many real world applications, there is rarely one ‘correct’ graph –

instead, the best task performance comes from combining many

different types of relationships [16]. For example, in a video classi-

fication task, the best graph to use might consider several different

types of similarity between videos (e.g. both image similarity and

audio similarity). In practice, we believe that it is a mistake to sepa-

rate graph construction from the learning task at hand; rather, the

optimal graph must come from deep consideration of the problem

being solved.

(a) Multiplex graph (b) Learned pathfinder graph

Figure 1: Pathfinder discovery networks take multiple sets
of weighted edges and learn a graph specifically suited to
a downstream predictive task. In our example multiplex
graph (Fig. 1a) we have three types of edges and a two types
of nodes. The pathfinder discovery network would perform
node classification and output a learned pathfinder graph
where inter-class edges are forgotten (Fig. 1b).

Some methods have attempted to relax these limitations. For ex-

ample, Graph Attention Networks (GATs) [50], attempt to re-weight

each edge in the graph. However, GAT models are prone to overfit-

ting, and due to their over-parameterization have difficulties being

trained on large real world datasets. Further, they suffer from a

diminishing weight problem, which drives learned edge weights

towards zero as the degree of a node increases. Finally (and perhaps

most importantly) GAT-style attention constrains edge reweighting

to be a single aggregation of the node features, which prevents

GATs from learning complex difference operators between edges

in varying neighborhood structures.

A separate body of work has proposed specific models for het-

erogeneous data [59, 65]. However these models are often highly

specific to specific kinds of data inputs (e.g. a model might support

ar
X

iv
:2

01
0.

12
87

8v
2

 [
cs

.L
G

]
 1

6
Fe

b
20

21

https://doi.org/10.1145/3442381.3449882
https://doi.org/10.1145/3442381.3449882
https://doi.org/10.1145/3442381.3449882

video and relational data, but not geospatial data), and are there-

fore difficult to integrate with new advances in modeling. More

to the point, though heterogeneous approaches do incorporate a

wide variety of data types, they still treat graph construction as

a fundamentally isolated problem from graph learning. As a re-

sult, heterogeneous approaches will struggle for the same reasons

mentioned above.

In this work, we answer the question: “How can we learn to con-
struct the optimal graph for solving any given learning problem?”. For
inspiration, we look back to pathfinder networks [44], a graph con-

struction measure from the psychology literature. In a pathfinder

network, multiple kinds of proximity judgements (e.g. relatedness

scores from humans) are considered simultaneously in order to

determine edges between node-pairs. A discrete algorithm finds

the graph which best preserves some property (e.g. shortest paths)

of the input proximities. While traditional pathfinder networks are

useful for tasks such as aggregating subjective information, they

are unfortunately unsuitable for use in most graph learning tasks.

More recently, Halcrow et. al [16] describe a similar problem of

graph construction from multiple proximities which occurs in a

wide variety of industrial applications. Their solution, Grale, uses a

model to precompute a fused similarity network for graph learning

(one edge at a time). While this system has many advantages (scal-

ability, allows use of different kinds of relationships, etc) and has

been used in a wide variety of applications at Google, it is not able

to learn a graph jointly with a downstream task. Here, we go one

step further, and present Pathfinder Discovery Networks (PDNs), a
framework for learning a network over a set of entities with diverse

similarity scores jointly with a graph neural network task.

Ourmain contribution is the design and validation of the pathfinder
layer - a differentiable neural network layer which is able to com-

bine multiple sources of proximity information defined over a set

of nodes to form a single weighted graph. The pathfinder layer

uses a feed forward neural network to learn the edge weights while

the sparsity of the underlying weighted multiplex graph is un-

changed (see Figure 1). This layer feeds directly into a downstream

GNN model that is set up to learn arbitrary tasks – in this pa-

per, semi-supervised classification. Gradients from the supervised

classification task propagate down to the edge weights, allowing

PDNs to create a graph that is optimized for the classification task at

hand. Our model learns this graph in an inductive manner, allowing

transfer of learned graph aggregation from one graph to another.

We demonstrate the flexibility of our framework by showing

that a number models can be seen as special cases of our general

framework. First, we show how edge convolutional models can be

formulated with our modeling framework. Second, we establish

that one can define models that perform cheap multi-scale mixing

with the pathfinder layer.

Our empirical analysis focuses on node classification tasks, fea-

ture importance measurements, and runtime comparisons. We use

synthetic experiments to demonstrate a class of learnable tasks

where PDNs significantly outperform current state-of-the-art meth-

ods thanks to the unique ability to learn arbitrary functions over

multiple proximity inputs. We then switch to real world node clas-

sification problems, and demonstrate that PDN has a 0.8%-3.5%

predictive performance advantage over the most competitive exist-

ing graph neural network models in terms of accuracy. We analyze

the runtime of PDNs and demonstrate that the pathfinder layer

increases the training runtime by a constant multiplier. Finally,

we describe how the weights of the pathfinder layer can be seen

as attention over the input graphs and edge features, and add in-

terpretability to the underlying information propagation. The key

contributions of our work are as follows:

(1) We propose a flexible framework to learn a single graph

for message passing from multiple graphs jointly with any

graph convolution layer.

(2) We showcase how this framework can be used to define

edge convolution neural network models where the message

passing graph is learned from node features.

(3) We define models with cheap multi-scale mixing where the

adjacency matrix of the message passing graph is a linear

combination of adjacency matrix powers.

(4) We empirically demonstrate that our models have compet-

itive results on a range of node classification tasks, have

decent runtimes on small-scale graphs, and have explainable

weights in case of the simple models.

The source code of Pathfinder Discovery Networks is available at

https://github.com/benedekrozemberczki/PDN.

2 PRELIMINARIES
We begin by summarizing the notation used in our work and re-

viewing the related concepts of multiplexity, simplified spectral

graph convolutions, and graph attention. We frame our model as

a general building block that can be applied to a wide variety of

graph neural network designs.

Notation. We assume that we have a set of vertices 𝑉 , and

𝐷 graphs defined on these vertices described by G1, . . . ,G𝐷 with

respective edge sets 𝐸1, . . . , 𝐸𝐷 . These graphs can be represented

as |𝑉 | × |𝑉 | adjacency matrices which are respectively denoted by

Ã1, . . . , Ã𝐷 . We assume that nodes have generic vertex features.

For the whole set𝑉 , these features are described by a feature matrix

X ∈ R |𝑉 |×𝐹 , where 𝐹 is the number of features. In addition, for

each node we have a target that we want to predict. For the whole

set𝑉 , the targets are defined as a |𝑉 | ×𝐶 binary matrix, where𝐶 is

the number of node classes. Our goal is to predict the target class

matrix using the graphs and the node features.

Multiplex graphs and learning. This problem setup can be

framed as node classification with a weighted multiplex graph [28]

which has no inter-layer edges (Figure 1a). Unlike heterogeneous

graphs, multiplex graphs operate on a single node type. Current

approaches to learning frommultiplex graphs only generalize neigh-

bourhood based embeddings to accommodate a multiplex setting

[27, 62]. In these approaches, a separate node embedding is learned

for each graph (or each layer in the multiplex graph); these embed-

dings are concatenated to form the node representations. These

approaches have two limitations. First, the node embeddings are

transductive so the models do not generalize from one graph to

another. Second, these approaches are expensive, as node level

embeddings must be calculated for each graph separately.

Graph convolutions. The traditional setting of spectral graph

convolutional networks [22] has a single graph G and a correspond-

ing adjacency matrix A. In the forward pass of the spectral model

the degree normalized adjacency matrix D−1/2AD−1/2 is used to

2

https://github.com/benedekrozemberczki/PDN

propagate the hidden node representations. These hidden repre-

sentations are obtained by multiplying the feature matrix X by a

trainable 𝐹 × 𝑑 weight matrix W. Finally, the aggregated represen-

tations are transformed by 𝜎 (·) an elementwise non-linearity just

as in Equation (1) which describes the whole forward pass.

Z = 𝜎 (D−1/2AD−1/2XW) (1)

As defined, the spectral graph convolutional model cannot accom-

modate the presence of multiple graphs – one either has to come

up with a pre-defined edge weight aggregation function or use

only one of the graphs from G1, . . . ,G𝐷 as the message passing

graph. PDNs are directly motivated by this fundamental weakness.

