
Pre-trained Language Model for Web-scale Retrieval in Baidu
Search

Yiding Liu#, Guan Huang#, Jiaxiang Liu, Weixue Lu, Suqi Cheng, Yukun, Li, Daiting Shi,
Shuaiqiang Wang, Zhicong Cheng, Dawei Yin∗

Baidu Inc., China
{liuyiding.tanh,chengsuqi}@gmail.com

{huangguan01,liujiaxiang,luweixue,liyukun01,shidaiting01,wangshuaiqiang,chengzhicong01}@baidu.com
yindawei@acm.org

ABSTRACT
Retrieval is a crucial stage in web search that identifies a small set of
query-relevant candidates from a billion-scale corpus. Discovering
more semantically-related candidates in the retrieval stage is very
promising to expose more high-quality results to the end users.
However, it still remains non-trivial challenges of building and
deploying effective retrieval models for semantic matching in real
search engine. In this paper, we describe the retrieval system that
we developed and deployed in Baidu Search. The system exploits the
recent state-of-the-art Chinese pretrained language model, namely
Enhanced Representation through kNowledge IntEgration (ERNIE),
which facilitates the system with expressive semantic matching. In
particular, we developed an ERNIE-based retrieval model, which is
equipped with 1) expressive Transformer-based semantic encoders,
and 2) a comprehensive multi-stage training paradigm. More im-
portantly, we present a practical system workflow for deploying
the model in web-scale retrieval. Eventually, the system is fully
deployed into production, where rigorous offline and online ex-
periments were conducted. The results show that the system can
perform high-quality candidate retrieval, especially for those tail
queries with uncommon demands. Overall, the new retrieval system
facilitated by pretrained language model (i.e., ERNIE) can largely
improve the usability and applicability of our search engine.

KEYWORDS
Pretrained Language Models; Information Retrieval; Search
ACM Reference Format:
Yiding Liu#, Guan Huang#, Jiaxiang Liu, Weixue Lu, Suqi Cheng, Yukun,
Li, Daiting Shi, Shuaiqiang Wang, Zhicong Cheng, Dawei Yin∗. 2021. Pre-
trained Language Model for Web-scale Retrieval in Baidu Search. In Proceed-
ings of ACM Conference (Conference’17). ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Search engines (e.g., Google, Baidu, Bing) are critical tools for people
to find useful information from massive web documents. A modern
search engine usually employ a multi-stage pipeline that gradually
narrows down the number of relevant documents (i.e., web pages),
where retrieval is usually known as the very first stage. It aims at
identifying a few hundreds or thousands of relevant candidates
Co-first authors.
∗ Dawei Yin is the corresponding author.

Conference’17, July 2017, Washington, DC, USA
2021. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

from the entire billion-scale corpus, which has significant impact
to the overall capability of a search engine.

Nevertheless, the unprecedented scale and diversity of web doc-
uments impose many challenges to the retrieval system. First (C1),
semantic matching [20] is one of the most critical concern, while
conventional methods based on text matching (e.g., BM25 [34]) may
easily fail at modeling relevant information with different phrasing.
Worse still, an increasing number of queries are in the style of natu-
ral language, making the semantic modeling even more challenging.
Second (C2), both search queries and web contents are highly het-
erogeneous, following long-tail distributions. For example, a large
amount of low-frequency queries (i.e., tail queries) have never been
seen before by the search engine. As such, the semantics of tail
queries and documents are difficult to be accurately inferred. Third
(C3), to create significant impact to real-world applications, it also
calls for practical solutions on deploying the retrieval model to
serve web-scale data.

Extensive efforts from both academia and industry have been
dedicated to tackle these challenges. To conduct semantic retrieval,
a wealth of studies [8, 14, 33, 45] have explored various bi-encoder
models (i.e., Siamese networks or two-tower models), where dif-
ferent representation learning techniques has been employed as
semantic encoders. Given a query and a document, the semantic
encoder takes the query text and the document text (e.g., title) as
inputs, and respectively produces two embeddings for the relevance
computation. Recently, BERT [4] has made significant progress on
natural language understanding, and thus has also been applied
as a more powerful semantic encoder [2, 16, 23]. The BERT-based
bi-encoder and its variants have achieved the state-of-the-art per-
formance on retrieval tasks [1, 44], which can be mainly attributed
to the expressive deep attention-based structure (i.e., Transformer)
and the pretraining and fine-tuning paradigm. Although consid-
erable research progress has been made, there is still a lack of
investigation on how to develop and deploy such retrieval models
in the online environment of a search engine.

Present work. In this paper, we introduce a novel retrieval system
that is fully deployed in Baidu Search1, the dominant search engine
in China. In particular, the retrieval system is equipped with the
recent state-of-the-art Chinese pretrained language model (PLM),
namely Enhanced Representation through kNowledge IntEgration
(ERNIE) [38], which enables effective semantic matching in the sys-
tem. More specifically, we design the retrieval system with several
key insights to tackle the aforementioned challenges:

1www.baidu.com

ar
X

iv
:2

10
6.

03
37

3v
4

 [
cs

.I
R

]
 1

6
O

ct
 2

02
1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

• To tackle the first challenge (C1), we leverage an ERNIE-based
(i.e., Transformer-based) bi-encoder to perform expressive seman-
tic matching. In particular, the Transformer encoders directly
take the raw texts of queries and web documents as inputs and
encode their semantics in latent embeddings. The deep structure
of Transformer encoders allow the complicated semantics to be
more comprehensively modeled. The dense attention over the
raw texts can also keep the semantics of fine-grained context,
such as using different prepositions (e.g., “for” vs. “to”), which is
more friendly to conversational queries. Moreover, we integrate
a poly-interaction scheme [16] and effective training data min-
ing strategies, which further improves the effectiveness of the
retrieval model.

• To tackle the second challenge (C2), we further propose a multi-
stage training paradigm for optimizing the retrieval model. In
particular, the training stages are designed with different data
sources and objectives, which allows rich knowledge to be ab-
sorbed by the model. Compared with training-from-scratch, our
proposed paradigm can further boost the generalization ability
of the model, which is especially beneficial for tail queries.

• To tackle the third challenge (C3), we develop a system archi-
tecture that serves the proposed model for large-scale web re-
trieval. In particular, we incorporate the semantic matching with
conventional text matching to collaboratively generate relevant
candidates. Moreover, we further introduce a lightweight post-
retrieval filtering module that provides an unified filtering for
the retrieval, where more statistical features (e.g., clickthrough
rate, dwell time) can be introduced to consider the overall quality.
Overall, the system architecture allows the proposed model to
work together with conventional text-matching workflow and
offers flexibility for including other features.

To the best of our knowledge, this is one of the largest applica-
tions of pre-trained language models for web-scale retrieval. We
anticipate this paper to provide our practical experiences and new
insights for incorporating PLMs in web retrieval. The main contri-
butions can be summarized as follows:

• The retrievalmodel.We leverage Transformers as the semantic
encoders for web retrieval, and further exploit a poly-interaction
scheme and several strategies for mining training data. Themodel
can capture complicated semantic information underlying query
and web documents, and is effective for semantic matching.

• Training paradigm. We introduce a novel multi-stage training
paradigm that facilitates the retrieval model to learn rich informa-
tion. This would significantly improve the generalization ability
of the model, especially for the tail queries.

• System design. We design an effective and efficient system
workflow to server the model, allowing it to seamlessly work
with the conventional workflow to boost the overall performance.
We also introduce a post-retrieval filtering module, which inte-
grates statistical features and semantic relatedness that measure
the overall quality of the candidates in an unified manner.

• Evaluation. We conduct extensive offline and online experi-
ments to validate the effectiveness of the retrieval system. The
results show that the deployment of the system can significantly
improve the usability and applicability of the search engine.

