
On the Cognitive Development of the Novice Programmer 
and the Development of a Computing Education Researcher 

Raymond Lister 
School of Computer Science 

University of Technology, Sydney 
Sydney NSW Australia 

Raymond.Lister@gmail.com

ABSTRACT 
This paper is a companion to my keynote address at the 9th 
Computer Science Education Research Conference (CSERC '20). I 
review the research that led to my three stage neo-Piagetian model 
of how novices understand code. Code tracing is the key. In the first 
stage, the novice cannot trace code. In the second stage, the novice 
has mastered tracing, but, crucially, that is the only skill they have 
mastered. It is only when novices reach the third stage that they 
begin to reason about code in a more general, abstract way. The 
principal failure of traditional approaches to teaching programming 
has been the assumption that the novices begin at the third stage. 
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1 Introduction 
The poet Thomas Gray wrote “Where ignorance is bliss, ‘tis folly 
to be wise”. For my first four years of university teaching I was 
indeed blissfully ignorant. My class survey results were good. I was 
nominated for a university teaching award. I believed I taught well. 

Three factors conspired to ruin my bliss. The first factor was my 
persistent high failure rates. If my lectures were the very model of 
clarity, then why were a third of my students failing? The second 
factor was the criticism of my colleagues. As surely as farmers 
complain about the weather, computing academics will complain 
about the brokenness of the introductory programming subject. I 
recall many academic staff meetings to discuss the parlous 

programming ability of our students. Each year everyone voiced 
their intuition on how students could better learn programming. 
Year after year, each academic repeated the same intuitions. Every 
year we made changes, but we were not making progress. Rather 
than moving forward, we were conducting a random walk in 
pedagogical space. 

The third factor, which absolutely smashed my bliss, occurred 
in the year 1999. That year, the class was large, and the school’s 
budget was small, so we could not hire the army it took to grade the 
final exam. With reluctance, we decided that the final exam for the 
introductory programming class would consist entirely of multiple-
choice questions. Since the students would not have to write any 
code, I worried that the exam would be too easy. To my 
astonishment, the students did poorly on the multiple-choice exam. 
There were things going on in my class that I did not understand. 

By this time, I had been teaching for five years, so I clearly was 
not learning what was happening in my class simply from teaching 
the class. I had to take a step back. If I was to learn what was going 
on in my class then, like the lead character from the movie, “The 
Martian”, I was going to have to “science the shit out of it”. To 
quote another space figure, but this time a real person, Werner von 
Braun, “Research is what I’m doing when I don’t know what I’m 
doing”. Twenty-one years after that multiple-choice exam, I now 
say, “Education research is what I’m doing when I don’t know what 
I’m teaching”. 

2 Bootstrap & the McCracken Working Group 
My nascent computing education research career was turbocharged 
in the year 2002, when I was one of twenty academics accepted into 
the “Bootstrap” project [3, 8]. Bootstrap was led by Sally Fincher, 
Marian Petre and Josh Tenenberg. Their aim was to introduce a 
critical mass of computing academics to education research and 
thus bootstrap a new computing education research community, to 
recover from the computing education research “winter” of the 
1990s. Our two workshops were held in a boy scout hut, in the 
beautiful village of Port Townsend, Washington, USA. 

Among the readings for Bootstrap was a paper written by an 
ITiCSE 2001 working group, led by Mike McCracken [23]. The 
McCracken group assessed the programming ability of a large 
population of students from several universities, in the United 
States and other countries. The authors had students write code on 
a common set of programming problems. They found that most 
students performed much more poorly than expected. Most 
students did not even get close to a complete, correct solution. 
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The McCracken paper was a game changing paper for me. Prior 
to the McCracken paper, if you were brave enough to say that your 
students could not program, the resulting conversation usually 
revolved around what it was that you were doing wrong; how you, 
an individual, might fix what was your problem. But when students 
are pooled from across institutions and countries, you begin to 
discern fundamental patterns. 

Although I was inspired by the McCracken working group, I did 
not agree with its conclusion. The McCracken group attributed the 
poor performance of most students to an inability to problem-solve. 
That is, an inability to carry out a five-step process: (1) Abstract the 
problem from its description, (2) Generate sub-problems, (3) 
Transform sub-problems into sub-solutions, (4) Re-compose, and 
(5) Evaluate and iterate. My own experience with a multiple-choice 
exam led me to wonder whether some of my students lacked 
abilities that were a precursor to problem-solving. But I could not 
be sure. The results I saw in my students might be due to poor 
teaching by me. After talking to several of my fellow bootstrappers, 
who had similar teaching experiences to me, we decided to convene 
our own ITiCSE Working group, to investigate the issue further. 

3 THE LEEDS WORKING GROUP 
Our Leeds Working Group collected data from over 600 
introductory programming students, spread across 12 institutions in 
7 countries [14]. The students were asked to answer several 
questions that were placed into their end-of-first-semester exam. 
The questions were from my multiple-choice exam. 

Not all the multiple-choice questions required students to trace 
code (i.e., manually execute code “on paper”), but the results from 
the tracing questions turned out to be the most interesting. The 
working group found that most students at all the participating 
institutions could not trace reliably. Prior to this multi-national 
study, it was taken for granted around the world that most students 
could do the “simple” things, like trace code. Applying Occam’s 
Razor, and with the confidence founded in data from 12 institutions 
in 7 countries, the working group argued that McCracken’s 
attribution to students of a weakness in problem solving was an 
unnecessarily sophisticated explanation. The simpler explanation 
was that such students lacked abilities that were a precursor to 
problem-solving, at least the skill of tracing code. 

3.1 Doodles and Think Alouds 
Earlier, in the boy scout hut in Port Townsend, when we 
Bootstrappers had first talked about convening a working group, I 
thought my disagreement with the McCracken paper was 
methodological – I thought they should have screened their 
students with a pre-test and then eliminated students who could not 
trace code. I thought of the screening process as eliminating the 
students who had not studied hard enough. But when we analyzed 
all three forms of our data in Leeds, I began to wonder whether the 
issue was deeper than a disagreement over method. Apart from the 
“performance” data on whether students answered the questions 
correctly, we analyzed two other forms of data. One of those other 
forms was the annotations (“doodles”) the students made on their 
exam papers as they attempted the questions. Many students did not 

doodle at all. When I trace code, I doodle to track changing variable 
values – why were students not also doodling? 

Another form of data the Leeds Group analyzed were transcripts 
from think aloud sessions with some of the students. When we 
included the think alouds in the study design, my interest was in 
studying the metaphors used by students to describe code. I 
expected statements like “the loop index fell off the end of the 
array”. To my surprise, students did not use metaphors – none! By 
whatever method students understood code, they were not thinking 
about code the way I thought they did. 

3.2 Reflections on the Leeds Working Group 
The Leeds Working Group is well known for its results from the 
performance data, but I do not think the doodle and think aloud data 
ever received the attention from readers that was warranted. 

My interest in studying metaphor, only to find no metaphor in 
the transcripts, highlights that I was out of touch with my students 
at the time of the Leeds Working Group. Back then, I had the same 
blind spot that many computing academics have – I thought I knew 
my students. Clearly, I did not. No teacher of programming learns 
everything they need to know about their students exclusively from 
teaching those students, no matter how many years of experience 
the teacher has accumulated. At the time of the Leeds Group, I had 
accumulated 10 years of teaching, but it may have been more 
accurate to say that I had taught for 2 years, 5 times. 