We note that a range of graph neural network architectures use

the spectral graph convolution as a building block [8]. We believe

that overcoming the single graph limitation could therefore lead to

significant improvements in all other related models.

Graph attention networks. Graph attention networks [50]

learn the edge weights used for message passing using the features

of nodes at the edge endpoints. Node features are transformed by a

learnable parametermatrix and concatenated together for each edge.

The node-pair representations are multiplied by an attention vector,

and the weight of each edge is decided by a softmax unit defined

over the neighbors of the source node. Although the GATmodel can

learn multiple edge weights with multiple attention heads, this is

not a straightforward comparison to learning multiplex graphs. In

[50], each attention head is trained on the same node features, which
precludes incorporating unique features from multiple sources.

Furthermore, GAT cannot fully leverage the power of multiple

attention heads, because the final edge weight is a simple average

over the individual heads (and not a learned function). The GAT

model is therefore unable to learn an expressive range of functions

over multiple edge sets, which severely limits its applicability to

multiplex graph problems.

Pathfinder discovery networks as a building block. The
pathfinder layer introduced in our work is sufficiently general to

serve the message passing matrix for a wide range of general graph

neural network models defined on multiplex graphs. A pathfinder

discovery network can output a graph defined over a set of nodes

with a single edge weight for each edge; as a result, PDNs are easily

applied to any neural models that use the graph directly (including

Spectral Graph Convolutions [22], Graph Sampling and Aggrega-
tion [17, 60], Multi-Scale Graph Convolutions [1, 3], Clustered Graph
Convolutions [9], Personalized Propagation of Neural Predictions
[6, 23] and Simplified Graph Convolutions [53]). We further note

that pathfinder layers can be used as a building block for learning

tasks beyond node prediction. For example, using pathfinder layers,

an appropriate graph convolutional layer, and graph level pooling

such as Sort Pooling or Diff Pooling [61, 64], one can easily define

models which characterize or classify whole graphs.

3 MESSAGE PASSING ON LEARNED GRAPHS
Our model jointly learns a single graph from a set of similarity

graphs, and a graph neural network which uses the adjacency ma-

trix of this learned graph as a propagation matrix. The adjacency

matrices describing the input graphs themselves can be learned

or pre-computed. An exemplar graph could be a set of 𝑘-nearest

neighbor graphs of pairwise similarities calculated frommultimodal

datapoints, with separate graphs for images, sound, and text. An-

other potential example could be the use of normalized adjacency

matrix powers as measures of pairwise similarity between nodes.

In general, we can include as much information as possible with

the expectation that the PDN will find the optimal graph structure

based on consideration of all feature correlations.

3.1 Pathfinder Learning Layers
Here we detail the design of Pathfinder Learning Layers – neural

network architectures for combining different kinds of proximity

data together. We begin with the consideration of a simple model

for combining proximity information, and extend it to support

modeling complex relationships over multiplex data.

Definition 1. Pathfinder Neuron. A pathfinder neuron (Fig 2a)

takes weighted adjacency matrices Ã1, . . . , Ã𝐷 as input and com-

bines them into a single |𝑉 | × |𝑉 | learned graph G̃ as its output. It

uses trainable weights to learn the relative importance of each kind

of similarity information, as follows:

G̃ = 𝜎

(
𝐷∑︁
𝑖=1

𝛽𝑖 · Ã𝑖

)
. (2)

The elementwise function 𝜎 (·) is a non-linearity and 𝛽𝑖 is a train-

able weight specific to the 𝑖𝑡ℎ input adjacency matrix (see Figure

2a). We assume that there is no bias term present, which implies:

(i) calculating G̃ can be done entirely with sparse linear algebra

operations; (ii) the output graph from one pathfinder neuron can

be used as an input to other pathfinder neurons. Further, we note

that multiple pathfinder neurons can take in the same inputs and

learn different weights, akin to the GAT multi-attention-head.

Definition 2. Pathfinder Layer.A pathfinder layer uses multiple

pathfinder neurons as building blocks for a more complex neural

model. The 𝑙𝑡ℎ pathfinder layer with 𝑞 neurons using 𝑝 input graphs

can be written by:

G̃𝑙+1,1; . . . ; G̃𝑙+1,𝑞 = 𝑓 𝑙
(
G̃𝑙,1; . . . ; G̃𝑙,𝑝

)
. (3)

Each G̃ is output by a single pathfinder neuron. The number of

parameters in the neuron depends on the number of pathfinder

graphs in the previous layer.

Definition 3. Pathfinder Graph. The final output of a pathfinder
neuron, or a series of pathfinder layers in a pathfinder discovery

network is the pathfinder graph, denoted by
ˆG.

The pathfinder graph can be used for message passing in an

arbitrary downstream graph convolutional model (see Figure 2b).

If the edge sets of input graphs sufficiently overlap and the original

graphs are sparse, we expect Ĝ to be sparse.

3.2 Pathfinder Discovery Networks
The pathfinder graph described above can be used as an input for

an arbitrary downstream graph neural network. As a motivating

example, consider the spectral graph convolutional network defined

by Equation 1. We can augment this equation by replacing A with

the final pathfinder graph:

Z = �̂� (D−1/2
ˆG

ˆGD−1/2
ˆG

XW) (4)

3

Definition 4. Pathfinder Discovery Networks. This general com-

bined design of a message passing model and pathfinder layers

(or neurons) is a Pathfinder Discovery Network. An instance where

the the pathfinder network has a single hidden layer is depicted in

Figure 2b.

While we focus on specific applications in this work, we note

that PDNs can be used with most graph neural network models

and objectives (both supervised and unsupervised).

𝜎 (·)
𝜎

(
𝐷∑
𝑖=1

𝛽𝑖 · ˜A𝑖

)Ã1

Ã2

Ã3

Ã4

Ã𝐷

G̃

𝛽
1

𝛽
2

𝛽3

𝛽4

𝛽𝐷

(a) Architecture of a single pathfinder neuron

X

Z�̂� (·)

Ã1

.

.

.

Ã𝐷

�̂� (D−1/2
ˆG

ˆGD−1/2
ˆG

XW + b)

ˆG

(b) A PDN consisting of one hidden pathfinder layer and a GCN

Figure 2: A single pathfinder neuron (2a) and a pathfinder
discovery network (2b) with multiple pathfinder neurons in
a single hidden layer. The pathfinder graph ˜G output by the
pathfinder layer is used by some graph convolutional layer
�̂� (·). We illustrate this here using the GCNmodel [22], show-
ing how a learned graph can be normalized.

4 ADVANTAGES OF PDNS
As noted by Halcrow et al. [16] and others [10, 54], the performance

of graph learning systems can vary greatly based on the quality

of the network used. In this section we compare methods based

on the popular graph attention network (GAT) model with PDNs.

While GAT is not explicitly motivated by the problem of graph con-

struction, we note that in the current literature the GAT approach

can be viewed as attempting to learn a graph jointly with a deep

learning task. However, GAT and related attention models have the

following critical weaknesses that make them ill-suited for graph

building:

(1) GAT models learn a single aggregation over a single source

of features, which significantly constrains the expressivity

of the graph it can learn.

(2) The GAT framework is heavily dependent on multiple atten-

tion heads for regularization. Unfortunately, the increase in

parameters results in overfitting, which raises issues when

training on real world datasets [45, 51].

PDNs can mitigate these weaknesses.

4.1 Expressivity
PDNs are designed from the ground up to handle an arbitrary

number of modalities, each defined as a similarity measure over the

vertices. The pathfinder network is able to combine these similarity

measures in arbitrary ways.

4.1.1 Exclusive Or. As a motivating example, consider an XOR

operation. In a multiplex graph setting, an XOR can describe a case

where the presence of two edges together has a different semantic

meaning than the presence of either edge separately.

Table 1: The PDN model is able to learn complex relation-
ships over multiplex edges. Here we show how an XOR re-
lationship can be learned over two networks (A′𝑢,𝑣 and A′′𝑢,𝑣).

Edge State PDN activations

A′𝑢,𝑣 A′′𝑢,𝑣 ℎ1 ℎ2 𝛼𝑢,𝑣

0 0 0 0 0

0 1 1 0 1

1 0 1 0 1

1 1 2 1 0

Proposition. PDNs can learn XOR operations over different layers

of a multiplex graph.