2 RELATEDWORK
2.1 Semantic Retrieval in Web Search
Semantic retrieval is essential for a modern retrieval system. Typical
structures of semantic retrieval models can be viewed as bi-encoders
or Siamese networks [5], which comprises two encoders that con-
duct semantic modeling. Most of the existing studies mainly focus
on designing the encoders with different representation learning
techniques [8, 13, 14, 21, 33, 45]. A representative work, namely
Deep Semantic Similarity Model (DSSM) [14], is one of the earli-
est DNN methods for semantic modeling with clickthrough data.
The deep fully-connected architectures of the DSSM encoders can
extract expressive semantic information and achieve superior per-
formance on web search. Thereafter, other DNN-based retrieval
methods have thrived over the past years [27], including those
based on Convolutional Neural Networks (CNNs) [7, 35–37] and
Recurrent Neural Networks (RNNs) [29, 30].

The common bi-encoder structure of those models allows a
large number of document embeddings to be pre-computed and
cached offline, which is very efficient for online retrieval. There-
fore, such model structure has also been developed in real-world
products [11, 13, 47]. For instance, Huang et al. [13] employ DNN-
based bi-encoder in Facebook Search system, and introduce various
practical experiences in the end-to-end optimization of the system.
Zhang et al. [47] introduce embedding learning for the semantic
retrieval in their E-commerce search service. Besides, Yin et al. [46]
also adopts deep semantic matching in the core ranking module
of Yahoo Search. Different from previous studies, we explore pre-
trained language model with multi-stage training to better perceive
the semantics behind queries and documents.

Despite the above-mentioned bi-encoder models, interaction-
based methods are also widely used in many information retrieval
systems [9, 10, 44, 48–52]. As such, another line of research for
semantic matching is to model query-document interaction with
DNNs [25, 28, 40, 44, 53]. However, they cannot cache the document
embeddings offline, and thus are inefficient for retrieval. They are
preferred for ranking stage, which will not be further discussed
in this paper. In our search engine, interaction-based methods are
exploited to build the PLM-based ranking system [53].

2.2 Pretrained Language Models
Pretrained Language Models (PLMs), such as ELMo [31], BERT [4]
and ERNIE [38], have achieved monumental success in natural lan-
guage understanding. Notably, the recent state-of-the-art PLMs [4,
22, 43] are usually based on Transformers [39], which exploit a deep
structure with stacked multi-head attention and fully-connected
layers. More importantly, they adopted unsupervised pretraining
with large corpus, and thus can incorporate more useful knowl-
edge in the models. As BERT and its successors (e.g., XLNet [43],
RoBERTa [22]) exhibit superior capacity in understanding textual
data, a handful of studies start to leverage them for semantic re-
trieval [2, 16, 24]. For instance, Chang et al. [2] propose an early
attempt that introduces BERT-based bi-encoders for large-scale
retrieval. It also studies the effects of several new pretraining tasks.
Humeau et al. [16] advance such bi-encoder with attentive interac-
tion for the query and document embeddings. Lu et al. [23] explore
the negative sampling strategies for BERT-based bi-encoders at

both pretraining and finetuning stages. However, despite the initial
success achieved by these work, there is still a lack of investigation
on developing and deploying such model for web-scale retrieval,
especially in real-world productions. In this paper, we propose to
leverage the state-of-the-art Chinese pretrained language model,
namely Enhanced Representation through kNowledge IntEgration
(ERNIE) [38], for building the retrieval system of our search engine.

3 RETRIEVAL MODEL
In this section, we first present the task definition, and then intro-
duce the details of our proposed retrieval model.

3.1 Task Definition
Given a query 𝑞, the web retrieval task aims to return a set of
relevant documents from a large corpus 𝐷 , where the size of the
corpus can be tens of billions or more. We denote by 𝐷+

𝑞 the set
of documents relevant to the query. Different from conventional
retrieval with term matching, semantic retrieval computes the rel-
evance score 𝑓 (·) in a learned embedding space [2, 18, 19, 26, 42],
using similarity metrics (e.g., dot-product, cosine similarity) as:

𝑓 (𝑞, 𝑑) = sim(𝜙 (𝑞;𝜃),𝜓 (𝑑 ; 𝛽)), (1)

where 𝜙 (or𝜓) is the representation model (i.e., encoder) parame-
terized by 𝜃 (or 𝛽) that encodes the query (or document) to dense
embeddings.

3.2 Model Architecture
In this work, we are interested in parameterizing the encoders 𝜙
and𝜓 as deep Transformer models [39] due to its expressive power
in modeling natural language.
The bi-encoder backbone. By implementing 𝜙 and 𝜓 as deep
Transformers, we refer the paradigm described in Eq. (1) as bi-
encoder [16]. More specifically, let T be a multi-layer transformer
encoder, which is a stack of 𝑛 transformer blocks. Each block con-
sists of a multi-head self-attention (MHA) sublayer followed by
a feed-forward (FFN) sublayer, where MHA allows the model to
jointly attend to different subspaces and FFN aggregates the atten-
tion results of different heads. The encoder takes {[CLS],𝑇1, · · · ,𝑇𝑁 }
(or

{
[CLS],𝑇 ′

1 , · · · ,𝑇
′
𝑀

}
), i.e., the tokenzied sequence of the raw

query (or document) text, as the input and outputs an encoded
sequence 𝐶, 𝐹1, · · · , 𝐹𝑁 (or 𝐶 ′, 𝐹 ′1, · · · , 𝐹

′
𝑀
) as described in Figure 1.

Note that [CLS] is a pseudo token that aggregates information in the
encoder for the subsequent matching. For each transformer layer,
the parameters are shared between query and document encoders
(i.e., 𝜙 and𝜓), which has multiple potential benefits, such as reduc-
ing the number of model parameters so as to control model com-
plexity [6], introducing prior knowledge to regularize models [41],
and saving the storage space or memory size [17]. The conventional
bi-encoder computes the relevance score with a simple dot-product
between the output CLS embeddings, i.e., 𝑓 (𝑞, 𝑑) = 𝐶 ·𝐶 ′.
Poly attention. Different from vanilla bi-encoder, we further de-
velop a poly attention scheme that enables more flexibility for mod-
eling query semantics. This idea is originated from poly-encoder [16]
and is slightly customized in our retrieval model, which works dif-
ferently during training and prediction phases.

Prediction
Phase

...

! "# "$!′... "#& ... "'&

Encoder

Training
Phase

Encoder

AttentionCode 1 AttentionCode m CLS-pooling

P1 Pm... !′

score s1 ... score sm

score (= *+,-.#/ (-

...

! "# "$!′... "#& ... "'&

Encoder Encoder

AttentionCode 1 AttentionCode m CLS-pooling

P1 Pm... !′

Mean-pooling

retrieval score (

[CLS] 0# 0$...

1!23 1# 1$...

[CLS] 0#& 0'&...

1!23 1#& 1$&...

[CLS] 0# 0$...

1!23 1# 1$...

[CLS] 0#& 0'&...

1!23 1#& 1'&...

Figure 1: Model architectures and relevance computation.

In the training phase, as shown in the upper half part of Figure
1, we introduce a set of𝑚 context codes, i.e., 𝑐0, · · · , 𝑐𝑚−1, where
each 𝑐𝑖 extracts a global representation 𝑃𝑖 by attending over all the
outputs of the query encoder (i.e., 𝐶, 𝐹1, · · · , 𝐹𝑁) as

𝑃𝑖 = 𝑤
(𝑖)
0 ·𝐶 +

𝑁∑︁
𝑗=1

𝑤
(𝑖)
𝑗

· 𝐹 𝑗 , (2)

where
(
𝑤

(𝑖)
0 , · · · ,𝑤 (𝑖)

𝑁

)
= Softmax (𝑐𝑖 ·𝐶, · · · , 𝑐𝑖 · 𝐹𝑁). These global

context features 𝑃1, · · · , 𝑃𝑚 can be interpreted as different aggre-
gations of the semantics from all the query terms, which reflects
fine-grained query demands. Subsequently, each of the𝑚 global
context features is compared with the document representation
𝐶 ′ using dot-product, followed by a max-pooling to finalize the
relevance score, i.e.,

𝑓 (𝑞, 𝑑) = max𝑚𝑖=1𝑃𝑖 ·𝐶
′. (3)

In the retrieval/prediction phase, we employ a slightly different
strategy due to a practical concern. In real application with massive
web documents, document representations must be pre-computed
to build indexes, which enable efficient retrieval with fast nearest
neighbor search. In such case, relevance computation based on Eq.
(3) is clearly infeasible, as such metric with max-pooling can hardly
be supported by existing index schemes. Motivated by this, we
propose to construct an unified surrogate embedding with mean
pooling over all 𝑃𝑖 , i.e., 1

𝑚

∑𝑚
𝑖=1 𝑃𝑖 . As such, the final relevance score

!"

