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ABSTRACT
Computer systems such as storage systems normally require trans-

parent white-box algorithms that are interpretable for human ex-

perts. In this work, we propose a learning-aided heuristic design

method, which automatically generates human-readable strategies

from Deep Reinforcement Learning (DRL) agents. This method ben-

efits from the power of deep learning but avoids the shortcoming

of its black-box property. Besides the white-box advantage, experi-

ments in our storage production’s resource allocation scenario also

show that this solution outperforms the system’s default settings

and the elaborately handcrafted strategy by human experts.

CCS CONCEPTS
• Computing methodologies → Planning with abstraction
and generalization; Rule learning; • Computer systems or-
ganization→ Real-time operating systems.
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1 INTRODUCTION
The tuning process of computer systems is laborious and expen-

sive; but of great significance in terms of performance. Effective

and explainable heuristics have been widely adopted for tuning in

existing computer systems. For example, conventional heuristics

such as FIFO (First In First Out) and LRU (Least Recently Used) are

widely used in cache scenario. Nevertheless, these strategies are

customized and require sophisticated handcraft design. Recently,

a promising field of using machine learning to optimize computer
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systems is drawing increasing attentions [4]. For example, Mao et.
al. [5] apply deep reinforcement learning (DRL) on resource man-

agement problems. Kraska et. al. [3] attempt to replace traditional

index in computer system (such as B-Tree and BitMap) by learning

the mapping relation. However, the black-box property hinders the

deployment of them in real-world systems, where thorough sanity

checks and complete traceability are required. There have been

attempts to interpret the deep learning models, for instance, Koul

et. al. [2] propose a method to extract semantic strategies from a

trained recurrent neural network and uses that to play Atari games.

However, how these methods could be used for practical computer

system tuning still remains underexplored.

In this paper, we consider a real-time resource allocation problem

in the storage system Dorado V6 [8]. The computation resources

(i.e., CPU cores) are expected to be appropriately allocated into

different levels when workloads dynamically change, so as to finish

a given amount of IO requests with the minimum processing time.

Considering limited computation resource for tuning and the sys-

tem performance safety issue, a lightweight white-box approach

is required. To take advantage of the power of deep reinforcement

learning, we propose a learning-aided heuristics design method

which can extract an explainable finite state control strategy.

Our contributions are summarized as follows:

• We present an integrated pipeline of learning heuristics from

DRL policies, including heuristics extraction, generalization

capability enhancement, and interpretation, which aims to

facilitate domain experts to devise more sophisticated heuris-

tics for computer systems.

• We apply the above methods on a real-time resource alloca-

tion scenario in our storage product. Experimental results

show that both the DRL model and corresponding extracted

heuristics outperform the default production setting and the

elaborately handcrafted strategy by human experts.

2 PROBLEM DESCRIPTION
As shown in Figure 1, Dorado V6 storage system has a multi-level

computation resource architecture. There exist three levels where

CPU cores can reside, i.e., NORMAL, KV and RV. Specifically, KV

level stands for Key-Value storage level, in which CPU cores are

utilized to calculate the key-value mapping relation. RV level stands

for Resource Volume level, in which CPU cores are used in virtual-

ization management of disk resources. The CPU cores in different

levels perform different duties. The cores in NORMAL level load

data from a shared cache. The cache miss occurs when the NOR-

MAL level cache does not contain the requested data. In this case,

the CPU cores in KV and RV levels fetch data from the disk and load

it into the cache of NORMAL level. The cores in NORMAL level can

then read the loaded data from cache to meet the IO request. There
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Figure 1: CPU core allocation problem in our storage system
are various kinds of IO requests, different in the size and type of

read/write. Note that read IO requests might be finished only with

CPU cores of NORMAL level, while for write IO requests, cores of

all three levels must be used. For any time interval, workloads that

comprise different kinds of IO requests are concurrently sent to

the storage system. Our goal is to migrate CPU cores among the

three levels according to the dynamic workload distributions, to

finish the workload with the minimum number of time intervals.

The formal definitions are given as follows.

Definition 1 (Workload). Workload𝑤 (𝑡) within one time in-
terval 𝑡 can be described with two 14-dimension vectors and a scalar:

𝑆𝑤 (𝑡) = [𝑆𝑖 ], 𝑖 = 1, 2, ..., 14 (1)

𝐼𝑤 (𝑡) = [𝐼𝑖 ], 𝑖 = 1, 2, ..., 14 (2)

𝑄𝑤 (𝑡) (3)

where 𝑆𝑖 and 𝐼𝑖 together describe the 𝑖th type of IO request. 𝑆𝑖 denotes
the IO size and type (read/write). 𝐼𝑖 denotes the ratio of 𝑆𝑖 in𝑤 . There-
fore,

∑
14

𝑖=1 𝐼𝑖 = 1. 𝑄𝑤 (𝑡) represents the total number of IO requests in
workload𝑤 (𝑡) sent to storage system within time interval 𝑡 .