A common criticism of the Leeds Working Group has been that 
several of the questions involved code that students would not see 
“in the real world”. While I do not agree with that criticism, I accept 
that it is a reasonable opinion. It was disappointing, however, that 
none of the people who made that criticism did not repeat the Leeds 
Group study, using questions they felt were more appropriate. 
While no individual who made such a criticism is obliged to do 
such a study, that nobody in the whole computing education 
research community (to my knowledge) who made that criticism 
felt a need to do such a study was an indication that the community, 
as a whole, was not (at least back then) grounded in a tradition of 
evidence-based discourse. Back then, if not now, I think that 
researchers in the computing education community tend to accept 
or reject the research of others based on whether the results were 
consistent with their teaching intuitions. Someone reading this 
paper might think to themselves that my initial disagreement with 
the McCracken paper was intuitive. That is correct, but the Leeds 
Working Group went on to do research that turned intuition into 
something solid. Of course, no individual can do research to rebut 
everything that is contrary to their intuition. My disappointment, at 
least back then, if not now, was that nobody went beyond intuition 
to do that sort of follow-up research. 

Over the years, people have raised the question with me whether 
it is possible to compare students across institutions. I invite such 
people to look at Figure 3.6 in the working group’s paper [14]. That 
figure is reproduced in this paper as Figure 1. It shows the 
percentage of students who answered each multiple-choice 
question correctly for six of the participating institutions. The data 
from one of those six institutions differs markedly from the other 
five institutions (i.e., the institution with an exceptionally low 
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percentage of students answered question 4 correctly). For the other 
five institutions, beginning at question 4, the lines connecting the 
data points of each institution show a common pattern – the lines 
go up slightly from question 4 to question 5, then down to question 
6, then up to question 7, down to question 8, and up to question 9. 
Thus, while the absolute percentage of students who answer a 
question correctly varies considerably between institutions, the 
relative performance between questions show the same general 
trends. This observation from Figure 1 leads me to the following 
conjecture: 

Consider two institutions, where the students are given 
the same two exam questions. Suppose there is a 
statistically significant difference in the performance of 
students on those two questions within each institution. 
Then whichever was the harder question at one of the 
institutions will also be the harder question at the other 
institution. 

Some commonsense qualifiers must be applied to the conjecture. 
For example, the conjecture should not be expected to hold if 
students at one of the institutions had been shown code included in 
one of the questions prior to the exam, while the students at the 
other institution had not seen that code. Another example would be 
if the teaching at one institution emphasized object-oriented 
concepts while the teaching at the other institution emphasized 
procedural concepts. If the reader is not comfortable with the 
arbitrariness of applying common sense, then I am content with 
turning the conjecture around: if the conjecture holds between two 
institutions, then the content and method of instruction at both 
institutions are broadly the same, at least for the content tested by 
the two questions. 

In recent years, some in the community have argued that all 
empirical research papers should characterize the type of 
institution(s) at which data was collected from students (e.g., “a 
small teaching focused liberal arts college”, or “a large state-
funded, research focused university”). I disagree. Even when the 
type of institution may be a factor, I believe screening tests should 
be used to eliminate institutional bias. 

As a researcher, the year 2004 was a good year for me. 
Ironically, however, it was a bad year for me as a teacher. Citing 
failure rates in my class that he regarded as too high (between 30% 
and 40%), the head of my school moved me off teaching 
introductory programming. I would not teach another programming 
class for ten years, until that head of school retired. 

4 BRACElet (1): Explain in Plain English 
Shortly after the Leeds Group, Tony Clear invited me to present the 
group’s work at a two-day workshop he hosted at the Auckland 
University of Technology. The workshop was held in December 
2004. From that workshop, the BRACElet* project emerged, led by 
Tony Clear, Jacqueline Whalley and me [5, 18, 38]. 

 
*  The BRACElet project is often confused with the BRACE project. Given the 
similarity in the names, that is understandable, but in fact there is no overlap between 
the research conducted in the BRACE and BRACElet projects. BRACE was a rerun 
in Australia and New Zealand of the “Bootstrap” and “Scaffolding” projects [3, 8]. 
BRACE stands for “Building Research in Australasian Computing Education”. 

 

Figure 1. A graph from the Leeds Working Group. The 
percentage of students with the correct answer for each 

question, for the 6 institutions that provided data for at least 
20 students. Each trend line corresponds to one institution. 

 
  In plain English, explain what the following segment of Java  
  codes does: 
 
    bool bValid = true; 
 
    for (int i = 0; i < iMAX-1; i++) 
    { 
        if (iNumbers[i] > iNumbers[i+1]) 

           bValid = false; 
    } 

Figure 2. An “explain in plain English” question 

BRACElet set out to answer the question that the Leeds 
Working Group (implicitly) begged to be asked – apart from 
tracing, are there other precursor skills to code writing? To 
address that question, BRACElet introduced a new type of 
question, the “explain in plain English” question. At the first 
BRACElet workshop, I remember we discussed for hours how we 
might probe at a student’s ability to read and understand code. After 
many complex suggestions had been floated, only to be shot down, 
and with homeward plane flights looming, someone suggested that 
we simply show the students some code and ask them to explain 
what the code does “in plain English”. We then tossed around ideas 
of what piece of code we should ask the students to explain. 
Someone suggested the code shown in Figure 2, for which a 
suitable explanation would be “it checks to see if the array is 
sorted”. The suggestion of that code turned out to be a wonderful 
choice. We were partly lucky, I suppose, in making that choice, but 
I suspect that we were also expertly guided by our collective 
experience as teachers. 

4.1 The SOLO Taxonomy 
BRACElet participants wanted a principled way of analyzing the 
answers to the question in Figure 2. At the second BRACElet 

BRACElet was initially intended as a smaller follow-up to BRACE, for academics in 
New Zealand who had not been able to attend the two BRACE workshops in 2004 and 
2005 — hence the “let” part of BRACElet. However, BRACElet took on a separate 
life of its own. Between 2006 and 2010, BRACElet produced 16 papers with a total of 
26 different authors, from 14 different institutions, across 7 countries. 
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workshop, six months later, we settled on using the SOLO 
taxonomy [2] to analyze the student responses to the “explain in 
plain English” question. The SOLO taxonomy categorizes student 
answers into five levels which are, from least to most sophisticated:  

1. Prestructural: The response by the student could have been 
provide by someone who had not studied the subject. 

2. Unistructural: The student manifests a correct grasp of some 
small part of the problem. 

3. Multistructural: The student manifests an understanding of 
most parts of the problem but does not manifest an awareness 
of the relationships between these parts. The student fails to 
see the forest for the trees. A line-by-line description of the 
code in Figure 2 is a multistructural response. 

4. Relational: The student integrates the parts of the problem 
into a coherent structure and uses that structure to solve the 
task. The student sees the forest. For the code in Figure 2, the 
answer “it checks to see if the array is sorted” is relational. 

5. Extended Abstract: The student goes beyond the immediate 
problem to be solved and links the problem to a broader 
context. This category was not studied by BRACElet. 

4.2 The Prerequisites for Code Writing 
The first two papers published by BRACElet [37, 15] describe the 
results and conclusions from this first round of work by BRACElet. 
One of the results was that students who gave a relational response 
to the explain-in-plain-English question in Figure 2 tended to 
perform better on the exam as a whole. In the conclusion of the 
second BRACElet paper [15], we speculated: 

In our view, students who cannot read a short piece of 
code and describe it in relational terms are not 
intellectually well equipped to write similar code. 

Thus, in this opening phase of BRACElet, we speculated that there 
was a linear hierarchy, where the ability to trace code reliably 
preceded the ability to explain code reliably, which in turn preceded 
the ability to write code reliably. In the next experimental phase of 
BRACElet, we would see results that supported a hierarchy, but we 
would find out we were wrong about it being a linear hierarchy. 