!#

!$

!%

&"' &#' &$' &%' &"(&#(&$(&%(

!) query &)' relevant doc &)(strong negative

relevant (+, -) pair

irrelevant (+, -) pair
corresponding to
strong negative

irrelevant (+, -) pair
corresponding to
random negative

Figure 2: Illustration of negative sampling during training.

is defined as

𝑓 (𝑞, 𝑑) = 𝑃𝑎𝑣𝑔 ·𝐶 ′ =

(
1
𝑚

𝑚∑︁
𝑖=1

𝑃𝑖

)
·𝐶 ′. (4)

With such definition, index-based nearest neighbor search can be
leveraged, which largely improves the applicability of the model.
Remark. As already mentioned, the relevance score is calculated
inconsistently between training and predicting phases. In practice,
we find out that such inconsistency would not undermine the model
performance for semantic retrieval. Therefore, through bagging
distinct features learnt by the context codes, we can achieve a better
and more heterogeneous representation of the query for a more
powerful semantic matching with that of the document.

3.3 Optimization
We formulate the learning procedure of the retrieval model using
maximum likelihood estimation: Given a query 𝑞, all of its relevant
documents 𝐷+

𝑞 and irrelevant ones 𝐷−
𝑞 , the optimal parameters

𝜃∗, 𝛽∗ can be defined as:

𝜃∗, 𝛽∗ = argmax
𝜃,𝛽

∑︁
𝑞

∑︁
𝑑+∈𝐷+

𝑞

𝑝 (𝑑+ |𝑞, 𝑑+, 𝐷−
𝑞), (5)

where 𝑝 (𝑑+ |𝑞, 𝑑+, 𝐷−
𝑞) is the probability that 𝑓 can separate a rele-

vant document 𝑑+ from all irrelevant ones 𝐷−
𝑞 . Note that we con-

sider the context codes 𝑐𝑖 are the parameters of the query encoder,
which are jointly trained.

We implement 𝑝 (𝑑+ |𝑞, 𝑑+, 𝐷−
𝑞) as a contrastive probability, i.e.,

𝑝 (𝑑+ |𝑞, 𝑑+, 𝐷−
𝑞) =

exp
(
𝑓 (𝑞, 𝑑+)/𝜏

)
exp

(
𝑓 (𝑞, 𝑑+)/𝜏

)
+

∑︁
𝑑−∈𝐷−

𝑞

exp (𝑓 (𝑞, 𝑑−)/𝜏)
, (6)

where 𝜏 , which is normally set to 1, is the temperature of the soft-
max operation [12]. Using a higher value for 𝜏 produces a softer
probability distribution over classes (i.e., relevant or irrelevant).

Furthermore, as it is inapplicable to know and use all the real
relevant and irrelevant documents in the training, we reformulate
the optimization problem with sampled relevant and irrelevant
documents (respectively denoted as 𝐷̂+

𝑞 and 𝐷̂−
𝑞) as

𝜃∗, 𝛽∗ = argmax
𝜃,𝛽

∑︁
𝑞

∑︁
𝑑+∈𝐷̂+

𝑞

𝑝 (𝑑+ |𝑞, 𝑑+, 𝐷̂−
𝑞). (7)

3.4 Training Data Mining
To solve the optimization problem as Eq. (7), the key of model
training lies on the construction of 𝐷̂+

𝑞 and 𝐷̂−
𝑞 , such that a better

model can be learned for semantic retrieval. In this subsection, we
elaborate how we mine the positive and negative data for training.
Positives and negatives in different data sources. For mining
positive and negative examples, we first consider two kinds of data
sources that are commonly used in practice:
• Search log data, where the queries and documents are logged
with click signal, i.e., whether the document is clicked by the
user. For each query, we use those clicked results as positives
and those exposed but non-click results as negatives, as clicks
can roughly indicate the satisfaction of user’s intent.

• Manually labeled data is usually collected with fine-grained
grades (i.e., 0 to 4) assigned by human evaluation. For each
query, the positive and negative examples are defined in a
pairwise manner. For a given document that is considered as
positive, other lower-grade documents under the same query
can be considered as negatives.

In-batch negativemining. The goal of online retrieval is to distin-
guish a tiny fraction of relevant documents from massive irrelevant
documents (i.e., |𝐷+

𝑞 | ≪ |𝐷−
𝑞 | ≈ |𝐷 |). Instead of logging (or label-

ing) many irrelevant documents, we leverage an in-batch negative
mining scheme [18], which is a more efficient way to construct
those completely irrelevant documents. To avoid confusion, we
refer to the non-click (or lower-grade) samples as strong negatives,
and the in-batch negatives as random negatives.

Particularly during the training of our model, we consider ran-
dom negatives as those documents (i.e., positives and strong nega-
tives) of other queries in the same mini-batch. As data are shuffled
before fed to the model, the random negatives are generally quite
distinct from the query, which helps mimic the online retrieval
scenario, i.e., identifying positives from massive random negatives.
In addition, to collect sufficient random negatives from each mini-
batch, we exploit a simple yet practical solution, i.e., increasing the
batch size. We apply mix-precision method that allows larger batch
size during training with a fixed memory consumption. The batch
size is set to make maximum use of GPU memory.

Figure 2 shows an example of the overall negative sampling
strategies in a more intuitive way. In the example, the mini-batch
of size 4 consists of four triplets {(𝑞𝑖 , 𝑑+𝑖 , 𝑑

−
𝑖
), 𝑖 = 1, 2, 3, 4}. For the

query 𝑞1, the positive and strong negative documents are respec-
tively denoted as 𝑑+1 and 𝑑−1 , and 𝑑

+
2 , 𝑑

+
3 , 𝑑

+
4 , 𝑑

−
2 , 𝑑

−
3 , 𝑑

−
4 are random

negatives. For each row (i.e., each query) in Figure 2, there is one
positive and a set of negatives, which can be used as 𝑑+ and 𝐷−

𝑞 in
Eq. (7). Therefore, the training data mined with these strategies can
be used to optimize the retrieval model based on Eq. (7).

4 TRAINING PARADIGM
The training paradigm of pretraining and finetuning has been
widely employed for model optimization in many natural language
processing problems. Representations learned by such paradigm
usually show competitive performance across many tasks. However,
such superiority has not yet been fully exploited for web retrieval.
In this section, we propose a novel multi-stage training paradigm.
Particularly, as shown in Figure 3, we divide the entire training

! "# "$ "%&' "#(... "%&'... ")(

[CLS] *# *$ [SEP] *#(... [SEP]... *)(

&!+% &# &$ &%&' &#(... &%&'... &)(

,%'

ERNIE

-+- -+-

Stage 1: pretraining
Model: n-layer Transformer
Data: heterogeneous corpus (Chinese
Wikipedia, Baidu news & Baike & Tieba)
Tasks: entity- & phrase-level MLM; NSP
Training: unsupervised

Masked Sentence A Masked Sentence B

! "# "$ "%&' "#(... "%&'... ")(

[CLS] *# *$ [SEP] *#(... [SEP]... *)(

&!+% &# &$ &%&' &#(... &%&'... &)(

,%'

ERNIE

-+- -+-

Stage 2: post-pretraining
Model: n-layer Transformer
Data: large-scale search logs
Tasks: : entity- & phrase-level MLM; NSP
Training: unsupervised

Query Title

! "# "$!′... "#(... ")(

[CLS] *# *$ *#(... ... *)(

&!+% &# &$ &#(... ... &)(

'/01

ERNIE

2

Stage 4: target fine-tuning
Model: the retrieval model
Data: small-scale manually labeled data
Tasks: semantic matching
Training: supervised

Query Title

[CLS]

&!+%

ERNIE

3
score

! "# "$!′... "#(... ")(

[CLS] *# *$ *#(... ... *)(

&!+% &# &$ &#(... ... &)(

'/01

ERNIE

2

Stage 3: intermediate fine-tuning
Model: the retrieval model
Data: large-scale search logs
Tasks: semantic matching
Training: supervised

Query Title

[CLS]

&!+%

ERNIE

3
score

Figure 3: Training Paradigm of ERNIE-based Retrieval Model.

process into four stages: (1) pretraining, (2) post-pretraining,
(3) intermediate fine-tuning, and (4) target fine-tuning. Each
stage is carefully designed with different training data and objec-
tives, which boost the generalization ability of the model. The
overall training pipeline is shown in Figure 3.