Definition 2 (Maximum Processing Capability). Each CPU
core has its own maximum processing capability per time interval,
denoted as𝑚, which is the maximum sum of IO request sizes (not
the number of IO requests) that could be processed. Suppose that the
total number of cores in the storage system is 𝑁 , the ideal maximum
processing capability within one time interval is 𝑁 ×𝑚.

Definition 3 (Cache Miss Rate). CPU cores of NORMAL level
may fail to read data from their own cache, which is referred to as
cache miss. The probability of cache miss is denoted as 𝐶 .

Besides the above definitions, the storage system also has the

following properties: 1) IO requests of workload𝑤 are assigned to

cores in a polling manner; 2) Each IO request must be processed

and cannot be discarded. If an IO request sent in a time interval 𝑡

cannot be processed (e.g., exceeds the total processing capability

of all cores within time interval 𝑡 ), then it will be postponed to the

following time intervals; 3) Each core is able to migrate between

NORMAL, KV, and RV levels, as shown in Figure 1. A core must

finish all the IO requests assigned to it before migration. A certain

percentage of performance loss in the next time interval would be

caused by the migration of a core.

Objective: For a sequence of workloads 𝑤 (𝑡 |𝑡 = 1, 2, ..𝑇 ), the
makespan 𝐾 (𝐾 ≥ 𝑇 ) is the number of time intervals to finish

all IO requests. Our objective is to design dynamic CPU migration

policies among different levels to minimize the makespan 𝐾 .

Figure 2: The detailed process of our proposed method to
automatically extract heuristics using RNN-based reinforce-
ment learning, where a QBN [2] technique is adopted in the
first three steps.
3 HEURISTICS LEARNED FROM DRL POLICY
In this section, we present an integrate pipeline that learns heuris-

tics from DRL policies. The overall process is shown in Figure 2. We

first construct a recurrent DRL model that consists of a value net-

work and a policy network, and train it in the environment. Then

we insert two quantization auto-encoders and retrain the model.

The auto-encoders are for the observed data and the hidden states,

respectively. Next, we extract a Finite State Machine (FSM) from the

embedding of the auto-encoders. Finally, we summarize semantics

of the FSM states via matching corresponding observations and

analyzing them statistically.

3.1 RNN-based Reinforcement Learning
We model the problem as a Markov Decision Process (MDP), then

utilize a Recurrent Neural Network (RNN) based DRL model to

solve the MDP. It is believed that a latent context relation exists in

the transitions of workloads. The RNN in our DRL model is devised

to cope with this latent relationship.

Observation: 𝑜𝑡 represents the observation at the time interval 𝑡 .

𝑜𝑡 = [𝑐𝑁 (𝑡), 𝑐𝐾 (𝑡), 𝑐𝑅 (𝑡), 𝑢𝑁 (𝑡), 𝑢𝐾 (𝑡), 𝑢𝑅 (𝑡),𝑤 (𝑡), 𝑄𝑤 (𝑡)], where
𝑐𝑁 (𝑡), 𝑐𝐾 (𝑡) and 𝑐𝑅 (𝑡) respectively denote the number of cores in

NORMAL, KV, RV levels and 𝑢𝑁 (𝑡), 𝑢𝐾 (𝑡) and 𝑢𝑅 (𝑡) respectively
represent the average CPU utilization rate of the three levels. The

observation space is denoted as O = {𝑜𝑡 }.
Hidden State: ℎ𝑡 denotes the hidden state at time interval 𝑡 , which

is updated on each transition and affects the following action se-

lection. In particular, ℎ𝑡 = 𝜙 (ℎ𝑡−1, 𝑜𝑡 ), where 𝜙 is the transition

function maintained in the recurrent network. The hidden state

space is denoted byH . Hence the transition function𝜙 is a mapping:

H × O ↦→ H .

Action: For each hidden state ℎ𝑡 , an action 𝑎𝑡 is chosen from the

policy network 𝜋 , i.e., 𝑎𝑡 = 𝜋 (ℎ𝑡 ). The action space is denoted as

A = {𝑎𝑖 |𝑖 = 1, ..., 7}, where there are seven distinct actions in total.

Note that action 𝑎1 represents no CPU core migration between

different levels. The rest of actions respectively denote migrating



one CPU core from one level to another level (e.g., migrating one

core from NORMAL to KV).

Reward: The reward is measured as 1/𝐾 , which is the inverse of

the makespan.

