N
N

N

HAL

open science

Exploiting system level heterogeneity to improve the
performance of a GeoStatistics multi-phase task-based
application

Lucas Leandro Nesi, Arnaud Legrand, Lucas Mello Schnorr

» To cite this version:

Lucas Leandro Nesi, Arnaud Legrand, Lucas Mello Schnorr. Exploiting system level heterogeneity
to improve the performance of a GeoStatistics multi-phase task-based application.
50th International Conference on Parallel Processing, Aug 2021, Lemont, United States. pp.1-10,

10.1145/3472456.3472516 . hal-03280459

HAL Id: hal-03280459
https://inria.hal.science/hal-03280459
Submitted on 16 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

ICPP 2021 -

https://inria.hal.science/hal-03280459
https://hal.archives-ouvertes.fr

Exploiting system level heterogeneity to improve the
performance of a GeoStatistics multi-phase task-based
application

Lucas Leandro Nesi
Institute of Informatics PPGC/UFRGS
Porto Alegre, Brazil
lucas.nesi@inf.ufrgs.br

Arnaud Legrand
Univ. Grenoble Alpes, CNRS, Inria,
Grenoble INP, LIG
Grenoble, France

Lucas Mello Schnorr
Institute of Informatics PPGC/UFRGS
Porto Alegre, Brazil
schnorr@inf.ufrgs.br

arnaud.legrand@imag.fr

ABSTRACT

Heterogeneity is part of HPC infrastructures, not only at the intra-
node but at the system level. Applications with multiple phases
with distinct resource necessities can take advantage of this inter-
node heterogeneity to improve performance and reduce resource
idleness. Such an application is ExaGeoStat, a task-based machine
learning framework specifically designed for geostatistics data. This
work presents strategies to efficiently distribute multi-phase applica-
tions in system-level heterogeneous resources. We both (1) improve
application phase overlap by optimizing runtime and scheduling
decisions and (2) compute the optimal distribution for all the phases
using a linear program leveraging node heterogeneity while limit-
ing communication overhead. The performance gains of our phase
overlap improvements are between 36% and 50% compared to the
original base synchronous and homogeneous execution. We show
that by adding some slow nodes to a homogeneous set of fast nodes,
we can improve the performance by another 25% compared to a
standard block-cyclic distribution, thereby harnessing any machine.

CCS CONCEPTS

« Computing methodologies — Massively parallel algorithms
Distributed computing methodologies.

KEYWORDS
Task-Based, Scheduling, Partitioning, Load Balancing

ACM Reference Format:

Lucas Leandro Nesi, Arnaud Legrand, and Lucas Mello Schnorr. 2021. Ex-
ploiting system level heterogeneity to improve the performance of a Geo-
Statistics multi-phase task-based application. In 50th International Confer-
ence on Parallel Processing (ICPP °21), August 9-12, 2021, Lemont, IL, USA.
ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3472456.3472516

1 INTRODUCTION

High-performance computing widely employs intra-node hetero-
geneity [9]. Most of the supercomputers at TOP500 [10] have at
least one type of accelerator that applications can utilize. This

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICPP °21, August 9-12, 2021, Lemont, IL, USA

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9068-2/21/08.

https://doi.org/10.1145/3472456.3472516

heterogeneity enables the acceleration of specific kernels while pre-
serving the other resources (CPUs) to the remaining computational
operations. Nevertheless, heterogeneity is also further present at a
system level, where different computational node types exist. Su-
percomputers manifest that heterogeneity usually by dividing the
nodes into distinct partitions. Examples of such supercomputer are
the French Jean Zayl, the Swiss Piz Daint?, and the Brazilian SDu-
mont®. Common causes for these diverse nodes are: (i) the design,
when the infrastructure possesses such configurations to target
diverse workloads; (ii) the financial limitations, when only a subset
of nodes receives accelerators because of budget constraints; and
(iii) the natural infrastructure upgrades over time. Furthermore,
Cloud is another example of system-wide heterogeneity, as the ma-
jor service providers offer a vast number of virtual machine types
that the customers can freely combine [19].

Although most applications suffer from system-wide heterogene-
ity, some applications can leverage such heterogeneity to enhance
their performance. Indeed, many applications have different phases,
each one having different computational needs. For example, phases
comprising data input and generation are generally more suited to
CPUs, while compute-intensive phases, such as classical linear al-
gebra kernels, can efficiently exploit accelerators. An application to
correctly use all available resources requires certain freedom to exe-
cute the phases concurrently. The challenges to making phase over-
lapping possible include programming and algorithmic difficulties.
From the programmer’s perspective, phase overlapping is usually
hard to obtain in traditional bulk synchronous parallel applications.
The complexity of programming asynchronous and overlapping
phases in strongly coupled MPI or MPI+X is high. Even after the
phase overlapping gets implemented, the application would still
face the algorithmic challenge to find an efficient distribution for
the different available nodes. Combining these challenges makes
most applications miss an enormous opportunity to use system-
level heterogeneousness since the distinct computational demand
of phases makes system heterogeneity a natural choice to improve
the load partitioning. This work relies on the task-based paradigm,
using a runtime, to overcome such difficulties. A Direct Acyclic
Graph (DAG), where nodes are tasks and edges are data depen-
dencies, represents the application. The runtime schedule ready
tasks while trying to minimize the total makespan. The application
developer still needs to give many hints to the runtime to assist

Uhttps://www.top500.0rg/site/50403/
https://www.top500.0rg/site/50422/
3https://www.top500.0rg/site/50576/

https://doi.org/10.1145/3472456.3472516
https://doi.org/10.1145/3472456.3472516
https://www.top500.org/site/50403/
https://www.top500.org/site/50422/
https://www.top500.org/site/50576/

ICPP °21, August 9-12, 2021, Lemont, IL, USA

it during execution. Examples of such runtimes are ParSEC [7],
OmpSs [11], and StarPU [3], this last used in this work.

This work focuses on the multi-phase task-based application
ExaGeoStat [1], a machine learning framework for computational
geostatistics. It uses the task-based dense linear algebra Chameleon
solver [2] and the StarPU runtime. ExaGeoStat relies on the Gauss-
ian process and optimizes the likelihood of spatial data, enabling
the prediction of missing points. This iterative optimization com-
prises phases, including generating a positive triangular matrix,
a Cholesky decomposition, and a triangular solve. These phases
require different computational needs and could overlap among
them if the DAG is well structured, the runtime has the right hints,
and it uses an adequate data distribution.

In this paper, we study and propose strategies for distributing
this multi-phase application over heterogeneous system-level re-
sources. The main contributions of this paper are: (a) Improvements
to the task-based asynchronous execution of the ExaGeoStat appli-
cation that includes a rewriting/adaptation of the solve algorithm,
new task priorities to guarantee a smoother phase transition, and
identification and addition of hints to help the runtime to take
good scheduling decisions; (b) A methodology for generating a
heterogeneous system-level static distribution that considers the
requirements of the most significant computational phases; (c) A
strategy for producing two optimal load distribution for each phase
while minimizing the redistribution communication overhead; (d) a
comprehensive performance evaluation of the proposed strategies.

