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ABSTRACT
Population-level disease prediction estimates the number of poten-
tial patients of particular diseases in some location at a future time
based on (frequently updated) historical disease statistics. Existing
approaches often assume the existing disease statistics are reliable
and will not change. However, in practice, data collection is often
time-consuming and has time delays, with both historical and cur-
rent disease statistics being updated continuously. In this work,
we propose a real-time population-level disease prediction model
which captures data latency (PopNet) and incorporates the updated
data for improved predictions. To achieve this goal, PopNet models
real-time data and updated data using two separate systems, each
capturing spatial and temporal effects using hybrid graph attention
networks and recurrent neural networks. PopNet then fuses the
two systems using both spatial and temporal latency-aware atten-
tions in an end-to-end manner. We evaluate PopNet on real-world
disease datasets and show that PopNet consistently outperforms all
baseline disease prediction and general spatial-temporal prediction
models, achieving up to 47% lower root mean squared error and
24% lower mean absolute error compared with the best baselines.

CCS CONCEPTS
• Applied computing → Health informatics; • Information
systems → Data mining; Spatial-temporal systems.
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1 INTRODUCTION
Population-level disease prediction is of great significance to society
since early forecasting of new disease counts at each location can
help government or healthcare providers better optimize medical
resources [28] or inform where to build clinical trial sites [9, 29].
Compared with individual-level disease prediction, which predicts
disease risk for each patient based on their health records [2, 4,
10–12, 20], population-level disease prediction is usually based on
frequently updated online historical disease statistics data collected
from certain locations or population groups [8, 9].

Many machine learning or deep learning models have been de-
veloped to leverage patient data for individual disease prediction [2–
5, 10, 12, 20]. However, they cannot be applied to population-level
disease prediction due to the need for accessing individual patient
data. Meanwhile, existing population-level prediction models are
mostly developed for infectious diseases. For example, epidemi-
ology models such as the Susceptible-Infectious-Recovered (SIR)
model were proposed for population-level infectious disease pre-
diction [17, 27, 37]. Recently, several works further proposed to
augment such epidemiology models with deep neural networks for
capturing spatial and temporal patterns [8, 9].

Existing population-level prediction models often assume that
their model inputs (e.g., historical disease statistics) are reliable
and accurate, which is often not true. In practice, data collection is
time-consuming and has time delays, thus disease statistics require
continuous updates to become more accurate [7, 30, 34]. Such a data
latency issue needs to be considered in population-level predictions.
However, tackling this issue is not straight-forward. There are two
main challenges:
• Incorporating the updated data into the real-time model.
From the temporal perspective, a real-time model needs to be
updated whenever an update is made to the historical data. From
spatial perspective, different locationsmay be updated at different
frequencies. We need to handle these idiosyncratic updates in
our model.

• Extracting data updating patterns. Data latency could be in-
duced by various reasons, for example, geographic and demo-
graphic proximity between different locations, which causes the
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complexity of data updating patterns and brings difficulty for
the model to utilize and make predictions. The noise and spatial-
temporal correlation of different data streams also add to the
difficulties of extracting data updating patterns.
To address these challenges, we propose a population-level dis-

ease prediction model (PopNet) which captures data latency and
incorporates the updated data for improved predictions. PopNet is
enabled by the following technical contributions.
• Dual data modeling systems to incorporate updated data
into the real-time model. PopNet models real-time data and
updated data using two separate systems, each capturing spa-
tial and temporal effects using hybrid graph attention networks
(GAT) and recurrent neural networks (RNN). PopNet then adap-
tively fuses the two systems using both spatial and temporal
latency-aware cross-graph attentions in an end-to-end manner.
To the best of our knowledge, we are the first work to incorporate
updated data in spatio-temporal models.

• Extract data updating patterns to enrich the spatial and
temporal latency-aware attention. We identify three major
data updating patterns. (1) Spatial Correlation. Geographically
close locations may have similar data updating patterns and
locations with similar populations may also have similar char-
acteristics [9, 23]; (2) Seasonality. The data updating patterns
may be temporally periodic, and (3) Disease Correlation. Disease
comorbidities may lead to similar updating patterns. We enrich
the spatial and temporal latency-aware attentions with these
patterns, allowing the model to incorporate these patterns adap-
tively.

• Efficient model update. PopNet can be trained efficiently on
the newly added data via better initialization for hidden states
of RNN. As a result, PopNet can utilize previous historical pat-
terns without reprocessing old data, which improves efficiency
when the training sequences are long and brings convenience
for deployment in real-world healthcare systems.
We evaluate PopNet on real-world online medical claims datasets

with real-time and update records and a simulated synthetic dataset.
Compared to the best baseline model, PopNet achieves up to 47%
lower rootmean squared error (RMSE) and 24% lowermean absolute
error (MAE) on two real-world disease prediction tasks.