Proof. Let us consider a node classification problem with two com-

ponent binary valued edge weight vectors (A′𝑢,𝑣,A′′𝑢,𝑣) on each

edge. Further, consider a PDN composed of a hidden layer with 2

neurons, described by these equations:

ℎ1 = ReLU(A′𝑢,𝑣 + A′′𝑢,𝑣)
ℎ2 = ReLU(A′𝑢,𝑣 + A′′𝑢,𝑣 − 1)

𝛼𝑢,𝑣 = ℎ1 − 2 · ℎ2
As shown in Table 6, this network reproduces the exclusive-or func-
tion. We also include the hidden states (ℎ1, ℎ2) and predicted edge

weights (𝛼𝑢,𝑣) obtained with this pathfinder layer. ■
In practice without feature engineering GCN and GAT models

can only utilize one of the edge features or the edge existence as an

edge weight. Such weights on their own cannot separate different

edge types.

4.1.2 Different Edge Weight Semantics. Similar analysis can be

done when considering the case where a node has two edge types

where one edge denotes similarity and one denotes distance. A PDN

can correctly learn to invert the distance edge, producing a single

similarity measure that incorporates the full range of provided

information. Because GAT uses a softmax aggregation, it cannot

learn inversions; the best it can do is ignore the distance edge. The

standard GCN treats all edges as either similarity or distance, and

so will end up misinterpreting the information being provided by

one of the two edge types.

4

4.2 Resilience to skewed degree distributions
Many GNN implementations suffer when faced with nodes that

have very large degrees. As shown by [5] the limiting behaviour of

𝛼𝑢,𝑣 in the graph attention (GAT) model [50] forces edges weights

to 0 as the neighbourhood size of 𝑢 increases:

lim

|𝑁 (𝑢) |→∞
𝛼𝑢,𝑣 = lim

|𝑁 (𝑢) |→∞

exp(𝑓𝜃 (H𝑢,:;H𝑣,:))∑
𝑤∈𝑁 (𝑢)

exp(𝑓𝜃 (H𝑢,:;H𝑤,:))
= 0. (5)

This over-smoothing limits the effectiveness of GAT and similar

models on real world graphs, where node degrees often follow a

power law distribution [5]. By comparison, PDNs can score edge

weights independently, and therefore do not incorrectly penalize

high degree nodes.

Proposition. PDNs can be constructed such that high degree nodes

do not drive edge weights to 0.

Proof. Let us consider an edge (𝑢, 𝑣) of the undirected graph G used

for message passing. Let us denote the message passing weight of

this edge as 𝛼𝑢,𝑣 . Moreover, let us assume that the edge has a two

dimensional feature vector (A′𝑢,𝑣,A′′𝑢,𝑣). Let us further define the
behaviour of 𝛼𝑢,𝑣 in a PDN which has no hidden layer and has a

linear activation function:

lim

|𝑁 (𝑢) |→∞
𝛼𝑢,𝑣 = 𝛽1 · A′𝑢,𝑣 + 𝛽2 · A′′𝑢,𝑣 . (6)

In Equation (6) the 𝛽 values are trainable parameters of the PDN.

We see that the limiting behaviour of the PDN edge weight does

not depend on the neighbourhood size. ■
High degree nodes in the GAT and GCN model will have a large

number of edge weights close to zero. This results in poor quality

neighbourhood representations which are not discriminative on

the downstream task.

4.3 Edge-weight calculation time complexity
GAT implementations are heavily regularized through averaging of

multiple attention heads; experimental results in [50] use 8 unique

attention heads over all of the node features. This can result in

significant overfitting for cases where there are few features, or

extremely large matrix calculations for large feature spaces.

This has an impact on the runtime necessary to calculate each

edge, both during training and during inference. Naive implemen-

tations of the GCN and GAT models which do not use a cache can

calculate the weight 𝛼𝑢,𝑣 in O(|N (𝑣) |) time. By contrast the same

edge weight can be calculated in O(1) time with a shallow PDN

which has a linear activation function.

5 VARIATIONS ON THE BASIC MODEL
In order to understand the core motivations behind PDNs, we have

thus far limited our discussion to high level, general characteristics.

In this section, we drill down to specific variations on the basic

model to demonstrate the flexibility and expressive power of the

proposed framework.

5.1 A model with learned similarities
We have mentioned in passing that one can design a PDNwhere the

weights in the adjacency matrices describing the similarity graphs

are themselves parametrized by neural networks. We have thus

far assumed that the weights described by the adjacency matrices

Ã1, . . . , Ã𝐷 are coming from pre-calculated similarities. Instead, let

us assume that for each binary Ã1, . . . , Ã𝐷 we have a feature matrix

X𝑖 , . . . ,X𝐷 . We can then define a graph convolutional model where

the edge weights of an input graph are learned by node features.

Let H𝑖 be the node hidden representation matrix,

H𝑖 = 𝜎 (X𝑖 ·W′𝑖 + b𝑖) . (7)

Here X𝑖 is the 𝑖
𝑡ℎ

generic node feature matrix, the function 𝜎 (·) is
an elementwise non-linearity, andW′

𝑖
and b𝑖 are the feature matrix

specific trainable weight matrix and bias vector. Using the endpoint

representations we define
ˆG𝑖 as a learned input adjacency matrix

for a graph learning neuron:

ˆG𝑖 = A𝑖 ⊙ �̂� (H𝑖 ·H⊤𝑖) . (8)

We use the elementwise non linearity �̂� (·) to transform the raw edge

weights which are conditioned on the original adjacency matrix

by a Hadamard product. Exploiting the similarity of the individual

adjacency matrices the calculation of (8) happens in O(|𝐸 |).

𝜎 (·)

�̂� (·)

𝜎 (·)

X1

A1

H1 = 𝜎 (X1W′
1
+ b1) H1

ˆG1 = A1 ⊙ �̂� (H1H𝑇
1
)

ˆG1

�̂� (·)

𝜎 (·)
X𝐷

A𝐷

H𝐷 = 𝜎 (X𝐷W′𝐷 + b𝐷) H𝐷

ˆG𝐷

G̃
.
.
.

.

.

.

ˆGD = A𝐷 ⊙ �̂� (H𝐷H𝑇
𝐷
)

G̃ = 𝜎

(
𝐷∑
𝑖=1

𝛽𝑖 ˆG𝑖

)

Figure 3: The pathfinder neuron designwith learned similar-
ity scores. Fromeachnode featurematrix conditioned by the
corresponding adjacencymatrix we learn a similarity graph.
In the pathfinder neuronwe learn to combine these together
as a single learned graph denoted by ˜G. This output graph
can serves as the input for an arbitrary downstream graph
convolutional layer.

A pathfinder neuron receives multiple learned graphs as input,

combines those and outputs a final graph. This idea is summarized

by Figure 3 where we have 𝐷 different feature matrices and from

each of them we learn a separate graph that we use as input for the

pathfinder neuron, which in turn outputs G̃. This final aggregation
is defined by Equation (9) in which 𝛽𝑖 is a learned parameter that

acts as a weight for the learned graphs and 𝜎 (·) is a non-linearity.

G̃ = 𝜎

(
𝐷∑︁
𝑖=1

𝛽𝑖 ˆG𝑖

)
(9)

5.2 A model with cheap multi-scale mixing
Multi-scale graph neural network models obtain information about

the neighbourhoods of nodes at multiple hops [3, 36, 39, 43] and

learn features for each hop. Most graph neural networks [9, 17, 22,

5

23, 55] which are not multi-scale (with the exception being Atten-
tionWalk [2] and DCRNN [24]) pool features from neighbourhoods

at different scales without considering what is the optimal mixing

of information. In the following we will define a corner case of

our model which allows for supervised and explainable pooling of

multi-scale information with trainable weights.

Data: Ã - Normalized adjacency matrix

X - Feature matrix

𝐷 - Order of adjacency matrix powers

𝑑 - Number of filters

Result: Z – Hidden state matrix

1 Z← Initialize representations(d).
2 Z0 ← XW
3 for 𝑖 ∈ {1, . . . , 𝐷} do
4 Z𝑖 ← ÃZ𝑖−1
5 Z← Z + 𝑃𝑖 · Z𝑖
6 end
Algorithm 1: Efficient sparsity aware forward pass
multi-scale mixing with a softmax learned graph and
a linear graph convolutional activation function.