5 BRACElet (2): TRACING AND EXPLAINING 
To empirically study the relationship between tracing, explaining 
and writing code, BRACElet constructed a new set of exam 
questions that included all three types of questions. The first 
substantive discussion of exam data that included all three types of 
questions was at the sixth BRACElet workshop, in December 2007. 
I remember that a preliminary analysis of exam data was presented 
on day 1 of the workshop, but the breakthrough was presented on 
the second morning. Overnight, Mike Lopez had put the data 
through a statistical analysis tool he had written, which performed 
an analysis similar to structural equation modelling. Mike found 
that code tracing questions alone did not correlate well with student 
scores on code writing, nor did explain-in-plain-English questions 
alone correlate well with student scores on code writing. However, 

a linear combination of student scores on code tracing and code 
explaining did correlate well with code writing [21]. 

Mike’s way of analyzing the data was too sophisticated for me 
to repeat, but after he had shown us what to look for, a linear 
combination of scores on tracing and explaining correlating with 
code writing, simpler methods could be used to look for that in 
other data. By mid-2009, we had published papers reporting the 
same relationship in two more datasets [16, 35]. 

At ITiCSE 2009, we convened a BRACElet working group 
[17]. About half of the twelve working group members had not 
participated in BRACElet before, and those people brought fresh 
ways of thinking to BRACElet. For me, the most stimulating aspect 
of that fresh thinking was a review of education theories that might 
be applicable in understanding the development of the novice 
programmer, theories originating from other disciplines, especially 
mathematics. That discussion of theory by the working group 
planted a seed in my thinking that would grow to dominate my 
research for the next five years. 

6. A THREE STAGE MODEL (EXPURGATED) 
Stimulated by the ITiCSE 2009 working group, I began to think 
about theories that might explain the empirical results from 
BRACElet. Intrinsic to SOLO is the principle that students can 
acquire facts without (at least initially) integrating those facts with 
the rest of their knowledge. Beyond that, however, SOLO does not 
tell me any more about how novice programmers think and learn. I 
felt I needed to move beyond the SOLO taxonomy. 

In mid-2009, I had taken a year’s leave without pay from UTS 
to try a different job. By the end of 2009, the new job had not 
worked out, and I found myself “on sabbatical” (i.e., under 
employed) for six months until I could return to UTS mid-2010. 
While I did not know it at the time, this six-month sabbatical was 
fortunate, as it gave me the chance to read from the large piles of 
papers and books that I had collected but never had time to read. 

Eventually my reading led me to construct a three-stage model 
of the mental development of novice programmers, which I 
published in 2011 [19]. I then went on to look for evidence for my 
three-stage model, in conjunction with a Ph.D. candidate, Donna 
Teague [32], now Donna Kingsbury. I describe the three stages in 
the following subsections. 

6.1 Stage 1: Pre-Tracing 
In the initial stage, pre-tracing, the student has a sparse and 
incoherent understanding of programs. At this stage, students 
exhibit a haphazard approach to writing code, and cannot reliably 
trace code, for several reasons: 
 Misconceptions of how programs work. For example, a novice 

might think that the assignment statement “x = y” links those 
two variables so that any subsequent update to one variable also 
updates the other variable. Many common misconceptions are 
documented in the existing literature. See appendix A of Juha 
Sorva's thesis for a catalogue of over one hundred 
misconceptions [31]. 
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 Anthropomorphizing the computer. A novice programmer can 
behave as if an intelligent entity lurks inside the computer; an 
entity that somehow knows what the novice wanted their 
program to do. Such thinking by a novice programmer is natural 
in a world where word processing software corrects our spelling 
and search engines make suggestions about what search term we 
really meant to type. Pea [26] referred to this 
anthropomorphizing of the computer as a type of “superbug”, a 
bug that transcends any program or programming language. 

 Programming as (Witch) Craft. Programming is often described 
by experts as being a craft. For the pre-tracing student, 
programming is witchcraft. Wikipedia describes “Voodoo 
programming” as being the “practice of getting a program to 
produce desired output by using guesses, trial-and-error, 
cookbooks, copy-pasting from online resources, or similar 
techniques without truly understanding the underlying problem”. 
Wikipedia describes “Cargo cult programming” as being a “style 
of computer programming characterized by the ritual inclusion 
of code or program structures that serve no real purpose”. In the 
case of cargo cult programming, I have often had the experience 
of asking a student to explain to me the purpose of a strange line 
of code in their program, only to be told “I don’t know what it 
does, but if I leave it out the program doesn’t work”. 

6.2 Stage 2: Tracing 
By the second stage, tracing, the student can reliably trace code. 
However, the stage 2 student tends not to abstract from the code 
itself. For the stage 2 student, there is nothing but the code. The 
only way that a stage 2 programmer can reason about a piece of 
code is by tracing that code. Over-reliance on a single way of 
thinking is known in psychology by several names, including 
"Maslow's Hammer". Maslow probably appropriated an old 
proverb when he wrote: 

I suppose it is tempting, if the only tool you have is a 
hammer, to treat everything as if it were a nail. [22, p. 15]. 

Because all that stage 2 programmers can do is trace code, they 
reason by induction. That is, when attempting to explain what a 
piece of code does, the stage 2 programmer (1) generates a set of 
initial variable values, (2) traces the code, and then (3) attempts to 
infer the function of the code by comparing the initial and final 
values. For example, in the exercise shown in Figure 3, the 
variables names “y1”, “y2” and “y3” will often lead the stage 2 
novice to perform a trace using the initial values y1=1, y2=2 and 
y3=3. Tracing with those initial values results in final values 
y1=3, y2=2 and y3=1. Teague found that when stage 2 
programmers used those initial values, they often answered 
incorrectly that the code reverses the order of the values in the three 
variables [32]. 

A novice programmer who traces the code in Figure 3 only once 
and arrives at the wrong answer is an early stage 2 programmer. 
Early in stage 2, the effort of tracing code is great and so the novice 
tends to only perform a single trace. As dexterity at tracing 
improves, the stage 2 novice becomes willing to perform more than 
a single trace.  Teague [32] reported on a think aloud session with  

 

Figure 3: Code for sorting three integer values. 

two students “Lucas” and “Sierra”, who worked together on the 
problem in Figure 3. Lucas and Sierra began by performing a trace 
with the initial values y1=1, y2=2 and y3=3. After that trace, 
Sierra jumped to the wrong conclusion. Lucas, however, insisted 
on performing a second trace and then arrived at the correct answer. 

Stage 2 novices use that same inductive approach when 
attempting to debug their own code. That is, stage 2 novices trace 
their buggy code with specific values, and then make what is often 
a myopic patch. That patch may “fix” the code for the specific 
initial values just used in the trace, but the patch may not address 
the general bug [9]. The strategy of “repeat-trace-patch-until-
success” is like “shotgun debugging”, which Wikipedia defines as, 
“A process of making relatively un-directed changes to software in 
the hope that a bug will be perturbed out of existence”. 

6.3 Stage 3: Post-Tracing 
In the third stage, post-tracing, novices begin to reason about code 
the way we have always assumed they did – deductively, from 
reading the code, and/or from simple diagrammatic representations 
of operations on data structures. This stage is the first stage where 
students show a purposeful approach to writing code. Therefore, 
the stage 3 programmer may further develop their programming 
skills using the approach used for decades in universities — having 
them learn by writing lots and lots of code.  