2 RELATEDWORKS
Over the years, spatial-temporal prediction models have been devel-
oped for application tasks such as traffic prediction [13, 15, 38, 39],
disease prediction [8, 9, 16], regional demand prediction [38] and
general time-series prediction [1]. The recent success of deep learn-
ing models, especially GNNs and RNNs, brings promises to better
model complex spatial and temporal features. Many research com-
bines graph structures with disease statistics to model regional and
temporal disease propagation and achieves more accurate predic-
tions. For example, Deng et al. [8] proposed a location attention
mechanism and a graph message passing framework to predict
influenza-like illness for different locations. Gao et al. [9] incor-
porated clinical claims data in graph attention network to predict
COVID-19 pandemics and use disease transmission dynamics to
regularize RNN predictions. These models achieve good perfor-
mance on their well-collected datasets. Compared with general

spatio-temporal prediction works, our work more focuses on in-
corporating updated data into the spatio-temporal model. Since
in practice, the input data is not always reliable due to latency or
errors and may get updated in the future. We believe this scenario
is common in web data and real-world settings.

Consider broader spatial-temporal prediction models in other
fields such as traffic prediction, most works also utilize graph neu-
ral networks to extract spatial features and use RNNs or attention
mechanisms to extract temporal features [19, 25, 32, 35, 36]. Those
works also do not have the consideration or model design for data
latency. For example, the traffic prediction model GMAN [39] lever-
ages the node2vec approach to preserve graph structure in node
embeddings and then samples the neighboring nodes to obtain the
embedding. Guo et al. [13] proposed ASTGCN to extract multi-scale
temporal features by training three network branches to receive
hour-level, day-level, and week-level data. In our work, we enrich
the model with spatial and temporal background information, mak-
ing the model adaptively extract spatial relationships of both close
nodes and distant but similar nodes, also from multiple time scales.

3 PROBLEM FORMULATION
Definition 1 (Disease statistics data). The disease statistics data
are collected from medical claims or online reports of local health
departments from different locations. They can be represented as a
3D tensor X ∈ R𝑁×𝑇×𝐹 , where 𝑁 denotes the number of locations,
𝑇 is the number of total timesteps, 𝐹 is the number of features (i.e.,
diseases). Matrix X𝑡 ∈ R𝑁×𝐹 and X𝑖 ∈ R𝑇×𝐹 denote slices from
the X tensor from time dimension and location dimension. Vector
x𝑡
𝑖
∈ R𝐹 denotes a slice from the X𝑡 matrix at 𝑖-th location.

Definition 2 (Updated disease data). The real-time statistics
maybe unreliable due to time delays during data collection process,
therefore every tensor element in X may be updated at a future
timestep. For example, for a specific location at timestep 𝑡 , after
we obtain the initial disease statistics for this timestep, we may
constantly receive updates for the statistics of timestep 𝑡 in future
timesteps 𝑡 + 1, 𝑡 + 2, . . . . All the updated values consist of the
updated disease dataU ∈ R𝑁×𝑇×𝐹 , which is a 3D tensor. Similar
to the original disease data, we also use U𝑡 ∈ R𝑁×𝐹 , U𝑖 ∈ R𝑇×𝐹
and u𝑡

𝑖
∈ R𝐹 to denote different slices from the updated data tensor.

Here u𝑡1
𝑖
refers to data updated for location 𝑖 at a future time 𝑡1.

Suppose it will replace the original disease data x𝑡0
𝑖
, note that 𝑡1 > 𝑡0,

we define this update latency as Δ𝑡𝑖 = 𝑡1 − 𝑡0. All update latency
is aggregated to a 2D matrix Δt ∈ R𝑁×𝑇 . Value 0 in U means no
updates for those tensor elements.

Definition 3 (Location graph). A location graph can be modeled
as an undirected graph G = (𝑉 , 𝐸,A), where V is the set of |𝑉 | = 𝑁
location nodes, 𝐸 is the set of edges,A denotes the adjacency matrix
of the graph. The edges are computed based on the geographical and
demographic proximity between locations, which will be detailedly
introduced in following sections.

Problem 1 (Spatial-temporal disease prediction). Given his-
torical original disease statistics X and updated disease data U,
the population-level spatial-temporal disease prediction task is a
regression task, which is to predict the future ground-truth number
of cases for a certain disease Y ∈ R𝑁 for all 𝑁 locations at 𝑇 + 1
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timestep. We also support multiple-step prediction for next 𝑘 steps
from 𝑇 + 1 to 𝑇 + 𝑘 timesteps.

4 THE POPNETMODEL
As shown in Fig. 1, PopNet models real-time data X and updated
data U using two separate systems, and then adaptively fuses the
two systems using both spatial and temporal latency-aware cross-
graph attention. Below we introduce PopNet in more details.

