
PID-GAN: A GAN Framework based on a Physics-informed
Discriminator for UncertaintyQuantification with Physics

Arka Daw∗

Virginia Tech
Dept. of Computer Science

darka@vt.edu

M. Maruf∗
Virginia Tech

Dept. of Computer Science
marufm@vt.edu

Anuj Karpatne
Virginia Tech

Dept. of Computer Science
karpatne@vt.edu

ABSTRACT
As applications of deep learning (DL) continue to seep into critical
scientific use-cases, the importance of performing uncertainty quan-
tification (UQ) with DL has become more pressing than ever before.
In scientific applications, it is also important to inform the learning
of DL models with knowledge of physics of the problem to produce
physically consistent and generalized solutions. This is referred to
as the emerging field of physics-informed deep learning (PIDL). We
consider the problem of developing PIDL formulations that can also
performUQ. To this end, we propose a novel physics-informed GAN
architecture, termed PID-GAN, where the knowledge of physics is
used to inform the learning of both the generator and discriminator
models, making ample use of unlabeled data instances. We show
that our proposed PID-GAN framework does not suffer from imbal-
ance of generator gradients from multiple loss terms as compared
to state-of-the-art. We also empirically demonstrate the efficacy
of our proposed framework on a variety of case studies involving
benchmark physics-based PDEs as well as imperfect physics. All
the code and datasets used in this study have been made available
on this link 1.

CCS CONCEPTS
• Computing methodologies→ Neural networks.

KEYWORDS
Uncertainty Quantification; Physics-informed neural networks;
Generative Adversarial Networks

ACM Reference Format:
Arka Daw, M. Maruf, and Anuj Karpatne. 2021. PID-GAN: A GAN Frame-
work based on a Physics-informed Discriminator for Uncertainty Quan-
tification with Physics. In Proceedings of the 27th ACM SIGKDD Confer-
ence on Knowledge Discovery and Data Mining (KDD ’21), August 14–18,
2021, Virtual Event, Singapore. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3447548.3467449

∗Both authors contributed equally to this research.
1https://github.com/arkadaw9/PID-GAN

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’21, August 14–18, 2021, Virtual Event, Singapore
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00
https://doi.org/10.1145/3447548.3467449

Figure 1: Visualizing differences between our proposed PID-
GAN innovations and the state-of-the-art, PIG-GAN [22]

1 INTRODUCTION
As applications of deep learning (DL) continue to seep into critical
scientific and engineering use-cases such as climate science, medical
imaging, and autonomous vehicles, the importance of performing
uncertainty quantification (UQ) with deep learning has become
more pressing than ever before. UQ in DL is especially important to
ensure trust or confidence in deep learning predictions by end-users
of DL frameworks such as scientists and real-world practitioners.

Another aspect of DL formulations that is highly relevant while
solving real-world problems in scientific and engineering domains
is their ability to incorporate knowledge of the governing physics
of the problem in the design and training of DL models. Indeed,
there is a rapidly growing body of work in the emerging field of
physics-informed deep learning [9, 21], where the primary goal is
to use physics as another form of supervision for learning gener-
alizable DL solutions, even when the number of training labels is
small (a problem encountered in many real-world settings). This
is commonly achieved by adding physics-based loss functions in
the training objective of DL models, for capturing the consistency
of DL predictions with physics-equations on unlabeled instances
(which are plentifully available in many applications).

In this paper, we consider the problem of performing UQ while
making use of both physics and data supervision for learning DL
models. This is relevant in any scientific application where it is
important to generate distributions of output predictions instead
of point estimates, while ensuring the learning of physically con-
sistent and generalizable DL solutions. For example, in the domain
of climate science, it is important to generate distributions of pro-
jected climate variables such as temperature in the future, while
ensuring that our predictions comply with the laws of physics such
as conservation of mass and energy. A state-of-the-art formulation
for this category of problems involves a recent work by Yang et
al. [22], where the training of conditional Generative Adversarial
Network (cGAN) models were informed using physics-based loss

ar
X

iv
:2

10
6.

02
99

3v
1

 [
cs

.L
G

]
 6

 J
un

 2
02

1

https://doi.org/10.1145/3447548.3467449
https://doi.org/10.1145/3447548.3467449
https://github.com/arkadaw9/PID-GAN
https://doi.org/10.1145/3447548.3467449

functions. We refer to this formulation as Physics-Informed Gener-
ator (PIG)-GAN, to reflect the fact that the physics-supervision was
explicitly used to inform the generator (but not the discriminator).

Since GAN-based frameworks are naturally amenable to gener-
ating output distributions by varying the built-in input noise vector,
PIG-GAN serves as a pivotal study in incorporating physics knowl-
edge in GAN frameworks for performing UQ. However, PIG-GAN
fails to exploit the full potential of the adversarial optimization pro-
cedure inherent to GAN-based frameworks for minimizing complex
physics-based loss functions (e.g., those encountered in real-world
problems involving physics-based PDEs). This is because the dis-
criminator of PIG-GAN is still uninformed by physics and hence,
does not leverage the physics-supervision on unlabeled instances.
Further, the generator of PIG-GAN suffers from the imbalance of
gradient dynamics of different loss terms, as demonstrated theoret-
ically and empirically later in this work.

To address the challenges in state-of-the-art for physics-informed
UQ, we propose a novel GAN architecture, termed as Physics In-
formed Discriminator (PID)-GAN, where physics-supervision
is directly injected into the adversarial optimization framework
to inform the learning of both the generator and discriminator
models with physics. PID-GAN allows the use of unlabeled data
instances for training both the generator and discriminator mod-
els, whereas PIG-GAN uses unlabeled data only for training the
generator but not the discriminator. Figure 1 illustrates the major
differences between our proposed PID-GAN framework and the
state-of-the-art framework, PIG-GAN. These differences impart
several advantages to our proposed PID-GAN framework. We theo-
retically show that PID-GAN does not suffer from the imbalance of
Generator gradients, in contrast to PIG-GAN. We also present an
extension of PID-GAN that can work in situations even when the
physics-supervision is imperfect (either due to incomplete knowl-
edge or observational noise). On a variety of case studies (three
problems involving physics-based PDEs and two problems involv-
ing imperfect physics), we empirically show the efficacy of our
framework in terms of prediction accuracy, physical consistency,
and validity of uncertainty estimates, compared to baselines.

The remainder of the paper is organized as follows. Section 2
presents background and related work on physics-informed UQ.
Section 3 describes the proposed framework. Section 4 describes
experimental results while Section 5 provides concluding remarks.
2 BACKGROUND AND RELATEDWORK
2.1 Uncertainty Quantification with DL
Uncertainty quantification (UQ) is an important end-goal in sev-
eral real-world scientific applications where it is vital to produce
distributions of output predictions as opposed to point estimates, al-
lowing for meaningful analyses of the confidence in our predictions.
In the context of deep learning, a number of techniques have been
developed for UQ, including the use of Bayesian approximations
[8, 18, 19] and ensemble-based methods [6, 13, 14, 24]. A simple
approach for performing UQ given a trained DL model is to apply
Monte Carlo (MC)-Dropout on the DL weights during testing [4].
While MC-Dropout is easy to implement, they are quite sensitive
to the choice of dropout rate, which can be difficult to tune [3].

Another line of work for performing UQ in DL is to use gen-
erative models like variational autoencoders (VAEs) [2, 11] and

cGANs [22, 23]. In a cGAN setting, the generator 𝐺𝜽 learns the
mapping from input vector x and some random noise vector z to
y, 𝐺 : (x, z) −→ y. The generator is trained such that its predictions
ŷ = 𝐺 (x, z) cannot be distinguished from “real” outputs by an ad-
versarially trained discriminator 𝐷𝝓 . The discriminator 𝐷 , on the
other hand, is trained to detect the generator’s “fake” predictions.
The built-in noise vector 𝑧 in cGANs can be varied to obtain a
distribution on the output predictions ŷ. The learning objective of
such a cGAN can be written as the following mini-max game:

min
𝐺𝜽

max
𝐷𝝓

E𝑥,𝑧

[
log𝐷 (𝐺 (𝑥, 𝑧), 𝑥)

]
+ E𝑥,𝑦

[
log

(
1 − 𝐷 (𝑦, 𝑥)

)]
(1)

where 𝜽 and 𝝓 are the parameters of 𝐺 and 𝐷 , respectively. In
practice, it is common to optimize E𝑥,𝑧

[
𝐷 (𝐺 (𝑥, 𝑧), 𝑥)

]
instead of

E𝑥,𝑧
[
log𝐷 (𝐺 (𝑥, 𝑧), 𝑥)

]
while training the generator [5].