6.4 A Reflection on the Expurgated Model 
At this point, the reader might be thinking that the three-stage 
model is either trivial or arbitrary. If the reader thinks so, that is 
because this “expurgated” version of the model has been presented 
in the absence of background theory that both justifies the structure 
and fleshes out further detail. The next section of the paper presents 
the model again, but with the theoretical background. The reader 
may ask: why do I present my model twice, first without the 
underlying theory and then with theory? The answer is hinted at in 
the title of this section, by my use of the word “expurgated”. Just 
as a novel might be expurgated to remove words that may cause 
offense, when I introduce someone to my three-stage model, I have 
learned to do so initially by omitting the “P” word, which 
sometimes causes offense – “Piaget”. 
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7. A THREE STAGE MODEL (PIAGETIAN) 
During my “sabbatical” in 2010, I was led to the type of theory I 
was looking for when I read deeper into the SOLO taxonomy. In an 
appendix of their book [2], Biggs and Collis describe how they had 
derived SOLO by eliminating the structuralism of Piagetian theory. 
That appendix led me to read Piaget, and then read neo-Piagetian 
theory, from which my stage model emerged [19, 20]. 

When presenting my model, I have found that invoking Piaget 
often meets with audience resistance. Piaget is out of fashion. There 
are a few reasons for this, but the principal reason is that Jean Piaget 
worked in the early-to-mid 20th century intellectual period when 
structuralism was dominant, and so his direct legacy is not well 
received in our current period of post-structuralism. Another reason 
is that much of Piaget’s writings about babies has been refuted by 
empirical research in recent decades, which has (unfairly) 
decreased the perceived credibility of Piaget’s work in general. 
Piaget’s fall from fashion is ironic, as most computing education 
researchers emphatically describe themselves as being 
constructivists, yet Piaget is the father of constructivism. (At the 
time of writing this paper, googling “who is the father of 
constructivism” is answered with “Piaget” – QED.) 

Since Piaget’s death, the neo-Piagetians have further developed 
Piaget’s work, improving the compatibility with both post-
structuralism and with observational data [25]. Jean Piaget’s 
“classical” theory and neo-Piagetian theory both describe cognitive 
development in terms of sequential, cumulative stages, but neo-
Piagetian theory differs in several ways, summarized in Table 1. 

7.1 Stage 1: Sensorimotor (Pre-Tracing) 
Piaget was interested in the intellectual development of children. 
Anyone who has watched a baby stare at an object, before 
painstakingly reaching out to grasp that object will be comfortable 
with Piaget’s use of the term “sensorimotor” in that context. I have 
found, however, that many people are not comfortable with how 
“sensorimotor” applies to people of any age who have just begun 
to learn to program. A glib answer is that, while these novice 
programmers may be adults in physical space, they are babies in 
cyberspace. A more serious answer follows. This first Piagetian 
stage of learning to program is a struggle to learn to correctly 
perceive and trace code. The “sensori” component of the name is 
appropriate because novice programmers do not initially perceive 
code the way that an accomplished programmer does. For example, 
novices at this stage often read code as static text, not as executable 
code.  

The “motor” component of the name is appropriate because 
these sensorimotor novice programmers do not, for example, trace 
code the way that an accomplished programmer does. Teague 
discovered that when novices do perform a trace with pen and 
paper, they can use ad hoc, error prone ways of recording the 
changing variable values [32]. 

While there is extensive literature on the misconceptions of 
novice programmers [31, see appendix A] that literature under-
represents some issues about novice programmers that come into 
focus with a Piagetian perspective. One of these issues is the low 

level of commitment that a sensorimotor programmer has to their 
conceptions about programming, whether those conceptions be 
right or wrong. Instead, the sensorimotor programmer can swap 
between (mis–) conceptions, based on superficial aspects of the 
code. Furthermore, the sensorimotor programmer does not merely 
have misconceptions – the sensorimotor programmer can have a 
different way of conceiving code. For example, as mentioned 
before, many sensorimotor programmers read code as static text. In 
Piagetian terms, this non-dynamic reading of code is known as 
“figurative intelligence”. 

Brooks proposed a theory of how accomplished programmers 
comprehend unfamiliar code [4]. According to Brooks, one strategy 
used by accomplished programmers is a search for “beacons”, 
which are data structures or operations that verify a hypothesis 
about the code. For example, a loop in which values in an array are 
swapped around is a beacon for sorting. In contrast, the 
sensorimotor novice does not make informed hypotheses about 
code. Such a novice does note features in the code, but such a 
feature is not really a beacon; more a talisman (i.e., an object 
possessing mystical power). Traynor, Bergin, and Gibson [34] 
provided a telling quote from such a student, who described how 
he/she went about answering exam questions that required coding: 

… you usually get the marks by making the answer look 
correct. Like, if it’s a searching problem, you put down a 
loop and you have an array and an if statement. That 
usually gets you the marks … not all of them, but 
definitely a pass”. 

7.2 Stage 2: Pre-operational (Tracing) 
To understand what “operational” means in the Piagetian stage 
name “pre-operational”, consider a machine being installed in a 
factory: the machine is not yet “operational”. Likewise, at the pre-
operational stage the novice programmer is not well placed to 
independently write code of their own. Note, however, that this 
does not imply that such a novice should not write code as part of 
the learning process – on the contrary, a novice must write code to 
learn how to code. However, we should expect that pre-operational 
students will write code that is either trivial or code that is poorly 
designed and buggy. 

The fresh insight that comes from neo-Piagetian theory is the 
identification of the pre-operational programmer as a natural stage 
of progression for a novice programmer, not an anomalous 
behaviour. Furthermore, students can spend a long time in the pre- 
operational stage. Novices may only progress beyond the pre-
operational stage after tracing through many examples of code. 

In the absence of neo-Piagetian theory, it is very difficult for 
teachers to understand why pre-operational students cannot use 
diagrams to understand code. For example, Thomas, Ratcliffe, and 
Thomasson wrote despairingly of their frustrations at trying to get 
their novices to make effective use of diagrams: 

Providing ... what we considered to be helpful diagrams 
did not significantly appear to improve their 
understanding ... This was completely unexpected. 
We thought that we were 'practically doing the question 
for them'. [33, p. 253] 



Classical Piagetian Theory by Jean Piaget Neo-Piagetian Theory 

Is concerned with the general cognitive development of 
children. 

Is concerned with the cognitive development of people of any age 
as they learn any new cognitive task. 

A child at a particular Piagetian stage applies the same 
type of reasoning to all cognitive tasks (e.g., math and 
chess), apart from exceptions known as décalage. 

Since a person’s cognitive ability in any domain is a function of 
their degree of learning in that domain, a person will exhibit 
different Piagetian stages in different knowledge domains. 

There are typical age ranges for each Piagetian stage, 
but empirical evidence shows great variation in age 
ranges.  

Age ranges are not prescribed. But there may be minimum ages 
before which manifesting a particular stage in any domain may be 
considered exceptional. 

Children spend an extended period in one stage, before 
undergoing a rapid change to the next stage – the 
“staircase” metaphor.  

Over a short period of time, people may exhibit a mix of stages. As 
learning progresses, the frequency of manifestation of higher stages 
will increase − the “overlapping wave” metaphor.  

Table 1. A Comparison of Classical and Neo-Piagetian Theory. 

For the reader who would like to learn more about the pre-
operational programmer, see the collection of papers in Donna 
Teague’s thesis-by-publication [32]. 

7.3 Stage 3: Concrete Operational (Post-Tracing) 
As “operational” in “concrete operational” implies, when a novice 
reaches the third stage, they can independently write reasonably 
well-designed code. It is only at this stage that the novice 
programmer begins to reason about abstractions of code, such as 
diagrams. 