4.1 Stage 1: Pretraining
In this stage, we follow the same pretraining process in [38] to train
an ERNIE encoder (i.e., an 𝑛-layer transformer). It adopts hetero-
geneous corpus, i.e., Chinese Wikipedia, Baidu Baike (containing
encyclopedia articles written in formal languages), Baidu news and
Baidu Tieba (an open discussion forum like Reddits), to learn lan-
guage representation enhanced by entity- and phrase-level masking
strategies. The heterogeneous corpus contributes a large propor-
tion of web documents in our search engine, hence the pretrained
ERNIE model can effectively transfer knowledge to web retrieval.
The pretraining is unsupervised, where the tasks include masked
word prediction (i.e., MLM - Masked Language Modeling) and the
next sentence prediction (NSP).

4.2 Stage 2: Post-pretraining
Search engine processes billions of various queries with diverse
goals or intentions every day, such as medical advice, travel guides,
latest news, etc. Pretraining only on document corpus might be
limited to tackle all kinds of requests from users. In this stage, we
transfer previous pretrained model and continue pretaining on both
query and document corpus of Baidu Search with the same tasks
(i.e., MLM and NSP) as Stage 1.

We name Stage 2 as post-pretaining, which keeps the model
structure (i.e., a 𝑛-layer Transformer) and the training tasks while
changes the training data. Specifically, we collect one-month (i.e.,
tens of billions of) user search logs for post-pretraining. The to-
kenized raw texts of the query and the title of the document are
concatenated as the input during this stage. Then we apply the same
masking strategies as ERNIE for MLM and take clicked documents
as the next sentence of the query for NSP.

4.3 Stage 3: Intermediate Fine-tuning
From this stage, we start to fine-tune the retrieval model. We first
fine-tune the retrieval model on an intermediate task, before fine-
tuning again on the target task of interest [32]. In particular, we
leverage the post-pretrained ERNIE produced by Stage 2, as the
encoders of our retrieval model, which is subsequently optimized
using the same training data (i.e., search logs) as Stage 2. The train-
ing objective is as presented in Eq. (7), and we construct positives
and negatives for training as introduced in Section 3.4. Using an
intermediate objective that more closely resembles our target task
leads to better and faster fine-tuning performance.

4.4 Stage 4: Target Fine-tuning
Finally, we fine-tune our retrieval model produced by Stage 3 on
a relatively small manually-labeled data, which we consider is the
most accurate and unbiased data for learning the retrieval model.
For the data collection, a set of queries are sampled from query
logs, and a certain number of query-document pairs are labeled
according to their relevance judged by human editors. A 0-4 grade
is assigned to each query-document pair based on the degree of
relevance. The training objective is as presented in Eq. (7), and
we construct positives and negatives for training as introduced in
Section 3.4.

5 DEPLOYMENT
In this section, we first introduce the embedding compression and
quantization, which saves the online cost for retrieval. Then, we
present the general picture of how the retrieval model works in the
retrieval system. For the detailed implementation of our deployed
model, please refer to the Appendix.

5.1 Embedding Compression and Quantization
We apply compression and quantization for the output embeddings
of the retrieval model. On the document side, it can significantly
reduce the memory cost for caching the embeddings; On the query
side, it saves the transmission cost for query embedding, and thus
improves the system throughput.
Compression.We jointly train a compression layerwith the ERNIE
encoders. The compression layer is implemented as a fully-connected

Document
Encoder (ERNIE)

Doc Title

Embedding
Database

Embedding
ANN Indexes

Offline Database & Index
Construction

Text Matching Embedding ANNTerm
Indexes

Embedding
ANN Indexes

Doc_ID

Query TextQuery Processing Query Encoder
(ERNIE)

Feature
Database

Post-Retrieval Filtering

Embedding
Database

Conventional Workflow

𝑓!" 𝑓#" 𝑓$" … 𝑓%&'(%"

ERNIE-Enhanced
Workflow

Online ERNIE-
Enhanced Retrieval

… Doc_ID

Figure 4: The overall workflow of the ERNIE-enhanced retrieval system.

layer that takes the output embeddings of the encoders (i.e., 𝑃𝑖 and
𝐶 ′) as inputs, and produces lower-dimensional embeddings. This
would largely save the memory cost, with very slight decrease w.r.t.
accuracy. In practice, we reduce the size of output embeddings from
768 to 256, which improves the overall efficiency of transmission
and storage by 3 times.
Quantization. Quantization is a very promising technique for
boosting the efficiency and scalability of neural networks [15]. For
deploying our model to efficiently serving massive search queries,
we apply a commonly-used int8 quantization to the output em-
beddings, where the overall efficiency can further be boosted by 4
times. More details of the embedding quantization can be referred
to the Appendix.

5.2 SystemWorkflow
An important fact for building an effective retrieval system is
that, neither explicit text matching nor embedding-based semantic
matching can handle all the various kinds of queries. Instead, it
is more promising to integrate the two types of retrieval methods
together, to provide a better overall performance. Motivated by
this, we developed a novel system workflow, which is depicted in
Figure 4. Compared with conventional text matching, the system is
upgraded with two modules:

• ERNIE-based retrieval. The system enables the ERNIE-based re-
trieval model towork in parallel with the conventional retrieval
workflow (i.e., text matching), which offers high maintainabil-
ity of the system.

• ERNIE-enhanced post-retrieval filtering.We further introduce an
unified post-retrieval filtering module. It takes both retrieved
documents from text matching and ERNIE-based semantic
matching, and conduct effective post-retrieval filtering for fur-
ther discovering high-quality candidates.

We elaborate the system workflow with the two modules, which
including both offline and online stages.
Offline database and index construction. As shown in the left
part of Figure 4, during the offline stage, we use the trained ERNIE
encoder to compute the embeddings (with the compression and
quantization) for all documents in the corpus, based on which
we build 1) Approximate Nearest Neighbor (ANN) indexes, and

2) an embedding database for the above-mentioned two modules,
respectively. In particular, the ANN indexes are deployed for the
ERNIE-based retrieval stage, to enable efficient embedding-based
candidate generation via fast nearest neighbor search. The embed-
ding database is used for the post-retrieval filtering stage. It is a
key-value database for efficient document embedding lookup with
given document ids. Next, we introduce the online workflow and
show how the database and indexes are used online.
Online integrated retrieval. For the online retrieval, we inte-
grate conventional retrieval and the novel ERNIE-based semantic
retrieval. The conventional retrieval first processes the query text
with several operations (e.g., word segmentation, stop-word filter-
ing), and then conducts keyword/term matching with term indexes
(i.e., inverted indexes) to retrieve a set of documents. In parallel,
semantic retrieval first fetch the query embedding. After online
embedding compression and quantization, the query embedding is
applied for semantic retrieval with the ANN indexes. The results
produced by different retrieval approaches are merged to form a
candidate pool.
Online post-retrieval filtering. After the integrated retrieval, we
further introduce an online post-retrieval filtering stage, which fur-
ther narrows down the scale of the candidates. To achieve this,
the filtering module contains a lightweight ranking model (e.g.,
GBRank or RankSVM) that conducts an unified comparison for the
retrieval candidates. Particularly for each candidate document, we
fetch the statistical features (denoted as 𝑓 𝑑1 , 𝑓

𝑑
2 , 𝑓

𝑑
3 , ... in Figure 4),

such as click-through rate, from the feature database. Note that
the semantic matching score is also applied in this stage as an im-
portant feature (denoted as 𝑓 𝑑

𝐸𝑅𝑁𝐼𝐸
), where the scores computed

in semantic retrieval can be reused. For those candidates retrieved
by text matching, where the semantic matching scores are missing,
we fetch their embeddings from the embedding database, and then
compute the scores with the query embedding. As the candidate
pool formed by the online retrieval stage is small compared to the
entire corpus, the online computation of the semantic matching
scores does not significantly increase the time cost. By doing this,
we unify the comparison of all candidate documents with several
statistical features and a semantic feature, where the semantic mod-
eling capacity of our retrieval model can also benefit the documents
dug by conventional retrieval paradigm.

