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ABSTRACT

Link prediction based on knowledge graph embeddings (KGE)
aims to predict new triples to automatically construct knowledge
graphs (KGs). However, recent KGE models achieve performance
improvements by excessively increasing the embedding dimen-
sions, which may cause enormous training costs and require more
storage space. In this paper, instead of training high-dimensional
models, we propose MulDE, a novel knowledge distillation frame-
work, which includes multiple low-dimensional hyperbolic KGE
models as teachers and two student components, namely Junior
and Senior. Under a novel iterative distillation strategy, the Junior
component, a low-dimensional KGE model, asks teachers actively
based on its preliminary prediction results, and the Senior compo-
nent integrates teachers’ knowledge adaptively to train the Junior
component based on two mechanisms: relation-specific scaling and
contrast attention. The experimental results show that MulDE can
effectively improve the performance and training speed of low-
dimensional KGE models. The distilled 32-dimensional model is
competitive compared to the state-of-the-art high-dimensional
methods on several widely-used datasets.

CCS CONCEPTS

• Computing methodologies → Knowledge representation

and reasoning; • Information systems → Entity relationship

models.

KEYWORDS

Knowledge graph embeddings, link prediction, knowledge distilla-
tion, knowledge graph

∗Corresponding author

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW’21, April 19–23, 2021, Ljubljana, Slovenia

© 2021 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-8312-7/21/04.
https://doi.org/10.1145/3442381.3449898

ACM Reference Format:

Kai Wang, Yu Liu, Qian Ma, and Quan Z. Sheng. 2021. MulDE: Multi-
teacher Knowledge Distillation for Low-dimensional Knowledge Graph
Embeddings. In Proceedings of the Web Conference 2021 (WWW’21), April

19–23, 2021, Ljubljana, Slovenia. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3442381.3449898

1 INTRODUCTION

Knowledge graphs (KGs), which describe human knowledge as
factual triples in the form of (head entity, relation, tail entity),
have shown great potential in various domains [27, 35, 42].
Popular real-world KGs such as Yago [28] and DBPedia [4], which
typically contain an enormous quantity of entities, are still far from
complete [6, 12]. Due to the high manual costs of discovering new
triples [23], link prediction based on knowledge graph embeddings
(KGE) [8, 39] has drawn considerable attention very recently as
a means to overcome this problem. A typical KGE model first
represents entities and relations as trainable continuous vectors.
Then, given an entity and a relation of a triple (we call ‘e-r query’),
the model defines a scoring function to measure each candidate in
the entity set and outputs the best one [34].

To achieve higher prediction accuracy, recent KGE models
generally use high-dimensional embedding vectors up to 200 or
even 500 dimensions [29, 40]. However, when we have millions or
billions of entities in a KG, the high-dimensional model demands
enormous training costs and storage space [3, 25]. This pre-
vents downstream AI applications from updating KG embeddings
promptly or being able to be deployed on mobile devices. Recently,
several research efforts have drawn attention to this research issue
by either improving the low-dimensional models (such as 8 or
32 dimensions) [7], or compressing pre-trained high-dimensional
models [25]. However, the former cannot utilize the high-accuracy
knowledge from high-dimensional models, and the latter suffers
from high pre-training costs and cannot continue training when
the KG is modified.

Canwe transfer high-accuracy knowledge to a low-dimensional
model while avoiding to train high-dimensional models? Accord-
ing to a preliminary experiment, we find that the ensemble of
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different 64-dimensional hyperbolic KGE models can outperform
any single higher-dimensional models. To this end, we determine
to employ those low-dimensional hyperbolic models as multiple
teachers and integrate their knowledge to train a smaller KGE
model in a Knowledge Distillation (KD) process. Knowledge
Distillation [13], which has been rarely applied in the knowledge
graph domain, is a technology distilling ‘soft labels’ from a pre-
trained big model (teacher) to train a small one (student). In
our paper, soft labels come from the scores of candidate triples
measured by the KGE model. Compared with a single high-
dimensional teacher, we argue that there are at least three benefits
of utilizing multiple low-dimensional teachers:

• Reduce pre-training costs. The number of parameters for
multiple teachers is relatively lower than that of a high-
dimensional state-of-the-artmodel. Besides, the pre-training
speed of the former can be further improved by parallel
techniques.
• Guarantee teacher performance. The ensemble’s accuracy
exceeds some high-dimensional models, because prediction
errors of a single teacher can be corrected by integrating
multiple prediction results.
• Improve distilling effect. Based on recent knowledge distil-
lation studies [19], a student model is easier to acquire
knowledge from a teacher with a similar size. A teacher
in low dimensions is more suitable than the one having
hundreds of dimensions.

In this paper, we pre-train multiple low-dimensional hyperbolic
KGE models, and propose a novel framework utilizing Multi-
teacher knowledge Distillation for knowledge graph Embeddings,
named MulDE. Different from conventional KD technologies,
we design a novel iterative distillation strategy and two student
components (i.e., Junior and Senior) in MulDE. In one iteration, the
Junior component first predicts top-K candidates for each e-r query,
and transfers to multiple teachers. Then, the Senior component
integrates teacher results and generates soft labels with two
mechanisms: relation-specific scaling and contrast attention. Finally,
Junior receives soft labels and updates its parameters using a
knowledge distillation loss. As a result, instead of receiving
knowledge in one direction from teachers, the students can seek
knowledge actively from teachers and thereby distinguish false-
positive entities better.

We conduct extensive experiments on twowidely-used datasets,
FB15k-237 and WN18RR to validate our proposed model. The
results show that MulDE can significantly improve the prediction
accuracy and training speed of low-dimensional KGE models.
The distilled 32-dimensional model outperforms the state-of-the-
art low-dimensional models, and is comparable to some high-
dimensional ones. According to ablation experiments, we prove
the effectiveness of the iterative distillation strategy and the other
major modules in MulDE. We also compare different teacher
settings and conclude that using four different 64-dimensional
hyperbolic models is optimal.