Let Ã be the normalized adjacency matrix of the weighted undi-

rected graph G. We assume that the similarity graphs of interest

are described by powers of this normalized adjacency matrix for a

given 𝐷 number of hops – Ã𝑖 = Ã
𝑖
, ∀𝑖 = 1, . . . , 𝐷 . The learned

graph used for the forward pass is defined as:

Ĝ =

𝐷∑︁
𝑖=1

𝑃𝑖 · Ã𝑖 (10)

where 𝑃𝑖 is the weight of a given adjacency matrix power, and is

parametrized with a softmax as exp(𝛼𝑖)/
(∑𝐷

𝑖=1 exp(𝛼𝑖)
)
. As the

direct calculation of the adjacency matrix powers is prohibitive,

we instead use an efficient forward pass algorithm to calculate the

hidden state matrices described by Algorithm 1. The core idea is

to exploit the sparsity of the adjacency matrix in each iteration by

using the normalized adjacency to average node representations,

and weighting the representations with learned 𝑃𝑖 scores.

6 EXPERIMENTS
Above, we theoretically motivated the development of PDNs by

discussing the importance of jointly learning graphs and GNNs

for specific tasks and evaluating the expressivity of the pathfinder

layers. In the following, we empirically validate our analysis by

demonstrating that PDNs have a significant advantage on a class

of graph learning tasks, while maintaining competitive predictive

performance on other baselines. We also describe how weights in a

pathfinder neuron can be interpreted as attention, and we analyze

model runtime to discuss the scalability of our models.

6.1 Synthetic node classification experiment
PDNs are a natural fit for dealing with noisy node and edge fea-

tures, because they can learn complex correlations across many

different combined modalities of data while removing unimportant

information. To highlight this key advantage, we investigate node

classification performance on synthetically generated datasets that

are specifically designed with imperfect feature information. The

detailed settings of the synthetic node classification experiments

are discussed in Appendix A.

Table 2: Synthetic node classification scenarios with the
range of the manipulated hyperparameters and specific im-
plications of the modulation in the scenario.

Scenario Parameter Implication of increase
1 𝐶 ∈ [2, 6] Less clear classes

2 𝑛 ∈ [24, 210] More instances for generalization

3 𝑃 ∈ [2−10, 2−4] Stronger class cohesion

4 𝑄 ∈ [2−10, 2−4] More inter-class edges

5 𝐹 ∈ [22, 26] More node features

6 𝐷 ∈ [22, 26] More edge features

7 𝜎𝐹 ∈ [2−1, 25] Lower node feature quality

8 𝜎𝐷 ∈ [2−1, 25] Easier separation of edge type

Synthetic data generation algorithm. Each synthetic graph has

𝐶 node label classes and 𝑛 nodes in the graph belonging to a given

class. These two hyperparameters decide the overall number of

nodes in the synthetically generated graph, 𝐶 × 𝑛. We generate

features as follows:

(1) Generation of correlated node features. For each node we

generate 𝑑𝑁 continuous node features which are standard

normally distributed with a pre-defined correlation struc-

ture. The eigenvalues of the node feature correlation matrix

are distributed proportional to a standard half-normal distri-

bution. This ensures that the eigenvalues of the generated

correlation matrix are positive.

(2) Generation of node labels. The node feature matrix X is multi-

plied by a normally distributed 𝐹 dimensional weight vector

w which results in a continuous node target feature y. We

add zero mean normally distributed noise to this target vec-

tor with standard deviation 𝜎𝐹 which results in the noisy

target vector ỹ. We quantile bin the continuous target vector

to get a label vector for the node classification task with 𝐶

distinct classes.

(3) Edge addition. We define two edge types in our graph: intra-

class edges (those edges between nodes that share a class);

and inter-class edges (the opposite). An edge exists between

two intra-class nodes with probability 𝑃 , while an edge exists

between two inter-class nodes with probability 𝑄 .

(4) Generation of edge features. For each edge we generate𝐷 con-

tinuous edge features which are normally distributed and

uncorrelated. Inter-class edge features have a standard de-

viation of 𝜎𝐷 while intra-class edge features are distributed

according to the standard normal distribution. This allows

us to tune how much information can be propagated from

the edges themselves.

Findings and Discussion. The mean accuracy scores for each

scenario are shown in Figure 4. PDN materially outperforms the

6

2 3 4 5 6

20

40

60

80

100

𝐶

A
c
c
u
r
a
c
y
×1

0
0

Scenario 1

PDN GCN GAT APPNP ClusterGCN SGConv DeepWalk

2
4

2
6

2
8

2
10

𝑛

Scenario 2

2
−10

2
−8

2
−6

2
−4

𝑃

Scenario 3

2
−10

2
−8

2
−6

2
−4

𝑄

Scenario 4

2
2

2
4

2
6

2
8

40

60

80

100

𝐹

A
c
c
u
r
a
c
y
×1

0
0

Scenario 5

2
2

2
4

2
6

2
8

𝐷

Scenario 6

2
−1

2
1

2
3

2
5

𝜎𝐹

Scenario 7

2
−1

2
1

2
3

2
5

𝜎𝐷

Scenario 8

Figure 4: Node classification performance measured by average test set accuracy (10 experimental repetitions) on the syn-
thetically generated attributed graphs for the scenarios described in Table 2. The proposed Pathfinder Discovery Network
architecture has robust predictive performance under a wide range of synthetic data generation hyperparameters.

baselines for a wide range of synthetic graphs. The results of Sce-

nario 1 demonstrate that PDN is able to distinguish between less

clearly defined classes, while competing graph neural networks

struggle to maintain competitive performance. We highlight data

efficiency in Scenario 2 – given a fixed number of instances, PDN

generalizes better to unseen data where 𝑛 ≥ 2
6
. In Scenario 3, we

observe that stronger class-cohesion results in better classification

performance for all models, and that PDN displays superior mar-

ginal predictive performance gains. As one can see ClusterGCN

uses a pre-processing step which is purely topological and this

filters out inter-class edges. Increasing the number of inter-class

edges in Scenario 4 initially decreases the predictive performance

of the baselines; by comparison, PDN is able to learn to ignore

the noise propagating inter-class edges. Scenario 5 shows that all

supervised models gain when more vertex features are available,

and again PDN displays superior marginal performance gain. On

the contrary, we see that the PDN overfits when a large number

of edge features is available based on Scenario 6. Though all mod-

els are sensitive to node features, Scenario 7 shows that PDNs are

significantly more resilient to node feature corruption. Finally, in

Scenario 8, higher quality edge features only help PDN.

We briefly want to focus on the results in Scenario 4, as we

believe this demonstrates the XOR functionality of the PDN. The

GCN baseline models learn from the expected value of neighboring

hidden states. In high homophily graphs (i.e. the low Q region),

neighboring states will correlate with node features resulting in

high performance. The same holds for low homophily graphs (i.e.

the high Q region), except the weights are inverted – in other words,

the baseline GCN models will learn to simply invert neighboring

node states. In the middle, the baseline models cannot learn a single

aggregation that correctly handles the differing edge information.

By contrast, PDNs are expressive enough to learn to differentiate the

edge weights, allowing it to maintain high performance throughout.

−3 −1 1 3

−3

−1

1

3

Embedding dimension 1

E
m
b
e
d
d
i
n
g
d
i
m
e
n
s
i
o
n
2

Pathfinder Discovery Network

−3 −1 1 3

−3

−1

1

3

Embedding dimension 1

E
m
b
e
d
d
i
n
g
d
i
m
e
n
s
i
o
n
2

Graph Attention Network

Intra class edges Inter-class edges

Figure 5: The t-SNE embedding of PDN and GAT hidden
layer edge representations on the synthetic dataset with the
standard data generation settings. The PDNmodel is able to
separate intra-class and inter-class edges better.

Implicit learning of inter- and intra-class edges. We per-

form a visual embedding analysis in Figure 5, where we examine

the 2 dimensional t-SNE embeddings [48, 49] of hidden layer edge

representations for the PDN and GAT models. The representa-

tions extracted from the PDN show distinct separation for the inter

and intra-class edges, which implies that the model has learned to

meaningfully distinguish these two modalities of information. By

contrast, the GAT representations are not separated by the type

of the edge. This further demonstrates the high expressiveness of

PDNs.

7

6.2 Multiplex node classification performance
We evaluated the predictive performance of PDNs on real world

node classification problems using publicly available multiplex web-

graph datasets [33]. The descriptive statistics of these graph datasets

are presented Appendix B.