6 OFFLINE EVALUATION
We conduct an offline evaluation for the proposed retrieval model.
The implementation details of the model and more ablation study
can be found in the Appendix.

6.1 Datasets
We evaluate the retrieval model on the datasets that are collected
from the real production environment. Note all the data does not
contain any user-related information for the privacy concern.
Manually-labeled dataset (Manual). This dataset contains 6,423
queries and 147,341 query-document pairs. Each query has around
22 retrieved results on average. For each query, we collect docu-
ments from each stage of the search pipeline to ensure the diversity
of the dataset. The dataset is labeled on our crowdsourcing plat-
form, where a group of experts are required to assign an integer
score varies from 0 to 4 to each query-document pair. The score
represents whether the content of the document w.r.t. the query is
off-topic (0), slightly relevant (1), relevant (2), useful (3) or vital (4).
Automatic-annotated datasets (Auto). We collect another two
search log datasets, namely Auto-Rand and Auto-Tail, which con-
tains random queries and tail queries, respectively. Here, the tail
queries are identified as those who have no more than 10 searches
per week. For each query, we use our search engine to collect the
top-10 results in the final ranking stage as the positive examples (i.e.,
the relevant documents), and consider the top-10 results of other
queries as negative examples. After filtering noise and meaningless
queries, we finalize the two datasets, where Auto-Rand contains
18,247 queries and 112,091 query-document pairs, and Auto-Tail
contains 78,910 queries and 750,749 query-document pairs.

6.2 Evaluation Metrics
Positive-Negative Ratio. We report the positive-negative ratio
(PNR) on Manual dataset. For a given query 𝑞 and the associated
documents 𝐷𝑞 , the PNR can be formally defined as

𝑃𝑁𝑅 =

∑
𝑑𝑖 ,𝑑 𝑗 ∈𝐷𝑞

1(𝑦𝑖 > 𝑦 𝑗) · 1(𝑓 (𝑞, 𝑑𝑖) > 𝑓 (𝑞, 𝑑 𝑗))∑
𝑑𝑖′ ,𝑑 𝑗′ ∈𝐷𝑞

1(𝑦𝑖′ > 𝑦 𝑗 ′) · 1(𝑓 (𝑞, 𝑑𝑖′) < 𝑓 (𝑞, 𝑑 𝑗 ′))
, (8)

where 1(·) is an indicator function, i.e., 1(𝑎 > 𝑏) = 1 if 𝑎 > 𝑏, and
0 otherwise. PNR measures the consistency between the manual
labels and the model scores. We report the averaged PNR values
over all queries in the experiments.
Recall@10. We report Recall@10 on Auto-Rand and Auto-Tail
datasets. The metric is defined as 𝑅𝑒𝑐𝑎𝑙𝑙@10 = |𝐷𝑞∩𝐷̃𝑞 |/10, where
𝐷̃𝑞 represents the top-10 retrieval w.r.t. 𝑞 using the retrieval model
considering all the documents in a dataset as the corpus, and 𝐷𝑞 is
the set of collected ground truth. We report the averaged Recall@10
values over all queries in the experiments.

6.3 Offline Experimental Results
In the offline evaluation, we report the experimental results of the
proposed model during different training stages. Here, the perfor-
mance of pretraining and post-pretraining are reported when using
the 𝑛-layer Transformer in a bi-encoder model. Besides, we also
include a baseline method, i.e., the model that is used in the system
before deploying the ERNIE-base retrieval model.

Table 1 shows the results, where some key findings are observed:

Table 1: Offline experimental results on different stages.

Dataset Manual Auto-Rand Auto-Tail
Metric PNR Recall@10 Recall@10
Pretrain 1.34 18.92% 12.10%
Post-pretrain 1.43 35.99% 19.10%
Intermediate Fine-tune 2.00 83.14% 60.98%
Target Fine-tune 2.48 87.90% 71.13%
Online baseline 1.77 85.22% 65.79%

• The performance on different stages indicate that our proposed
training paradigm is able to gradually improve the performance
of the retrieval model. In particular, we can see that the model
in the pretrain stage does not contain any domain knowledge
w.r.t. the retrieval tasks, and thus performs poorly, where the
Recall@10 is below 20% on both Auto datasets. However, after
applying the multi-stage training paradigm, the Recall@10 of
the model finally reaches 87.90% and 71.13% on Auto-Rand and
Auto-Tail, respectively.

• By applying the multi-stage training, the retrieval model can
outperforms our online baseline w.r.t. Recall@10 on both Auto
datasets. Moreover, we also observe that the relative improve-
ment of our proposed model over the online base is large on
Auto-Tail (Δ = 8.1%) than Auto-Rand (Δ = 3.1%), in terms of
Recall@10. This shows that our proposed method can better
discover relevant results for tail queries, which is very helpful
in improving the user experience for the search engine.

• In addition, we can see that the proposed model can beat the
online baseline by a large margin w.r.t. PNR, where the value
is improved from 1.77 to 2.48. This tells us that the proposed
model not only can retrieval relevant documents, but also
prefer high-quality results, i.e., the documents with higher
manually-labeled grades.

Overall, our proposed model is able to gain superior performance
on semantic retrieval through the multi-stage training, and beat
the online baseline by a significant margin.

7 ONLINE EVALUATION
To investigate the impact of our proposed system to the search
engine, we deploy the new system and conduct online experiments
to compare it with the old retrieval system.

7.1 Interleaved Comparison
Interleaving [3] is a commonly-used technique for evaluating in-
dustrial information retrieval systems (e.g., recommender systems,
search engines). In interleaved comparison, the results of two sys-
tems are interleaved and exposed together to the end users, whose
click behaviors would be credited to the system that provides the
clicked results. The gain of the new system A over the base system
B can be quantified with Δ𝐴𝐵 , which is defined as

Δ𝐴𝐵 =
𝑤𝑖𝑛𝑠 (𝐴) + 0.5 ∗ 𝑡𝑖𝑒𝑠 (𝐴, 𝐵)

𝑤𝑖𝑛𝑠 (𝐴) +𝑤𝑖𝑛𝑠 (𝐵) + 𝑡𝑖𝑒𝑠 (𝐴, 𝐵) − 0.5, (9)

where𝑤𝑖𝑛𝑠 (𝐴) (or𝑤𝑖𝑛𝑠 (𝐵)) is a counter that would be increased
by 1 if the results produced by 𝐴 (or 𝐵) is preferred by the user,
and 𝑡𝑖𝑒𝑠 (𝐴, 𝐵) is increased by 1 otherwise. Intuitively, Δ𝐴𝐵 > 0

Table 2: Interleaved comparison.

ENINE-based retrieval Post-retreival filtering
Query type Query length Query type Query length

Rand Tail (freq < 3) Short (≤10) Long (10 <) Rand Tail (freq < 3) Short (≤10) Long (10 <)
Δ𝐴𝐵 +0.368% +0.992% +0.345% +0.426% +0.112% +0.274% +0.066% +0.191%
Δ𝐴𝐵-tw +0.281% +0.783% +0.253% +0.352% +0.226% +0.454% +0.176% +0.315%

*All the values are statistically significant (𝑡-test with 𝑝 < 0.05).

Table 3: Relative improvement on manual evaluation.