The rest of the paper is organized as follows. We briefly
introduce the background and notations in our work in Section
2. Section 3 details the whole framework and basic components
of the MulDE model. Section 4 reports the experimental studies,

and Section 5 further discusses the experimental investigations.
We discuss the related work in Section 6 and, finally, offer some
concluding remarks in Section 7.

2 PRELIMINARIES

2.1 Definitions and Notations

Let � and ' denote the set of entities and relations, a knowledge
graph G is a collection of factual triples (4ℎ, A , 4C ), where 4ℎ, 4C ∈ �
and A ∈ '. #4 and #A refer to the number of entities and relations,
respectively. Given an e-r query @ = (48=, A ), where 48= ∈ �

and A ∈ ', the link prediction task is to find 4<8BB ∈ �, such
that (48=, A , 4<8BB ) or (4<8BB , A , 48=) should belong to the knowledge
graph G. According to the Cartesian product, the number of all
possible e-r queries is equal to #4 × #A .

Knowledge Graph Embeddings aim to represent each entity 4 ∈
� and each relation A ∈ ' as 3-dimensional continuous vectors. A
KGE modelM defines a scoring function � : � × ' × � → R to
score each triple through embedding vectors. Given an e-r query
@,M outputs a prediction sequence containing sorted scores of all
candidate triples, denoted as {(2, B) |2 ∈ �, B ∈ R}. In the sequence,
candidates with higher scores are more likely to be true.

For each candidate triple (48=, A , 42 ),M learns the relation vector
r as a transformation between two entity vectors ein and ec . From
a probabilistic model point of view, regarding the e-r query vector
q as a transformed entity vector, the plausibility of the triple can
be expressed as a joint probability ? (@, 42 ):

? (@, 42 ) =
4� (q,ec )

∑#4×#A

8=1

∑#4

9=1 4
� (qi,ej )

(1)

where e ∈ R3 is the embedding vector of an entity 4 , the query
vector q = ein ◦ r , ◦ refers to any vector transformation, and
� (q, e) refers to the distance between two entity vectors in the
scoring function � .

2.2 Preliminary Analysis of Low-Dimensional
Embeddings

In a KGE model, the parameters of embedding vectors usually
account for most of the total parameters. Given a large-scale
KG, reducing the embedding dimensions can significantly save
storage space. However, small embedding dimensions lead to
low representation capability, limiting the prediction accuracy of
the KGE model. The information quantity of a low-dimensional
embedding vector space is not infinite, and cannot accommodate
the information of numerous triples when facing millions of
entities.

To the best of our knowledge, there is no theoretical analysis
of the minimum embedding dimensions required by a knowledge
graph. From the view of the information entropy, a KG G has a
certain degree of uncertainty. An e-r query points to one or more
target entities. Meanwhile, given a large-scale entity set, there will
be hidden triples that are not discovered inevitably. On this basis,
when using a KGE model M to encode G, we can train M to
minimize its information entropy, thereby ensureM is sufficient
to keep the information of the KG.
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Figure 1: The changes ofmodel performance (Hits@10)with

the growth of the embedding dimensions on two different

datasets. The Ensemblemodel adds the prediction results of

the four models directly.

According to the above analysis, we argue that there is a
sufficient condition to ensureM’s entropy �M is smaller than the
entropy of KG�G . However, the information entropy of both sides
is hard to measure. Different knowledge graphs contain various
entity types and topological structure, while a KGE model has
its specific scoring function and randomly initialized parameters.
These factors hinder measuring the minimum dimension of a
knowledge graph by theoretical derivation. To this end, we
conduct a preliminary experiment to analyze the possible value
of the minimum dimension on two specific KG datasets, WN18RR
[5] and FB15k237 [31]. Focusing on the low-dimensional KGE
task, we employ four different hyperbolic KGE models [7] and
compare their performance with different embedding dimensions.
The experimental results are shown in Fig. 1.

There are two inspirations we find from this experiment: (1)
On the two datasets, the prediction accuracy of all four models
keeps increasing with the growth of embedding dimensions until
around 64. When the embedding dimensions are more than 64, the
model performance only slightly improves or starts to fluctuate.
This indicates that 64-dimensional models can already achieve
high performance while using much smaller parameters than
those high-dimensional ones. (2) When integrating the scores of
all hyperbolic models, the 64-dimensional ensemble is already

better than any higher-dimensional models. Therefore, instead of
training a high-dimensional model and compressing, we can utilize
the low-dimensional ensemble as a lightweight source of high-
accuracy knowledge.

Overall, this preliminary analysis indicates that a 64-dimensional
space has an excellent capability to represent a normal-size KG
dataset, which provides a guidance for the selection of teacher
dimensions in our framework. Furthermore, inspired by the en-
semble’s results, we focus on utilizing multiple low-dimensional
models as teachers to reduce training costs while ensuring predic-
tion accuracy.

3 METHODOLOGY

The proposedMulti-teacherDistillation Embedding (MulDE) frame-
work utilizes multiple pre-trained low-dimensional models as
teachers. Under a novel iterative distillation strategy, it integrates
prediction sequences from different teachers, and supervises the
training process of a low-dimensional student model. Figure 2
illustrates the architecture of the MulDE framework, including
multiple teachers and two student components (Junior and Senior):

• Multiple teachers are regarded as the data source of
prediction sequences, and have no parameter updates in the
training process. We employ four different hyperbolic KGE
models as teachers. The details about pre-trained teachers
will be described in Section 3.1.
• The Junior component is the target low-dimensional KGE
model. Given an e-r pair, the Junior component sends its top-
K predicted entities to teachers, and gets the corresponding
soft labels from the Senior component. We will detail the
Junior component in Section 3.2.
• The Senior component acquires prediction sequences
from teachers, and then generates soft labels through
two mechanisms: relation-specific mechanism and contrast

attention mechanism. The details of the Senior component
will be discussed in Section 3.3.