3.2 Extract Heuristics from Learned Policy
3.2.1 Finite State Machine Extraction. As Step 2 and 3 illustrate

in Figure 2, once the DRL model converges in training, we extract

a FSM from it with Quantized Bottleneck Network (QBN) tech-

nique [2]. The QBNs are auto-encoders that reconstruct continuous

embedded observations 𝑜𝑡 and hidden states ℎ𝑡 as 𝑜
′
𝑡 and ℎ

′
𝑡 . The

entries of their latent embeddings 𝑜̂𝑡 and ℎ̂𝑡 (whose dimension is

denoted as 𝐿) are restricted to be 𝑘-bit quantized. There are 𝑘𝐿

distinct embeddings that span the discrete embedding space Ô and

Ĥ . A dataset of < ℎ𝑡 , ℎ𝑡+1, 𝑜𝑡 , 𝑎𝑡 > can be collected via running the

trained DRL model. The QBNs are then trained over the collected

dataset using supervised learning to minimize the reconstruction er-

ror. In this way, a discrete dataset of < ℎ̂𝑡 , ℎ̂𝑡+1, 𝑜̂𝑡 , 𝑎𝑡 > is obtained,

which produces a transition table, i.e., the extracted FSM.

3.2.2 Generalization Capability Enhancement. Unlike the classical
video game scenarios [2] where the DRL and extracted FSM could

see all possible observations, in our scenario we cannot observe

all possible kinds of workloads. We thus propose two methods to

enhance the generalization capability of the extracted FSM.

The first one is curriculum learning. In practice, we cannot oper-

ate the storage system once it has been sold to our customers. Thus

we are not able to obtain large amounts of real workload traces

from the users unless we are granted with the permissions. As the

result, only a few real workload traces are available to us. However,

we can collect summarized characteristics of real workload traces,

such as periods, trends and dominant IO types, via customer inves-

tigation (a common business mode). With these characteristics, we

construct several standard workload traces using Vdbench [7]. We

regard standard workload traces as easy tasks. A policy 𝜋𝜃 is first

trained on multiple easy tasks until it converges. The real workload

traces are regarded as hard tasks, the number of which are very few

compared to the number of easy tasks. With knowledge learned in

easy tasks, we continue to train policy 𝜋𝜃 on a few hard tasks to

get the final policy. We experimentally validate that the proposed

method improves the generalization capability in Section 4.

The second one is to classify an unseen observation as its closest

known observation. The intuition behind is that the state space has

a certain continuity and similar observations could trigger similar

actions. Specifically, we define the “closeness” of two observations

as the similarity between their observation vectors. The similarity

measures such as Euclidean distance and cosine similarity can be

applied. The unseen observation can therefore trigger a transition

in the extracted FSM.

3.3 Interpretation of Extracted States
A FSM for real workload could be extracted from the trained DRL

using the method mentioned above. We interpret the extracted

states in two ways, so that the strategies of DRL could be unfolded

for inspiring further heuristics design.

We firstly examine the transitions into and from each state. Ev-

ery state in the extracted FSM is associated with many observations

which are divided into two classes, Fan-in and Fan-out, as shown in

Figure 2 (observations that correspond to transitions between the

same state should be ruled out). Moreover, each state corresponds

to one unique action. It is the action emitted by the state that causes

the variation between Fan-in and Fan-out observations. Here the

original continuous observations are used instead of the quantized

counterparts obtained from auto-encoders. For each state, we com-

pare the average Fan-in and Fan-out observations, and infer how

the state reacts to environment and the intensity of that reaction.

Secondly, we examine the history of observations before the

transition into a state. For each presence of a specific state, we

collect a time window of observations happened before it. We then

take the average of these time windows, which represents the gen-

eral history information of that state. The states are extracted from

the RNN-based DRL, so that the history that we obtained could be

useful for explaining what causes the transition into a state and

what information is encoded by the state.

4 EXPERIMENT
4.1 Settings
12 classes of standard workload traces are synthesized using the

Vdbench tool, each of which is associated with one typical business

model of the users, such as database, heavy computing, etc. Recall
that we only have very few real workload traces from the users.

We simulate real workload traces by sampling snippets from the

aforementioned standard workloads. In this way, we generate 50

workload traces. To sample more efficiently for RL, we write a

simulator to simulate the CPU core migration in Dorado V6 storage

system. In addition to the characteristics of storage system described

in Section 2, we also consider the idle rate of CPU cores which

follows a Poisson distribution in the simulator.