ERNIE-based retrieval Post-retrieval filtering
Rand Tail Rand Tail

Δ𝐷𝐶𝐺 +0.17% +0.22% +0.10% +0.65%
Δ𝐺𝑆𝐵 +3.50% +7.50% +3.96% +3.13%
*All the values are statistically significant (𝑡-test with 𝑝 < 0.05).

means 𝐴 is better than 𝐵. To further reduce the bias in the eval-
uation, we further introduce a time-weighted version of Δ𝐴𝐵 , de-
noted as Δ𝐴𝐵-tw, where the counters are weighted by the post-click
dwell time (mapped to [0, 1] with a sigmoid function). As such, the
Δ𝐴𝐵-tw can better reflect the relevance of the results with higher
confidence, as users would stay in a web page longer if it is relevant.

We conduct balanced interleaving experiments [3] for comparing
the ERNIE-enhanced system against the old retrieval system. The
results are shown in Table 2, which comprise the performance of
different modules and for different types of queries.

• First, we observe Δ𝐴𝐵 > 0 and Δ𝐴𝐵-tw > 0 in all the experi-
ments, which indicate that the new system can increase user
clicks with more relevant web documents.

• Second, the results also indicate that both the ERNIE-based re-
trieval and post-retrieval filtering can boost the effectiveness of
the system, while the ERNIE-based retrieval generally achieves
larger gain than the post-retrieval filtering, as it is effected
before the filtering stage.

• Third, we can see that the new system can achieve better per-
formance on the queries with low search frequency, i.e., tail
query. This validates that our proposed retrieval system has
more significant improvement for the tail queries.

• Also, the improvements on long queries (e.g., natural language
queries) is larger than on short queries, which might indicate
that the system can better handle the natural language queries.

7.2 Online A/B Test
We also conduct online A/B Test that compares the new system
with the old system for one week. In the online A/B test, We mainly
focus on the metrics that directly related to user experience. The
results show that the proposed retrieval system can largely improve
the overall user experience of the search engine. In particular, the
number of click behaviors has increased by 0.31%. The number of
click-and-stay behavior has increased by 0.57%. The average post-
click dwell time has increased by 0.62%. The click-through rate has
increased by 0.3%. All the reported values are statistically signifi-
cant with 𝑝 < 0.05. This shows that accurate semantic modeling
and semantic matching in the retrieval stage is very helpful for
improving the user engagement for the search engine.

7.3 Manual Evaluation for Online Cases
To more comprehensively show the impact of our proposed system,
we further conduct a manual evaluation on the final ranking results
with some real user-generated queries. This directly reflects the
quality of the results exposed to the end users.
Data preparation. We log a set of (several hundreds) queries and
the corresponding final impressions, i.e., the top-ranked web docu-
ments in the final ranking stage, using the ERNIE-enhanced and
the old retrieval systems. Note that the data logging is conducted
by multiple rounds to eliminate randomness. We filter out whose
queries that have identical impressions between the two systems,
and then use the rest for the manual evaluation. The relative im-
provement validated by manual evaluation is given in Table 3.
Discounted Cumulative Gain (DCG). We first log a dataset and
manually label the data with 0 to 4 grades, and then report the
relative improvement w.r.t. the average Discounted Cumulative
Gain (DCG) over the top-4 final results of all queries). The DCG is a
widely-used metric and thus we omit its definition here. As shown
in Figure 3, the results again show that our proposed system is able
to improve the effectiveness of retrieval, especially for tail queries.
Side-by-side comparison. Besides, we also conduct a side-by-side
comparison between the two systems. We log another dataset, and
require the human experts to judge whether the new system or
the base system gives better final results. Here, the relative gain is
measured Good vs. Same vs. Bad (GSB) as

Δ𝐺𝑆𝐵 =
#Good − #Bad

#Good + #Same + #Bad
, (10)

where #Good (or # Bad) indicates the number of queries that the new
system provides better (or worse) final results. Table 3 shows that
for both random queries and tail queries, the new ERNIE-enhanced
system can significantly outperform the base system.

8 CONCLUSION
In this paper, we described the novel retrieval system that is facili-
tated by pretrained language model (i.e., ERNIE). We developed and
deployed the system in Baidu Search, which is highly effective in
conducting semantic retrieval for web search. The system employs
1) an ERNIE-based retrieval model, 2) a multi-stage training para-
digm and 3) a unified workflow for the retrieval system. Extensive
offline and online experiments has shown that the retrieval system
can significantly improve the effectiveness and general usability of
the search engine.

REFERENCES
[1] Yinqiong Cai, Yixing Fan, Jiafeng Guo, Fei Sun, Ruqing Zhang, and Xueqi Cheng.

2021. Semantic Models for the First-stage Retrieval: A Comprehensive Review.
arXiv preprint arXiv:2103.04831 (2021).

[2] Wei-Cheng Chang, Felix X Yu, Yin-Wen Chang, Yiming Yang, and Sanjiv Kumar.
2020. Pre-training tasks for embedding-based large-scale retrieval. arXiv preprint
arXiv:2002.03932 (2020).

[3] Aleksandr Chuklin, Anne Schuth, Ke Zhou, and Maarten De Rijke. 2015. A
comparative analysis of interleaving methods for aggregated search. TOIS 33, 2
(2015), 1–38.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[5] Xingping Dong and Jianbing Shen. 2018. Triplet loss in siamese network for
object tracking. In ECCV. 459–474.

[6] Orhan Firat, Baskaran Sankaran, Yaser Al-Onaizan, Fatos T Yarman Vural, and
Kyunghyun Cho. 2016. Zero-Resource Translation with Multi-Lingual Neural
Machine Translation. In EMNLP. 268–277.

[7] Jianfeng Gao, Patrick Pantel, Michael Gamon, Xiaodong He, and Li Deng. 2014.
Modeling interestingness with deep neural networks. (2014).

[8] Jianfeng Gao, Kristina Toutanova, and Wen-tau Yih. 2011. Clickthrough-based
latent semantic models for web search. In SIGIR. 675–684.

[9] Yulong Gu, Zhuoye Ding, ShuaiqiangWang, Lixin Zou, Yiding Liu, and Dawei Yin.
2020. Deep Multifaceted Transformers for Multi-objective Ranking in Large-Scale
E-commerce Recommender Systems. In CIKM. 2493–2500.

[10] Jiafeng Guo, Yixing Fan, Qingyao Ai, and W Bruce Croft. 2016. A deep relevance
matching model for ad-hoc retrieval. In CIKM. 55–64.

[11] Malay Haldar, Prashant Ramanathan, Tyler Sax, Mustafa Abdool, Lanbo Zhang,
Aamir Mansawala, Shulin Yang, Bradley Turnbull, and Junshuo Liao. 2020. Im-
proving Deep Learning For Airbnb Search. In KDD. 2822–2830.

[12] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531 (2015).

[13] Jui-Ting Huang, Ashish Sharma, Shuying Sun, Li Xia, David Zhang, Philip Pronin,
Janani Padmanabhan, Giuseppe Ottaviano, and Linjun Yang. 2020. Embedding-
based retrieval in facebook search. In KDD. 2553–2561.

[14] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. 2013. Learning deep structured semantic models for web search using
clickthrough data. In CIKM. 2333–2338.

[15] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2017. Quantized neural networks: Training neural networks with low
precision weights and activations. JMLR 18, 1 (2017), 6869–6898.

[16] Samuel Humeau, Kurt Shuster, Marie-Anne Lachaux, and Jason Weston. 2019.
Poly-encoders: Transformer architectures and pre-training strategies for fast and
accurate multi-sentence scoring. arXiv preprint arXiv:1905.01969 (2019).

[17] Melvin Johnson, Mike Schuster, Quoc Le, Maxim Krikun, Yonghui Wu, Zhifeng
Chen, Nikhil Thorat, Fernanda Viégas, Martin Wattenberg, Greg Corrado, et al.
2017. Google’s Multilingual Neural Machine Translation System: Enabling Zero-
Shot Translation. TACL 5 (2017), 339–351.

[18] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey
Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense Passage Retrieval for Open-
Domain Question Answering. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP). 6769–6781.

[19] Kenton Lee, Ming-Wei Chang, and Kristina Toutanova. 2019. Latent Retrieval for
Weakly Supervised Open Domain Question Answering. In ACL. 6086–6096.

[20] Hang Li and Jun Xu. 2014. Semantic matching in search. Foundations and Trends
in Information retrieval 7, 5 (2014), 343–469.