As shown in Fig. 2, unlike traditional one-way guidance, the
iterative distilling strategy in MulDE forms a novel circular

interaction between students and teachers. In each iteration, the
Junior component makes a preliminary prediction based on an
e-r query, and selects those indistinguishable entities (top-K) to
ask multiple teachers. In this way, Junior can effectively correct
its prediction results and outperform the other models in the
same dimension level. Meanwhile, rather than processing the
fixed teacher scores, the Senior component can adjust parameters
continually according to the Junior’s feedback, and generate soft
labels according to training epochs and the Junior’s performance
adaptively. The learning procedure of MulDE will be detailed in
Section 3.4.

3.1 Pre-trained Teacher Models

To ensure the performance of the low-dimensional teachers, we
employ a group of hyperbolic KGE models proposed by Chami et
al. [7], including TransH, RefH, and RotH.

Taking the RotH model as an example, it uses a 3−dimensional
Poincaré ball model with trainable negative curvature. Embedding
vectors are first mapped into this hyperbolic space, and a relation
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Figure 2: An illustration of theMulDE framework. ‘BCE loss’

refers to the binary cross-entropy loss, and ‘KD loss’ refers

to the loss function of knowledge distillation.

vector is regarded as a rotation transformation of entity vectors.
Then, RotH employs a hyperbolic distance function to measure
the difference of transformed head vector and candidate tail vector.
Similarly, TransH uses Möbius addition to imitate TransE [6] in
hyperbolic space, and RefH replaces the rotation transformation
with a reflection one.

Considering the effectiveness of aforementioned models using
inner product transformation, such as DistMult [37] and ComplEx
[32], we add another hyperbolic model named DistH into this
group to get more accurate prediction sequences. The scoring
functions of these models are as follows:

)A0=B� : � (4ℎ, A , 4C ) = �ℎ~? (eh ⊕ r , et ) (2)

�8BC� : � (4ℎ, A , 4C ) = �ℎ~? (eh ◦ r , et ) (3)

'>C� : � (4ℎ, A , 4C ) = �ℎ~? ('>C (r)eh , et ) (4)

'4 5 � : � (4ℎ, A , 4C ) = �ℎ~? ('4 5 (r)eh, et ) (5)

�ℎ~? (x,~) =
2
√
2
0A2C0=ℎ(

√
2‖ − x ⊕ ~‖) (6)

where �ℎ~? is the hyperbolic distance, ⊕ is Möbius addition
operation, ◦ is inner product operation and 2 is the space curvature.

We select pre-trained low-dimensional models from this group
as teachers ") = {")1, ") 1, . . . , ")<}, where < is the number
of teachers. Furthermore, to verify the performance of hyperbolic
space in multi-teacher knowledge distillation, we prepare a cor-
responding Euclidean model ‘ModelE’ for each hyperbolic model
‘ModelH’.

3.2 Junior Component

Our MulDE is a general framework, in which the Junior com-
ponent can be any existing KGE model. In this paper, we focus
on the low-dimensional situation, thus selecting several effective
low-dimensional models as Junior, whose initialization follows
their original settings, e.g., a random normal distribution. After
the knowledge distillation training, Junior can make the link pre-
diction faster than high-dimensional models and achieve similar
precision.

Conventional knowledge distillation methods are mostly used
for the classification problem. However, the link prediction task
is a learning to rank problem, which is usually learned by
distinguishing the target entity with randomly negative samples.
A straightforward solution is to learn the teachers’ score distribu-
tions of the positive and negative samples. We argue that it has
at least two drawbacks. First, this teaching task is too easy for
multiple teachers. Every teacher will output a result close to the
hard label without a noticeable difference. Second, the negative
sampling can rarely hit those indistinguishable entities, making
critical knowledge owned by teachers hard to pass on to the
student model. Therefore, we design a novel distilling strategy for
KGE models, including two parts of supervision.

Soft Label Loss.Given an e-r query, Junior evaluates all candidate
entities in the entity set. Then, it selects the top-K candidates
�C>? = {21, 22, . . . , 2 |28 ∈ �} with higher scores (C>? =

{� � (4, A , 28) |28 ∈ �C>? }. At the beginning of an iteration, this
prediction sequence {�C>? , (C>? } is sent to every teacher model,
and the Senior component returns soft labels !C>? after integrating
different teacher outputs. We define the soft label supervision as a
Kullback-Leibler (KL) divergence, the loss function is

L(>5 C =
1

#

∑
f ′ (!C>? ) · ;>6(f ′(!C>? )/f ′ ((C>? )) (7)

where f ′ is the Softmax function, and # is the number of e-r
queries.

Hard Label Loss. Meanwhile, a hard label supervision based on
conventional negative sampling is employed:

L�0A3 = − 1

#

∑
(!=46 · ;>6(f ((=46)) (8)

+ (1 − !=46) · ;>6(1 − f ((=46)))
where L�0A3 is a binary cross-entropy loss, f is the Sigmoid
function, (=46 contains scores of positive target and sampling
negative ones, and !=46 is a one-hot label vector.

Finally, Junior loss can be formulated by weighted sum ofL(>5 C
and L�0A3 with a hyper-parameter W to balance the two parts:

L� = WL(>5 C + (1 − W)L�0A3 (9)

We argue that both supervisions are necessary. The hard
label supervision gives the Junior model opportunity of learning
independently, and randomly negative sampling helps handle
more general queries. Meanwhile, the novel soft label supervision
corrects the top-K prediction of the Junior model, encouraging it
to imitate the answer of teachers for these challenging questions.
In the experiments, we evaluate four different low-dimensional
Juniormodelsmentioned in Section 3.2. It is worthmentioning that
as a generic framework, MulDE can also be applied to the previous
KGE models, such as DistMult [37] and RotatE [29].