Section 2 presents the concepts of the task-based paradigm and
the ExaGeoStat application. Section 3 discusses the related work of
heterogeneous distributions, asynchronous multi-phases, and mul-
tiple distributions. Section 4 explains the strategies for multi-phase
distribution in system-level heterogeneous resources. Section 5 re-
lates the performance evaluation of the proposed methods. Finally,
Section 6 concludes the paper with a discussion and future remarks.

2 TASK-BASED EXAGEOSTAT APPLICATION

ExaGeoStat is a machine learning application for GeoStatistics data
that relies on the Gaussian process and can predict missing obser-
vations in data. It is developed using the task-based programming
paradigm and relies on the Chameleon task-based dense linear
solver and StarPU. In this paradigm, instead of explicitly indicating
where and when each computation and communication should
occur, the programmer declares discrete computation operations
as tasks, expressing the execution flow using data dependencies
among these tasks. The final structure is a Direct Acyclic Graph
(DAG), where nodes are tasks and edges data dependencies. A task-
based runtime is then responsible for dynamically scheduling these
tasks over the desired system. ExaGeoStat can rely on several run-
times like ParSEC or StarPU. In this work, we use StarPU, a runtime
for heterogeneous (CPU/GPU) systems that can run over multi-
ple nodes using its MPI extension. In StarPU, the scheduling of
intra-node tasks is dynamic and managed by one out of the many
scheduling algorithms available. The division of data among the
nodes is the developer’s responsibility and generally follows a static
distribution. Consequently, each node will own portions of the data,
and StarPU will place tasks on nodes that hold the data they write.

Lucas Leandro Nesi, Arnaud Legrand, and Lucas Mello Schnorr

This static distribution is not a limitation for flexibility or free-
dom in task placement since the application can, during execution,
change the ownership of memory blocks.

ExaGeoStat interpolates spatial data (X, Z), where X corresponds
to the measurement locations and Z corresponds to the measure-
ments, with Gaussian process whose smoothness and scale are
controlled by a set of parameters 6 that requires adjustments to
the data in a Bayesian way. Therefore the application iteratively
optimizes the log-likelihood of 6 through Equation (1).

__N 1 1 T
1(0) = 210g(27r) 2log|29| 2Z 2y Z, (1)

where Xy is an N X N covariance matrix built from X representing
the similarity between measurement locations, which is computed
through a covariance function Ky (i.e., Zg[m, n] = Kg(Xm, Xn)).
Note that although Machine Learning commonly uses the squared
exponential (Gaussian) covariance function, the Matérn covariance
function is more appropriate for geostatistics data which can be
relatively rough.

Therefore, this optimization requires computing a large dense
symmetric and positive definite matrix Xy at each optimization
iteration. This matrix is then decomposed and solved using Cho-
lesky factorization and used through a triangular solve and a dot
product to compute the last term of Equation (1). The determinant
of the matrix is easily computed from the diagonal blocks of the
factorization. One iteration of ExaGeoStat has thus five phases, as
depicted in Figure 1: (1) Covariance matrix generation by Matérn
function with complexity O(n?); (2) Cholesky decomposition with
complexity O(n®) using the Chameleon library; (3) Matrix determi-
nant with complexity O(n); (4) Triangular solve with complexity
O(n?) also using the Chameleon library; and (5) the dot product of
the solve vector with complexity O(n). Figure 1 presents the DAG
which corresponds to one iteration. One may think that all the
distributions and scheduling decisions should be designed around
the most computationally intensive phase, the Cholesky factor-
ization. However, the phases have different computational needs
with varying affinities for accelerators. While the primary kernel
of the Cholesky factorization, dgemm, is well suited to GPUs, the
Matérn function used in the generation is only available through
costly CPU implementation at the moment. Consequently [14], for
small and medium cases, the time needed for covariance matrix
generation often dominates the Cholesky factorization, even with
one order of complexity difference.

In the public ExaGeoStat? repository, two execution options are
available: (1) Synchronous, with a synchronization point between
every phase, and (2) Asynchronous, where the synchronizations
between factorization/determinant and solve/dot product disappear.
Finally, ExaGeoStat uses the Chameleon library’s data distributions,
which is the traditional block-cyclic distribution for homogeneous
nodes of ScaLAPACK [6].

The ExaGeoStat authors reported excellent performance and
scalability results with homogeneous multi-core systems [1]. As we
will show in this work, when considering hybrid nodes (CPU+GPU),
the Matérn covariance function raises severe load-balancing issues.
Indeed, some phases better employ GPUs while others better utilize
CPUs. Thus, it is natural to exploit system-level heterogeneity by

“https://github.com/ecrc/exageostat

https://github.com/ecrc/exageostat

Exploiting system level heterogeneity to improve the performance of a GeoStatistics multi-phase task-based application

Tasks
demg [| dpotrf [Idtrsm []dsyrk dgemm [] dmdet
(1) Generation O(n?) o 1 2
0
00 10 11 20 21 22 1
[/ 7 V4 /)
(2) Cholesky O(n?)

(Cholesky om
Iteration 1
OoOom|E

Cholesky
Iteration 2

Cholesky
Iteration 3

determinant

(4)iJSoIve O(n?)
: %‘\;li solve S DD

| Gp—dGp-ap 70 B8O
(5) Dot product O(n) dot product

i N \1 . 2A/ O

Figure 1: ExaGeoStat iteration DAG for N = 3.

mixing different node types to process each phase as efficiently as
possible. However, a heterogeneous set of computing nodes will
require different distribution strategies than the traditional block-
cyclic distribution. Such heterogeneity would even imply different
data distributions for each phase, with data redistribution.

3 RELATED WORK

Linear algebra solvers have to deal with factorization algorithms
that update a fraction of the matrix that decreases along with the
iterations. To ensure a smooth load balancing over iterations and
minimize communications with homogeneous nodes, the 2D block-
cyclic distribution is one of the most employed strategies [6]. With
system-level heterogeneity, the distributions should respect the
processing power of each node to balance the load correctly [16].
The equivalent of 2D block-cyclic distributions can be obtained by
(1) building a partition of the matrix in rectangles of predefined
areas corresponding to node processing powers while minimizing
the number of communications (e.g., with the col-peri-sum algo-
rithm [4]), as shown in the left of Figure 2, and (2) shuffling rows
and columns to ensure a smooth progression of iterations using, for
example, the 1D-1D algorithm [5], as shown in the right of Figure 2.
The resulting matrix distributions are asymptotically optimal and
have been recently implemented [17] in the Chameleon library on
which ExaGeoStat relies, providing a solid basis for this work.
Data redistribution is also an old problem since Prylli et al. [18]
proposed algorithms to reduce the scheduling redistribution cost

ICPP °21, August 9-12, 2021, Lemont, IL, USA

1Dx1D Partition

1Dx1D Distribution

25 41p

754k}

100 42 _
0 25 50 75 100

Figure 2: The 1D-1D column-based partition on the left and
the distribution generated from shuffling on the right.

between block-cyclic distributions, possibly with different block
sizes, used in different application phases. With MPI, such data
redistribution typically occurred synchronously between the differ-
ent phases, which is often inefficient. This is no longer an option
with the scale of supercomputers, hence the rising popularity for
the data flow algorithms that minimize the number of synchroniza-
tion points [9]. Linear algebra solvers leverage this asynchronous
capability to overlap different tasks and iterations and exploit more
parallelism [2, 13]. A possible multi-phase strategy consists of find-
ing the best distribution per phase while minimizing the overall
communication cost when changing the application’s phases, which
can be challenging. Recent work [15] points out that even in sim-
ple situations, the target distribution may present many possible
permutations (corresponding to similar nodes) and find the ideal
distribution (of the many possible permutations) while minimizing
both the computation and the total communication cost is NP-hard.