2.2 Physics-Informed Deep Learning (PIDL)
There is a growing volume of work on informing deep learning
methods with supervision available in the form of physics knowl-
edge, referred to as the field of physics-informed deep learning
(PIDL) [9, 21]. One of the primary objectives of PIDL is to learn
deep learning solutions that are consistent with known physics
and generalize better on novel testing scenarios, especially when
the supervision contained in the labeled data is small. A promis-
ing direction of research in PIDL is to explicitly add physics-based
loss functions in the the deep learning objective, that captures the
consistency of neural network predictions on unlabeled instances
w.r.t. known physics (e.g., physics-based PDEs [15], monotonic
constraints [7, 10], and kinematic equations [17]).

Formally, given a labeled set {(xui , yui)}
𝑁𝑢
𝑖=1 where (x, y) denotes

an input-output pair, we are interested in learning a neural network
model, ŷ = 𝑓𝜽 (x), such that along with reducing prediction errors
of ŷ on the labeled set, we also want to ensure that ŷ satisfies
𝐾 physics-based equations, {R (𝑘) (x, y) = 0}𝐾

𝑘=1 on a larger set

of unlabeled instances {xfj }
𝑁𝑓
𝑗=1 where 𝑁𝑓 >> 𝑁𝑢 . This can be

achieved by adding a physics-based loss in the learning objective
that captures the residuals of ŷ w.r.t each physics-equation R (𝑘) as:

L(𝜽) = 1
𝑁𝑢

𝑁𝑢∑︁
𝑖=1

[
yui − ŷui

]2 + 𝜆

𝑁𝑓

𝑁𝑓∑︁
𝑗=1

𝐾∑︁
𝑘=1

R (𝑘) (xfj , ŷfj)
2, (2)

where 𝜆 is a trade-off hyper-parameter for balancing physics-based
loss with prediction errors. Notice that the physics-based loss only
depends on model predictions and not ground-truth values, and
hence enables the use of unlabeled data to provide an additional
form of physics-supervision, along with the supervision contained
in the labeled data. A seminal work in optimizing Eq. 2 is the
framework of physics-informed neural networks (PINN) [15], that
was developed for the specific use-case where the physics-equations
R (𝑘) are PDEs. In this paper, we generically refer to all formulations
that optimize Eq. 2 as PINN, regardless of the form of R (𝑘) .

While PINN provides a powerful strategy for incorporating
physics-supervision in the learning of neural networks, a funda-
mental challenge in PINN is to balance the gradient flow dynamics
of physics loss and prediction errors at different stages (or epochs)
of training with a constant 𝜆. To address this challenge, a variant
of PINN, referred to as adaptive-PINN (APINN) [20], has recently

been developed to adaptively tune 𝜆 at different stages of training
for balancing the gradients of different loss terms.

2.3 Physics-Informed UQ
The body of work in PIDL that can perform UQ appears closest to
the focus of this paper. Specifically, we are interested in generating
uncertainty estimates while ensuring that our predictions lie on a
solution manifold that is consistent with known physics. One sim-
ple way to achieve this is to implement MC-Dropout for the PINN
framework and its variants, so to produce distributions of output
predictions. However, as demonstrated in a recent study [3], a major
limitation with this approach is that the minor perturbations intro-
duced by MC-Dropout during testing can easily throw off a neural
network to become physically inconsistent, even if it was informed
using physics during training. We refer to the MC-Dropout versions
of PINN and APINN as PINN-Drop and APINN-Drop, respectively,
which are used as baselines in our work.

Another line of research in PIDL for UQ involves incorporating
physics-based loss functions in the learning objective of cGAN
models, which are inherently capable of generating distributions of
output predictions. In particular, Yang et al. [22] recently developed
a physics-informed GAN formulation with the following objective
functions of generator (𝐺) and discriminator (𝐷), respectively:

L𝐺 (𝜽) =
1
𝑁𝑢

𝑁𝑢∑︁
𝑖=1

𝐷 (xui , ŷui) + 𝜆

𝑁𝑓

𝑁𝑓∑︁
𝑗=1

𝐾∑︁
𝑘=1

[
R (𝑘) (xfj , ŷfj)

2], (3)

L𝐷 (𝝓) = − 1
𝑁𝑢

𝑁𝑢∑︁
𝑖=1

log
(
𝐷 (xui , ŷui)

)
− 1
𝑁𝑢

𝑁𝑢∑︁
𝑖=1

log
(
1 − 𝐷 (xui , yui)

)
,

(4)

where ŷui = 𝐺 (xui , zui) and ŷfj = 𝐺 (xfj , zfj) are the generator
predictions on labeled and unlabeled points, respectively. Notice
that in this formulation, the physics-supervision (in terms of R (𝑘))
only appears in the generator objective, while the discriminator
only focuses on distinguishing between “real” and “fake” samples
on the labeled set (similar to a cGAN discriminator). Hence, we
refer to this formulation as Physics-Informed Generator (PIG)-GAN
to reflect the fact that only the generator is physics-informed.

While PIG-GAN provides a valid approach for physics-informed
UQ, it is easy to observe that it suffers from several deficiencies.
First, it makes ineffective use of physics-supervision to only inform
the generator, while the discriminator is kept unchanged. As a
result, it is unable to use the full power of adversarial optimization
procedures inherent to GAN frameworks for jointly minimizing
physics-based loss functions along with prediction errors. Instead,
it under-utilizes the discriminator to only focus on prediction errors
on the labeled set. Second, by design, the discriminator of PIG-GAN
is only trained on the small set of labeled instances, thus missing
out on the vastly large number of unlabeled instances available in
many real-world applications. Third, the use of an explicit trade-off
parameter 𝜆 to balance physics loss and prediction errors results in
a similar problem of gradient flow imbalance as faced by PINN. As
we empirically demonstrate later in Section 4.3, this leads to inferior
generalization performance compared to our proposed approach.

𝐺𝜃
𝑥

𝑧
 𝑦
𝑥
 𝑦
𝜂

𝐷𝜙
real /
fake

𝜼 = 𝒆−𝝀𝓡(𝒙, 𝒚)
𝟐

PID-GAN

𝐺𝜃
𝑥

𝑧
 𝑦
𝑥

 𝑦
𝐷𝜙

real /
fake

PIG-GAN

Figure 2: Architecture of PIG-GAN and PID-GAN

3 PROPOSED FRAMEWORK OF PID-GAN
We propose a novel Physics-Informed Discriminator (PID)-GAN
formulation that embeds physics-supervision directly into the ad-
versarial learning framework, as shown in Figure 2. Specifically, we
utilize the physics residuals to compute a physics consistency score
(𝜂) for each prediction, indicating the likelihood of the prediction
being physically consistent. These physics consistency scores are
fed into the discriminator as additional inputs, such that the dis-
criminator not only distinguishes between real and fake samples
by learning from the underlying distribution of labeled points but
also using the additional physics-supervision.
Estimating Physics Consistency Scores: Formally, we compute
the physics consistency score of a prediction ŷw.r.t. the 𝑘th physical
constraint using the following equation:

𝜂𝑘 = 𝑒−𝜆R
(𝑘) (x,ŷ) (5)

Larger the value of 𝜂𝑘 , it is more likely the prediction ŷ obeys the
𝑘th physical constraint, i.e., R (𝑘) is smaller. The vector notation of
would lead to the following: 𝜼, such that 𝜼 = [𝜂1, 𝜂2, · · · , 𝜂𝐾].
Training Objective: Our physics-informed discriminator learns
the mapping 𝐷 : (x, y,𝜼) −→ Ω ∈ [0, 1], where Ω represents the
probability of a sample being “fake”. The objective function of the
generator and the discriminator of PID-GAN can then be denoted
as:

L𝐺 (𝜽) =
1
𝑁𝑢

𝑁𝑢∑︁
𝑖=1

𝐷 (xui , ŷui ,𝜼ui) +
1
𝑁𝑓

𝑁𝑓∑︁
𝑗=1

𝐷 (xfj , ŷfj ,𝜼fj) (6)

L𝐷 (𝝓) = − 1
𝑁𝑢

𝑁𝑢∑︁
𝑖=1

log
(
𝐷 (xui , ŷui ,𝜼ui)

)
− 1
𝑁𝑢

𝑁𝑢∑︁
𝑖=1

log
(
1 − 𝐷 (xui , yui , 1)

)
− 1
𝑁𝑓

𝑁𝑓∑︁
𝑗=1

log
(
𝐷 (xfj , ŷfj ,𝜼fj)

)
− 1
𝑁𝑓

𝑁𝑓∑︁
𝑗=1

log
(
1 − 𝐷 (xfj , ŷfj , 1)

)
(7)

where, ŷui = 𝐺 (xui , zui), ŷfj = 𝐺 (xfj , zfj). To interpret genera-
tor loss function (Equation 6), let us inspect its two constituent
terms. The first and the second term represents the score of the
physics-informed discriminator𝐷 for the predictions on labeled and
unlabeled points, respectively. The generator attempts to minimize
both of these scores in order to fool the discriminator into thinking
that these generated “fake” predictions ŷu and ŷf are “real”.