3.3 Senior Component

As the bridge betweenmultiple teachers and the Junior component,
the Senior component aims to integrate different score sequences
from teachers and generate soft labels !C>? suitable for the Junior
component. There are two parts of input sending from teachers to
the Senior component, the top-K Junior scores (C>? and multiple
score sequences {()1, ()1, . . . , ()<} (< is the number of teachers)
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from the teacher models. All of the above sequences have length
 corresponding to  candidate entities in �C>? . In the Senior
component, we utilize twomechanisms for knowledge integration:

Relation-specific Scaling Mechanism. According to previous
research [1], different KGE models show performance advantages
in different relations. To improve the integrated soft labels, every
teacher model should contribute to the relations that the model is
good at. To this end, we define a trainable scaling matrix,'4; ∈
R#A×< , and assign an adaptive scaling value (ranges from 0 to
1) for each teacher sequence. The 8-th scaled sequence ( ′

)8
is

computed as:

( ′)8 = ()8 × f (,'4; [A
′, 8]) (10)

where A ′ refers to the index of the relation A in an e-r query. Note
that all scores in a sequence are adjusted in proportion, while
their relative ranks have no changes. Attempts have been made
to adjust each triple score individually, but the Senior loss is hard
to converge and fluctuates sharply.

Contrast Attention Mechanism. As Junior is randomly initial-
ized, a preliminary division of the whole entity set is needed in
the early model training. At this time, the distribution of its scores
would be significantly different from that of the trained teacher. A
disparate soft label would block the training process. Therefore,
at the early period of model training, Senior is encouraged to
generate soft labels having a similar distribution with Junior’s
scores.

Specifically, we contrast the Junior sequence with each teacher
sequence and evaluate their similarity. An attention mechanism
is designed to make the integrated sequence more similar to the
Junior sequence. The calculation process of soft labels !C>? is as
follows:

?8 =
1

 

∑
f ′(()8) · ;>6(f ′ (()8 )/f ′ ((C>? )) (11)

!C>? =

∑

8

(( ′)8 × f
′ (−?8/g) ×<) (12)

where ?8 is the KL divergence, a higher ?8 means more difference
between ()8 and (C>? . To ensure that the contrast attention only
works at the early tens of training epochs, we set a temperature
parameter g = 4G? (⌊=/5⌋). With the increase of the training
epochs =, g increases exponentially and ?8 of different teachers
tend to be equal. So that, after the first few epochs, the soft labels
!C>? are only adjusted by relation-specific scaling mechanism to
achieve higher performance.

In order to train the parameters in,'4; , a binary cross-entropy
loss is utilized to evaluate the performance of scaled scores ( ′

)8
in

the Senior component as follows:

L( = − 1

#

∑
(!B4@ · ;>6(f (

∑

8

( ′)8)) (13)

+ (1 − !B4@) · ;>6(1 − f (
∑

8

( ′)8 )))

where !B4@ is a one-hot vector in which the position of the target
entity of the e-r query is 1 and the rest is 0. Besides, if the target
entity is not in the candidate set, !B4@ is the zero vector.

3.4 Learning Algorithm

There are three roles in the proposed MulDE framework, namely
Teacher (pre-trained hyperbolic models), Senior Student (integra-
tion mechanisms), and Junior Student (the target low-dimensional
model). As the teacher models have no parameter fine-tuning, we
use a combined loss function to train the two student components
and minimize the loss by exploiting the Adam optimizer [14]. The
complete loss function L5 8=0; is as follows:

L5 8=0; = L( + L� + _‖Θ‖22 (14)

where _‖Θ‖2
2
is the parameter regularization term.

Algorithm 1 The Learning Procedure of MulDE

Require: & : the training KG triples;
�:the total entity set of KG;

Ensure: Θ� :the parameters of Junior;
Θ( :the parameters of Senior;

// Pre-training Phase
1: for i = 1, 2, · · · ,< do

2: Train the 8Cℎ teacher model")8 with& ;
3: end for

// Training Phase
4: Initialize parameters (Θ� ,Θ( );
5: for each training epoch do

6: for each (48=, A , 4<8BB ) ∈ & do

7: Yr ← JuniorScoreFunction(48=, A , �,Θ� );
8: {�C>? , (C>? } ← GatherTopKCandidates(Yr , �);
9: {!=46, (=46} ← RandomNegSamples(Yr , �);
10: for i = 1, 2, · · · ,< do

11: ()8 ← TeacherScoreFunction(")8 , 48=, A ,�C>? );
12: end for

13: {( ′
)8
} ←RelationScaling({()8 },Θ( );

14: !C>? ←ConstrastAttention((C>? , {( ′)8 });
15: end for

16: Compute the Senior loss with !C>? ;
17: Compute the Junior loss with (C>? and (=46;
18: Update parameters (Θ� ,Θ( ) by gradient descent;
19: end for

The learning algorithm of MulDE is presented in Algorithm
1. We emphasize the preciseness of this learning procedure. It
should be noted that in the pre-training and training phases, both
teachers and the Junior component cannot access the triples in the
validation and test sets, including the negative sampling process.

Computing Efficiency.We carefully consider the computing effi-
ciency of MulDE in low-dimensional condition. As the parameters
in teacher models are fixed and Junior is any KGE model, the
only additional burden is the Senior component. Senior’s space
complexity can be ignored, as the scaling mechanism only uses
#A × < parameters and the contrast attention mechanism is
parameter-free. For time complexity, Senior only deals with score
sequences instead of d-dimensional vectors, thus its calculation
amount is less than 1/d of the time needed by Junior. Inevitably,
the training cost of iterative distillation strategy in one epoch is
more than a single KGE model, due to the calculations of teachers
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and the selection of topK candidates. However, we find that the
convergence speed of MulDE is relatively faster, which would
obviously reduce the total training times. Therefore, it is of high-
efficiency to utilize MulDE to enhance existing low-dimensional
KGE models.

Table 1: Statistics of the datasets.