4 MULTI-PHASE PARTITIONING IN
HETEROGENEOUS CLUSTERS

This Section presents our contribution that leverages the flexibility
of matrix rectangle partitions to build efficient data distributions
with low overhead redistribution for the ExaGeoStat application.
We first illustrate the application behavior in Section 4.1. Then we
present a set of scheduling optimizations that radically improve
the phase overlap in Section 4.2. We present in Section 4.3 how to
compute an efficient load distribution of all phases at once over a
heterogeneous set of nodes. Finally, we present in Section 4.4 how
to construct a data distribution for the generation phase that mini-
mizes communications when shifting to the Cholesky distribution.

4.1 Characterizing the Optimization Iteration

The visualization of the application execution behavior can aid in
the performance analysis and characterization. Figure 3 presents
three panels from the performance analysis tool StarVZ [12] for
one iteration of the synchronous version of ExaGeoStat. The X-axis
of all panels is the time in milliseconds. The panel in the middle is
a Gantt chart of the Node utilization aggregated by the resource
type per node (for example, CPU 0 is the aggregated utilization in
% of all CPUs in node 0). The rightmost number is the execution
makespan. The upper panel is the iteration plot: it depicts the
iteration of the Cholesky algorithm on the Y-axis, with the left-black
line representing the beginning of the iteration and the right-black
line representing the end. This plot allows an understanding of

ICPP °21, August 9-12, 2021, Lemont, IL, USA

how the factorization unfolds over time. The generation phase is
mapped to iteration 0, and post-Cholesky operations to iteration
N (Size of the matrix). The last panel depicts the resource memory
utilization per memory node (Each NUMA node and each GPU
has a memory node). The three main phases of ExaGeoStat are
distinct and visible: the generation phase (A annotation) with the
yellow dcmg tasks that only run on CPUs; the Cholesky factorization
(B) whose predominant dgemm tasks are in green; and the post-
factorization operations (determinant, solve and dot product; at C)
whose predominant operations are the dgemm tasks from the solve.
The resource usage is relatively low, especially at the beginning
(where only the CPU cores work) and toward the end (where there
is not enough work for all nodes). A large amount of parallelism
stemming from the DAG should consolidate most green tasks to the
left and reduce idle time. The following subsection will highlight
problems and propose strategies to improve phases overlap.

ExaGeoStat - Sync Version

demg B diacpy [l dpotrf [l dsyrk
B dgemm B dmdet B dsconv [l dtrsm

lteration

c

2

T

Q.

3

[&]

O

(0]

el

o

P4

o

=

el

(0]

(%2} 0-

3 T T T T ;

0 25000 50000 75000 100000
Time [ms]

Figure 3: Iteration, Node occupation, and Memory panels for
the synchronous version of the ExaGeoStat iteration.

4.2 Improving Application’s Phases Overlap

The tasks from different phases do not overlap in the synchronous
version, and several resource usage opportunities are lost. For exam-
ple, the factorization could start when the upper part of the matrix
is generated and exploit the GPUs while the generation proceeds.
The first optimization is to remove the synchronization points be-
tween all inner-operation phases and make a fully asynchronous
execution, letting StarPU handle the task order and application flow.
However, to guarantee a smooth transition between phases, the ap-
plication should provide hints to the runtime and control collateral
behaviors like massive communication or allocations costs.

One of these collateral performance degradations originates from
the triangular solve algorithm. The original Chameleon solve per-
forms its dgemm operations on the node that owns the solution
vector (the right-hand vector). Consequently, many matrix blocks
are moved between nodes to complete a simple dgemv operation.

Lucas Leandro Nesi, Arnaud Legrand, and Lucas Mello Schnorr

This movement requires extra communication and extra data allo-
cation on the nodes and appears in Figure 3 (D annotation). The
combination of heavy communication and allocation induces idle
time during the solve step, which can be significant depending
on the machines’ configuration and matrix size. We replaced the
Chameleon solve algorithm with a local solve algorithm to set-
tle these problems (Algorithm 1). Instead of performing the dgemv
operation on nodes that own the Z vector, this algorithm performs
and accumulates the dgemv outputs in a local vector G of each
node. This extra variable breaks some dependencies and leaves the
runtime the opportunity to move only G to the node that owns the
respective Z block and reduce it with a dgeadd.

Algorithm 1: The new solve algorithm.

for k =0 up to N do
dtrsv(M(k, k), Z(k))
form=k+1uptoN do
| dgemv(M(m, k), Z(k), G(m, node of M(m, k)))
end
foreach updated G(k+1, n) do
| dgeadd(G(k+1, n), Z(k+1))
end

end

Another exciting aspect when overlapping the phases is memory
consumption. We perform four memory optimizations by tweak-
ing StarPU options and modifying the runtime and the application
to obtain acceptable performance. We remove the RAM allocation
from the task submission function and let StarPU treat it as any
other memory request. We enable the chunk memory cache system
of StarPU for the RAM. This option means that StarPU can reuse
memory blocks between phases and optimization iterations. We
disallow slow allocation of memory by GPU workers as the CUDA
allocation for pinned host memory can be particularly slow and
reduce the performance throughput of GPU workers. Finally, we
pre-allocate some memory chunks before the execution so that the
first optimization iteration can also benefit from the cache.

The runtime considers task priorities to decide how to advance
the execution. StarPU prefers higher priority tasks to execute first.
The original implementation only prioritized the Chameleon Cho-
lesky factorization tasks, which assumed values from 2N to —N
with an order following roughly the anti-diagonal. If a task has no
specified priority, StarPU considers it to be equal to 0. All generation
tasks, specified in ExaGeoStat, and all triangular solve tasks, spec-
ified in Chameleon, thereby had a 0 priority, conflicting with the
factorization task priorities. We propose new priority equations
for all phases considering the application DAG and an order inspired
by the critical path with a unit execution cost (i.e., starting from the
last tasks and going backward to the very first generation tasks) to
guarantee a smoother transition among phases. Equations (2) to (11)
present these new priorities. Essentially, the base for the priorities
originated from the Cholesky DAG. The generation is aligned with
the first iteration (k = 0) of the dgemm factorization and divides
the reduction component (coordinates) by 2 to accelerate it. As the
determinant and dot product tasks are leaves of the DAG and do
not require any particular order, they receive a priority of 0.