Recall that, as pre-operational programmers develop, they are 
more likely to perform multiple traces on a piece of code, with 
different initial values intended to exercise different pathways 
through the code. The transition from pre-operational to concrete 
operational may begin with the novice consciously choosing initial 
values to represent a class of possible initial values. For example, 
in some hypothetical piece of code, the novice might choose to 
initialize two variables “a” and “b” as a=1 and b=2 to represent 
all possible initial values where a < b. 

A novice has made the transition to the concrete operational 
stage if, while reading through a piece of code, the novice no longer 
uses specific initial values, but instead mentally maintains informal 
but algebraic-like constraints on the possible values in each 
variable. For example, consider a student studying the three “if” 
statements in Figure 3. After the first of those if statements, the 
concrete operational student would think of y2 as holding any 
possible value that satisfies the condition that it is less than the 
value in y1. Teague [32] refers to this as “abstract tracing”. 

Earlier, when I introduced the explain-in-plain-English question 
shown in Figure 2, I wrote that we were lucky to have made that 
choice, but we were also guided well by our collective experience 
as teachers. Piaget offers an explanation for why the code in Figure 
2 proved to be a good choice. If the variable bValid is to maintain 
its initial value, then iNumbers[0] ≤ iNumbers[1] ≤ 
iNumbers[2]… and so on. By the rule of logic known as 
transitive inference, those inequalities imply that the elements of 
the array are sorted. Piaget maintained that the ability to perform 

transitive inference is one of the defining qualities of a person at 
the concrete operational stage. 

7.4 Overlapping Waves 
According to neo-Piagetian thinking, novice programmers should 
not be classified as being at a unique stage of development at any 
given moment (i.e., sensorimotor, pre-operational, concrete 
operational). Instead, neo-Piagetians advocate an “overlapping 
waves” model [29], where a person exhibits an evolving mix of the 
Piagetian stages. The concept of overlapping waves is illustrated in 
Figure 4. When a person begins their study of a new knowledge 
domain, they first reason predominantly at the sensorimotor stage, 
but they evolve to reason less at that stage and more at the pre-
operational stage, and so on to later stages. Thus, multiple ways of 
reasoning coexist. 

When the concept of overlapping waves is expressed as a 
generalization, as it was in the preceding paragraph, it may seem 
that it renders meaningless the three-stage model. In practice, 
however, this is not the case. When I have a brief encounter with a 
student, where I can see quickly what their problem is, and I ask 
them to trace a portion of their code with specific values, it is 
usually clear to me which stage is most pronounced in their 
reasoning at that moment. Some students cannot trace their code 
(sensorimotor). Others can trace their code but cannot identify the 
general problem revealed by the trace, or cannot nominate a fix to 
the code, or they make an inappropriate change to their code (pre-
operational). Others either complete the trace or have a “eureka” 
moment during the trace and do not need to complete it [6], but 
either way after ceasing to trace they move deliberately to making 
a plausible change (concrete operational). It is over longer periods 
of time that a mix of multiple ways of reasoning are usually 
manifested. It is over even longer periods of time that the mix is 
seen to change. 

In this paper, references are made to novices being in a specific 
stage. In such cases, the reader should understand that a stereotype 
is being invoked, for clarity and conciseness. Consistent with the 
overlapping waves concept, a real student often exhibits a mix of 
the stages and does not fit the stereotype for a single stage. 



CSERC '20, October 2020 R. Lister 
 

 

 

 

Figure 4. The Concept of Overlapping Waves. 

7.5 New Knowledge and Stage Regression 
As the novice programmer learns, there are periods of time where 
the novice may maintain a pre-operational or concrete operational 
way of reasoning about code even when the novice is taught 
something new. For example, having learned about integer 
variables, novices may subsequently learn about floating point 
variables, without that affecting how they reason about code. In 
Piagetian terms, this is known as assimilation. 

But new knowledge sometimes shatters old ways of thinking. 
For example, a novice may have a way of recording on paper the 
tracing of sequential code (i.e., pre-operational stage) but that way 
of tracing fails when the student is introduced to loops. The novice 
must now change their way of reasoning about code. As part of the 
change process, the novice may regress to an earlier stage. The 
novice programmer must first understand how loops work (i.e., go 
back to sensorimotor), then devise a new way of recording a trace 
on paper (i.e., move back up to pre-operational). In Piagetian terms, 
this regression and recovery is known as accommodation. 

7.6 Reflections on the Piagetian Model 
A simple but useful summary for an early understanding of how 
novice programmers think in each of the above three Piagetian 
stages is as follows: 
  

1. Sensorimotor: The code is perceived as static. 
2. Pre-operational: The code is conceived as changing variable 

values. 
3. Concrete operational: The code is perceived as embodying 

abstract properties that can remain invariant under execution. 
  

The following example is perhaps the simplest possible 
illustration of the above summary: consider the case where the 
following three lines of code are given to students, and they are told 
that the code swaps the values in variables “b” and “c”: 

 

a = b; 
b = c; 
c = a; 

The sensorimotor novice may focus on the fact that the variable on 
the right of the first and second lines of code are repeated on the 
left in the next line of code, without understanding why. The pre-
operational novice can trace how specific values in the variables 
change. The concrete operational novice sees that the variable “a” 
acts as a temporary storage location. 

There is a fourth stage, the Formal Operational Stage. This is 
the ultimate “expert” stage of Piagetian reasoning. This stage is 
probably more applicable to programmers who are more advanced 
than students in their first semester of learning to program. As the 
fourth stage is not to be expected in introductory programming 
students, it is not discussed in this paper. 

There has been some interesting, independent, empirical work 
that appears to confirm the existence of the sensorimotor, pre-
operational and concrete operational stages [27]. 

There is an old joke about how to cook a chicken, which I shall 
summarize thus: regularly poor whiskey over the cooking chicken 
and when the chicken is done, throw the chicken away and drink 
the gravy. Likewise, some readers might accept the “expurgated” 
version of the three-stage model but throw away my Piagetian 
interpretation. Some readers might suspect that neo-Piagetian 
theory was merely the mental scaffolding that led me to a 
worthwhile model, but that neo-Piagetian scaffolding may be 
dispensed with now that the construction of the model is complete. 
If such thinking leads to the reader to an initial acceptance of my 
three-stage model, then I am happy. I hope, however, that with time 
the reader may come to understand that neo-Piagetian theory 
fleshes out the full complexity of the expurgated skeleton. Prior to 
reading neo-Piagetian theory, I was baffled by some of my 
encounters with students; baffled by students who could not explain 
their own code to me; baffled by students who could not understand 
a simple diagram I drew for them. I still have the same type of 
encounters, but now I understand that those students are simply not 
at the concrete operational stage. Not only am I no longer baffled, 
but I can now help those students, often by leading them through a 
trace of their code. For me, the single biggest contribution of neo-
Piagetian theory to my teaching practice has been the recognition 
of the existence of the pre-operational programmer and the lengthy 
time that some students remain pre-operational. 

I sometimes encounter educators who resist the cognitive 
constructivist ideas of Piaget because they are enthusiastic about 
the social constructivist ideas of Vygotsky [36]. Both Piaget and 
Vygotsky are constructivists, and nobody needs to choose between 
them. Vygotsky placed greater emphasis than Piaget on the role of 
language and culture in cognitive development, but that emphasis 
is not a rejection of Piaget. The late Piagetian scholar, Les Smith, 
sometimes provided entertainment at conference dinners. He would 
read out several excerpts from the writings of either Piaget or 
Vygotsky, and the audience members had to nominate which of 
Piaget or Vygotsky wrote it. Many guessed wrong. Something 
similar can be said about more recent constructivist theories of 
education: contemporary constructivist theories are not 
fundamentally at odds with Piaget or Vygotsky. 
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8. GENERAL RESEARCH REFLECTIONS 

8.1 Writing from Tracing and Explaining 
With the help of neo-Piagetian theory, especially the concept of 
overlapping waves, I believe I now understand how the novice 
programmer progresses from being primarily pre-operational to 
primarily concrete operational. The ability to answer explain-in-
plain-English questions is a proxy; an estimate of a novice’s ability 
to reason about code in an abstract way. Some people describe the 
process of acquiring this abstract reasoning skill as a process of 
acquiring programming plans, often called “schemas”. See chapter 
4 of Sorva’s thesis for a review of schemas in a programming 
context [31]. As Sorva expresses it, “An introductory course starts 
the novice on a long road of schema-building” (page 35). While I 
do not subscribe to all aspects of schemas as an explanation of 
human reasoning (more on that below), the schema concept is a 
useful shorthand in the next paragraph. 