Dataset #A #4 #Train #Valid #Test

FB15k237 237 14, 541 272, 115 17, 535 20, 466

WN18RR 11 40, 943 86, 845 3, 034 3, 134

4 EXPERIMENTS

4.1 Experimental Setup

Datasets. Our experimental studies are conducted on two com-
monly used datasets. WN18RR [5] is a subset of the English
lexical database WordNet [18]. FB15k237 [31] is extracted from
Freebase including knowledge facts about movies, actors, awards,
and sports. It is created by removing inverse relations, because
many test triples can be obtained simply by inverting triples in
the training set. The statistics of the datasets are given in Table
1. ‘Train’, ‘Valid’, and ‘Test’ refer to the amount of triples in the
training, validation, and test sets.

Baselines. We implement MulDE by employing four hyperbolic
KGE models as student or teacher models, including TransH,
DistH, RefH, and RotH. Although AttH [7] achieves better perfor-
mance in one or two metrics, it is a combination of RefH and RotH.
To verify the influence of the hyperbolic space, we also pre-train
a corresponding Euclidean model ‘ModelE’ for each hyperbolic
model ‘ModelH’.

The compared KGE models are in two classes: (1) High di-
mensional models, including the state-of-the-art KGE methods in
Euclidean space or Hyperbolic space. All of them adopt embedding
vectors in more than 200 dimensions. (2) Low-dimensional models,
including RotH, RefH and AttH proposed by Chami et al. in [7].
Benefiting from hyperbolic vector space, they have shown obvious
advantages in the low-dimensional condition.

ImplementationDetails.All experiments are performed on Intel
Core i7-7700K CPU @ 4.20GHz and NVIDIA GeForce GTX1080
Ti GPU, and are implemented in Python using the PyTorch deep
learning framework [22].

We select the hyper-parameters of our model via grid search
according to the metrics on the validation set. For the teacher mod-
els, we pre-train different teachers with the embedding dimensions
among {64, 128, 256, 512}. According to the preliminary analysis,
we set the embedding dimensions as 64 in the main experiments.
We select the learning rate among {0.0005, 0.001, 0.005}, and the
number of negative samples among {8, 50, 255}.

For the MulDE framework, we empirically select the Junior’s
embedding dimensions among {8, 16, 32, 64}, the length  of
prediction sequences among {100, 300, 500}, the learning rate
among {0.0005, 0.001, 0.005}, and the balance hyper-parameter W
among {0.01, 0.1, 0.5}.

Evaluation Metrics. For the link prediction experiments, we
adopt two evaluation metrics: (1) MRR (Mean Reciprocal Rank),
the average inverse rank of the test triples, and (2) Hits@N, the
proportion of correct entities ranked in top N. Higher MRR and
Hits@N mean better performance. Following the previous works,
we process the output sequence in the Filter mode. It is worth
mentioning that, for pre-trained models, we only remove those
entities appearing in the training dataset.

4.2 Link Prediction Task

We first evaluate our model in the 32-dimensional vector space,
which is the same as the low-dimensional setting of Chami et al.
[7]. MulDE-modelH represents the model whose Junior model is
a 32-dimensional hyperbolic model, and its four teachers, TransH,
DistH, RotH and RefH, are pre-trained in the 64-dimensional space.
We compare distilled Junior models with its original results, as
well as with the state-of-the-art models in both low and high
dimensions. The experimental results are shown in Table 2.

From the table, we can have the following observations. The
four different Junior models trained by MulDE significantly out-
perform their original performance on the both datasets. TheMRR
and Hits@10 of all four models have an average 5% increase.
Especially, the Hits@10 of RotH improves from 0.547 to 0.574 on
WN18RR, and the Hits@1 of DistH improves from 0.202 to 0.235
on FB15k-237. The results illustrate the effectiveness of knowledge
distillation for low-dimensional embedding.

Comparedwith previous low-dimensional models,MulDE-RotH
achieves the state-of-the-art results in all metrics on the two
datasets. Although the AttH model combines both RotH and RefH,
it is weaker than our next-best model MulDE-RefH in 5 metrics.
Besides, the TransH model only utilizes a simple scoring function,
but exceeds all previous low-dimensional models on the FB15k-237
dataset after the knowledge distillation training.

Compared with the high-dimensional models, the 32d MulDE-
RotH exceeds multiple 200-dimensional models, including TransE,
DistMult, ComplEx, and ConvE. Although its performance is lower
than some of the latest RotatE, TuckER and QuatE models, MulDE-
RotH has shown strong competitiveness in some metrics with
much less parameters. Significantly, the Hits@10 of MulDE-RotH
on WN18RR outperforms most state-of-the-art models, and its
MRR and Hits@1 metrics are very close to those of the high-
dimensional RotH model on the two datasets.

Overall, we can conclude that the MulDE framework can
successfully improve the low-dimensional hyperbolic models. The
performance of those distilled models is even comparable to some
high-dimensional models.

4.3 Comparison with Different Dimensions

We further evaluate our MulDE framework with different di-
mensions. For the student embedding dimensions, we still focus
on low-dimensional models with dimensions lower than 100,
and compare distilled models with the original ones. For the
teacher embedding dimensions, we select multiple dimension
sizes over 64, including 128, 256, and 512. Then, we measure
the performance gap between the 32-dimensional student and
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Table 2: Link prediction results on the two datasets. The best score of high-dimensional models underlined and the best score

of 32-dimensional models in Bold. The symbol ‘∗’ means this score outperforms that of all previous low-dimensional models.