Exploiting system level heterogeneity to improve the performance of a GeoStatistics multi-phase task-based application

[Generation] demg = 3N — ’HT’” 2)
[Cholesky] dpotrf = 3 (N — k) 3)
[Cholesky] dtrsm = 3 (N — k) — (m — k) (4)
[Cholesky] dsyrk =3 (N —k) —2(n—k) (5)

[Cholesky] dgemm =3 (N —k) —(n—k)—(m—k) (6)

[Solve] dtrsm = 2 (N — k) 7)

[Solve] dgemm =2 (N — k) —m (8)
[Solve] dgeadd = 2 (N — k) 9)
[Determinant] dmdet = 0 (10)
[Dot] dgemm = 0 (11)

In practice, despite these new priorities, a scheduling artifact may
arise and lead to earlier scheduling and execution of low-priority
tasks, compared to other higher priority tasks submitted when
resources are idle. This situation happens because StarPU, like any
other scheduler, is incapable of foreseeing the future. So when a
low-priority task is submitted and some resources are available, it
can start directly. However, if higher priority tasks are submitted
right after, the execution may not respect the order of priorities at
that moment. To reduce this artifact, we modified the submission
order of the generation to match the priorities.

Another possible runtime artifact is the delay of very high-
priority tasks, like dpotrf, that can only execute on CPUs. When
these tasks become available, all resources may be working on very
long tasks, like the generation ones (dcmg). Although the runtime
knows that one particular task should execute right now, this high-
priority task must wait until a resource becomes available without
preemption procedures. The critical path of Cholesky, made of
dpotrf tasks, is what releases many dgemm tasks for already gener-
ated blocks. This critical path must advance as fast as possible to
release these tasks and populate powerful resources like GPUs. We
dedicate a core for non-generation tasks so that the critical path can
advance faster. Because usually StarPU reserves a core for the main
application thread, we oversubscribe a worker to this thread. This
configuration keeps the same number of cores for the generation
but adds a new worker to these essential tasks.

With all these six phase-overlap optimizations, we expect that
all phases will start as soon as possible and smoothly overlap with
each other. A fine-tuning of this asynchronous behavior is a critical
optimization that precludes any investigation of heterogeneous
distributions that the next Section discusses.

4.3 Balancing the Load Over Several Phases

In infrastructures with system-level heterogeneity, groups of nodes
with different computational power co-exist. To use the heteroge-
neous distribution algorithms mentioned in Section 3, it is necessary
to compute the processing power for each group. However, this
processing power depends on the phase, and since phases overlap,
computing the optimal load balance and the corresponding data
distribution can be quite complicated. For example, in ExaGeoStat,
the two main phases are generation and factorization, and the gen-
eration cannot use GPUs. Suppose the factorization distribution
considers only the total amount of factorization tasks. Since the

ICPP °21, August 9-12, 2021, Lemont, IL, USA

two phases overlap, the relative GPU power considered in the dis-
tributions would be undersized, as the CPUs are busy processing
the generation tasks. The resulting load balancing could also be
unequal because the GPUs can start processing factorization tasks
earlier. During the generation phase, the GPUs could process other
tasks, anticipating work, which means that nodes with faster GPUs
should have their relative powers for the distributions increased.

We use a linear programming model to correctly estimate the
nodes groups’ powers in the ExaGeoStat generation and factoriza-
tion interaction. Since phases overlap and are dependent on each
other, the key idea is to divide the phases into virtual steps and to
bound the duration of these virtual steps by resource usage. We can
easily extend the model to similar multi-phase applications where
phases have different resource power needs.

The linear programming model uses the following notations. ¢
corresponds to a task type (e.g., dgemm or dcmg). s corresponds to
a virtual step that represents a set of independent tasks. In Exa-
GeoStat, we decide that each generation step will correspond to an
anti-diagonal in the matrix (all the m and n such as (m +n)/2 =s)
which corresponds to the priorities in Equations of the previous
Section. When referring to factorization step s, we consider all the
factorization tasks directly dependent on blocks generated at gen-
eration step s. The linear programming model requires Qs ;, the
total number of tasks of type t at step s. r corresponds to a resource
group, for example, all CPUs of a homogeneous set of nodes. w;
denotes the duration that task of type t takes at resource group
r (we set w;,, = co whenever a given task type ¢ cannot run on a
given resource r). Finally, we will denote by R, S, and 7 the sets
of possible resources, steps, and task types.

We aim at computing as;,, the number of tasks of type t of
step s placed at resource group r. To account for dependencies, we
also need to introduce the variables Fs and G, which represent the
ending times of each factorization and generation steps s. We can
approximate the behavior of ExaGeoStat by the following linear
program, where as; r, Fs, and Gs are all positive variables:

Minimize Z (Gs +Fq) s.t. : (12)
seS
VteT,VseS: Z As.t.r = Qs,t (13)
reR
Vs > 1,Vr € R : Gs—1 + &s demg,r Wdemg,r < Gs (14)
VseSVreR:Go+ > asprwir < Fs (15)
t#dcmg
Vs > 1,Vre R: Fs_1 + Z as,trwir < Fs (16)
t#dcmg
VreR,VseS: Z aztrwer < Fs (17)
z<s,teT
Irrgllral(wdcmg,r) <G (18)

The goal is to minimize the ending times of all generation and fac-
torization ending times, in particular, the final factorization ending
time F that is the application makespan. However, the objective
function for the linear program in Equation (12) is more compli-
cated. If the LP used a simple loose objective function like Fyy,
the ending of the previous factorization steps Fs for s < N could

ICPP °21, August 9-12, 2021, Lemont, IL, USA

appear as late as possible when the generation phase is the bottle-
neck, which is undesirable. Instead, we minimize the sum of all G,
and F; to drive a simultaneous minimization of steps. Giving more
weight to Fr or adopting a recursive minimization fails to bring
any practical improvement compared to our simple sum.

The constraints for the linear program are the following. Equa-
tion (13) is a conservation equation that ensures that all the tasks
are distributed over the resources. In our approximation, all gen-
eration (resp. factorization) steps happen one after the other, so
Equation (14) enforces that the end of a generation step cannot
happen earlier than the previous generation step plus all the associ-
ated tasks. The following two constraints express the dependency
between generation and factorization steps. Equation (15) ensures
that one factorization step cannot end earlier than the generation
step end plus all the related factorization tasks. Equation (16) is
similar to Equation (14) and enforces that the end of the factoriza-
tion of blocks of step s cannot happen earlier than the end of the
previous factorization step plus all related factorization tasks. This
rule is stricter in the model than in real life, as one factorization
step could have many iterations that run concurrently with another
factorization step. However, it guarantees the correct progression
between factorization without penalizing it too much. Equation (17)
ensures that resources do not process two tasks at the same time by
making the factorization end at a step s be at least the sum of all pre-
vious tasks on the resource. Finally, Equation (18) is a simple rule to
approximate the beginning of the execution. Because we are using
linear programming with rational variables, tasks can be "split" in
the model. This Equation guarantees that the first generation step
cannot be faster than its best resource implementation.