Experimental settings. Our experiments focused on 100-shot

node classification and we calculated the average test accuracy

of multiplex graph neural network architectures. We included a

range of supervised models [20, 33] and unsupervised proximity

preserving and attributed node embedding techniques [27, 46, 63].

The exact experimental settings are described in Appendix C.

IMDB ACM

0.4

0.6

0.8

T
e
s
t
A
c
c
u
r
a
c
y MGCN

DMGI

M2V

MELL

MNE

PDN

Figure 6: Averagemultiplex 100-shot node classification test
accuracy results calculated from 10 experimental runs (the
error bars standard deviations around the mean) on muti-
plex graph benchmark datasets.

Findings and discussions. The average test accuracy scores

are plotted on Figure 6 with standard deviations around the mean.

Our results demonstrate that PDNs significantly outperform the

competing supervised and unsupervised multiplex graph repre-

sentation learning techniques on these datasets in terms of test

accuracy. It is also evident that supervised learning methods have

a considerable performance advantage over the unsupervised ones.

6.3 Node classification performance
Excitingly, PDNs are quite capable in the multiplex graph settings.

That said, we want to ensure PDNs maintain high performance

in traditional single graph settings. Further, we believe that joint

training of the pathfinder and classifier will lead to lift even on well

established problems. We therefore evaluate the node classification

performance of our proposed model variants on widely used cita-

tion graphs [26, 30] and social networks [39, 43]. The descriptive

statistics of these datasets are in Table 5 of Appendix D.

Experimental settings.Because PDNs are general, we included
a wide variety of unsupervised and supervised baselines to best

understand relative performance. We compared the predictive per-

formance to node embeddings and various graph neural networks.

The exact experimental settings can be found in Appendix E.

Findings and Discussion. We report the mean accuracy esti-

mates with standard deviations in Table 3. Our results demonstrate

that PDNs outperform unsupervised methods by between 2.5 and

16.5 % in terms of accuracy. Against all approaches, including super-

vised approaches, PDN variants are the most competitive models

on the Cora, Pubmed, Facebook, and Deezer benchmarks, with a

relative accuracy advantage between 0.8 and 3.5%. PDNs fall behind

only the standard GCN model on the Citeseer benchmark.

Table 3: Average node classification test accuracy results
of 100-shot learning runs calculated from 10 experimental
runs (standard deviations around the mean below the accu-
racy) on citation graph datasets and social networks. Bold
red numbers denote the best performing model.

Model Citeseer Cora Pubmed Facebook
Pages

Deezer
Europe

LINE2 [47] 0.470
±0.013

0.686
±0.013

0.675
±0.017

0.762
±0.010

0.503
±0.005

DeepWalk [35] 0.523
±0.010

0.762
±0.011

0.704
±0.014

0.531
±0.012

0.510
±0.007

Walklets [36] 0.513
±0.010

0.735
±0.010

0.675
±0.017

0.819
±0.011

0.511
±0.008

GraRep [7] 0.421
±0.027

0.634
±0.016

0.653
±0.018

0.705
±0.008

0.507
±0.008

HOPE [32] 0.397
±0.041

0.717
±0.026

0.561
±0.035

0.593
±0.027

0.508
±0.029

NetMF [38] 0.446
±0.030

0.707
±0.009

0.710
±0.012

0.756
±0.015

0.512
±0.010

AANE [18] 0.691
±0.009

0.760
±0.009

0.801
±0.010

0.652
±0.008

0.621
±0.007

ASNE [25] 0.589
±0.015

0.758
±0.011

0.738
±0.017

0.636
±0.010

0.608
±0.011

MUSAE [39] 0.636
±0.012

0.758
±0.011

0.784
±0.004

0.822
±0.010

0.563
±0.010

TADW [56] 0.657
±0.008

0.644
±0.009

0.765
±0.004

0.536
±0.012

0.558
±0.010

BANE [57] 0.566
±0.015

0.743
±0.015

0.729
±0.019

0.648
±0.011

0.517
±0.009

TENE [58] 0.658
±0.010

0.662
±0.011

0.775
±0.009

0.598
±0.016

0.593
±0.022

FEATHER [43] 0.649
±0.012

0.805
±0.010

0.769
±0.015

0.854
±0.039

0.539
±0.007

2-Layer MLP 0.706
±0.010

0.690
±0.011

0.783
±0.005

0.761
±0.010

0.565
±0.016

Chebyshev [11] 0.742
±0.005

0.855
±0.004

0.818
±0.005

0.838
±0.009

0.564
±0.008

GCN [22] 0.767
±0.004

0.861
±0.003

0.822
±0.003

0.854
±0.007

0.545
±0.008

GAT [50] 0.748
±0.004

0.830
±0.010

0.818
±0.002

0.839
±0.008

0.532
±0.009

SGConv [53] 0.699
±0.013

0.850
±0.005

0.796
±0.010

0.762
±0.005

0.536
±0.006

ClusterGCN [9] 0.708
±0.006

0.836
±0.007

0.819
±0.005

0.817
±0.010

0.558
±0.005

GraphSAGE [17] 0.706
±0.008

0.840
±0.009

0.803
±0.007

0.846
±0.009

0.554
±0.006

PDN 0.764
±0.010

0.868
±0.008

0.835
±0.004

0.875
±0.010

0.584
±0.010

PDN EdgeConv 0.711
±0.008

0.864
±0.008

0.833
±0.011

0.863
±0.009

0.548
±0.007

PDN Multi-Scale 0.740
±0.007

0.866
±0.009

0.836
±0.013

0.793
±0.009

0.568
±0.009

2 3 4 5 6

0

20

40

60

80

100

log
2
Number of edges per node

R
u
n
t
i
m
e
i
n
c
r
e
a
s
e
i
n
%

5 6 7 8 9

log
2
Number of edge features

PDN GLM PDN Shallow PDN Deep

Figure 7: The relative runtime increase (compared to spec-
tral graph convolutions) needed for training PDNmodels on
synthetic datasets.

6.4 Relative runtime
The time complexity of training a traditional spectral graph convo-

lutional networks is O(|𝐸 |𝐹) while a Pathfinder Discovery Network
has a time complexity of O(|𝐸 | (𝐹 + 𝐷)). Using synthetic data, we
compare the relative runtime of PDNs in a number of scenarios to

provide a better empirical understanding of what the additional

8

time complexity means in practice. Experimental details are sum-

marized in Appendix F.

Findings and Discussion. The relative runtime is shown in

Figure 7. The results are in line with the runtime complexities

discussed above: increasing the number of edges does not increase

the relative runtime of the PDNs, but increasing the edge feature

count does increase the relative runtime. We also see that more

complex (deeper) edge aggregation models are slower.

6.5 Edge feature importance
Model interpretability is an important part of developing deep neu-

ral networks. Architectures with interpretable weights can provide

novel insights on the structure of data, while also making valida-

tion, inspection, and debugging significantly easier. We believe that

PDNs can add significant interpretability to graph learning tasks

when we frame the learned weights as an attention mechanism

over the input graphs. In this set of experiments we discuss two

scenarios when learned PDN weights have direct interpretations.

0 50 100 150 200

0

0.2

0.4

0.6

Epochs

A
tt
e
n
ti
o
n

Ã Ã
2

Ã
3

Ã
4

Ã
5

(a) Cora

0 50 100 150 200

0

0.2

0.4

0.6

0.8

Epochs

A
tt
e
n
ti
o
n

Ã Ã
2

Ã
3

Ã
4

Ã
5

(b) Pubmed

Figure 8: The change of the attention weights as training
progresses in a single neuron PDN trained on the Cora and
Pubmed datasets.

Attention on proximity. In this experiment, we use the multi-

scalemodel described in Section 5.2.We utilize the first 5 normalized

adjacency matrix powers as input similarity graphs and apply the

hyperparameters described in Section 6.3. We train this model

on 100-shot learning tasks, and report the mean weight for each

adjacency power from 100 repetitions (see Figure 8).

Based on these learned weights, we observe that the model has

learned to prioritize messages that come from the first order neigh-

bourhoods of vertices – in other words, the PDN attends to closer

neighbors more. We note that the Cora and Pubmed graphs ex-

hibit high homophily between nodes, suggesting that the model’s

weighting scheme is well motivated. Interestingly, we also observe

that the importance of information coming from the second hop

starts to decline between 50-100 epochs; not coincidentally, this is

around when peak test accuracy is reached, after which we observe

a decline (test accuracy not shown). This implies that graph neural

network models overfit to information coming from the first order

proximity of individual data points. More importantly, the added

interpretability from PDN allows us to observe exactly where the

overfitting is occurring.