Type Dim Methods
FB15K237 WN18RR

MRR Hits@10 Hits@1 MRR Hits@10 Hits@1

High-dimensional Models 200d-500d

TransE 0.256 0.456 0.152 0.207 0.476 0.012
DistMult 0.286 0.445 0.202 0.412 0.484 0.372
ComplEx 0.283 0.447 0.202 0.431 0.513 0.395
ConvE 0.316 0.501 0.237 0.430 0.520 0.400
RotatE 0.338 0.533 0.241 0.476 0.571 0.428
TuckER 0.358 0.544 0.266 0.470 0.526 0.443
QuatE 0.348 0.550 0.248 0.488 0.582 0.438
RefH 0.346 0.536 0.252 0.461 0.568 0.404
RotH 0.344 0.535 0.246 0.496 0.586 0.449
AttH 0.348 0.540 0.252 0.486 0.573 0.443

Low-dimensional Models 32d

RotatE 0.290 0.458 0.208 0.387 0.491 0.330
TuckER 0.306 0.475 0.223 0.428 0.474 0.401
RefH 0.312 0.489 0.224 0.447 0.518 0.408
RotH 0.314 0.497 0.223 0.472 0.553 0.428
AttH 0.324 0.501 0.236 0.466 0.551 0.419

Our MulDE Models 32d

TransH 0.308 0.488 0.217 0.231 0.518 0.081
MulDE-TransH 0.328∗ 0.511∗ 0.236∗ 0.267 0.540 0.094

DistH 0.293 0.474 0.202 0.439 0.511 0.399
MulDE-DistH 0.326∗ 0.509∗ 0.235 0.460 0.545 0.417

RefH 0.302 0.474 0.215 0.453 0.526 0.414
MulDE-RefH 0.325∗ 0.508∗ 0.233 0.479∗ 0.569∗ 0.434∗

RotH 0.310 0.489 0.221 0.463 0.547 0.416
MulDE-RotH 0.328∗ 0.515∗ 0.237∗ 0.481∗ 0.574∗ 0.433∗

different high-dimensional teachers. The experimental results are
shown in Table 3.

The performance of different low-dimensional student models
are shown in Table 3 (a). The results show that the accuracy
of the original models reduces when the embedding dimensions
decrease. Although the distilled Junior models outperform their
original models, the 8d and 16d models achieve relatively poor
results. In contrast, from the ‘growth’ metrics, MulDE contributes
more improvements for lower-dimensional models. The MRR and
Hits@1 of 8d RotH increase more than 90% and 150%, which is
much more significant than that of 64d RotH. Furthermore, the
performance of the 64d distilled model is very close to the 32-
dimensional ones. As a result, to save storage space in applications,
32d models can be used.

The results in Table 3 (b) support our preliminary analysis to
some extent. At first, the performance of the teacher ensemble
is similar when its dimension exceeds 64. The Hits@10 of 256d
teachers is even worse than that of 64d. It proves that when
encoding the same KG, the capacity of the model tends to be
stable when the embedding dimensions exceed the lower bound
(e.g., near 64 for WN18RR). Besides, with the increase of teacher
dimensions, MRR and Hits@1 of the Junior model decrease,
indicating that the teacher with over-high dimensions would be
harder to transfer knowledge to a low-dimensional student. The
experimental results motivate us to apply 64-dimensional teacher
models, which achieve higher performance and save more pre-
training costs.

4.4 Ablation Studies about Distillation Strategy

We further make a series of ablation experiments to evaluate
different modules in MulDE. There are three main improvements:
an iterative distilling strategy (TopK), a relation-specific scaling
mechanism (RS), and a contrast attention mechanism (CA). There-
fore, we test the performance of MulDE with respect to the three
modules. Besides that, we also compareMulDEwith single-teacher
distillation in which the teacher is the same KGE model as the
student with 64 or 512 dimensions. Tomake it harder still, we apply
the iterative distilling strategy in these single-teacher models
instead of random candidate labels. The experimental results are
shown in Table 4.

At first, for the iterative distilling strategy, it is clear that the
performance ofMulDE dramatically decreases when removing this
module. Especially, the Hits@10 on WN18RR reduces from 0.574
to 0.544 (-5.3%). This proves the necessity of using top-K labels
when applying knowledge distillation in link prediction tasks. In
contrast, although two mechanisms are helpful, the contributions
of RS and CA are relatively small. Further improvement of the
Senior component will be one of our future work.

Although single RS or CA has limited performance improve-
ment, the existence of Senior is necessary for the interactive
distillation strategy. As the results show that, when eliminating
the Senior component, the Hits@10 on two datasets decreases to
0.501 and 0.532 respectively. We argue that it benefits from Senior
integrating teacher scores adaptively. As both RS and CA provide a
weighted operation to different teachers, eliminating Senior would
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Table 3: The improvements of MulDE-RotH on WN18RR

with different teacher and student dimensions. Bold in-

dicates better RotH results with same dimension, while

Growth is the increase rate between the two models in the

same region.

Methods Dim MRR Hits@10 Hits@1

Teachers 64d 0.487 0.581 0.440
Origin 8d 0.210 0.352 0.140
Junior 8d 0.399 0.483 0.350

Growth 90.05% 37.41% 150.32%
Origin 16d 0.412 0.501 0.358
Junior 16d 0.464 0.547 0.419

Growth 12.60% 9.07% 17.22%
Origin 32d 0.463 0.547 0.416
Junior 32d 0.481 0.574 0.433

Growth 3.91% 4.91% 4.14%
Origin 64d 0.477 0.564 0.429
Junior 64d 0.482 0.579 0.430

Growth 1.05% 2.77% 0.21%

(a) Various Student Dimensions

Methods Dim MRR Hits@10 Hits@1

Origin 32d 0.463 0.547 0.416
Teachers 64d 0.487 0.581 0.440
Junior 32d 0.481 0.574 0.433

Growth -1.23% -1.20% -1.59%
Teachers 128d 0.488 0.582 0.437
Junior 32d 0.480 0.572 0.430
Growth -1.64% -1.71% -1.60%
Teachers 256d 0.483 0.578 0.434
Junior 32d 0.473 0.569 0.424
Growth -2.07% -1.60% -2.30%
Teachers 512d 0.479 0.584 0.423
Junior 32d 0.469 0.574 0.412
Growth -2.09% -1.71% -2.60%

(b) Various Teacher Dimensions

make teacher scores and soft labels fixed in the training process.
Only Junior can reduce the KL divergence in KD loss, and get stuck
in a locally optimal solution easier. Oppositely, Senior can provide
variable soft labels and adjust KL divergence in another direction.