Despite the number of constraints, less than a second is necessary
to solve it. Even if it fails to represent a true lower bound of the
makespan because Equation (16) is too strict, it provides an excellent
approximation. Besides, the output « of the LP is a guideline to
decide how many tasks each phase should execute on every resource
group, thereby estimating the relative power that the heterogeneous
distribution algorithms should use for each phase.

4.4 Multi-Partitioning for distinct phases

The perfect distribution for each phase of ExaGeoStat is differ-
ent because each has different computational needs and different
tasks. Also, the number of data blocks allotted to each node can
vary wildly between phases’ distributions. While the main task
of factorization is the dgemm that GPUs can accelerate, the only
task of the generation, demg, is only implemented on CPUs. Using
the linear program output, we can derive the ideal computation
load for the factorization and the generation phase. Let us consider
a simple situation with four nodes where two of them have fast
GPUs. Ideally, the generation would be roughly balanced between
the four nodes, while the factorization would mostly use the two
faster nodes. Figure 4 shows a possible data distribution for the
generation (left: a simple 2D block-cyclic distribution) and for the
factorization (middle: a 1D-1D distribution).

The 1D-1D distribution obtained by the shuffling procedure of
Section 3 ensures a well-balanced factorization with a minimal
amount of communications. However, suppose both distributions
are computed independently from each other. In that case, the

Lucas Leandro Nesi, Arnaud Legrand, and Lucas Mello Schnorr

2D Block-Cyclic independent 1D-1D Factorization
ibuti distribution

Improved Generation
distribution

[]
@
=
]
8
s)
E
=3
a
=3
=3
o
E

Node Ml 1 Ml2[3 4

Figure 4: Generation and Factorization distributions for two
nodes (1, 2) without and two (3, 4) with GPUs.

chance is that most of the block locations would be different in each
distribution, resulting in extra communication in the transition
of the phases. Considering a 50x50 matrix with the scenario of
Figure 4, using the optimal independent partitions would result
in the communication of 890 blocks between the generation and
the factorization phase, i.e., 70% of the total number of blocks.
However, computing the ideal number of blocks for each phase, the
generation has [318, 319, 319, 319] blocks for each node, while the
factorization has [60, 60, 565, 590]. That means that the first two
nodes should give 517 blocks in total, while the last ones should
receive 517 blocks. A transition with 517 communications would be
the minimum possible, i.e., 373 (41.91%) fewer transfers than when
distributions are independent. Another important aspect is that the
generation distribution should also be “cyclic”, just like the 1D-1D
distributions, to ensure that the beginning of generation is well
spread over all the nodes and does not slow down the factorization.

To minimize the redistribution overhead, we propose Algorithm 2,
which receives a 1D-1D factorization distribution and a target gen-
eration load (the total number of blocks that the generation distri-
bution should have) and computes a generation distribution while
minimizing the number of communications. This algorithm goes
through the factorization distribution and decides to change the
block owner only for the nodes that need to surrender some blocks
and based on the ratio between how many blocks that node has and
should have. If a node has twice as many blocks as it should have,
its ratio is two, and at every two blocks that the algorithms pass
through that owner, one block moves to the neediest node. Since the
1D-1D distribution is uniformly spread over the nodes, this cyclic
update also ensures a uniform node spread of the generation but
respecting processing speeds. The resulting distribution, depicted
on the right of Figure 4, minimizes the communications while tries
to reach the ideal number per node. We observe similarities with
the factorization distribution in the vertical stripes for nodes 1 and
2 and in the horizontal stripes for nodes 3 and 4.

5 PERFORMANCE EVALUATION

This Section presents the evaluation of the strategies to improve
phase overlap and the multi-phase heterogeneous distributions.

5.1 Hardware and Software Settings

The performance evaluation uses the Grid5000 platform, more
specifically, the Lille site. Table 1 shows the machines used in the
experiments. Chifflet and Chifflot have the GTX 1080 and Tesla

Exploiting system level heterogeneity to improve the performance of a GeoStatistics multi-phase task-based application

Algorithm 2: Generation of a target (generation) distribu-
tion (dist2) from a source (factorization) distribution (dist1).

Input: dist1[1...N][1...N]
nblocks_dist2[1...P] Desired number of blocks per node

Output: dist2[1...N][1...N]
nblocks_dist1[1...P] = Total number of blocks per node in dist1
diff = nblocks_dist1 - nblocks_dist2
rates, base_rates = %
current_rate[1...P] = (0, ..., 0)
dist2 = dist1
foreach (m,n) in (1...N, 1...N) by diagonal do
node = dist1[m, n]
if diff{node] > 0 then
current_rate[node] = current_rate[node] + 1
if current_rate[node] > rates[node] then

neediest = which.min(diff)

dist2[m, n] = neediest

diff[neediest]++ ; diff[node]- -

rates[node] = rates[node] + base_rates[node]

if diff[neediest] > 1 then return

end

end
end

P100 GPUs, respectively, while Chetemi does not. The operating
system for all the machines is Debian 10 with Linux kernel 4.19.
The Chetemi and Chifflet network is a 10Gb Ethernet, while for
Chifflot is a 25GB Ethernet. The experiments used the following
configurations to control the environment: (a) Intel hyper-threading
off; (b) performance frequency governor; (c) NVIDIA GPUs set to
persistence mode and max clocks when possible; (d) network cards
with an MTU of 9000; and (e) Network interruptions only to cores
of the same network card’s NUMA node.

Table 1: Compute nodes available for our experiments.

Machine CPU Memory GPU

Chetemi 2x Intel Xeon E5-2630 v4 256 GiB -
Chifflet 2x Intel Xeon E5-2680 v4 768 GiB GTX 1080
Chifflot 2x Intel Xeon Gold 6126 192 GiB Tesla P100

The software stack of ExaGeoStat includes the StarPU developer
branch commit 015357bd and the NewMadeleine [8] (the commu-
nication layer) master branch commit d6542d72. We use the Exa-
GeoStat master branch commit 9518886 with HICMA, Chameleon,
and Stars-H in the corresponding submodules of the same commit.
ExaGeoStat and Chameleon have modifications to accept custom
distributions of our strategies. Also, most of the improvements in
the phase overlap are modifications on ExaGeoStat that can be
enabled or disabled during runtime. The StarPU used the dmdas
scheduler with two reserved CPU cores: one for the MPI thread
and the other for the application thread responsible for task sub-
missions. We bound the MPI and GPU workers threads to the cores
belonging to the NUMA nodes the hardware resource (NIC or GPU)
is attached to. There is one StarPU process per node. We select two

ICPP °21, August 9-12, 2021, Lemont, IL, USA

synthetic workloads identified by numbers 8 and 9 with N=57600
and N=96600 from the list of available workloads® because they
offer a good balance between the generation and the factorization
phases for the number of resources we have. As we use 960 as block
size, we obtain a matrix size of 60x60 and 101x101 blocks. We use
these numbers (60 and 101) to identify each workload.