A novice programmer who is primarily pre-operational has not 
yet acquired many programming schemas, so such a novice relies 
heavily on their tracing skill to reason about code. As the novice 
learns, the novice can use newly acquired schemas to reason about 
code. However, the novice still needs to rely on tracing when the 
novice’s existing schemas are not applicable. Furthermore, a newly 
acquired schema may be incomplete, vague, or even buggy, so 
tracing helps to overcome the inadequacies of newly acquired 
schema. In the case of a buggy schema, tracing helps the 
debugging. Also, tracing can be used to fill in the gaps when two 
or more schemas are combined. As the novice develops a larger set 
of precise and bug-free schemas, the novice’s reliance on tracing 
decreases – in terms of overlapping waves, the pre-operational 
wave falls while the concrete operational wave rises. Eventually, 
the novice becomes primarily concrete operational, and reasons 
mostly via schemas. 

8.2 Non-Computational Models of Learning 
Earlier in this paper, I invoked Maslow's hammer [22] when 
describing how the pre-operational programmer relies on tracing 
code. The teachers of novice programmers are not immune from 
Maslow's hammer – when reasoning about human thinking and 
learning, computing educators are overly reliant on the computer 
program as a metaphor, which is often referred to as the 
“Information Processing Model”. 

Schemas are a computational metaphor. The concept is useful 
but limited. Just as a Buddhists asks, “What is the sound of one 
hand clapping?” I ask, “What is the sound of half a schema 
programming?”. Schemas are a “just so” story, like “How the 
Elephant Got It’s Trunk” [13] (Answer: its nose was stretched by a 
crocodile). To say that a student accessed a programming schema 
is no better an explanation than saying that the programmer was 
inspired by god. 

Back in the early to mid-1980s, long before I worked in 
computing education, I worked in good old fashioned Artificial 
Intelligence (GOFAI) [10]. That is, in the early to mid-1980s, I 
worked in symbolic AI (not neural networks). I am especially 

struck by the similarity between GOFAI approaches to writing 
automatic planning programs and the 1980s work by Soloway, on 
explaining how novices write programs, in terms of plans and plan 
merging [30]. I eventually grew disenchanted with GOFAI and 
with it the computer metaphor for human thinking, especially after 
I read a book by the philosopher Hubert Dreyfus [7]. It was Dreyfus 
who prepared my mind to accept non-computational descriptions 
of thinking and learning, such as Piaget’s description. 

I suspect that the non-computational nature of Piaget’s theories 
is part of the reason why I sometimes encounter resistance to my 
neo-Piagetian three stage model. It is the instinct of computer 
scientists to expect models of thinking and learning to be 
computational models. 

8.3 The Conscious Decision to do Research 
I am fond of the play “Life of Galileo”, by Bertolt Brecht. I am 
especially amused by the scene where Galileo tries to persuade a 
priest, who subscribes to Aristotle’s theories, to look through a 
telescope and see with his own eyes heavenly wonders that are 
contrary to Aristotle. The priest declines, as he does not see the 
point of looking through the telescope. Besides, the priest argues, 
could not what Galileo claims to see be an illusion caused by the 
telescope itself? I have seen two productions of the play, and in 
both productions the audience laughs loudly at the priest. The truth 
is, however, that we should be laughing at ourselves, for we all have 
more in common with the priest than with Galileo. It is not natural 
for humans to think as scientists. We are prone to confirmation bias. 
That is, we place too much emphasis on events that confirm our 
existing beliefs and too little emphasis on events that are contrary 
to our existing beliefs. 

For me, a particularly telling indication that it is not natural for 
humans to think scientifically is that, while academics bring a 
scientific mentality to bear in their research, few academics bring a 
scientific mentality to their teaching. As I alluded to in the 
introduction of this paper, at any meeting of academics where the 
topic is teaching, you will hear academics articulate 
unsubstantiated intuitions, and relate unconfirmed, biased 
anecdotes. 

There is a popular belief that the first step to overcoming 
alcoholism is for the victim to admit that they have a problem. 
Likewise, the first step to becoming a computing education 
researcher is to admit that you have not learnt how your students 
learn just from teaching your students, nor have you learnt how they 
learn from having once been a student yourself. 

Parts of this paper are intended as community announcements, 
in the same community spirit which sees a canoeist hike back 
upriver, to hammer a sign into a tree, “Warning: Rapids Ahead”. 
Being a computing education researcher is hard. While you abstain 
from intuition and anecdote, others will not. At meetings of peers 
to discuss teaching, you will sometimes be the only sober person in 
the room. Like the priest in Brecht’s play, your colleagues will 
decline to look through your telescope. Like the priest in Brecht’s 
play, your colleagues will argue that what you claim to see is an 
illusion caused by the lens through which you look. Being a 
computing education researcher is hard. 
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8.4 The Importance of a Research Program 
When I look at the published research in computing education, I 
see many authors who, year-by-year, flit from topic to topic. Now, 
every computing education researcher is free to do that, and some 
have done excellent work while doing that, but I think our research 
community as a whole has too few people who are doggedly 
working on the same research topic, year-after-year. There is an old 
saying, that an academic is someone who learns more and more 
about less and less until they know almost everything about almost 
nothing. As I reflect on my years of studying novice programmers, 
I am proud that I now know almost nothing. 

In ecology, there is the concept of plant succession. For 
example, the first plants to occupy bare earth are weeds which, 
having provided suitable pre-conditions, are succeeded by shrubs, 
which in turn are succeeded by saplings. Eventually, after 
generations of successions, there is a mature forest. The research I 
have described in this paper also exhibits a succession. I think it is 
fair to say, with admiration and not unkindness, that the McCracken 
group pioneered the bare earth. Starting with the Leeds Group, and 
thus far culminating in Donna Teague’s thesis, there has been a 
steady succession that has moved us toward a paradigm, with 
empirical methods and a neo-Piagetian theoretical framework. I 
certainly would not say that we have reached the point of being a 
mature forest, but I do hope that we are at least out of the weeds. 

8.5 Developmental Epistemology 
Piaget used the term “Genetic Epistemology” to describe his work 
(or at least his translators used that term), but the contemporary 
understanding of “genetics” often leads to confusion. The 
expression “the genesis of knowledge” better expresses to the 
contemporary reader what Piaget intended. To avoid the confusion 
from using “genetic”, I prefer to use the term “Developmental 
Epistemology”. Developmental Epistemology differs from 
developmental psychology in that the former emphasizes the 
knowledge of a specific domain, while the latter emphasizes 
aspects of learning that transcend knowledge domains. 

If we are all constructivists now, then Developmental 
Epistemology should be a central research area of every discipline. 
Piaget said, "there exists no structure without a construction". If 
computing academics aspire to teach a large percentage of the total 
student population, then we need to understand how those students 
can efficiently construct our body of knowledge in their own minds. 