On the other hand, the loss function for the discriminator (Equa-
tion 7) is comprised of four terms. The first two terms denote the
training objective of a binary classifier which distinguishes between

the inputs (xui , ŷui ,𝜼ui) and (xui , yui , 1). Note that the consistency
score is 1 only when R (𝑘) (xui , yui) = 0 for all 𝑘 ∈ {1, 2, .., 𝐾}, i.e.,
the ground truth labels obey the given physics-equations. Similarly,
we can interpret the last two terms of equation 7 as the training ob-
jective of a binary classifier which tries to distinguish between the
inputs (xfj , ŷfj ,𝜼fj) and (xfj , ŷfj , 1). Since we don’t have labels on
the unlabeled set, we use ŷfj as a proxy to the ground truth values.
This encourages the generator to increase the physics-consistency
score 𝜼fj in order to fool the discriminator on the unlabeled set.

3.1 Analysis of Generator Gradients
Gradient Analysis for PIG-GAN. We assume that the both the inputs
{xu, xf } and the outputs {ŷu, ŷf } follow same distribution. The back-
propagated gradients of the generator can be computed using the
chain-rule of differentiation as follows:

∇𝜃L𝐺 =
∑︁
𝑖

∇ŷuiL𝐺 .∇𝜃 ŷui +
∑︁
𝑗

∇ŷfjL𝐺 .∇𝜃 ŷfj

=
∑︁
𝑖

Cui .∇𝜃 ŷui +
∑︁
𝑗

Cfj .∇𝜃 ŷfj
(8)

Let us define Cui as the contribution of the 𝑖th instance of the
labeled set to the backpropagated generator gradients.

Cui = ∇ŷuiL𝐺 =
1
𝑁𝑢

∇ŷui𝐷ui (9)

where, 𝐷ui = 𝐷 (xui , ŷui). Similarly, we can define Cfj as the
contribution of the 𝑗 th instance of the unlabeled set to the back-
propagated generator gradients.

Cfj = ∇ŷfjL𝐺 =
𝜆

𝑁𝑓

𝐾∑︁
𝑘=1

∇ŷfj

(
R (k)
fj

)2
=

2𝜆
𝑁𝑓

𝐾∑︁
𝑘=1

R (k)
fj

∇ŷfjR
(k)
fj

(10)

whereR (k)
fj

= R (k) (xfj , ŷfj) . Since we assume that ŷui and ŷfj follow
similar distributions, ∇𝜃 ŷui and ∇𝜃 ŷfj would also follow similar
distributions. Hence, the overall gradient dynamics would be mostly
controlled by the contribution terms Cui and Cfj .
Remarks: It is easy to see that Cui and Cfj have widely differ-
ent functional forms in PIG-GAN. Cui depends on ∇ŷui𝐷ui , i.e., it
changes as the weights of the discriminator are updated during
training. On the other hand, Cfj depends on ∇ŷfj

R (k)
fj

, which is
specific to the set of physics-equations, and does not change as the
discriminator is updated. While we can try to balance Cui and Cfj

with the help of 𝜆, choosing a constant 𝜆 is difficult as R (k)
fj

changes
across epochs and across 𝑗 .

Gradient Analysis for PID-GAN. The physics consistency score on
the labeled and unlabeled sets can be computed as 𝜼 (k)

ui = 𝑒
−𝜆R (k)

ui

and 𝜼 (k)
fj

= 𝑒
−𝜆R (k)

fj , respectively, resulting in the following values
of Cui :

Cui =
1
𝑁𝑢

∇ŷuiDui +
1
𝑁𝑢

(
∇𝜼ui

Dui

) (
∇ŷui𝜼ui

)
=

1
𝑁𝑢

∇ŷuiDui −
2𝜆
𝑁𝑢

𝐾∑︁
𝑘=1

(∇𝜼ui
Dui

) (k)𝜼ui (k)R (k)
ui ∇ŷuiR

(k)
ui ,

(11)

where
(
∇𝜼ui

Dui
) (k) and 𝜼ui (k) denotes the 𝑘th term of the gradient

∇𝜼ui
Dui and the vector 𝜼ui , respectively. Similarly,

Cfj =
1
𝑁𝑢

∇ŷfjDfj −
2𝜆
𝑁𝑢

𝐾∑︁
𝑘=1

(∇𝜼fj
Dfj

) (k)𝜼fj (k)R (k)
fj

∇ŷfjR
(k)
fj

(12)

Remarks: Observe that the functional forms of the two contribu-
tion terms Cui and Cfj of PID-GANs have similar functional forms.
This is not surprising since the generator’s objective function is
symmetric by formulation, i.e., xu and xf are interchangeable. If
we use the same assumptions on {xu, xf } and the outputs {ŷu, ŷf } as
made in the case of PIG-GAN, we would see that 𝜼ui and 𝜼fj would

have the same distribution. Similarly, it can be shown that R (k)
ui and

R (k)
fj

have the same distributions, and ∇ŷuiR
(k)
ui and ∇ŷfj

R (k)
fj

have
the same distributions. Hence, each of the individual components
of Cui and Cfj would follow the same distribution, and we can thus
expect that the magnitudes of the gradients for the labeled and
unlabeled components to be similar.

We can also notice the similarities in Equations 10, 11, and 12
to remark that the contribution terms of PID-GAN automatically
learn adaptive weights for the physics-based loss that change across
training epochs. In particular, all of these contribution formulae
have terms involving physics residuals. For the contribution Cui in
PID-GAN, we can observe that the second term has multiplicative
factors,

(
∇𝜼ui

Dui
) (k) and 𝜼ui

(k) . While 𝜼ui
(k) would change as

the 𝑘th residual varies during training,
(
∇𝜼ui

Dui
) (k) depends on

the current state of the discriminator and is optimized after every
discriminator update. These changing multiplicative factors applied
to the physics residual gradients can be viewed as automatically
learning adaptive weights for each individual physics residual, as
opposed to the use of a constant trade-off parameter 𝜆 in PIG-GAN.

3.2 Extension for Imperfect Physics
In some applications, the physics-equations available to us during
training may be derived using simplistic assumptions of complex
real-world phenomena. For example, while predicting the velocities
of two particles just after collision, we usually assume that the
energy and the momentum of the system would be conserved.
However, such assumptions are only valid in ideal conditions and
could easily be misleading when working with noisy real-world
labels. To account for situations with imperfect physics, , i.e., when
R (𝑘) (x, y) ≠ 0 for atleast one 𝑘 ∈ {1, 2, · · · , 𝐾}, we provide the
following extension of our proposed approach.