The single-teacher knowledge distillation can improve the
original RotH model, but its performance is worse than MulDE.
The iterative distilling strategy also positively affects the single-
teacher framework, which increases Hits@10 on WN18RR by
around 2%. A higher-dimensional teacher component (512d) can
enhance the performance, but its training cost is unavoidable
higher than MulDE.

Overall, the experimental results indicate the effectiveness of
the three major modules in MulDE. Compared with the single-
teacher strategy, our framework shows apparent improvements.

Figure 3: The Hits@1 of 32-dimensional RotH as training

proceeds on WN18RR. RotH is the original training mode,

KD is the single-teacher knowledge distillation process,

MulDE andMulDE-CA are our models with and without the

contrast attention mechanism.

5 DISCUSSIONS

In this section, we particularly discuss several arresting questions
around MulDE.

Q1: To what extent distillation strategies accelerate student

training speed?

Fig. 3 shows the convergence of 32-dimensional RotH with
different training processes. As expected, the student model trains
faster under the supervision of a teacher. We can observe that
MulDE converges faster than original RotH, and achieves higher
accuracy. In contrast, the single-teacher KD model is much slower
and continuously increases before 100 epochs. We also analyze the
convergence of MulDE without the contrast attention mechanism,
i.e., MulDE-CA. Benefiting from contrast attention, the Hits@1 of
MulDE in the early period (epoch=10) is around 3% higher than
MulDE-CA,while it also leads to a higher final accuracy from 0.422
to 0.433. This indicates that the contrast attention can reduce the
gap between student scores and teacher scores in the early period.

Q2: Whether the hyperbolic space contributes to the result?

We evaluate the MulDE framework by employing hyperbolic
KGE models based on their performance in low dimensions. To
answer the question, we analyze the contributions of hyperbolic
models when they are teachers or students, and also verify the
effectiveness of MulDE in Euclidean space. The results are shown
in Fig. 4 (a). Here ‘teaH’ and ‘stuH’ represent using hyperbolic
models, while ‘teaE’ and ‘stuE’ indicate using corresponding
Euclidean models. The teaH_stuH model is equal to MulDE-RotH,
and the other variants assign different space types to teachers and
students. Among the four models, teaE_stuE is weaker than the
other three, which indicates the advantage of hyperbolic space.
Even so, the 0.466 Hits@1 is still equal to that of the previous AttH.
Considering the middle two models, we can conjecture that using
hyperbolic space in the teacher components is more effective than
using a hyperbolic student model.
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Table 4: The results of ablation experiments onWN18RR and FB15k237. The studentmodel of all variants is RotH. TopK refers

to the iterative distilling strategy replacing random candidates as TopK candidates, while RS and CA refer to twomechanisms

in the Senior component. KD512d andKD64d are two single-teachermodelswith only 512d and 64d RotHmodel as the teacher,

respectively.

Methods
FB15K237 WN18RR

MRR Hits@10 Hits@1 MRR Hits@10 Hits@1

MulDE 0.328 0.515 0.237 0.481 0.574 0.433

MulDE w/o TopK 0.321 0.502 0.231 0.456 0.544 0.418
MulDE w/o RS 0.325 0.511 0.234 0.476 0.570 0.430
MulDE w/o CA 0.322 0.509 0.233 0.481 0.571 0.422

MulDE w/o Senior 0.323 0.501 0.232 0.459 0.532 0.419
KD512d w/ TopK 0.322 0.502 0.232 0.469 0.564 0.421
KD64d w/ TopK 0.324 0.506 0.229 0.467 0.553 0.425

KD64d 0.321 0.498 0.230 0.452 0.540 0.414

Q3: How about the contribution of different teacher choices

on results?

The complete MulDE framework utilizes all four hyperbolic
models as teachers, because the whole ensemble can obtain better
accuracy than the other combinations. We further analyze the
contribution of every single teacher model in the ensemble. As
shown in Fig. 4 (b), the performance of MulDE outperforms
the other four teacher combinations. In terms of combining two
teachers, only using TransH and DistH is obviously poorer than
using RotH and RefH, which indicates the importance of the latter
models. Comparing two models using three teachers, we find that
RotH contributes more than RefH. It is reasonable because the
accuracy of the original RotH is already higher than RefH. We
also trial other combinations of the four models (e.g., T+R1, D+R1,
T+R2, D+R2), and the experimental results prove the contribution
of every teacher model in MulDE. One of our future work will be
discovering a better teacher combination by adding other different
models.

Q4: Which parts of prediction results obtain improvement

after enhancing by MulDE?

The failed prediction of KGE models may be caused by various
reasons, e.g., KG in-completion, similar entities, and data sparse-
ness. As MulDE can effectively improve Junior’s accuracy, we
deeply explore those improved prediction samples in evaluating
phase. Tabel 5 shows two groups of prediction results about two
triples on the FB15k237 test set.

In the first example, when predicting the genre of this science-
fiction show, the original RotH model fails to rank the target
‘Crime Fiction’ in the top five candidates, while both the teacher
ensemble and our MulDE-RotH rank the target at second. It
indicates that MulDE-RotH outperforms RotH, benefiting from
the supervision of teachers. Although MulDE-RotH still predicts
a wrong tail entity, ‘Fantasy’ is reasonable in the human view. A
similar situation is shown in the second example, in which MulDE-
RotH successfully finds the correct answer ‘Telecommunications’
after training by MulDE. It should be noted that MulDE-RotH does
not directly reproduce teachers, as its results are different from
teachers’.

Figure 4: Performance of 32-dimensional student with

different variants. (a) The MRR on WN18RR with different

settings of vector space. (b) The Hits@10 on FB15k237 with

different teacher combinations. We use T, D, R1, R2 refers to

TransH, DistH, RotH and RefH.