9. A TEACHING EXAMPLE 
In 2014, a new head of school returned me to teaching the 
introductory programming subject. If the proof of the pudding is in 
the eating, then the proof of education research is in the teaching, 
so my return to teaching introductory programming gave me the 
opportunity to find out if my three-stage model was of any use. 

In this section of the paper, I will provide one example of how I 
now teach iterative processes on arrays in a way more consistent 
with my three-stage model. Aspects of my teaching were also 
influenced by a paper by Walter Milner [24]. 

9.1 Pre-Requisite Knowledge and Skills 
Page limits do not allow me to provide every detail, so in the 
example to follow, I shall assume that students already understand 
Sequence, Selection and Assignment. I have described aspects of 
how I teach those topics in an earlier paper [20]. Also, page limits 
prevent me from providing a description of how I teach 
methods/functions/procedures, which is a difficult concept for 
many novice programmers, especially the use of parameters. 

9.2 Arrays Early 
I introduce arrays in week 2. Here is the first piece of Java code 
using arrays that I discuss with the students: 

int [] a = {5, 7}; 
a[0] = 3; 

In week 2, I only use array subscripts that are constants. I have 
found that students have no more difficulty understanding arrays 
with constant subscripts than they do with understanding scalar 
variables. In weeks 2 and 3, I illustrate arrays with code such as the 
following, which shifts the elements of an array one place to the 
left, with the leftmost element rotating to the rightmost position: 

temp = a[0]; 
a[0] = a[1]; 
a[1] = a[2]; 
a[2] = temp; 

9.3 CountElement 1 (constant subscripts) 
I now illustrate my method of teaching iterative processes on arrays 
via a method countElement, which counts the number of times 
a given value occurs in an array called “list”. The code I show 
below is Java, but the programming language is not important. 

Figure 5 shows the first version of countElement presented 
to students. The code uses constant subscripts. The array “list” 
must have exactly four elements. Figure 5 includes a trace table for 
students to complete. Students are required to trace this code, 
sometimes with several sets of given initial values. 

Introducing arrays with constant subscripts familiarizes students 
with basic array concepts before they are introduced to variables as 
subscripts. When the students eventually move to using variable as 
subscripts, their prior experience with constant subscripts reduces 
the danger that students will confuse the position in an array with 
the value stored at that position.  

9.4 CountElement 2 (variables as subscripts) 
I then introduce a version of countElement that still only sorts 
arrays of size 4 but uses variables as subscripts. Figure 6 shows the 
code and trace table given to students. With this new version (and 
also with subsequent versions) students may regress to the pre-
tracing/sensorimotor stage when they first encounter variables as 
subscripts. After coming to understand variables as subscripts, 
students rise again to the same stage they attained when working 
with constant subscripts. 
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Figure 5: Version 1 of a method “countElement” on a list 
containing four elements using constant array subscripts. 

 

Figure 6: Version 2 of a method “countElement” on a list 
containing four elements using variable “i” as the array 
subscript. 

This second version is longer and more complex than the first 
version. I justify this version to students in two ways: (1) if we 
wanted to increase the size of the array on which countElement 
could operate, this second version merely requires us to copy-and-
paste some lines, without any edits to the lines added, (2) I simply 
confess that the real purpose of this version of countElement is 
to make the next version easier to understand. 

9.5 CountElement Versions 3 and 4 (loops) 
The third version of countElement uses a loop. Initially, the 
loop still only sorts arrays of size 4: 

  for (int i=0 ; i < 4 ; ++i) 
     if (list[i] == val) ++count; 

The above code leads to the final version, which works on an array 
of any length, by replacing the 4 with list.length. 

9.6 Thirteen Examples for Listof4 / ListOfN 
A common failing in the teaching of programming is that students 
are required to write original code before they have been shown 
enough examples from which to generalize. A rule-of-thumb is that 
students require seven examples before they begin to generalize. 
(The number 7 here is not to be confused with the 7 plus or minus 
2 commonly associated with the capacity of short-term memory.) 
While the rule-of-thumb is not derived from Piagetian theory, it 
appears consistent with Piagetian theory. A student reasoning 
primarily at the concrete operational stage may only need one or 
two examples. However, a student reasoning primarily at the pre-
operational stage will probably need several more examples. 

The countElement method described above is one of 13 
methods I teach as part of introducing students to iterative 
processes on arrays, with all 13 methods taught the same way as 
countElement: 

1. copyList: copies one list to another 
2. countElement: as described above in this paper 
3. findUnSorted: returns the first position occupied by a 

given value, or -1 if it is not found 
4. insertFirst: inserts a new value in the first position. The 

other values are pushed up one place, and the value that was 
previously last is lost. 

5. insertLast: inserts a new value in the final position. The 
other values are pushed down one place, and the value that 
was previously first is lost. 

6. minVal: returns the minimum value 
7. minPos: returns the position of the minimum value 
8. printList: outputs the entire list 
9. replaceAll: replaces all occurrences of a given value with 

a new value 
10. replaceOnce: replaces the first occurrence of a given value 

with a new value 
11. reverseList: reverses the order of the values 
12. sumList: returns the sum of the elements of the list 
13. toString: returns all the values as a single String. 

9.7 The Keller Plan 
For 70 of the 100 points that determine a student’s grade, I have 
created a self-paced “Keller Plan” [12]. For the purposes of this 
paper, the essential element of a Keller Plan that the reader needs 
to understand is that the knowledge to be learnt is broken into a 
sequence of units, and a student must pass a test on each unit before 
that student is allowed to move on to the next unit. The student may 
attempt a test for a unit as many times as required. 

To earn the 70 points taught via a Keller plan, a student must 
pass 30 short lab tests under exam conditions. The 13 methods of 
ListOf4 comprise 2 of the 30 lab tests. The remaining 30 points 
are earnt via a conventional code writing assignment, which 
students may only attempt after completing the 30 lab tests. To pass 
the subject, a student need only score 50 of the available 70 from 
the Keller Plan. However, students who intend to go on to further 
study of programing are advised to complete the full 70 points. 
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The 30 lab tests are graded, automatically by computer, as either 
“pass” or “fail” – there is no intermediate result. To achieve a pass, 
the student’s code must pass all test cases put to the student’s code 
by the automatic system.  

Since the students may repeat a lab test as many times as they 
need, the lab tests are not presented as a previously unseen code 
writing problem. On the contrary, the students are given a model 
solution to each lab test before they make their first attempt. Many 
readers will be troubled that the 30 lab tests do not require students 
to write code of their own devising, with the fear that students who 
pass the 30 lab tests have merely engaged in rote learning and may 
not understand the material they have passed. I have three 
responses to that criticism: 
 Empirical data supports my use of a Keller plan. The 

programming class that follows my programming class uses a 
conventional approach to teaching programming and has not 
been altered to accommodate my approach to teaching. In that 
following class, there is no statistically significant difference in 
the failure rates between those students who completed all 30 lab 
tests but who did not attempt the code writing assignment (i.e., 
achieved exactly 70 points) and those students who did attempt 
the code writing assignment and scored a total of 85 or higher. 

 To believe that having students reproduce code inevitably leads 
to memorization without understanding is to confuse rote 
learning with “meaningful learning” [1]. Consider the 13 
methods listed above, which comprise 2 of the 30 lab tests. It 
certainly may be possible to memorize the 6-7 methods that 
comprise each of those lab tests, but I try to persuade my students 
that it is actually easier to understand the methods rather than 
learn them by rote, since one small error results in a rote-learner 
failing the lab test and having to redo the whole test. The subtle 
differences between some methods, such as “minVal” and 
“minPos” or “replaceAll” and “replaceOnce” make 
rote learning difficult. 