5.2 Improving Application’s Phases Overlap

We evaluate the performance of our strategies to optimize phase
overlap using the 60 and 101 workloads in two sets of machines:
four or six Chifflet. The goal is to verify if the strategies enable
performance improvements by releasing tasks earlier or correcting
scheduling and runtime artifacts. Figure 5 presents the results for
each workload on the two sets of machines. The X-axis depicts
the enabled optimizations, while the Y-axis is the time in seconds.
Each configuration has been replicated 11 times, and the error bars
represent a 99% confidence interval. The first three strategies (full
asynchronous, new solve algorithm, memory optimizations) lead
to the bulk of performance improvements. Priority and submission
bring minor (with 101 workload) or no (60 workload) performance
gains in this homogeneous scenario, but we observed up to ~#10% in
heterogeneous scenarios. Finally, the Over-subscription optimiza-
tion presents a small yet significant and consistent time decrease for
both workloads. These results represent performance gains from
36% (for the 101 workload using four machines) to 50% (for the
60 workload using six machines) against the synchronous non-
optimized version. We conduct a more detailed analysis of these
optimizations using execution traces in what follows.

Workload — 101 --- 60 Machines -® 4 Chifflet 4 6 Chifflet

1004
754
©,
2 50+
=
B 2
259 A : ,,,,,,, - T 46.66%
e
0 50.94¢
3 3 ' ' — v ;
© Nﬁ“ B «© (\0‘\“ o 8\5\50
e o
X X

Optimizations

Figure 5: Performance comparison of our phase overlap im-
provement strategies against the synchronous version.

Figure 6 presents the performance analysis panels (similar to
Figure 3) for three versions of cumulative optimizations for the four-
machine case with the 101 workload. The left panel (Async) shows
the full asynchronous version. The middle panel (New Solve +
Memory) shows the asynchronous version plus the new solve al-
gorithm and the memory optimizations strategies. And finally,
the right panel (A11 optimizations) shows the version with all
optimizations. The execution behavior with those diverse optimiza-
tions is clearly different when analyzing tasks’ progression and
resource idleness. When compared to Figure 3, Figure 6 Async has

Shttps://ecrc.github.io/exageostat/md_docs_examples.html

https://ecrc.github.io/exageostat/md_docs_examples.html

ICPP °21, August 9-12, 2021, Lemont, IL, USA

ExaGeoStat - Async

+ New Solve + Memory

Lucas Leandro Nesi, Arnaud Legrand, and Lucas Mello Schnorr

All optimizations

decmg [l dgeadd [l dgemm [dlacpy [l dmdet [l dpotrf [l dsconv [l dsyrk [l dtrsm

Iteration

c

°

S

3

3 CuDA 14 2 8 2

S CPU2- (B.1] o N] ©

o CPU 2 B.1 LS B.2 © ©

[J) g 4 : 4

g CUDA 2

S cpusg]]

_ CUDA 34 1 1

g ‘3‘8888' T — — | T t | T T T T T r

S 20000+ (A1} = g {A2) — 1)

g 10008: 11 | 1 1

=} "o 20000 40000 60000 80000 0 20000 40000 60000 80000 0 20000 40000 60000 80000
Time [ms] Time [ms] Time [ms]

Figure 6: Cholesky Iteration, Node occupation, and Memory utilization panels using 4 Chifflet for three ExaGeoStat iteration
cases: Asynchronous, Async + New solve + Memory optimizations, All optimizations.

no more synchronization points, so factorization tasks execute in
the GPUs alongside the generation tasks. However, some idle time
is clearly visible in the end during the solve phase execution. This
idling possibly indicates that the communication and memory uti-
lization may be degrading performance. This hypothesis is further
sustained by the behavior of the center panel of Figure 6, when the
new solve algorithm and memory optimizations are in place. The
memory usage remains high since the beginning of the execution
(A.2 annotation when compared to A.1), and resources are almost
at 100% utilization (B.2 when compared to B.1). The asynchronous
version has a total amount of communications of 11044MB, while
with the New Solve version, it decreases to 8886 MB.

Although the last three optimizations (Priorities, Submission or-
der, and Over-subscription) provide a modest gain in the iteration
makespan, the execution behavior is clearly different, as shown in
the visual comparison between the right panel of Figure 6 and the
other two panels (left, center). The iteration parallelism is much
more pronounced in less time (annotation C.3), showing that the
critical path’s progression is faster compared to C.2. Also, anno-
tation D.3 demonstrates the absence of a slow start in resource
utilization compared to annotation D.2. Nevertheless, we see that
all the generation tasks have been completed at the beginning
of the iteration (E.3), in contrast to the center panel where some
generation tasks are executing when most resources are comput-
ing factorization tasks (E.2). The moment when the solve begins
changes, as seen in the F.1, F.2, and F.3 annotations, because of the
better task prioritization. It is unnecessary to start the solve phase
as soon as possible because its results will only be required later.
Another behavioral difference appears at the end of the iteration,
as shown by the G.2 and G.3 annotations. The iteration ends sooner
and presents a more gradual ending (G.2), while all optimizations
case provides a more abrupt closure (G.3).

The total resource utilization is also another indication of the
performance improvements of our strategies. We can compute this
metric as the total amount of time spent in application tasks, di-
vided by the total amount of time (including runtime overhead and

pure idle). The total resource utilization for the three executions
of Figure 6 are 83.76%, 94.92%, and 95.28% respectively. Moreover,
when only considering the first 90% of the iteration, the metric is
93.03%, 99.09%, and 99.13%, respectively. This last fact indicates that
the remaining performance improvements are at the end of the
execution when parallelism diminishes and working in the critical
path becomes more important [17]. In conclusion, the strategies pro-
posed so far are a definitive way to improve phase overlap, resource
utilization, and the overall application performance. With these
improvements, we evaluate the effectiveness of using distributions
suited to heterogeneous clusters.

5.3 Multi-phase partitioning in heterogeneous

clusters

We evaluate our proposed distribution strategies for heterogeneous
nodes. The experimental cases use the 101 workload and six differ-
ent sets of machines combining Chetemis, Chifflets, and Chifflots,
as depicted by the panels of Figure 7. These sets demonstrate dif-
ferent heterogeneous setup levels, with two (Chetemi and Chifflet)
and three types of different machines. For each experiment config-
uration, we present the makespan as a function of the distribution
strategy (colors). The first three bars of each panel are our baselines:
the homogeneous block-cyclic distribution using all the resources
(red); the homogeneous block-cyclic distribution for the fastest ho-
mogeneous subset of nodes (blue); and the heterogeneous 1D-1D
distribution using the powers of machines computed considering
the dgemm speed (green). All these three cases use the same dis-
tribution for the factorization and generation phases. The fastest
homogeneous subset of nodes (used in the block-cyclic distribution)
usually is the Chifflot machines, when they are present. However,
in cases 4-4-1 and 6-6-1, the single Chifflot machine is unable to
perform this workload well because of high GPU memory utiliza-
tion. So, for cases 4-4-1 and 6-6-1, the BC Fast Possible Only result
indicates the usage of the Chifflet partition. Finally, we depict our
result using the linear program to calculate the desirable powers
for the factorization partition and generation. Then, 1D-1D uses

Exploiting system level heterogeneity to improve the performance of a GeoStatistics multi-phase task-based application

Distribution
I BC Al [l BC Fast Possible Only lll 1D-1D Al [l 1D-1D LP + 1D GEN
4 Chetemi 4 Chetemi 6 Chetemi 6 Chetemi

4 Chifflet 4 Chifflet 6 Chifflet 6 Chifflet
1 Chifflot 2 Chifflot 1 Chifflot 2 Chifflot

g
&
x

4 Chetemi
4 Chifflet

6 Chetemi
6 Chifflet

Figure 7: Makespan for homogeneous and heterogeneous
distributions in six machine sets configurations.

the factorization partition to produce the respective distribution
and the algorithm of Section 4.4 uses this distribution plus the
generation partition to compute its distribution (purple).