0 0.04 0.08 0.12 0.16

Adamic Adar

Association Strength

Common Neighbors

Cosine

Degree Product

Jaccard

N-Measure

Max Overlap

Min Overlap

Pearson

Resource Allocation

Attention

Citeseer Cora Pubmed Facebook Deezer

Figure 9: Comparison of average PDN attention scores (us-
ing a single pathfinder neuron) on edge similarity scores for
the real world datasets.

Attention onneighbourhood similarity.Using the similarity

scores listed in Table 6 of Appendix G we train a Linear PDN model

with the hyperparameter settings described in Appendix E. As a

reminder, this implementation of the pathfinder layer uses softmax

activations and does not have a hidden layer – in this setting, the

weights can be interpreted as attention. For the citation graph

and social network datasets we plot the average attention score

(calculated from 10 training runs) for a selected subset of edge

scores in Figure 9.

The results show that unnormalized edge similarity scores such

as the degree product and common neighbours tend to receive low

attention when the edge weight aggregation happens. On most

datasets similarity metrics which are normalized and do not con-

sider the degree of shared neighbors (e.g. association strength and

minimal overlap) receive relatively high attention.

7 CONCLUSION
In this paper we proposed pathfinder discovery networks (PDN), a

graph neural network architecture for learning a message passing

graph from a multiplex graph defined on a fixed set of nodes. Our

modular architecture allows for joint training of a graph neural

network and the pathfinder discovery layer, which in turn allows

practitioners to find the optimalmessage passing graph for a specific

supervised task. We examine the comparative characteristics of

PDNs, concluding that PDNs are significantly more expressive

and resilient than existing approaches. We then describe general

9

extensions of our model, which allow for the definition of multi-

scale graph convolutional layers and edge convolutions without

edge features.

In our empirical analysis, we establish that PDNs have competi-

tive predictive performance on various node classification tasks. We

showed that the relative runtime increase of PDNs is independent

of the dataset size in terms of edge set cardinality. And finally, we

examined the weights of the graph aggregation model from the

lens of learned attention.

We believe there are many exciting areas of future work. We

are particularly excited about the possibility of extracting the PDN-

learned graph for use in other tasks. We intuit that it would be

possible to learn several PDN graphs for many different kinds of

supervised tasks, and then combine those graphs in another PDN.

We believe that this yet-unexplored use case will be very important

in improving abstract notions of ‘graph accuracy’ for a wide range

of datasets, while simultaneously opening new areas of transfer

learning on graphs.

REFERENCES
[1] Sami Abu-El-Haija, Amol Kapoor, Bryan Perozzi, and Joonseok Lee. 2020. N-

GCN: Multi-scale Graph Convolution for Semi-supervised Node Classification

(Proceedings of Machine Learning Research), Ryan P. Adams and Vibhav Gogate

(Eds.), Vol. 115. PMLR, Tel Aviv, Israel, 841–851.

[2] Sami Abu-El-Haija, Bryan Perozzi, Rami Al-Rfou, and Alexander Alemi. 2018.

Watch Your Step: Learning Graph Embeddings Through Attention. In Advances
in Neural Information Processing Systems (NIPS) 31. Curran Associates, Inc., 9198–

9208.

[3] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina

Lerman, Hrayr Harutyunyan, Greg Ver Steeg, and Aram Galstyan. 2019. MixHop:

Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood

Mixing. In Proceedings of the 36th International Conference on Machine Learning
(ICML). 21–29.

[4] Lada A Adamic and Eytan Adar. 2003. Friends and Neighbors on the Web. Social
Networks 25, 3 (2003), 211–230.

[5] Anonymous. 2021. Learning Discrete Adaptive Receptive Fields for Graph Con-

volutional Networks. In Submitted to International Conference on Learning Repre-
sentations. https://openreview.net/forum?id=pHkBwAaZ3UK under review.

[6] Aleksandar Bojchevski, Johannes Klicpera, Bryan Perozzi, Amol Kapoor, Martin

Blais, Benedek Rózemberczki, Michal Lukasik, and Stephan Günnemann. 2020.

Scaling Graph Neural Networks with Approximate PageRank. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD ’20). 2464–2473.

[7] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. GraRep: Learning Graph Repre-

sentations with Global Structural Information. In Proceedings of the 24th ACM
International on Conference on Information and Knowledge Management. 891–900.

[8] Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, and Kevin Mur-

phy. 2020. Machine Learning on Graphs: A Model and Comprehensive Taxonomy.

arXiv preprint arXiv:2005.03675 (2020).
[9] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.

2019. Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph

Convolutional Networks. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD). 257–266.

[10] Celso André R de Sousa, Solange O Rezende, and Gustavo EAPA Batista. 2013.

Influence of graph construction on semi-supervised learning. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases. Springer,
160–175.

[11] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convo-

lutional Neural Networks on Graphs with Fast Localized Spectral Filtering. In

Advances in Neural Information Processing Systems. 3111–3119.
[12] Leo Egghe and Loet Leydesdorff. 2009. The Relation Between Pearson’s Correla-

tion Coefficient R and Salton’s Cosine Measure. Journal of the American Society
for information Science and Technology 60, 5 (2009), 1027–1036.

[13] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with

PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs and
Manifolds.

[14] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E

Dahl. 2017. Neural Message Passing for Quantum Chemistry. In Proceedings
of the 34th International Conference on Machine Learning-Volume 70. JMLR. org,

1263–1272.

[15] Aditya Grover and Jure Leskovec. 2016. Node2Vec: Scalable Feature Learning for

Networks. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining.

[16] Jonathan Halcrow, Alexandru Mosoi, Sam Ruth, and Bryan Perozzi. 2020. Grale:

Designing Networks for Graph Learning. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD ’20). New
York, NY, USA, 2523–2532.

[17] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Representation

Learning on Large Graphs. In Advances in Neural Information Processing Systems
(NIPS) 30. Curran Associates, Inc., 1024–1034.

[18] Xiao Huang, Jundong Li, and Xia Hu. 2017. Accelerated Attributed Network

Embedding. In Proceedings of the 2017 SIAM International Conference on Data
Mining. SIAM, 633–641.

[19] George Karypis and Vipin Kumar. 1998. A Fast and High Quality Multilevel

Scheme for Partitioning Irregular Graphs. SIAM Journal on scientific Computing
20, 1 (1998), 359–392.

[20] Muhammad Raza Khan and Joshua E Blumenstock. 2019. Multi-GCN: Graph

Convolutional Networks for Multi-View Networks, with Applications to Global

Poverty. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33.
606–613.

[21] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-

mization. In 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

[22] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In International Conference on Learning Repre-
sentations (ICLR).

[23] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2019. Com-

bining Neural Networks with Personalized PageRank for Classification on Graphs.

In International Conference on Learning Representations (ICLR).
[24] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2018. Diffusion Convolutional

Recurrent Neural Network: Data-Driven Traffic Forecasting. In International
Conference on Learning Representations.

[25] Lizi Liao, Xiangnan He, Hanwang Zhang, and Tat-Seng Chua. 2018. Attributed

Social Network Embedding. IEEE Transactions on Knowledge and Data Engineering
30, 12 (2018), 2257–2270.

[26] Qing Lu and Lise Getoor. 2003. Link-based classification. In International Confer-
ence on Machine Learning.

[27] Ryuta Matsuno and Tsuyoshi Murata. 2018. MELL: Effective Embedding Method

for Multiplex Networks. In Companion Proceedings of the TheWeb Conference 2018.
International World Wide Web Conferences Steering Committee, 1261–1268.

[28] Giulia Menichetti, Daniel Remondini, Pietro Panzarasa, Raúl J Mondragón, and

Ginestra Bianconi. 2014. Weighted Multiplex Networks. PloS one 9, 6 (2014),

e97857.

[29] Vinod Nair and Geoffrey E Hinton. 2010. Rectified Linear Units Improve Re-

stricted Boltzmann Machines. In Proceedings of the 27th International Conference
on Machine Learning. 807–814.

[30] Galileo Namata, Ben London, Lise Getoor, Bert Huang, and UMD EDU. 2012.

Query-driven active surveying for collective classification. In International Work-
shop on Mining and Learning with Graphs.