 Having students write their own code does not necessarily result 
in a student understanding their own code, especially when 
passing grades are given to students whose code did not even 
approximate the functionality described in the specification. 
Recall the student quoted earlier, who described how to achieve 
a pass by “making the answer look correct”. 

9.8 Reflections on Teaching 
The above example of countElement illustrates how I teach all 
13 methods that perform iterative processes on arrays. Each method 
is introduced by having students trace code. I then generalize from 
the (possibly multiple) traces the students have done, to build a 
stage 3 understanding (i.e., a concrete operational understanding) 
of how the code works for all possible inputs. 

Piaget’s crucial observation about children was that they do not 
simply know less than adults, but that children think differently 
from adults. To incorporate Piaget’s crucial observation into neo-
Piagetian theory and applying it to programming leads to the 
following: the novice programmer does not only know less than the 
accomplished programmer, but the novice programmer thinks 
differently from the experienced programmer. However, teachers 

and textbooks typically describe code in terms that are only 
understood by novices at the third stage, the post-tracing/concrete 
operational stage. 

A second source of failure of traditional approaches is the lack 
of recognition of the importance of code tracing. Many students 
spend a long time in the pre-operational stage, and transition only 
slowly to the concrete operational stage. 

Tracing is a tedious, error-prone process. It is therefore not 
surprising that many novice programmers prefer to not trace. If 
necessary, novices at the sensorimotor stage should be forced to 
trace; that is how the sensorimotor novice learns. However, novices 
who have reached the concrete operational stage can reason about 
code without needing to trace and may even express disdain for 
tracing [6]. Those students should not be forced to trace, at least not 
until their nascent concrete operational skills have failed them. 

In some of my earlier papers, I have proposed that the aim of 
introductory programming courses was to get students to the 
concrete operational stage. Since then, I have revised my thinking. 
At university, the higher achieving students may be concrete 
operational at the end of the first semester of programing. However, 
I suspect most students who just manage to pass an introductory 
programming course are pre-operational. 

If there is any validity to the widely held intuition that the 
distribution of student grades is bimodal, then perhaps it is an 
artifact of the grading – if an exam requires a great deal of concrete 
operational reasoning (and the students’ answers are graded 
accordingly), then students will divide into those who can reason 
that way, and those who are yet to reach that stage. 

There has been some interesting work by others on related, but 
different, teaching approaches [11, 28, 39]. As I have not yet given 
those papers the thought deserved, I will refrain from commenting 
here, but instead merely recommend those papers to the reader. 

9.9 The Simple View of Programming? 
The “Simple View of Reading” [40-43] is a theory of how children 
learn to read natural language, in which it is argued that learning to 
read requires mastery of two skills: phonetic decoding and the 
ability to understand a story when it is read to them. I see a 
similarity (or at least an analogy) between the Simple View of 
Reading and how the combination of tracing skill and explaining 
skill leads to skill in writing programs, as illustrated in Figure 7. 
 
 

 

Figure 7: The upper portion of the model from Lopez et al. 
(2008). 
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The reader might object to the connection I am making between 

the Simple View of Reading and code writing – reading and writing 
are different activities. While I concede that point when it comes to 
the writing of complex code, I believe that there is a close 
connection between reading programs and writing programs for the 
novice programmer, at least in the first six months. Most novices at 
that early stage cannot write programs using the five-step problem 
solving process described by McCracken et al. Instead, writing 
code is an iterative two-step process, involving conjecture and 
justification. In the first step, the novice writes code that is a 
conjecture about what the code should be, while in the second step 
the novice uses tracing and explaining to establish whether or not 
the code actually does what the novice wants. Thus, for the early 
novice, reading code is an important component, perhaps the 
dominant component, of writing code. That is why I believe I am 
justified in making a connection with the Simple View of Reading. 
If, however, the reader is unconvinced by this paragraph’s 
argument, they might at least consider the Simple View of Reading 
to be a useful analogy. 

The connection with the Simple View of Reading suggests that 
predicting code writing ability via the linear combination of tracing 
and explaining is not strictly correct and is an artifact of the analysis 
method. Instead, the Simple View of Reading suggests that, for 
programming, the combination of tracing and explaining is a 
product, not a sum. 

Unfortunately, making this connection to the Simple View of 
Reading leads to some pessimism. Among the people who study 
how children learn to read, there has for decades been a “reading 
war” (at least in the English-speaking world). On one side of the 
battle are the people who argue for the Simple View of Reading, or 
at least hold positions similar to it. On the other side are the people 
who argue for the “whole language” approach, which I will not 
describe here. If the people who study how children learn to read 
have been at war for decades, then there is little optimism that the 
people who teach computer programming will resolve their 
differences any time soon, given our community’s penchant for 
arguing from intuition rather than research. 

9.10 Are Tracing and Explaining All There Is? 
The above speculation concerning a Simple View of Programming 
may give the false impression that I believe there is nothing more 
to competence in code writing than possessing the skills of tracing 
and explaining. As I enumerated earlier in this paper, McCracken 
et al. describe problem-solving as a five-step process: (1) Abstract 
the problem from its description, (2) Generate sub-problems, (3) 
Transform sub-problems into sub-solutions, (4) Re-compose, and 
(5) Evaluate and iterate. Clearly, those five steps involve skill in 
addition to tracing and explaining. I merely believe that students 
are not ready to begin learning those five-steps until at least their 
second semester of programming, after first acquiring the 
rudimentary coding skill that follows from learning tracing and 
explaining. In the literature on reading natural language, some 
authors advocate that children first need to pass through a phase of 
“learning to read” before they can proceed to “reading to learn”. 

Similarly, I advocate that novice programmers need to pass through 
a phase of “learning to code” before they can proceed to “coding to 
learn” (i.e., learning problem-solving). I merely speculate that 
tracing and explaining are the most important skills, perhaps the 
only skills, required in that first “learning to code” phase. 

The above speculation concerning a Simple View of 
Programming may give another false impression; that I believe the 
first “learning to code” phase should be a dry approach that 
focusses entirely upon code tracing and explaining and eschews 
code-writing. On the contrary, I believe the sentiment expressed in 
the first two pages of Lockhart’s lament, about the traditional dry 
teaching of mathematics [44], applies equally to the teaching of 
programming – students should enjoy the first phase and they 
should write code. However, teachers should lower their 
expectations of how successful students will be at writing code in 
this first phase. Instead, teachers should use the student’s clumsy 
attempts at code writing as an opportunity to motivate the teaching 
of tracing and explaining. Getting the balance right between code-
writing and the other skills is part of the art of teaching. While it is 
true that students can be motivated by writing code, it is equally 
true that students can be de-motivated when they fail to succeed at 
code-writing. Explicitly teaching tracing and explaining will lead 
to a happier code-writing experience. Successfully teaching in the 
“learning to code” phase is not about teaching some skills to the 
exclusion of all others. Rather, it is about getting the balance right. 
Currently, there is an imbalance, with an over emphasis on code-
writing. 

10. CONCLUSION 
I recently retired from my university appointment. What research I 
may do in the future remains to be seen, so I took the opportunity 
of this keynote to tell the story of my education research career. My 
apologies to the reader if telling my story seems self-indulgent, but 
humans learn best from stories. For tens of thousands of years, 
human have gathered around campfires and passed on knowledge 
through stories. For example, the aborigines of arid Australia tell 
creation myths that are entertaining and sometimes whimsical but 
embedded in the stories is knowledge for the children on where they 
can find water when, as adults, they eventually visit unfamiliar 
land. Through telling my own creation myth, I hope I have helped 
the reader to someday find water. 
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