The training objective of generator of the PID-GAN under im-
perfect physics conditions would remain the same (as shown in
equation 6. However, the objective for the discriminator would be
modified as follows:

L𝐷 (𝝓) = − 1
𝑁𝑢

𝑁𝑢∑︁
𝑖=1

log
(
𝐷 (xui , ŷui ,𝜼ui)

)
− 1
𝑁𝑢

𝑁𝑢∑︁
𝑖=1

log
(
1 − 𝐷 (xui , yui ,𝜼′

ui)
)

− 1
𝑁𝑓

𝑁𝑓∑︁
𝑗=1

log
(
𝐷 (xfj , ŷfj ,𝜼fj)

)
(13)

𝜼′
ui = [𝑒−𝜆R

(1) (xui ,yui)
2
, 𝑒−𝜆R

(2) (xui ,yui)
2
, · · · , 𝑒−𝜆R

(𝐾) (xui ,yui)
2
]
(14)

𝜼′
u denotes the physics consistency score of the ground truth

satisfying the physical constraints on the labeled set. This formula-
tion prevents the generator from predicting samples which blindly
satisfies the imperfect physical constraints. Instead, it would learn
to mimic the distribution of physics consistency scores of ground
truth samples. It must also be noted that the discriminator loss in
Equation 13 does not contain the fourth term from the Equation
7, since we cannot compute the physics consistency score of the
predictions on the unlabeled set. This introduces an assumption
into the model, that the labeled set and the unlabeled set must come
from the same distribution. Otherwise, we might end up learning a
trivial discriminator 𝐷 that would look at the input distributions of
xu and xf and classify the unlabeled set as fake.

3.3 Mitigating Mode Collapse
GANs are notoriously difficult to train, and it has been observed
that sometimes the generator only learns to generate samples from
few modes of the data distribution in spite of wide abundance
of samples available from the missing modes. This phenomena is
commonly known as mode collapse [16]. In order to address this
problem, Li et. al. [12] provides an information theoretic point
of view of using an additional inference model 𝑄𝜻 to learn the
mapping 𝑄𝜻 : {x, ŷ} −→ z. This inference model delivers stability to
the training procedure by mitigating mode collapse while providing
a variational approximation to the true intractable posterior over
the latent variables z. We utilize this additional network to improve
all of our GAN-based formulations.

4 EXPERIMENTAL RESULTS
Case Studies:We evaluate the performance of comparative mod-
els on two real-world datasets involving idealized (and imperfect)
physics, and three benchmark datasets involving state-of-the-art
physics-based PDEs.
EvaluationMetrics:We estimate the deviation of the ground truth
values from the mean of our model predictions on every test point
using the Root Mean Square Error (RMSE). For PDE problems, we
use relative 𝐿2-error instead of RMSE, following previous literature
[15, 20]. The physical inconsistencies of our predictions are quanti-
fied using the absolute residual errors w.r.t. the physics-equations.
Further, to assess the quality of our generated distributions, we uti-
lize both the standard deviation of samples as well as the fraction
of ground-truth values that fall within 95% confidence intervals of
the sample distributions (referred to as 95% C.I. fractions). A lower
standard deviation with higher 95% C.I. is desired.
Baselines:We compare our proposed PID-GAN with the following
baselines: PIG-GAN, cGAN, PINN-Drop, and APINN-Drop.

Table 1: Summary of model performances for collision
speed estimation and tossing trajectory prediction in terms
of the mean and standard deviation for 10 random runs. For
collision speed estimation, the ground truth datapoints have
mean residual of 93.96, while for tossing trajectory predic-
tion, the ground truth datapoints havemean residual of 0.59.

Models PINN-Drop APINN-Drop cGAN PIG-GAN PID-GAN
Collision Speed Estimation
RMSE 2.34 ± 0.09 2.35 ± 0.06 0.92 ± 0.03 1.65 ± 0.39 0.73 ± 0.05
Residual 24.20 ± 2.10 22.80 ± 2.60 96.20 ± 4.50 45.50 ± 23.00 92.40 ± 0.90
Std. Dev. 1.60 ± 0.02 1.60 ± 0.02 0.56 ± 0.02 0.03 ± 0.01 0.49 ± 0.04
95% C. I. 79.80 ± 2.80 79.60 ± 0.60 80.60 ± 4.80 1.70 ± 1.10 86.40 ± 1.60
Tossing Trajectory Prediction
RMSE 0.77 ± 0.01 0.74 ± 0.06 0.81 ± 0.10 0.50 ± 0.05 0.32 ± 0.04
Residual 0.48 ± 0.03 0.62 ± 0.09 1.68 ± 0.21 0.44 ± 0.08 0.64 ± 0.02
Std. Dev. 1.67 ± 0.02 1.67 ± 0.01 0.45 ± 0.12 0.09 ± 0.01 0.09 ± 0.04
95% C. I. 99.90 ± 0.03 99.90 ± 0.11 71.39 ± 17.10 29.50 ± 4.34 40.80 ± 11.90

In this section, we briefly describe our results in each case study.
Full details of experiments in each case study and additional results
focusing on reproducibility are provided in Appendix A.

4.1 Case Study: Collision Speed Estimation
In this real-world problem, we are given the initial speeds {𝑣𝑎1, 𝑣𝑏1}
of two objects {𝑎, 𝑏} with their respective masses {𝑚𝑎,𝑚𝑏 } and the
initial distance 𝑑 between them as inputs, 𝑋 = {𝑣𝑎1, 𝑣𝑏1,𝑚𝑎,𝑚𝑏 , 𝑑}.
The goal is to estimate their speed after collision {𝑣𝑎𝑓 , 𝑣𝑏𝑓 }. For a
perfectly elastic collision, both objects should conserve momentum
and energy after the collision, i.e., there is no loss in energy and
momentum of the entire system, represented as follows.

𝑚𝑎𝑣𝑎1 +𝑚𝑏𝑣𝑏1 =𝑚𝑎𝑣𝑎𝑓 +𝑚𝑏𝑣𝑏𝑓
1
2
𝑚𝑎𝑣

2
𝑎1 +

1
2
𝑚𝑏𝑣

2
𝑏1

=
1
2
𝑚𝑎𝑣

2
𝑎𝑓

+ 1
2
𝑚𝑏𝑣

2
𝑏𝑓

However, due to the presence of sliding friction during the sim-
ulation [1], these ideal physical constraints are violated. Table 1
shows the performance of comparative models on this dataset,
where we can see that PID-GAN outperforms all other baselines by
a significant margin. At a first glance, it might seem strange that
the conservation equations worsen the performance of the models
since the cGAN model is the closest competitor to the PID-GAN.
However, due to the presence of sliding friction, these equations
are violated for ground-truth predictions, and hence models that
blindly use these imperfect physics equations (all physics-informed
approaches except PID-GAN) show larger test errors. The mean of
physics residuals on ground-truth is in fact equal to 93.96. We can
see that the residuals of PID-GAN is closest to that of ground-truth.
With a lower standard deviation and significantly higher 95% C.I,
PID-GAN also produces better uncertainty estimates.
Effect of Varying Training Size: To demonstrate the ability of
PID-GAN for showing better generalizability even in the paucity of
labeled samples, Figure 3 shows the performance of PID-GAN and
PIG-GAN over different training fractions for the collision dataset.
We can see that PID-GAN results do not degrade as drastically as
PIG-GAN as we reduce the training size. This is because PIG-GAN
only uses labeled instances for training the discriminator, which
can be susceptible to learning spurious solutions when the labeled

set is small. In contrast, the discriminator of PID-GAN uses both
labeled and unlabeled instances and hence leads to the learning of
more generalizable solutions.
Analysis of Physics Consistency Scores: Figure 4(a) shows the
distribution of the physics consistency score at the last epoch for
both PID-GAN and PIG-GAN. Since this problem involves imperfect
physics, we can see that physics consistency scores on ground
truth labels, 𝜂 ′u (green), is not always exactly equal to 1. While
the consistency scores of PIG-GAN predictions on labeled points,
𝜂u (red), matches the distribution on ground truth 𝜂 ′u, it blindly
maximizes the physics consistency scores on the unlabeled (test)
points, 𝜂f (blue). This is because the discriminator of PIG-GAN
is only trained on labeled points and thus is unable to model the
physics imperfections on the unlabeled points. On the other hand,
the physics consistency scores of PID-GAN predictions accurately
match the distribution of consistency scores on ground-truth, on
both labeled as well as unlabeled points. This demonstrates the fact
that PID-GAN makes effective use of label and physics supervision
for training both the generator and discriminator models, thus
capturing the distributions of physics consistency scores accurately
on both labeled and unlabeled sets.

4.2 Case Study: Tossing Trajectory Prediction
In this problem, we are given the initial three positions of an object
as inputs, 𝑋 = {𝑙1, 𝑙2, 𝑙3}, and we want to predict the position of the
object for the next 15 time-stamps represented as {𝑙4, 𝑙5, · · · , 𝑙15}.
In a two-dimensional system, where the position of an object at
time 𝑖 can be represented as 𝑙𝑖 = (𝑙𝑥 , 𝑙𝑦), we can adopt the following
elementary kinematics equations to model the free-fall physics as
additional constraints.