[21] Yiding Liu, Yulong Gu, Zhuoye Ding, Junchao Gao, Ziyi Guo, Yongjun Bao,
and Weipeng Yan. 2020. Decoupled Graph Convolution Network for Inferring
Substitutable and Complementary Items. In CIKM. 2621–2628.

[22] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[23] Jing Lu, Gustavo Hernandez Abrego, Ji Ma, Jianmo Ni, and Yinfei Yang. 2020.
Neural Passage Retrieval with Improved Negative Contrast. arXiv preprint
arXiv:2010.12523 (2020).

[24] Wenhao Lu, Jian Jiao, and Ruofei Zhang. 2020. TwinBERT: Distilling Knowledge
to Twin-Structured Compressed BERT Models for Large-Scale Retrieval. In CIKM.
2645–2652.

[25] Zhengdong Lu and Hang Li. 2013. A deep architecture for matching short texts.
ç 26 (2013), 1367–1375.

[26] Yi Luan, Jacob Eisenstein, Kristina Toutanova, and Michael Collins. 2020.
Sparse, dense, and attentional representations for text retrieval. arXiv preprint
arXiv:2005.00181 (2020).

[27] Bhaskar Mitra, Nick Craswell, et al. 2018. An introduction to neural information
retrieval. Now Foundations and Trends.

[28] Bhaskar Mitra, Fernando Diaz, and Nick Craswell. 2017. Learning to match
using local and distributed representations of text for web search. In WWW.
1291–1299.

[29] Hamid Palangi, Li Deng, Yelong Shen, Jianfeng Gao, Xiaodong He, Jianshu Chen,
Xinying Song, and R Ward. 2014. Semantic modelling with long-short-term
memory for information retrieval. arXiv preprint arXiv:1412.6629 (2014).

[30] Hamid Palangi, H Palangi, L Deng, Y Shen, J Gao, X He, J Chen, X Song, and
R Ward. 2015. Deep Sentence Embedding Using the Long Short Term Memory
Network: Analysis and Application to Information Retrieval. arXiv. org.

[31] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word
representations. arXiv preprint arXiv:1802.05365 (2018).

[32] Yada Pruksachatkun, Jason Phang, Haokun Liu, Phu Mon Htut, Xiaoyi Zhang,
Richard Yuanzhe Pang, Clara Vania, Katharina Kann, and Samuel Bowman. 2020.
Intermediate-Task Transfer Learning with Pretrained Language Models: When
and Why Does It Work?. In ACL. 5231–5247.

[33] Ruslan Salakhutdinov and Geoffrey Hinton. 2009. Semantic hashing. IJAR 50, 7
(2009), 969–978.

[34] Hinrich Schütze, Christopher D Manning, and Prabhakar Raghavan. 2008. Intro-
duction to information retrieval. Vol. 39. Cambridge University Press Cambridge.

[35] Aliaksei Severyn and Alessandro Moschitti. 2015. Learning to rank short text
pairs with convolutional deep neural networks. In SIGIR. 373–382.

[36] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014.
A latent semantic model with convolutional-pooling structure for information
retrieval. In CIKM. 101–110.

[37] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014.
Learning semantic representations using convolutional neural networks for web
search. In WWW. 373–374.

[38] Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin
Tian, Danxiang Zhu, Hao Tian, and Hua Wu. 2019. Ernie: Enhanced representa-
tion through knowledge integration. arXiv preprint arXiv:1904.09223 (2019).

[39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS. 5998–6008.

[40] Shengxian Wan, Yanyan Lan, Jiafeng Guo, Jun Xu, Liang Pang, and Xueqi Cheng.
2016. A deep architecture for semantic matching with multiple positional sen-
tence representations. In AAAI, Vol. 30.

[41] Yingce Xia, Xu Tan, Fei Tian, Tao Qin, Nenghai Yu, and Tie-Yan Liu. 2018. Model-
level dual learning. In International Conference on Machine Learning. PMLR,
5383–5392.

[42] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett,
Junaid Ahmed, and Arnold Overwijk. 2020. Approximate nearest neighbor nega-
tive contrastive learning for dense text retrieval. arXiv preprint arXiv:2007.00808
(2020).

[43] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov,
and Quoc V Le. 2019. Xlnet: Generalized autoregressive pretraining for language
understanding. arXiv preprint arXiv:1906.08237 (2019).

[44] Andrew Yates, Rodrigo Nogueira, and Jimmy Lin. 2021. Pretrained Transformers
for Text Ranking: BERT and Beyond. In WSDM. 1154–1156.

[45] Wen-tau Yih, Kristina Toutanova, John C Platt, and Christopher Meek. 2011.
Learning discriminative projections for text similarity measures. In CoNLL. 247–
256.

[46] Dawei Yin, Yuening Hu, Jiliang Tang, Tim Daly, Mianwei Zhou, Hua Ouyang,
Jianhui Chen, Changsung Kang, Hongbo Deng, Chikashi Nobata, et al. 2016.
Ranking relevance in yahoo search. In KDD. 323–332.

[47] Han Zhang, Songlin Wang, Kang Zhang, Zhiling Tang, Yunjiang Jiang, Yun Xiao,
Weipeng Yan, and Wen-Yun Yang. 2020. Towards Personalized and Semantic Re-
trieval: An End-to-End Solution for E-commerce Search via Embedding Learning.
arXiv preprint arXiv:2006.02282 (2020).

[48] Xiangyu Zhao, Haochen Liu, Hui Liu, Jiliang Tang, Weiwei Guo, Jun Shi, Sida
Wang, Huiji Gao, and Bo Long. 2020. Memory-efficient Embedding for Recom-
mendations. arXiv preprint arXiv:2006.14827 (2020).

[49] Xiangyu Zhao, Chong Wang, Ming Chen, Xudong Zheng, Xiaobing Liu, and
Jiliang Tang. 2020. Autoemb: Automated embedding dimensionality search in
streaming recommendations. arXiv preprint arXiv:2002.11252 (2020).

[50] Lixin Zou, Long Xia, Zhuoye Ding, Jiaxing Song, Weidong Liu, and Dawei Yin.
2019. Reinforcement learning to optimize long-term user engagement in recom-
mender systems. In KDD. 2810–2818.

[51] Lixin Zou, Long Xia, Pan Du, Zhuo Zhang, Ting Bai, Weidong Liu, Jian-Yun Nie,
and Dawei Yin. 2020. Pseudo Dyna-Q: A reinforcement learning framework for
interactive recommendation. In WSDM. 816–824.

[52] Lixin Zou, Long Xia, Yulong Gu, Xiangyu Zhao, Weidong Liu, Jimmy Xiangji
Huang, and Dawei Yin. 2020. Neural Interactive Collaborative Filtering. In SIGIR.
749–758.

[53] Lixin Zou, Shengqiang Zhang, Hengyi Cai, Dehong Ma, Suqi Cheng, Daiting Shi,
Shuaiqiang Wang, Zhicong Cheng, and Dawei Yin. 2021. Pre-trained Language
Model based Ranking in Baidu Search. In KDD.

def model_encode_query(tokens):
all_embeds = ERNIE_encoder.get_all_outputs(tokens)
poly_embeds = poly_attention(all_embeds, context_codes)
return [fc_compression(poly_embeds[i]) for i in range(m)]

def model_encode_doc(tokens):
cls_embed = ERNIE_encoder.get_cls_output(tokens)
return fc_compression(cls_embed)

def train_interaction(q, pos, neg):
all_logits1, all_logits2 = [], []
for i in range(m):
in-batch random negative sampling via matrix multiplication
pos_logits_with_rand_neg = matmul(q[i], pos.T)
neg_logits_with_rand_neg = matmul(q[i], neg.T)
all_logits1.append(pos_logits_with_rand_neg)
all_logits2.append(neg_logits_with_rand_neg)

max_logits1 = reduce_max(all_logits1)
max_logits2 = reduce_max(all_logits2)
final_logits = concat(max_logits1, max_logits2)
loss = softmax_with_cross_entropy(final_logits)
return loss

def predict_interaction(q, d):
avg_q = reduce_mean(q)
return reduce_sum(avg_q * d)

def train(query_tokens, pos_doc_tokens, neg_doc_tokens):
query_embed = model.encode_query(query_tokens)
pos_doc_embed = model_encode_doc(pos_doc_tokens)
neg_doc_embed = model_encode_doc(neg_doc_tokens)
loss = train_interaction(query_embed, pos_doc_embed, neg_doc_embed)
apply_optimization(loss)

def predict(query_tokens, doc_tokens):
query_embed = model_encode_query(query_tokens)
doc_embed = model_encode_doc(doc_tokens)
score = predict_interaction(query_embed, doc_embed)
return score

Figure 5: Pseudo code of the model training and prediction.