[31] Tore Opsahl, Filip Agneessens, and John Skvoretz. 2010. Node Centrality in

Weighted Networks: Generalizing Degree and Shortest Paths. Social networks 32,
3 (2010), 245–251.

[32] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asym-

metric Transitivity Preserving Graph Embedding. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM,

1105–1114.

[33] Chanyoung Park, Donghyun Kim, Jiawei Han, and Hwanjo Yu. [n. d.]. Unsuper-

vised Attributed Multiplex Network Embedding. In Proceedings of the 35th AAAI
Conference on Artificial Intelligence, AAAI 2020. AAAI Press, 5371–5378.

[34] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,

Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,

Vincent Dubourg, et al. 2011. Scikit-Learn: Machine learning in Python. Journal
of machine learning research 12, Oct (2011), 2825–2830.

[35] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online Learn-

ing of Social Representations. In Proceedings of the 20th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining.

[36] Bryan Perozzi, Vivek Kulkarni, Haochen Chen, and Steven Skiena. 2017. Don’t

Walk, Skip!: Online Learning of Multi-Scale Network Embeddings. In Proceedings
of the 2017 IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining 2017. ACM, 258–265.

[37] Ştefan Postăvaru, Anton Tsitsulin, Filipe Miguel Gonçalves de Almeida, Yingtao

Tian, Silvio Lattanzi, and Bryan Perozzi. 2020. InstantEmbedding: Efficient Local

Node Representations. arXiv preprint arXiv:2010.06992 (2020).
[38] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018.

Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE,

and Node2Vec. In Proceedings of the 11th ACM International Conference on Web
Search and Data Mining. ACM, 459–467.

10

https://openreview.net/forum?id=pHkBwAaZ3UK

[39] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. 2019. Multi-Scale Attributed

Node Embedding. (2019). arXiv:cs.LG/1909.13021

[40] Benedek Rozemberczki, Ryan Davies, Rik Sarkar, and Charles Sutton. 2019. GEM-

SEC: Graph Embedding with Self Clustering. In Proceedings of the 2019 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining 2019.
ACM, 65–72.

[41] Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar. 2020. Karate Club: An API

Oriented Open-source Python Framework for Unsupervised Learning on Graphs.

In Proceedings of the 29th ACM International on Conference on Information and
Knowledge Management (CIKM ’20). ACM.

[42] Benedek Rozemberczki and Rik Sarkar. 2018. Fast Sequence-Based Embedding

with Diffusion Graphs. In International Workshop on Complex Networks. Springer,
99–107.

[43] Benedek Rozemberczki and Rik Sarkar. 2020. Characteristic Functions on Graphs:

Birds of a Feather, from Statistical Descriptors to Parametric Models. In Proceed-
ings of the 29th ACM International Conference on Information and Knowledge
Management (CIKM ’20). ACM.

[44] Roger W Schvaneveldt, Francis T Durso, and Donald W Dearholt. 1989. Network

structures in proximity data. In Psychology of learning and motivation. Vol. 24.
Elsevier, 249–284.

[45] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan

Günnemann. 2018. Pitfalls of Graph Neural Network Evaluation. Relational
Representation Learning Workshop, NeurIPS 2018 (2018).

[46] Yu Shi, Fangqiu Han, Xinwei He, Xinran He, Carl Yang, Jie Luo, and Jiawei

Han. 2018. MVN2Vec: Preservation and Collaboration in Multi-view Network

Embedding. arXiv preprint arXiv:1801.06597 (2018).

[47] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.

2015. LINE: Large-Scale Information Network Embedding. In Proceedings of the
24th International Conference on World Wide Web. 1067–1077.

[48] Laurens van der Maaten. 2014. Accelerating t-SNE using Tree-Based Algorithms.

Journal of Machine Learning Research 15, 93 (2014), 3221–3245.

[49] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing Data using

t-SNE. Journal of Machine Learning Research 9 (2008), 2579–2605.

[50] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In International Con-
ference on Learning Representations (ICLR).

[51] Guangtao Wang, Rex Ying, Jing Huang, and Jure Leskovec. 2019. Improving

graph attention networks with large margin-based constraints. arXiv preprint
arXiv:1910.11945 (2019).

[52] Duncan J Watts and Steven H Strogatz. 1998. Collective dynamics of ‘small-

world’networks. nature 393, 6684 (1998), 440–442.
[53] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian

Weinberger. 2019. Simplifying Graph Convolutional Networks. In Proceedings of
the 36th International Conference on Machine Learning (ICML). 6861–6871.

[54] Xuan Wu, Lingxiao Zhao, and Leman Akoglu. 2019. A Quest for Structure:

Jointly Learning the Graph Structure and Semi-Supervised Classification. (2019).

arXiv:cs.LG/1909.12385

[55] Bingbing Xu, Huawei Shen, Qi Cao, Yunqi Qiu, and Xueqi Cheng. 2019. Graph

Wavelet Neural Network. In International Conference on Learning Representations
(ICLR).

[56] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y Chang. 2015.

Network Representation Learning with Rich Text Information. In IJCAI. 2111–
2117.

[57] Hong Yang, Shirui Pan, Peng Zhang, Ling Chen, Defu Lian, and Chengqi Zhang.

2018. Binarized Attributed Network Embedding. In 2018 IEEE International
Conference on Data Mining (ICDM). IEEE, 1476–1481.

[58] Shuang Yang and Bo Yang. 2018. Enhanced Network Embedding with Text

Information. In 2018 24th International Conference on Pattern Recognition (ICPR).
IEEE, 326–331.

[59] Liang Yao, Chengsheng Mao, and Yuan Luo. 2019. Graph Convolutional Net-

works for Text Classification. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 33. 7370–7377.

[60] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,

and Jure Leskovec. 2018. Graph Convolutional Neural Networks for Web-Scale

Recommender Systems. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 974–983.

[61] Zhitao Ying, Jiaxuan You, Christopher Morris, Ren Xiang, , William L. Hamilton,

and Jure Leskovec. 2018. Hierarchical Graph Representation Learning with

Differentiable Pooling. In Advances in Neural Information Processing Systems
(NIPS) 31. Curran Associates, Inc., 4805–4815.

[62] Hongming Zhang, Liwei Qiu, Lingling Yi, and Yangqiu Song. 2018. Scalable

Multiplex Network Embedding. In IJCAI, Vol. 18. 3082–3088.
[63] Hongming Zhang, Liwei Qiu, Lingling Yi, and Yangqiu Song. 2018. Scalable

Multiplex Network Embedding. In Proceedings of the 27th International Joint
Conference on Artificial Intelligence (IJCAI’18). AAAI Press, 3082–3088.

[64] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. 2018. An

End-to-End Deep Learning Architecture for Graph Classification. In Proceedings
of the Thirty-Second Conference on Association for the Advancement of Artificial

Intelligence (AAAI). 4438–4445.
[65] Yizhou Zhang, Yun Xiong, Xiangnan Kong, Shanshan Li, Jinhong Mi, and Yangy-

ong Zhu. 2018. Deep Collective Classification in Heterogeneous Information

Networks. In Proceedings of the 2018 World Wide Web Conference. International
World Wide Web Conferences Steering Committee, 399–408.

[66] Tao Zhou, Linyuan Lü, and Yi-Cheng Zhang. 2009. Predicting Missing Links via

Local Information. The European Physical Journal B 71, 4 (2009), 623–630.

A SYNTHETIC NODE CLASSIFICATION
EXPERIMENTAL SETTINGS

The default setting for synthetic graph generation are as follows:

we generate graphs with 𝐶 = 3 label classes and 𝑛 = 500 nodes

per class; we set edge probabilities to 𝑃 = 0.01 and 𝑄 = 0.005;

we set feature dimensions to 𝐹 = 32 and 𝐷 = 32; and we set fea-

ture correlations to 𝜎𝐹 = 5.0 and 𝜎𝐷 = 2.0 standard deviations.

We modulate these hyperparameters in the experimental scenarios

described in Table 2, where each scenario modifies a single param-

eter from the defaults described above. For each scenario, we used

80%/20% train-test splits, and report the average of 10 synthetic

graph generation%/model training cycles.

For our synthetic experiments, we use GCN, GAT, and Deep-

Walk as baselines, with the hyperparameter settings described in

[3]. To this set, we add the following baselines and corresponding

hyperparameters:

• AAPNP [6, 23]: The feedforward component of the model has

32 filters andwe did 10 personalized pagerank approximation

iterations with a teleport probability of 0.2.