𝑙𝑥𝑖 = 𝑙𝑥1 + 𝑣𝑥 𝑡𝑖

𝑙𝑦𝑖 = 𝑙𝑦1 + 𝑣𝑦𝑡𝑖 −
1
2
𝑔𝑡2𝑖

where, 𝑙𝑥𝑖 and 𝑙𝑦𝑖 are the object location at time 𝑡𝑖 , 𝑣𝑥 and 𝑣𝑦 are the
horizontal and vertical component of the initial velocity, and g is the
gravitational acceleration 9.8𝑚𝑠−2. To introduce imperfect physics
scenarios, random accelerations as winds and additional damping
factor to imitate air resistancewere introduced in the dataset [1].We
can see from Table 1 that PID-GAN outperforms all other baselines
for this problem by a significant margin in terms of RMSE. APINN-
Drop and PID-GAN perform similarly in terms of residual error
(close to the ground truth residual of 0.59); however, APINN-Drop

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Training Fraction

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
es

t
R

M
S

E

PID-GAN

PIG-GAN

Figure 3: Effect of training size on Collision Dataset

0.6 0.8 1.0

Physics Consistency Score (η)

0

5

10

15

20

25

30

35

40

ηu

ηf

η′u

(a) PIG-GAN

0.6 0.8 1.0

Physics Consistency Score (η)

0

5

10

15

20

25

30

35

40

ηu

ηf

η′u

(b) PID-GAN

Figure 4: Physics Consistency Score for Collision Dataset

has a much larger RMSE, which makes it worse than PID-GAN.
Although the C.I scores of PINN-Drop and APINN-Drop are almost
perfect (close to 100), their standard deviation are significantly high,
indicating that they are producing under-confident predictions.

4.3 Case Study: Solving Physics-based PDEs
We test the efficacy of our approach on the problem of solving
three physics-based PDEs, which have been used as benchmark
in existing literature on PINN [15, 22]. with applications spanning
multiple domains. In particular, we study the Burgers’, Schrödinger,
and Darcy’s Equations, briefly described in the following.
Burgers’ Equation:We represent the nonlinear time (𝑡) dependent
Burgers’ equation in one spatial dimension (𝑥) as:

𝑢𝑡 + 𝑢𝑢𝑥 + 𝜈𝑢𝑥𝑥 = 0, 𝑥 ∈ [−1, 1], 𝑡 ∈ [0, 1],
𝑢 (0, 𝑥) = − sin(𝜋𝑥), 𝑢 (𝑡,−1) = 𝑢 (𝑡, 1) = 0.

The goal is to predict 𝑢 (𝑡, 𝑥) as output given spatio-temporal coor-
dinates, 𝑥 and 𝑡 , as inputs.
Schrödinger Equation: We consider the problem of solving the
one-dimensional nonlinear Schrö- dinger equation involving peri-
odic boundary conditions and complex-valued solutions as follows:

𝑖ℎ𝑡 + 0.5ℎ𝑥𝑥 + |ℎ |2ℎ = 0, 𝑥 ∈ [−5, 5], 𝑡 ∈ [0, 𝜋/2],
ℎ(𝑥, 0) = 2 sech(𝑥), ℎ(−5, 𝑡) = ℎ(5, 𝑡), ℎ𝑥 (−5, 𝑡) = ℎ𝑥 (5, 𝑡),

where ℎ(𝑥, 𝑡) = 𝑢 (𝑥, 𝑡) + 𝑖𝑣 (𝑥, 𝑡) is the complex-valued solution of
the equationwith𝑢 (𝑥, 𝑡) as the real part and 𝑣 (𝑥, 𝑡) as the imaginary
part. We predict the real and imaginary parts of ℎ as outputs, given
𝑥 and 𝑡 as inputs.
Darcy’s Equation: We consider the problem of solving Darcy’s
equation, which is a two-dimensional nonlinear diffusion equation
with an unknown state-dependent diffusion coefficient 𝑘 .
∇x · [𝑘 (𝑢)∇x𝑢 (x)] = 0, x = (𝑥1, 𝑥2), 𝑢 (x) = 𝑢0, 𝑥1 = 𝐿1

− 𝑘 (𝑢) 𝜕𝑢 (x)
𝜕𝑥1

= 𝑞, 𝑥1 = 0,
𝜕𝑢 (x)
𝜕𝑥2

= 0, 𝑥2 = {0, 𝐿2}

The goal here is predict 𝑢 given 𝑥1 and 𝑥2 as inputs. Further, the
labels for the diffusion coefficient 𝑘 are not provided during training
but is expected to be learned by directly solving the PDE.
Result Comparison on PDEs: For each PDE, we evaluate under
two different conditions: deterministic (noise-free) and random
boundary conditions (noisy). For noisy conditions, we add 10%

Table 2: Summary of model performances for solving Burgers’, Darcy’s and Schrödinger equations in terms of the mean and
standard deviation for 5 random runs. 95% C.I. corresponds to empirical coverage of 95% predictive intervals.

Condition Noise-free Noisy
Models PINN-Drop APINN-Drop PIG-GAN PID-GAN PINN-Drop APINN-Drop PIG-GAN PID-GAN
Burgers’ Equation
Error-u 0.380 ± 0.027 0.260 ± 0.019 0.215 ± 0.205 0.100 ± 0.008 0.370 ± 0.020 0.250 ± 0.040 0.150 ± 0.125 0.116 ± 0.028
Residual 0.0040 ± 0.0003 0.0330 ± 0.0040 0.1570 ± 0.2790 0.0010 ± 0.0004 0.0040 ± 0.0005 0.0360 ± 0.0100 0.0300 ± 0.0404 0.0020 ± 0.0003
Std. Dev. 0.05 ± 0.00 0.06 ± 0.00 0.04 ± 0.01 0.04 ± 0.00 0.05 ± 0.01 0.06 ± 0.00 0.04 ± 0.01 0.04 ± 0.01
95% C. I. (%) 55.89 ± 0.58 68.69 ± 1.10 63.48 ± 35.64 81.16 ± 8.53 56.65 ± 0.88 69.02 ± 4.27 75.54 ± 33.15 80.14 ± 14.63
Schrödinger Equation
Error-h 0.427 ± 0.001 0.402 ± 0.001 0.112 ± 0.014 0.045 ± 0.012 0.428 ± 0.001 0.407 ± 0.002 0.079 ± 0.008 0.081 ± 0.014
Residual 0.0100 ± 0.0002 0.0770 ± 0.0002 0.0100 ± 0.0019 0.0013 ± 0.0002 0.0096 + ±0.0004 0.0740 ± 0.002 0.0339 ± 0.0058 0.0007 ± 0.0003
Std. Dev. 0.04 ± 0.00 0.04 ± 0.00 0.03 ± 0.01 0.01 ± 0.01 0.04 ± 0.00 0.04 ± 0.00 0.02 ± 0.00 0.08 ± 0.02
95% C. I. (%) 69.90 ± 0.36 40.80 ± 1.57 68.72 ± 19.34 47.49 ± 26.75 64.20 ± 1.11 35.90 ± 1.70 49.67 ± 12.96 79.82 ± 11.77
Darcy’s Equation
Error-u 0.010 ± 0.002 0.009 ± 0.002 0.013 ± 0.012 0.009 ± 0.006 0.012 ± 0.002 0.012 ± 0.001 0.022 ± 0.008 0.011 ± 0.003
Error-k 0.450 ± 0.011 0.478 ± 0.013 0.102 ± 0.039 0.082 ± 0.043 0.462 ± 0.016 0.540 ± 0.015 0.197 ± 0.045 0.159 ± 0.020
Residual 0.0080 ± 0.0005 0.0110 ± 0.0003 0.0005 ± 0.0003 0.0002 ± 0.0001 0.0080 ± 0.0004 0.0140 ± 0.0007 0.0030 ± 0.0020 0.0020 ± 0.0006
Std. Dev. 0.36 ± 0.01 0.34 ± 0.01 0.11 ± 0.02 0.08 ± 0.01 0.36 ± 0.00 0.35 ± 0.02 0.15 ± 0.05 0.09 ± 0.02
95% C. I. (%) 100.0 ± 0.00 100.0 ± 0.00 84.22 ± 31.56 89.42 ± 13.46 100.0 ± 0.00 100.0 ± 0.00 88.70 ± 13.69 98.97 ± 0.65