Figure 7 presents, for each heterogeneous set of machines (pan-
els), the execution time in seconds (Y-axis) as a function of the
distribution strategy (X-axis and colored bars). An inner white
bar inside our proposed distribution (purple) represents the ideal
makespan obtained by the linear program. The block-cyclic distribu-
tions are never the best result, neither using all the resources (red)
or the fastest homogeneous subset of nodes (blue). The linear pro-
gram distribution (purple) performs very well in situations 4+4+1,
4+4+2, and 6+6+1. However, in other situations, it presents similar
results to the 1D-1D distribution of [17]. This situation happens
because the gains obtained by perfectly balancing both phases are
minimal, and the phases’ imbalance compensates for each other.
Furthermore, using a single distribution avoids any redistribution
overhead. The very small gap between the ideal makespan obtained
by the linear program and the actual execution time for the 4+4
and the 6+6 cases show that the redistribution overhead is perfectly
overlapped. However, when using the Chifflot nodes, the actual
makespan is much larger than the LP solution, whereas the number
of communications does not significantly increase, pointing the
source of this problem to the communication library, as we will
detail later. These results show that using the LP is beneficial in the
best case, and in the worst case, it ties with a single heterogeneous
distribution. Compared to the homogeneous cases, the 4-Chifflet
case took ~65s, while 4+4 best-case had a mean makespan of ~49s
(25% faster) and the 4+4+1 best-case took ~33s (49% faster).

Since adding the very powerful Chifflot nodes fails to provide as
much improvement as one would expect, we decided to investigate
why. Figure 8 presents the same three panels as before: Iteration
(top) and Node occupation (bottom) for three different cases: 4+4
(left), 4+4+1 using all the resources in the factorization (center),
and 4+4+1 using only nodes with GPUs in the factorization (right).
The execution with only two types of machines is very similar
to the one shown in the right of Figure 6, having very low idle
times during execution. Furthermore, CPU-only nodes transition
between generation and factorization slower and smoother than
nodes with GPUs (A.1 annotation). This transition results from
high-priority factorization tasks that execute on CPUs alongside
generation tasks, while, in GPUs, the same high-priority tasks use
GPUs (B.1). The heterogeneous distribution is well balanced, as the

ICPP °21, August 9-12, 2021, Lemont, IL, USA

generation and factorization in all nodes end almost simultaneously,
correctly considering node capabilities (C.1).

When adding a Chifflot node (center of Figure 8), the P100 GPU
process the dgemm task 10X faster than the Chifflet nodes, adding
extra heterogeneity and the need for faster communication. While
the overall makespan decreases, a lot of idle time is visible (D.2
annotation), and iterations seem to be limited by the critical path
(E.2). Further investigation revealed that communication along the
critical path is responsible for such high idle times. Indeed, the
factorization is very unbalanced with a very fast Chifflot node
helped by slower nodes, and even with a 25GB Ethernet network,
data movements are poorly handled since Chifflot is unfortunately
on a different subnet of the Lille site. This problem comes from the
excessive amount of communication that the fast node has to make,
and because of buffering, the block communication ordering does
not follow the task priorities strictly and is the object of current
developments in NewMadeleine. This problem is also the cause of
the performance drop from 6+6 to 6+6+1 of Figure 7. One possible
technique to circumvent the communication problem is also to
limit the number of nodes during the factorization, which is the
phase causing most of the communication operations. This is easily
done by excluding the nodes without GPUs from the factorization
in the LP constraints. The case in the right of Figure 8 depicts
the resulting behavior. The idle time decreases (D.3 annotation),
leading to an additional decrease in the makespan. Moreover, the
computation is spread again in many iterations (E.3). This case
presents a mean makespan of ~33s. The gap between the actual
makespan and the one expected by the linear program remains
around 20%, so enhancements in communication should improve
this even further. Overall, comparing this result against the original
synchronous 4 Chifflet homogeneous execution (=103s), we have
68% performance improvement.

6 DISCUSSION AND CONCLUSION

This paper presents strategies for distributing multi-phase appli-
cations over heterogeneous system-level resources. ExaGeoStat
serves as an example, but we believe that most of the techniques
we used would apply to similar multi-phase applications, especially
ones with generation and factorization phases. We improve the
application phase overlap and exploit their different performance
needs. The combination of six strategies to enhance scheduling
and runtime decisions provides performance gains from 36% to
50% (Section 5.2) on a homogeneous set of nodes. Tackling system-
level heterogeneity, we build application phases’ data distributions
over heterogeneous nodes that ensure a smooth transition between
phases while limiting communication overheads and efficiently
using the resource compute capabilities for each phase. A linear
program that calculates the ideal load for each node, considering
shallow phase dependencies, handles the heterogeneity of compu-
tation resources and phase requirements. We achieve the commu-
nication reduction and the effective transition between phases by
devising distinct but tightly coupled distributions for each phase.
Altogether, our strategies allow us to exploit system-level heteroge-
neous setups and to improve performance by up to 68% compared
to a simple homogeneous setup (Section 5.3).

ICPP °21, August 9-12, 2021, Lemont, IL, USA

4 Chetemi + 4 Chifflet
All phases with all nodes

4 Chetemi + 4 Chifflet + 1 Chifflot
All phases with all nodes

Lucas Leandro Nesi, Arnaud Legrand, and Lucas Mello Schnorr

4 Chetemi + 4 Chifflet + 1 Chifflot
Chetemi only in Generation

demg [l dgeadd [dgemm [dlacpy [dmdet [l dpotrf Bl dsconv [l dsyrk [l dtrsm

Iteration

ode Occupation
(@]
o
c
o
45456

N
(@]
c
]
>
S

(@}
o
c
©

35896

"0 10000 20000 30000 40000 ‘0 10000
Time [ms]

30000 40000 ‘0 10000 20000 30000 40000
Time [ms] Time [ms]

Figure 8: Cholesky Iteration, Node occupation, and Memory utilization panels of the ExaGeoStat iteration using the 1D-1D LP
+ 1D GEN distributions for three sets of machines: 4+4, 4+4+1, and 4+4+1 restricting factorization to GPU-only nodes.