4.2 Training procedures
We use a Gated Recurrent Unit (GRU) with 128 hidden nodes to

incorporate the recurrent architecture. We forward its hidden state

to two linear layers, with output sizes of 7 and 1 respectively, to

produce the logits corresponding to all possible actions and the

predicted state value. The loss design follows the Advantage Actor-

Critic method (A2C) [6]. We use Adam [1] optimizer with an initial

learning rate 0.0003 and clip the norm of gradients to be under 2.

The RL learning follows the Epsilon greedy exploration with 0.1 as

the probability of random action selection. We adopt the method

in [2] to extract a finite state machine from the trained DRL model.

For the parameters of QBNs, we set 𝑘 = 3 and 𝐿 = 64.

4.3 Experimental results
4.3.1 Convergence. The proposed curriculum learning for storage

system is validated here. One RL agent is trained for 2000 epochs

in total based on our curriculum learning strategy (1000 epochs for

standard workload traces and 1000 epochs for real workload traces).

We train another agent on real workload traces for 2000 epochs

for comparison. The result of convergence comparison is shown

in Figure 3. The blue curve represents the convergence process of

training only on real workloads whilst the yellow and brown curves

together show the convergence process of curriculum learning. The

horizontal and vertical axes denote the epoch number and total

makespan respectively. It can be seen that the RL agent with cur-

riculum learning converges faster and better than the one learned

from scratch. Besides, it is worth noting that the computation power
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consumption of training on standard workload traces is relatively

lower than that on real workload traces. Thus, with the introduction

of curriculum learning, we can obtain a better RL policy using lower

computation power and less number of real workloads, which is

vital to algorithm deployment in the production environment.

4.3.2 Performance. Prior to interpret the extracted FSM, we are

supposed to ensure that its behavior and performance are aligned

with the original DRL model. We compare the performance be-

tween the original DRL model (i.e., GRU-based DRL) trained with

curriculum learning, extracted FSM, a handcrafted FSM, and the de-

fault setting. Roughly speaking, the principle of handcrafted FSM is

migrating CPU cores from the level with the lowest CPU utilization

rate to the one with the highest CPU utilization rate. It is tested in

User Acceptance Testing environment and show 20% reduction of

makespan. The default setting refers to no CPU migration during

testing. The comparison result over ten real workloads is illustrated

in Figure 4. It shows that all algorithms get lower average makespan

than the default setting. Besides, both the original DRL model and

extracted FSM perform better than handcrafted FSM (11.5% reduc-

tion of makespan on average). The extracted FSM performs a little

bit worse than the original DRL model (0.88% increase of makespan

on average) since there must be a loss of information after the

quantizaion of DRL model.

4.4 FSM interpretation
We visualize an extracted FSM over a real workload in Figure 5.

There are in total five states (i.e., the circles) in the FSM, where each

state is associated with an action. For examples, “Noop” stands for

no operation, i.e., without CPU core migration. “N=>R” refers to

migrating one core from NORMAL level to RV level. The thickness

of circle denotes how many transitions are associated with the state

when applying the extracted FSM to the real workload.

Using the method described in Section 3.3, we analyze the Fan-in

Figure 5: Visualization of extracted FSM

Figure 6: History information of the S2
and Fan-out statistics and the history information. The Fan-in and

Fan-out statistics in Figure 5 illustrate the basic semantic meaning

of each state. S0 (“Noop”) is the most frequent state, since the FSM

adapts to the workload and then keeps the stabilized configuration

in the long term. The difference between its Fan-in and Fan-out

CPU utilization indicates the general fluctuation of workload inten-

sity. For S1 and S4, they tend to move cores from the level with low

utilization to the levels with high utilization. This is a basic strategy

that simply gives the level with high demand more computation

capacity, which is also the strategy used by our handcrafted FSM.

S2 and S3 do not follow this basic strategy. The history infor-

mation of S2 in Figure 6 explains this phenomenon. The figure

shows information of the last 10 average observations before the

transition into S2. Recall that read requests only demand loading

the data, whereas write requests additionally require writing data

back to disk. Here we see that the intensity of write workload keeps

rising while the intensity of read workload stays at 0. Moreover,

the capacity ratio (the ratio of computation capacity of NORMAL

to that of KV and RV) goes up. Obviously, the FSM tried to firstly

load all relevant data by increasing the capacity of NORMAL. At

this moment, it readjusts to give KV and RV more capacity so that

the write-back phase of write requests could be satisfied quickly. S3

also has similar history. We do not show it due to the limited space.

5 CONCLUSION
In this paper, an integrated pipeline of learning heuristics from DRL

policies is presented. We apply the proposed methods to a practical

resource allocation problem in our storage product. Experimental

results demonstrate that both the DRL model and extracted FSM

outperform handcrafted FSM on various workloads. Visual and sta-

tistical analyses of the extracted FSM are given to provide insights

into the DRL model for domain experts.
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