−2 −1 0 1 2
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Layer 4

∇θLu

∇θLR

−2 −1 0 1 2
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Layer 5

∇θLu

∇θLR

(a) Burgers PIG-GAN

−2 −1 0 1 2
0

25

50

75

100

125

150

175

Layer 4

∇θLu

∇θLR

−2 −1 0 1 2
0

2

4

6

8

10

12

14

Layer 5

∇θLu

∇θLR

(b) Schrodinger PIG-GAN

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
0

500

1000

1500

2000

2500
Layer 3

∇θLu

∇θLR

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
0

500

1000

1500

2000

Layer 4

∇θLu

∇θLR

(c) Darcy PIG-GAN

−2 −1 0 1 2
0

1

2

3

4

5

6

7

Layer 4

∇θLu

∇θLf

−2 −1 0 1 2
0.0

0.2

0.4

0.6

0.8

Layer 5

∇θLu

∇θLf

(d) Burgers PID-GAN

−2 −1 0 1 2
0.0

0.5

1.0

1.5

2.0

Layer 4

∇θLu

∇θLf

−2 −1 0 1 2
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Layer 5

∇θLu

∇θLf

(e) Schrodinger PID-GAN

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
0

10

20

30

40

Layer 3

∇θLu

∇θLf

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
0

5

10

15

20

25

Layer 4

∇θLu

∇θLf

(f) Darcy PID-GAN

Figure 5: Analyzing the Imbalance of Generator Gradients for PIG-GAN and PID-GAN on the three benchmark PDE problems

Gaussian uncorrelated noise to the ground-truth labels which aug-
ments the inherent epistemic uncertainty of our predictive model
due to the randomness in the boundary conditions.

Table 2 provides a summary of the comparison of different base-
lines across the three benchmark PDEs for noise-free and noisy
conditions. For Burger’s equation, we see that PID-GAN shows
significant improvement in the relative 𝐿2-error of the predictions
𝑢 in both noisy and noise-free settings. Additionally, the variance of
the PID-GAN across 5 random runs is the least, suggesting that it is
more robust to random initializations. The PID-GAN also achieves
the lowest PDE residual of 1x10−3 and 2x10−3 in noisy and noise-
free setting. This displays the ability of the PID-GAN to gener-
ate generalizable and physically consistent solutions. For Burgers’
equation, PID-GAN also provides an average 81.16% and 80.14%

empirical coverage of the 95% confidence intervals for the two set-
tings, i.e., approximately 80% of the times the ground truth lies
between two standard deviations of the predictions. In general, it is
preferred to have a higher 95% C.I. with lower standard deviations.
On Burger’s equation, PID-GAN satisfies both these criteria.

For Schrödinger Equation, in terms of relative 𝐿2-error of the
predictions ℎ, the PID-GAN performs the best in noise-free setting
while PIG-GAN performs slightly better than PID-GAN in the noisy
setting (although the difference is not statistically significant and
does not carry over for the other PDE experiments). On the other
hand, PINN-Drop and APINN-Drop performs significantly worse
in both noisy and noise-free conditions. Further, we observe a
significantly lower PDE residual for the PID-GAN. The 95% C.I. for
the PID-GAN is the best in the noisy setting with lowest std. dev.,

but in the noise-free setting, PINN-Drop shows highest 95% C.I
although with a higher std. dev., and a significantly higher 𝐿2-error.

For Darcy’s Equation, all the baselines show quite similar re-
sults w.r.t. the 𝐿2-error on the predictions 𝑢, with PID-GAN having
a slight edge in both settings. However, when it comes to predicting
𝑘 (for which no ground truth values were provided during train-
ing), PINN-Drop and APINN-Drop performs significantly poor in
terms of 𝐿2-errors, with significantly larger standard deviations of
samples than other baselines. As a result, even though their 95%
C.I. appear perfect, their predictions are not very useful. The GAN
based models on the other hand are able to quite precisely estimate
the value of 𝑘 . Also, the PDE residuals are slightly better for the
PID-GAN. For the noisy setting, PID-GAN is able to get almost per-
fect 95% C.I. Additional analyses of the results comparing PID-GAN
and APINN-Drop have been provided in Appendix B.
Analyzing Imbalance in Generator Gradients: Figure 5 pro-
vides a comparison of the gradients obtained from the last two lay-
ers of the generator of PIG-GAN and PID-GAN for the three bench-
mark PDEs at the last epoch. For the Burgers’ equation, we can
observe that the gradients of PIG-GAN on the labeled set (∇𝜃Lu)
(i.e., the initial and the boundary points) has a much wider distribu-
tion than the gradients of the PDE residuals (∇𝜃Lf) computed on
the unlabeled set. This imbalance between the gradients indirectly
demonstrates the imbalance between the gradient contributions of
labeled and unlabeled points in PIG-GAN, supporting the theoreti-
cal claims made in Section 3. This problem of PIG-GAN aggravates
for the Schrödinger’s equation, where we can see that ∇𝜃Lu has
an extremely large variance while the variance of ∇𝜃Lf is ultra-
low. However, for the Darcy’s Equation, the imbalance between
the gradients of PIG-GAN is not very visible, indicating that the
problem of gradient imbalance in PIG-GAN is use-case dependent.
On the other hand, for PID-GAN, the generator gradients for both
the labeled and unlabeled set follow the same distribution across
all three PDEs, showing no signs of gradient imbalance.

It must be noted that we only visualize the effect of gradient
imbalance in the last two layers of the generator. The magnitude
of these gradients decreases as we back-propagate deeper into the
network. This same phenomena leads to the common problem of
vanishing gradients. Thus, the effect of imbalance in the last few
layers would be more prominent than its effect in the earlier layers.
Analyzing Discriminator Scores: Figure 6 compares the discrim-
inator outputs of PID-GAN and PIG-GAN on the labeled and unla-
beled (test) points after training. For PIG-GAN, we evaluate the fully
trained discriminator on three types of inputs: (xu, yu), (xu, ŷu),
and (xtest, ŷtest). (Note that we evaluate the performance of our
model on xtest for PDEs, which is different from the unlabeled set
xf used during training.) On the other hand, for the PID-GAN, we
evaluate the discriminator on three types of inputs: (xu, yu, 1u),
(xu, ŷu,𝜼u), and (xtest, ŷtest,𝜼test).

On the Burgers’ equation for PIG-GAN, we can observe that
the discrminator is not able to distinguish between “real” samples
(xu, yu) and the generated “fake” samples (xu, ŷu) since the distri-
bution of these two are similar and centered around 0.5. However, by
analyzing its score on (xtest, ŷtest), we can see that it always tends
to predict the samples from the test set as “fake” by scoring them
greater than 0.5 on average. This behavior is quite expected since
the discriminator of PIG-GAN only learns the decision boundary

0.00 0.25 0.50 0.75 1.00
0

1

2

3

4

5

6 D(xu,yu,1u)

D(xu, ŷu, ηu)

D(xtest, ŷtest, ηtest)

(a) Burgers’ PIG-GAN

0.00 0.25 0.50 0.75 1.00
0

5

10

15

20

D(xu,yu,1u)

D(xu, ŷu, ηu)

D(xtest, ŷtest, ηtest)

(b) Burgers’ PID-GAN

0.00 0.25 0.50 0.75 1.00
0

2

4

6

8

10

12
D(xu,yu,1u)

D(xu, ŷu, ηu)

D(xtest, ŷtest, ηtest)

(c) Schrodinger PIG-GAN

0.00 0.25 0.50 0.75 1.00
0

5

10

15

20

D(xu,yu,1u)

D(xu, ŷu, ηu)

D(xtest, ŷtest, ηtest)

(d) Schrodinger PID-GAN

Figure 6: Discriminator Scores of PIG-GAN and PID-GAN

between the “real” and “fake” samples on the labeled set. However,
when we provide the discriminator of PID-GAN with similar in-
puts, we notice that it has adequately learned the decision boundary
between the “real” and generated “fake” samples on both labeled
and unlabeled set. Thus, the distribution of discriminator scores
for (xtest, ŷtest,𝜼test) for PID-GAN is centered at 0.5. Again, for
Schrödinger equation, we observe similar behavior for the discrim-
inator scores of PIG-GAN and PID-GAN.
Visualization of PDE Solutions: Figure 7 shows the exact solu-
tion of the Burgers’ equation along with the absolute errors and
variances of PIG-GAN and PID-GAN. Burgers’ equation has a non-
linear steep response at x=0, where both the predictive models show
a strong correlation between regions with higher variances and
higher absolute errors, which is a desirable behavior. For example,
if the variance of a model is high in a certain region, it suggests
that the model is less confident in its predictions and thus can incur
larger errors. On the contrary, a model with low variance and a
higher value of errors indicates poor and over-confident predic-
tions. Similar to Burgers’, Figure 8 shows the exact solutions of the
Schrödinger equation along with the absolute errors and variances
of PID-GAN and PIG-GAN. Again, we observe two steep responses
centered around x = -1 and 1 for t=0.79. Similar to the Burgers’, we
see PID-GAN has higher variance with a higher absolute error at
the steep region. However, the absolute errors and the variances
of PIG-GAN are not only concentrated over the steep region but
also spread all over the spatio-temporal domain. This means that
PIG-GAN is both less confident and more prone to errors in its pre-
diction even in regions with smooth responses. Additional analyses
of the results comparing the predicted and exact solutions of Burg-
ers’ and Schrödinger equation have been provided in Appendix B.