As future work, we first intend to optimize the communication
middleware to improve performance limitation when the compute
capabilities between fast and slow nodes are too substantial. Sec-
ond, we intend to provide a way for ExaGeoStat to decide which
set of nodes to use for a given problem size. This capacity planning
would be beneficial as throwing more and more nodes is costly
and rarely valuable as performance eventually degrades because
of communication overheads. However, modeling communication
overhead and network contention is complicated, and a possibility
could be to use simulation provided by StarPU-SimGrid [17, 20] or
machine learning algorithms. Finally, we intend to study how all
our improvements behave at scale on large heterogeneous super-
computers like Jean-Zay, Piz Daint, or SDumont.

Software and Data Availability. We endeavor to make our
analysis reproducible. A public companion (https://gitlab.com/Inesi/
icpp21) contains the data and instructions to reproduce our results.

ACKNOWLEDGMENTS

This study was financed in part by the “Coordenacgéo de Aper-
feicoamento de Pessoal de Nivel Superior” - Brasil (CAPES) - Fi-
nance Code 001, the National Council for Scientific and Techno-
logical Development (CNPq), grant no 141971/2020-7 to the first
author, and the projects: FAPERGS (Data Science — 19/711-6, Multi-
GPU 16/354-8, and GreenCloud - 16/488-9), CNPq (447311/2014-0),
CAPES (Brafitec 182/15, and Cofecub 899/18). Experiments were
carried out using Grid’5000, supported by a scientific interest group
hosted by Inria and including CNRS, RENATER and several Univer-
sities as well as other organizations (see https://www.grid5000.fr).
The authors would like to thank Hatem Ltaief for his work in Exa-
GeoStat and the fruitful discussions about this work.

REFERENCES

[1] Sameh Abdulah, Hatem Ltaief, Ying Sun, Marc G. Genton, and David E. Keyes.
2018. ExaGeoStat: A High Performance Unified Software for Geostatistics on
Manycore Systems. IEEE Transactions on Parallel and Distributed Systems 29, 12
(2018), 2771-2784.

[2] Emmanuel Agullo et al. 2010. Faster, Cheaper, Better — a Hybridization Method-
ology to Develop Linear Algebra Software for GPUs. In GPU Computing Gems,

Wen mei W. Hwu (Ed.). Vol. 2. Morgan Kaufmann.

Cédric Augonnet et al. 2011. StarPU: A Unified Platform for Task Scheduling on
Heterogeneous Multicore Architectures. Conc. Comp.: Pract. Exp., SI: EuroPar’09
23 (2011), 187-198.

Olivier Beaumont, Vincent Boudet, Fabrice Rastello, and Yves Robert. 2001. Matrix
multiplication on heterogeneous platforms. IEEE Trans. Parallel Distributed
Systems 12, 10 (2001), 1033-1051.

Olivier Beaumont, Arnaud Legrand, Fabrice Rastello, and Yves Robert. 2001. Static
LU Decomposition on Heterogeneous Platforms. Int. Journal of High Performance
Computing Applications 15 (2001), 310-323.

Laura S. Blackford et al. 1997. ScaLAPACK User’s Guide. Society for Industrial
and Applied Mathematics, USA.

George Bosilca et al. 2013. PaRSEC: Exploiting Heterogeneity to Enhance Scala-
bility. Computing in Science Engineering 15, 6 (2013), 36-45.

Alexandre Denis. 2019. Scalability of the NewMadeleine Communication Li-
brary for Large Numbers of MPI Point-to-Point Requests. In 19th IEEE/ACM Int.
Symposium in Cluster, Cloud, and Grid Computing. IEEE, Cyprus, 371-380.
Jack J Dongarra et al. 2017. With Extreme Computing, the Rules Have Changed.
Computing in Science & Engineering 19, 3 (2017), 52.

Jack J Dongarra, Hans W Meuer, Erich Strohmaier, et al. 1997. TOP500 super-
computer sites. Supercomputer 13 (1997), 89-111.

Alejandro Duran, Eduard Ayguadé, Rosa M Badia, Jesus Labarta, Luis Martinell,
Xavier Martorell, and Judit Planas. 2011. OmpSs: a proposal for programming
heterogeneous multi-core architectures. Paral. Proces. Letters 21 (2011), 173-193.
Vinicius Garcia Pinto et al. 2018. A visual performance analysis framework for
task-based parallel applications running on hybrid clusters. Concurrency and
Computation: Practice and Experience 30, 18 (2018), e4472.

Mark Gates et al. 2019. SLATE: Design of a Modern Distributed and Accelerated
Linear Algebra Library. In Proceedings of the Int. Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, United States, 18 pages.
Robert B. Gramacy. 2020. Surrogates: Gaussian Process Modeling, Design, and
Optimization for the Applied Sciences. CRC Press, United States.

Julien Herrmann et al. 2016. Assessing the cost of redistribution followed by a
computational kernel: Complexity and performance results. Par. Comp. 52 (2016).
Alexey Kalinov and Alexey Lastovetsky. 2001. Heterogeneous Distribution of
Computations Solving Linear Algebra Problems on Networks of Heterogeneous
Computers. J. of Par. and Distr. Comp. 61, 4 (2001), 520.

Lucas Leandro Nesi, Lucas Mello Schnorr, and Arnaud Legrand. 2020.
Communication-Aware Load Balancing of the LU Factorization over Heteroge-
neous Clusters. In 26th IEEE International Conference on Parallel and Distributed
Systems, ICPADS 2020. IEEE, Hong Kong, 54-63.

Loic Prylli and Bernard Tourancheau. 1996. Efficient block cyclic data redistribu-
tion. In Euro-Par’96 Parallel Processing, Luc Bougé et al. (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 155-164.

Eduardo Roloff, Matthias Diener, Luciano Gaspary, and Philippe Navaux. 2019.
Exploring Instance Heterogeneity in Public Cloud Providers for HPC Applications.
In The 9th Intl. Conf. on Cloud Comp. and Services Sci. SciTePress, 210-222.
Luka Stanisic et al. 2015. Faithful Performance Prediction of a Dynamic Task-
Based Runtime System for Heterogeneous Multi-Core Architectures. Concurrency
and Computation: Practice and Experience 27, 16 (2015), 4075-4090.

https://gitlab.com/lnesi/icpp21
https://gitlab.com/lnesi/icpp21

	Abstract
	1 Introduction
	2 Task-based ExaGeoStat Application
	3 Related Work
	4 Multi-phase partitioning in heterogeneous clusters
	4.1 Characterizing the Optimization Iteration
	4.2 Improving Application's Phases Overlap
	4.3 Balancing the Load Over Several Phases
	4.4 Multi-Partitioning for distinct phases

	5 Performance Evaluation
	5.1 Hardware and Software Settings
	5.2 Improving Application's Phases Overlap
	5.3 Multi-phase partitioning in heterogeneous clusters

	6 Discussion and Conclusion
	Acknowledgments
	References