In case studies on the FB15237 test set, the teacher ensemble
correctly predicts 1,907 more samples than 32-dimensional orig-
inal RotH, while the number of improved samples for the 32-
dimensional MulDE-RotH is 1,808 and 75.6% of samples are same
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Table 5: The prediction results of different models about two triples. The correct candidate is in bold.

Query Methods Top 5 Candidates

(The X-Files,
/tv/tv_program/genre)

RotH Psychological Thriller, Fantasy, Adventure Film, Comedy Drama, Period Piece
MulDE-RotH Fantasy, Crime Fiction, Horror, Adventure Film, Comedy Drama
Teachers Fantasy, Crime Fiction, Psychological Thriller, Horror, Adventure Film

(Comcast,
/business/business
_operation/industry)

RotH Software, Computer hardware, Retail, Manufacturing, Telecommunications

MulDE-RotH Telecommunications, Retail, Software, Video Game, Computer Hardware
Teachers Telecommunications, Software, Computer Hardware, Manufacturing, Retail

with teachers’. The results indicate that a staggering proportion
of improved samples of MulDE-RotH are benefited from the
supervision of teachers.

6 RELATED WORK

In this section, we discuss recent research advance in the KGE
domain, and introduce relevant Knowledge Distillation research.

6.1 Knowledge Graph Embeddings

Predicting new triples using KGE methods has been an active
research topic over the past few years [24]. Benefiting from the
simple calculation and good performance, some early methods
such as TransE [6], DistMult [37], ComplEx [32] have been widely
used in various AI tasks. With the rise of deep learning, several
CNN-based methods have been proposed, such as ConvE [10] and
ConvKB [20]. These methods achieve good performance in link
prediction tasks, but heavily depend on more parameters [26, 33].
Recently, there are several non-neural methods proposed. RotatE
[29], inspired byEuler’s identity, can infer various relation patterns
with a new rotation-based scoring function. Balazevic et al. [2]
propose a linear model based on Tucker decomposition of the
binary tensor representation of knowledge graph triples. QuatE
[40] and OTE [30] further improve the RotatE method. The former
introduces more expressive hypercomplex-valued representations
in the quaternion space, while the latter (i.e., OTE) extends the
RotatE method from a 2-D complex domain to a high dimensional
space with orthogonal transforms to model relations.

Since a single KGE model faces a contradiction between com-
plexity and performance, a straightforward solution is to take an
ensemble of multiple KGE methods to predict the same target.
Krompass et al. [15] designed a simple ensemble consisting of
multiple KGE methods, in which the final prediction results rely
on an average score of all sub-modules. Wang et al. [36] proposed
a relation-level ensemble that combines multiple individual models
to pick the best model for each relation.

6.2 KGE Model Compression

Research related to the KGE model compression is relatively
recent and new, featuring two representative approaches. One
possible solution is to compress pre-trained high-dimensional
models. Sachan [25] utilized Embedding Compression methods to
convert high-dimensional continuous vectors into discrete codes.
Although generating a compressed model retaining high-accuracy
knowledge, a pre-trained high-dimensional model is necessary.
Furthermore, the compressed model with discrete vectors cannot
continue the training task when the KG is modified. Another

solution introduces new theories to improve low-dimensional
KGE models directly. For example, Chami et al. [7] introduced
the hyperbolic embedding space with trainable curvature, and
proposed a class of hyperbolic KGE models, which outperforms
previous Euclidean-based methods in low-dimension. However,
the limited number of parameters inevitably declines the model
performance, and the low-dimensional models cannot utilize the
high-accuracy knowledge from high-dimensional ones.

6.3 Knowledge Distillation

Knowledge Distillation (KD) aims to transfer knowledge from
one machine learning model (i.e., the teacher) to another model
(i.e., the student) [21, 41]. Hinton et al. [13] introduced the first
KD framework, which applies the classification probabilities of
a trained model as soft labels and defines a parameter called
“Temperature” () ) to control the soft degree of those labels.
Specifically, when ) → 0, the soft labels become one-hot vectors,
i.e., the hard labels. With the increase of ) , the labels become
softer. When ) →∞, all classes share the same probability [9, 17].
Inspired by this, several KD-based approaches are proposed in
different research domains. Furlanello et al. [11] proposed Born-
Again Networks in which the student is parameterized identically
to their teachers. Yang et al. [38] added an additional loss term to
facilitate a few secondary classes to emerge and complement to
the primary class. Li et al. [16] proposed a method to distill human
knowledge from a teacher model to enhance a pedestrian attribute
recognition task. To the best of our knowledge, our work is the
first to apply the KD technologies in the link prediction of KGs.

7 CONCLUSION

Recent knowledge graph embedding (KGE) models tend to apply
high-dimensional embedding vectors to improve their perfor-
mance. These models can be hardly applied in practical knowledge
graphs (KGs) due to large training costs and storage space. In
this paper, we propose MulDE, a novel multi-teacher knowledge
distillation framework for knowledge graph embeddings. By inte-
grating multiple hyperbolic KGE models as teachers, we present
a novel iterative distillation strategy to extract high-accuracy
knowledge and train low-dimensional students adaptively. The ex-
perimental results show that the low-dimensional models distilled
by MulDE outperform the state-of-the-art models on two widely
used datasets. Compared with general single-teacher knowledge
distillation methods, MulDE can accelerate student training speed.

These positive results encourage us to explore the following
further research activities in the future:
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• We will further research the relationship between embed-
ding dimensions and the KG scale, and explore the influence
of different relation transformations.
• To take advantages of multiple teachers, we will further
improve the knowledge integration in the Senior compo-
nent, and achieve higher-accuracy soft labels in the low
dimensional models.
• Regarding the choice of multiple teachers, we will further
analyze the effectiveness of the ensemble. In particular, we
will investigate new teacher combinations by considering
emerging relation transformations.
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