0.0 0.2 0.4 0.6 0.8
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
Exact u(t, x)

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

(a) Exact

0.0 0.2 0.4 0.6 0.8
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
Absolute Error u(t, x)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) PIG-GAN Absolute Error

0.0 0.2 0.4 0.6 0.8
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
Absolute Error u(t, x)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c) PID-GAN Absolute Error

0.0 0.2 0.4 0.6 0.8
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
Variance u(t, x)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(d) PIG-GAN Variance

0.0 0.2 0.4 0.6 0.8
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
Variance u(t, x)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(e) PID-GAN Variance

Figure 7: Visualization of Absolute Error and Variance for Burger’s Equation.

0.00 0.25 0.50 0.75 1.00 1.25 1.50

t

−4

−2

0

2

4

x

Exact |h(t, x)|

0

1

2

3

4

5

(a) Exact

0.00 0.25 0.50 0.75 1.00 1.25 1.50

t

−4

−2

0

2

4

x

Absolute Error |h(t, x)|

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(b) PIG-GAN Absolute Error

0.00 0.25 0.50 0.75 1.00 1.25 1.50

t

−4

−2

0

2

4

x

Absolute Error |h(t, x)|

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(c) PID-GAN Absolute Error

0.00 0.25 0.50 0.75 1.00 1.25 1.50

t

−4

−2

0

2

4

x

Variance |h(t, x)|

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(d) PIG-GAN Variance

0.00 0.25 0.50 0.75 1.00 1.25 1.50

t

−4

−2

0

2

4

x

Variance |h(t, x)|

0.0

0.1

0.2

0.3

0.4

0.5

(e) PID-GAN Variance

Figure 8: Visualization of Absolute Error and Variance for Schrödinger Equation.

5 CONCLUSIONS AND FUTUREWORK
Wepresented aGANbased framework for UQwith physics-supervision,
referred to as PID-GAN. A unique aspect of PID-GAN is its ability
to exploit the full potential of adversarial optimization in-built in
GAN frameworks for training both the discriminator and generator
on labeled and unlabeled points. Future directions of research can
explore the use of PID-GANs for inference tasks such as rejection
sampling.

6 ACKNOWLEDGEMENT
This work was supported by NSF grant #2026710.

REFERENCES
[1] Yunhao Ba, Guangyuan Zhao, and Achuta Kadambi. 2019. Blending diverse

physical priors with neural networks. arXiv preprint arXiv:1910.00201 (2019).
[2] Vanessa Böhm, François Lanusse, and Uroš Seljak. 2019. Uncertainty Quantifica-

tion with Generative Models. arXiv preprint arXiv:1910.10046 (2019).
[3] Arka Daw, R Quinn Thomas, Cayelan C Carey, Jordan S Read, Alison P Appling,

and Anuj Karpatne. 2020. Physics-Guided Architecture (PGA) of Neural Networks
for Quantifying Uncertainty in Lake Temperature Modeling. In Proceedings of
the 2020 SIAM International Conference on Data Mining. SIAM, 532–540.

[4] Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a bayesian approximation:
Representing model uncertainty in deep learning. In international conference on
machine learning. 1050–1059.

[5] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and
Aaron Courville. 2017. Improved training of wasserstein gans. arXiv preprint
arXiv:1704.00028 (2017).

[6] Ruihan Hu, Qijun Huang, Sheng Chang, Hao Wang, and Jin He. 2019. The
MBPEP: a deep ensemble pruning algorithm providing high quality uncertainty
prediction. Applied Intelligence 49, 8 (2019), 2942–2955.

[7] Xiaowei Jia, Jared Willard, Anuj Karpatne, Jordan Read, Jacob Zwart, Michael
Steinbach, and Vipin Kumar. 2019. Physics Guided RNNs for Modeling Dynamical
Systems: A Case Study in Simulating Lake Temperature Profiles. In Proceedings
of the 2019 SIAM International Conference on Data Mining. SIAM, 558–566.

[8] Laurent Valentin Jospin, Wray Buntine, Farid Boussaid, Hamid Laga, and Mo-
hammed Bennamoun. 2020. Hands-on Bayesian Neural Networks–a Tutorial for
Deep Learning Users. arXiv preprint arXiv:2007.06823 (2020).

[9] Anuj Karpatne, GowthamAtluri, JamesH Faghmous,Michael Steinbach, Arindam
Banerjee, Auroop Ganguly, Shashi Shekhar, Nagiza Samatova, and Vipin Kumar.

2017. Theory-guided data science: A new paradigm for scientific discovery from
data. IEEE Transactions on Knowledge and Data Engineering 29, 10 (2017).

[10] Anuj Karpatne, William Watkins, Jordan Read, and Vipin Kumar. 2017. Physics-
guided neural networks (pgnn): An application in lake temperature modeling.
arXiv preprint arXiv:1710.11431 (2017).

[11] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114 (2013).

[12] Chunyuan Li, Jianqiao Li, Guoyin Wang, and Lawrence Carin. 2018. Learning to
sample with adversarially learned likelihood-ratio. (2018).

[13] Patrick L McDermott and Christopher K Wikle. 2019. Deep echo state networks
with uncertainty quantification for spatio-temporal forecasting. Environmetrics
30, 3 (2019), e2553.

[14] Tim Pearce, Felix Leibfried, and Alexandra Brintrup. 2020. Uncertainty in neural
networks: Approximately bayesian ensembling. In International conference on
artificial intelligence and statistics. PMLR, 234–244.

[15] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. 2019. Physics-informed
neural networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations. J. Comput. Phys. 378
(2019), 686–707.

[16] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,
and Xi Chen. 2016. Improved techniques for training gans. arXiv preprint
arXiv:1606.03498 (2016).

[17] Russell Stewart and Stefano Ermon. 2017. Label-free supervision of neural
networks with physics and domain knowledge. In AAAI.

[18] Hao Wang and Dit-Yan Yeung. 2016. Towards Bayesian deep learning: A frame-
work and some existing methods. IEEE Transactions on Knowledge and Data
Engineering 28, 12 (2016), 3395–3408.

[19] Kuan-Chieh Wang, Paul Vicol, James Lucas, Li Gu, Roger Grosse, and Richard
Zemel. 2018. Adversarial distillation of bayesian neural network posteriors. In
International Conference on Machine Learning. PMLR, 5190–5199.

[20] Sifan Wang, Yujun Teng, and Paris Perdikaris. 2020. Understanding and mitigat-
ing gradient pathologies in physics-informed neural networks. arXiv preprint
arXiv:2001.04536 (2020).

[21] Jared Willard, Xiaowei Jia, Shaoming Xu, Michael Steinbach, and Vipin Kumar.
2020. Integrating physics-based modeling with machine learning: A survey. arXiv
preprint arXiv:2003.04919 (2020).

[22] Yibo Yang and Paris Perdikaris. 2019. Adversarial uncertainty quantification in
physics-informed neural networks. J. Comput. Phys. 394 (2019), 136–152.

[23] Dongkun Zhang, Lu Lu, Ling Guo, and George EmKarniadakis. 2019. Quantifying
total uncertainty in physics-informed neural networks for solving forward and
inverse stochastic problems. J. Comput. Phys. 397 (2019), 108850.