9 APPENDIX
9.1 Implementation Details
Computation resources. We implement the proposed retrieval
model with PaddlePaddle (version 1.6.2) 2, an open-source library
for developing and deploying deep learning models. The model is
pretrained and finetuned with 32 and 8 NVIDIA V100 GPUs (32GB
Memory), respectively, on our distributed training platform.
Parameter settings. We use 6-layer Transformers as the query
and document encoders. In the input layer, we tokenize a given
query or document title into Chinese characters as integer tokens,
and map them into a set of embedding vectors with size 768. For
each Transformer layer, we set the dimension of each hidden token
representation as 768, the number of heads as 12, i.e., each head
produces a 64 dimensional output. Besides, we set the number of
context codes (i.e.,𝑚) as 16, and the dimension of the compression
layers as 256. For model optimization, we use an Adam optimizer,
and set the learning rate as 2e-5 and the batch size as 160 in all
stages. For each training stage, we apply 4,000 warm up steps for the
learning rate, and a 0.01 decay rate afterwards. During the training,
we use a 0.1 dropout rate for all the layers to random drop the
attention weights. Other unmentioned details are set as the same
as vanilla ERNIE model.
2https://github.com/PaddlePaddle/Paddle

Table 4: Ablation study on the improvements of our model.

ID Model Search log Manual data Storage / doc
0 Base 2.15 1.76 3072 bytes
1 0 + Poly 2.23 1.81 3072 bytes
2 1 + IBN 2.33 2.06 3072 bytes
3 2 + Compression 2.26 2.00 1024 bytes
4 3 + Quantization 2.27 2.01 256 bytes

Table 5: PNR values when varying the scoring method.

Method Search log Manual data
max𝑚

𝑖=1𝑃𝑖 ·𝐶
′ 2.205 1.955(

1
𝑚

∑𝑚
𝑖=1 𝑃𝑖

)
·𝐶 ′ 2.205 1.987

𝑃0 ·𝐶 ′ 2.161 1.940
𝑃1 ·𝐶 ′ 2.176 1.969
𝑃2 ·𝐶 ′ 1.131 1.909
𝑃3 ·𝐶 ′ 2.204 1.976

Implementations. We present the pseudo code to depict the over-
all implementation of our method for the sake of reproducibility.
Note that the the in-batch random negative samples are imple-
mented in train_interaction() by matrix multiplications, which is
very efficient in practice. Such implementation is also adopted by
other relatedwork (e.g., https://github.com/chijames/Poly-Encoder).

9.2 Details of Embedding Quantization
In particular, the output query and document embeddings are all
quantized from float32 to uint8. According to output embeddings
on a large-scale validation dataset, we calculate the data range
(𝑠𝑚𝑖𝑛
𝑖

, 𝑠𝑚𝑎𝑥
𝑖

) for each dimension 𝑖 of the output embeddings. Then,
we divide the data range into 𝐿 = 255 equal intervals of Length
𝑄𝑖 , where 𝑄𝑖 = (𝑠𝑚𝑎𝑥

𝑖
− 𝑠𝑚𝑖𝑛

𝑖
)/𝐿. For the value 𝑟𝑖 in dimension 𝑖

of a given output embedding, when performing quantization, its
quantized index 𝑄𝐼𝑖 (𝑟𝑖) is calculated by

𝑄𝐼𝑖 (𝑟𝑖) = ⌊(𝑟𝑖 − 𝑠𝑚𝑖𝑛
𝑖)/𝑄𝑖 ⌋ .

This index is in range [0, 255], which can be representation as a 8-bit
integer. When performing online inference, we recover a quantized
value 𝑟𝑖 by

𝑟𝑖 = 𝑄𝐼𝑖 (𝑟𝑖) ∗𝑄𝑖 +𝑄𝑖/2 + 𝑠𝑚𝑖𝑛
𝑖

to approximate 𝑟𝑖 . This quantization only causes a small loss of
precision which is ignorable for inference, but achieves significant
improvements on development efficiency. The quantitative experi-
mental results can be found in Table 4. On the document side, this
local quantization helps the system further save huge storage cost.
On the query side, it significantly reduces the transmission cost, as
the relevance computation for a given query would be distributed to
multiple workers. Through the local quantization, the transmission
and storage overheads further decrease to 1/4.

9.3 Offline Ablation Study
We further conduct several offline experiments to study the impact
of some details of the retrieval model. For the experiments, we use

two validation datasets, i.e., a search log dataset and a manually-
labeled dataset. The construction of the two types of datasets can be
found in Section 3.4. The manually-labeled dataset is the same as we
introduced in Section 6.1, and the search log data is isolated from the
large-scale training data, which contains 300,000 query-document
pairs. Note that all the following experiments are conducted for the
model trained after intermediate finetuning (i.e., Stage 3).

9.3.1 Comparison with vanilla bi-encoder. Comparedwith vanilla
ERNIE-based bi-encoder, our retrieval model is quite different, i.e.,
facilitated with poly attention mechanism, in-batch negative sam-
pling strategy, and compression & quantization. To clarify the in-
fluence of each of these differences, Table 4 shows the offline exper-
iments of how these distinct features are layered up in our model.
Note that the base (i.e., vanilla ERNIE-based bi-encoder) is opti-
mized with hinge loss, where the margin is set to 0.1. We can see
from the table that 1) the poly-attention and in-batch negatives (de-
noted as IBN) can significantly improve the model performance on
both datasets, 2) the compression would largely reduce the storage
cost, but slightly sacrifice the effectiveness, 3) the quantization is

shown to be loss-free w.r.t. the PNR metric on the offline datasets,
which is very promising to be adopted online.

9.3.2 The training-prediction inconsistency. As mentioned in
Section 3.2, we apply inconsistent schemes to finalize the output
score during training and prediction. Here, we conduct experiments
to investigate how the inconsistency would affect the performance
of the model. Table 5 shows the PNR values of the model using
different scoring methods on three extract validation datasets. Note
that the model used here is an intermediate version, and thus the re-
sults might not be aligned with other experiments. In the table, the
first row represents the scoringmethod used in training (i.e., Eq. (3)),
the second row represents the scoring method used in prediction
(i.e., Eq. (4)), and 𝑃0 to 𝑃4 indicate using fixed single global repre-
sentation for the prediction, who are randomly sampled from the
all 16 of them. We can see that our adopted mean-pooling method
(i.e., the second row) performs similarly to the scoring method
used in training. Thus, such inconsistency does not undermine the
performance of the model during prediction.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Semantic Retrieval in Web Search
	2.2 Pretrained Language Models

	3 Retrieval Model
	3.1 Task Definition
	3.2 Model Architecture
	3.3 Optimization
	3.4 Training Data Mining

	4 Training Paradigm
	4.1 Stage 1: Pretraining
	4.2 Stage 2: Post-pretraining
	4.3 Stage 3: Intermediate Fine-tuning
	4.4 Stage 4: Target Fine-tuning

	5 Deployment
	5.1 Embedding Compression and Quantization
	5.2 System Workflow

	6 Offline Evaluation
	6.1 Datasets
	6.2 Evaluation Metrics
	6.3 Offline Experimental Results

	7 Online Evaluation
	7.1 Interleaved Comparison
	7.2 Online A/B Test
	7.3 Manual Evaluation for Online Cases

	8 Conclusion
	References
	9 Appendix
	9.1 Implementation Details
	9.2 Details of Embedding Quantization
	9.3 Offline Ablation Study