• SGCONV [53]: We used information from the 2
𝑛𝑑

order prox-

imity of the normalized adjacency matrix with 32 dimen-

sional filters.

• ClusterGCN [9]: We used the settings of the Spectral GCN
model on the graph pre-clustered by the METIS community

detection algorithm [19].

By comparison, we construct a PDN with a single hidden layer

containing 16 pathfinder neurons and a ReLU activation function

[29] in the hidden layer, followed by a softmax activation func-

tion in the output layer of the pathfinder module. On top of the

pathfinder layers, we add a standard 2-hop spectral GCN [22] with

a hidden layer dimension size of 32. All models, including PDNs,

were trained using Adam [21] with a learning rate of 10
−2
, over

200 training epochs. Where relevant, we used a dropout value of

0.5 and an 𝑙2 weight regularization coefficient of 10
−3
. All models

were implemented using the PyTorch Geometric framework [13].

B MULTIPLEX BENCHMARK DATASET
DESCRIPTIVE STATISTICS

We used publicly available multiplex attributed webgraph datasets

for the binary node classification experiments [33]. We summarized

the descriptive statistics of the graph layers in Table 4. We would

like to point out that the layer wise characteristics of the networks

are remarkably different for these two datasets.

C MULTIPLEX NODE CLASSIFICATION
EXPERIMENTAL SETTINGS

We created 10 seeded 100-shot learning splits for evaluation, be-

cause of this the mean performance metrics are comparable across

models as there is no variation coming from the splits. The PDN had

11

http://arxiv.org/abs/cs.LG/1909.13021
http://arxiv.org/abs/cs.LG/1909.12385

Table 4: Descriptive statistics of the multiplex webgraphs
(individual layers) used for node classification performance
evaluation and comparison in our work.

Dataset Layers Nodes Density Clustering
Coefficient

Unique
Features Classes

IMDB 2 3550

0.005

0.001

0.509

1.000
2000 2

AMC 2 3025

0.242

0.004

1.000

0.687
1870 2

a single hidden layer with 2 neurons, the other hyperparameters

were the same as the ones described in Appendix E. One of the

supervised baselines was a spectral GCN [22] which used the union

of edge sets from the graph layers, this model also used the exper-

imental settings from E. The other supervised reference models

Multi-GCN [20] and DMGI [33] used the default hyperparameters

from the experimental section of the respective research papers. The

evaluation of the unsupervised techniques MVN2Vec [46], MELL

[27] and MNE [63] used a two stage upstream and downstream

learning setup. First, we trained embeddings with hyperparameters

from the original papers. Second, we trained a scikit-learn [34]

logistic regression on the embedding features using the default

settings.

D DATASET DESCRIPTIVE STATISTICS

Table 5: Descriptive statistics of the attributed citations
graphs and social networks used for node classification per-
formance evaluation and comparison in our work.

Dataset Nodes Clustering
Coefficient Density Unique

Features Classes

Cora 2,708 0.094 0.002 1,432 7

Citeseer 3,327 0.130 0.001 3.703 6

Pubmed 19,717 0.054 0.001 500 3

Facebook Page-Page 22,470 0.232 0.001 4,714 4

Deezer Europe 28,281 0.096 0.001 31,240 2

E REAL WORLD NODE CLASSIFICATION
EXPERIMENTAL SETTINGS

We evaluated proximity preserving node embedding techniques

[15, 32, 35, 38, 40, 42, 47], including multi-scale methods [7, 36]. We

also included a range of attributed node embeddingmethods [56, 58]

and attributed methods that incorporate node attribute information

from multiple hops [57]. Each of the upstream node embeddings

was trained with the default hyperparameter settings of the Karate

Club package [41] – 128 dimensional node embeddings which have

a comparable number of free parameters. The downstream model

was an 𝑙1 regularized multinomial logistic regression (softmax)

classifier pulled from scikit-learn [34].

For supervised baselines, we used GNN hyperparameter settings,

training setup, and citation graph results from [3], specifically the

performance of the two layer feedforward neural network, Cheby-
shev GCN [11], Spectral GCN [22] and GAT [50]. For comparison,

we examine three PDNs: the basic Pathfinder Discovery Network,

the PDN EdgeConv method described in 5.1, and the PDN Multi-

Scale method described in 5.2. The default PDN has a single hidden

layer with 16 pathfinder neurons and uses the neighbourhood sim-

ilarity metrics [4, 12, 31, 66] described in Table 6 of Appendix G

as input features. In addition, our edge convolutional model uses

information from the 1
𝑠𝑡

and 2
𝑛𝑑

hop, while the cheap multi-scale

model uses information up to the 2
𝑛𝑑

order proximity. We use the

same hyperparameters and optimizer settings discussed in Appen-

dix A. All models were trained on a 100-shot learning experiment

where we calculated the average node classification accuracy on

the test set based on 10 seeded train-test splits.

F RELATIVE RUNTIME EVALUATION
EXPERIMENTAL SETTINGS

We generate Watts-Strogatz graphs [52] with 10
12

nodes, 2
4
edges

per node and a rewiring probability of 0.5. In addition, we sample

𝐹 = 2
7
node and 𝐷 = 2

7
edge features using Gaussians and draw

labels for the nodes from 𝐶 = 4 classes uniformly. We calculate

the average epoch runtime for a spectral GCN [22], a generalized

linear PDN, a shallow PDN with {32} neurons, and a deep PDN

with {32, 16} neurons in the hidden layers.

G TIE STRENGTH EDGE FEATURES

Table 6: Tie strength scoring functions for edge (𝑢, 𝑣) ∈ 𝐸

used as edge features of the Pathfinder Discovery Networks.

Name Definition
Adamic-Adar

∑
𝑤∈𝑁 (𝑢)∩𝑁 (𝑣)

1

log |𝑁 (𝑤) |

Association Strength
|𝑁 (𝑢)∩𝑁 (𝑣) |
|𝑁 (𝑢) |·|𝑁 (𝑣) |

Common Neighbors |𝑁 (𝑢) ∩ 𝑁 (𝑣) |

Cosine
|𝑁 (𝑢)∩𝑁 (𝑣) |√
|𝑁 (𝑢) |·|𝑁 (𝑣) |

Degree Product |𝑁 (𝑢) | · |𝑁 (𝑣) |

Jaccard
|𝑁 (𝑢)∩𝑁 (𝑣) |
|𝑁 (𝑢)∪𝑁 (𝑣) |

Max Overlap
max(|𝑁 (𝑢) |,|𝑁 (𝑣) |)
|𝑁 (𝑢)∩𝑁 (𝑣) |

Min Overlap
min(|𝑁 (𝑢) |,|𝑁 (𝑣) |)
|𝑁 (𝑢)∩𝑁 (𝑣) |

N-Measure

√
2|𝑁 (𝑢)∩𝑁 (𝑣) |√
|𝑁 (𝑢) |2+|𝑁 (𝑣) |2

Pearson Correlation
|𝑉 |·|𝑁 (𝑢)∩𝑁 (𝑣) |−|𝑁 (𝑢) |·|𝑁 (𝑣) |√

|𝑉 |·|𝑁 (𝑢) |−|𝑁 (𝑢) |2 ·
√
|𝑉 |·|𝑁 (𝑣) |−|𝑁 (𝑣) |2

Resource Allocation

∑
𝑤∈𝑁 (𝑢)∩𝑁 (𝑣)

1

|𝑁 (𝑤) |

12

	Abstract
	1 Introduction
	2 Preliminaries
	3 Message passing on learned graphs
	3.1 Pathfinder Learning Layers
	3.2 Pathfinder Discovery Networks

	4 Advantages of PDNs
	4.1 Expressivity
	4.2 Resilience to skewed degree distributions
	4.3 Edge-weight calculation time complexity

	5 Variations on the basic model
	5.1 A model with learned similarities
	5.2 A model with cheap multi-scale mixing

	6 Experiments
	6.1 Synthetic node classification experiment
	6.2 Multiplex node classification performance
	6.3 Node classification performance
	6.4 Relative runtime
	6.5 Edge feature importance

	7 Conclusion
	References
	A Synthetic node classification experimental settings
	B Multiplex benchmark dataset descriptive statistics
	C Multiplex node classification experimental settings
	D Dataset descriptive statistics
	E Real world node classification experimental settings
	F Relative runtime evaluation experimental settings
	G Tie strength edge features