[24] Ruiyi Zhang, Chunyuan Li, Changyou Chen, and Lawrence Carin. 2018. Learning
structural weight uncertainty for sequential decision-making. In International
Conference on Artificial Intelligence and Statistics. PMLR, 1137–1146.

Appendices

A IMPLEMENTATION DETAILS
In this section, we describe the model, data, and training details for
reproducing the experiments.

A.1 Procedure for selecting hyparparameters
For the baselines, we choose the exact hyperparameters and model
architectures as described in their respective papers.
Architecture selection: In the GAN-based formulation, the dis-
criminator is much easier to train than the generator. To infer the
PDE solutions, for every discriminator update, the generator is
updated 5 times for all of our GAN-based models. Since we are
providing additional information (physics consistency score) to
the discriminator, it can easily overfit, which further leads to the
vanishing gradient problem. To address this problem, we choose a
simpler architecture for the discriminator in the PID-GAN model
when compared to its PIG counterpart.
Procedure for selecting 𝜆:We tune the trade-off hyperparameter
𝜆 using random search, where we set a heuristic to select the initial
𝜆 = 1/(R𝜃0) where 𝜃0 are the generator weights after random
initialization. For the baselines shown in PDE problems, we choose
the exact trade-off 𝜆 as reported in the respective papers, while
for other datasets, we perform a random hyperparameter search to
select the optimal 𝜆.

We use the Adam optimizer with a learning rate of 10−4 for PDE
problems and 10−3 for other datasets.

A.2 Experimental Setup
In this section, we provide additional information regarding each
of the datasets used in the main text. For each of our experiments,
we normalized the inputs to follow zero mean and unit standard
deviations.
Real-world Dataset: To evaluate our model performance on im-
perfect physics, we use two real-world datasets: collision prediction
dataset, and tossing trajectory prediction dataset. We select 108
labeled points and 436 unlabeled points to train our models on the
collision dataset. Meanwhile, we use 217 labeled points with 327
unlabeled points to train on the tossing dataset. All of the compar-
ative baselines are trained for 5,000 epochs and 10,000 epochs on
collision and tossing dataset respectively.
Partial Differential Eqations (PDE):
Burgers Equation: Burgers’ equation is a fundamental partial dif-
ferential equation that has multiple applications in areas ranging
from applied mathematics like fluid mechanics, nonlinear acous-
tics, to traffic flow problems. For Burgers’ equation, we train our
model on 150 labeled points, which are uniformly distributed across
the initial condition data {(𝑥, 𝑡) |𝑡 = 0} and the boundary points
{(𝑥, 𝑡) |𝑥 ∈ {−1, 1}}. We further use 10,000 randomly chosen unla-
beled points (collocation points for PDEs) to optimize our models.
We train the baseline models for 30,000 epochs, which is common
practice in the existing literature.
Schrödinger Equation:We use 100 labeled points for Schrodinger
equation, where we select 50 uniformly distributed data points
across the initial condition {(𝑥, 𝑡) |𝑡 = 0} and 50 uniformly dis-
tributed data points across the boundary points {(𝑥, 𝑡) |𝑥 ∈ {5,−5}}.

Moreover, we select 20,000 unlabeled points (collocation points for
PDEs) that are randomly chosen from the input space using the
Latin Hypercube Sampling strategy. Similar to the previous works,
we train our baseline models for 50,000 epochs.
Darcy’s Equation: For Darcy’s equation, we use 200 scattered la-
beled points uniformly distributed over the data space. Additionally,
we use 400 boundary points uniformly distributed over the four
boundaries. Moreover, we select 10,000 unlabeled points (colloca-
tion points for PDEs) that we randomly choose from the input space.
All of the baselines are trained over 30,000 epochs.

B ADDITIONAL ANALYSIS OF RESULTS
B.1 Comparing PID-GAN and APINN-Drop on

Darcy’s Equation
We visualize the performance of the PID-GAN and APINN-Drop for
noisy conditions to gain more insights into each of these models.
From Table 2, we observed that PID-GAN and APINN-Drop had
similar relative 𝐿2 error - u. However, the relative 𝐿2 error - k of
APINN-Drop is significantly worse than that of PID-GAN. This
is also evident from the plots of Absolute error of 𝑘 . Also, the
variances of the PID-GAN are much lower than those of the APINN-
Drop. We observe the trend that PINN variants usually have much
larger variances in their predictions, thus achieving higher values
of 95% C.I. It can be inferred that APINN-Drop is usually under-
confident in its predictions. However, this behavior might not be
desirable. Ideally, we would want to have a higher value of 95% C.I.
with lower values of standard deviations. PID-GAN on the other
hand, generates significantly lower errors in 𝑘 while having lower
variances with a relatively high value of 95% C.I.

B.2 Prediction comparison for Burgers’
equation

Figure 10 shows the comparison of the predicted and the exact solu-
tions of Burgers’ equation for different baselines at t=0.5 snapshot.
It is evident from the figure that at x=0, there is a steep slope, which
is hard to predict by conventional neural networks. The original
PINN paper, which does point estimates, shows better performance
on finding the exact solution of Burgers’ equation than our dropout
based PINN-Drop method. This justifies our observation on MC-
Dropout that its minor perturbation can easily throw-off a model
to become physically inconsistent, which motivates us to estimate
the uncertainty using GAN-based models.

B.3 Prediction comparison for Schrödinger
equation

Figure 11 illustrates a similar observation for MC-Dropout based
models. PINN-Drop and APINN-Drop perform well on the smooth
response region, whereas, for the steep response region, the predic-
tions and the uncertainty of these models are inconsistent. GAN-
based model predictions are close to the exact solutions, and from
the results, the PID-GAN performs much better than the PIG-GAN
in terms of residual error and uncertainty estimate values.

(a) Exact k (b) PID-GAN Absolute Error k (c) APINN-Drop Absolute Error k (d) PID-GAN Variance k (e) APINN-Drop Variance k

Figure 9: Comparison of PID-GAN and Adaptive PINN-Drop in terms of absolute error and variance on Darcy’s equation.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

u
(t
,x

)

t = 0.50

Exact

Prediction

Two std band

(a) PID-GAN

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

u
(t
,x

)

t = 0.50

Exact

Prediction

Two std band

(b) PIG-GAN

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

u
(t
,x

)

t = 0.50

Exact

Prediction

Two std band

(c) PINN-Drop

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

u
(t
,x

)

t = 0.50

Exact

Prediction

Two std band

(d) APINN-Drop

Figure 10: Comparison of the predicted and exact solutions of Burgers’ equation corresponding to 𝑡 = 0.50 snapshot.

−4 −2 0 2 4

x

0

1

2

3

4

5

|h
(t
,x

)|

t = 0.79

Exact

Prediction

Two std band

(a) PID-GAN

−4 −2 0 2 4

x

0

1

2

3

4

5

|h
(t
,x

)|

t = 0.79

Exact

Prediction

Two std band

(b) PIG-GAN

−4 −2 0 2 4

x

0

1

2

3

4

5

|h
(t
,x

)|

t = 0.79

Exact

Prediction

Two std band

(c) PINN-Drop

−4 −2 0 2 4

x

0

1

2

3

4

5

|h
(t
,x

)|

t = 0.79

Exact

Prediction

Two std band

(d) APINN-Drop

Figure 11: Comparison of the predicted and exact solutions of Schrödinger equation corresponding to 𝑡 = 0.79 snapshot.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Uncertainty Quantification with DL
	2.2 Physics-Informed Deep Learning (PIDL)
	2.3 Physics-Informed UQ

	3 Proposed Framework of PID-GAN
	3.1 Analysis of Generator Gradients
	3.2 Extension for Imperfect Physics
	3.3 Mitigating Mode Collapse

	4 Experimental Results
	4.1 Case Study: Collision Speed Estimation
	4.2 Case Study: Tossing Trajectory Prediction
	4.3 Case Study: Solving Physics-based PDEs

	5 Conclusions and Future Work
	6 Acknowledgement
	References
	Appendices
	A Implementation Details
	A.1 Procedure for selecting hyparparameters
	A.2 Experimental Setup

	B Additional Analysis of Results
	B.1 Comparing PID-GAN and APINN-Drop on Darcy's Equation
	B.2 Prediction comparison for Burgers' equation
	B.3 Prediction comparison for Schrödinger equation