4.1 Dual Graph Attention Network
We model the real-time data X and updated data U using sepa-
rate systems for better modal capacities of pattern extractions in
both data sources. We employ graph attention networks (GAT) [33]
to leverage spatial relations between locations. This way, the pre-
diction for a target location can be improved by utilizing spatial
disease patterns discovered in nearby or similar locations. We use
two graph attention networks to process X andU respectively.

HereX andU share the same undirected graph designG(𝑉 , 𝐸,A).
In graph G, the nodes indicate locations; while the edge connect-
ing node 𝑖 and 𝑗 , denoted as 𝑤𝑖 𝑗 , is the similarity between node
𝑖 and 𝑗 such that 𝑤𝑖 𝑗 = 𝑝𝛼

𝑖
𝑝
𝛽

𝑗
𝑒𝑥𝑝 (−𝑑𝑖 𝑗𝛾 ). Here 𝑑𝑖 𝑗 is distance be-

tween node 𝑖 and 𝑗 , 𝑝𝑖 is the population size of node 𝑖 , and 𝛼, 𝛽,𝛾
are hyper-parameters. We use a threshold value 𝜔 to calculate the
graph adjacency matrix as in Eq. (1),{

𝐴𝑖 𝑗 = 1, 𝑖 𝑓 𝑤𝑖 𝑗 ≥ 𝜔
𝐴𝑖 𝑗 = 0, 𝑖 𝑓 𝑤𝑖 𝑗 < 𝜔

(1)

For simplicity, we focus our discussion in this section on a spe-
cific timestep and thus will omit the superscript 𝑡 . Accordingly the
attention score between node 𝑖 and 𝑗 will be computed as in Eq. (2),

z𝑖 = W𝑧x𝑖 , z𝑢𝑖 = W𝑢
𝑧 u𝑖

𝑒𝑖 𝑗 = 𝜎 (W𝑎 (z𝑖 |z𝑗 )), 𝑒𝑢𝑖 𝑗 = 𝜎 (W
𝑢
𝑎 (z𝑢𝑖 |z

𝑢
𝑗 ))

(2)

where W𝑧 ∈ R |z𝑖 |×𝐹 , W𝑎 ∈ R |z𝑖 |+ |z𝑗 | , W𝑢
𝑧 ∈ R |z𝑢𝑖 |×𝐹 , W𝑢

𝑎 ∈
R
|z𝑢
𝑖
|+ |z𝑢

𝑗
| are attention weight matrices for the GAT networks,

𝜎 denotes the LeakyReLU activation function, and (·|·) denotes the
concatenate operation. Then we use softmax function to normalize
the obtained attention score as in Eq. (3),

𝑎𝑖 𝑗 =
exp (𝑒𝑖 𝑗 )∑

𝑘∈N(𝑖) exp (𝑒𝑖𝑘 )
, 𝑎𝑢𝑖 𝑗 =

exp (𝑒𝑢
𝑖 𝑗
)∑

𝑘∈N(𝑖) exp (𝑒𝑢𝑖𝑘 )
(3)

where N(𝑖) denotes the set of one-hop neighbors of node 𝑖 .
Likewise, we use the multi-head attention mechanism [33] to

enrich the model capacity by calculating 𝐾 independent attention
scores, where 𝐾 is the number of attention heads. We obtain the
aggregated node embedding as given by Eq. (4),

g𝑖 = 𝜎 (
1
𝐾

𝐾∑︁
𝑘=1

∑︁
𝑗 ∈N(𝑖)

𝑎𝑘𝑖 𝑗W
𝑘
𝑔x𝑗 ), g𝑢𝑖 = 𝜎 ( 1

𝐾

𝐾∑︁
𝑘=1

∑︁
𝑗 ∈N(𝑖)

𝑎
𝑢,𝑘
𝑖 𝑗

W𝑢,𝑘
𝑔 u𝑗 )

(4)
whereW𝑘

𝑔 ∈ R |g𝑖 |×𝐹 andW𝑢,𝑘
𝑔 ∈ R |g𝑢𝑖 |×𝐹 are the weight matrices

for the 𝑘-th attention head in two GATs, respectively. Therefore,
for each node 𝑖 , we will obtain two node embeddings g𝑖 and g𝑢𝑖 for
real-time data X and updated dataU respectively.

4.2 Cross-Graph Embedding Fusion with
Spatial Latency-aware Attention

After obtaining all the node embeddings for updated data and real-
time data, we would like to utilize the updated historical data to
make better predictions. However, this is not a straightforward task.
The latency in data updating can vary between two embeddings
of the same node. Hence, directly concatenating or summing two
embeddingsmay confuse the prediction network and lead to inferior
prediction results. Besides, there is a latency in the updated data
because those locations can be updated at a different frequency. To
incorporate these complex latency patterns, we design the spatial
latency-aware attention (S-LAtt) to fuse spatial embeddings.

The idea of S-LAtt is to use the node embedding as the query to
aggregate spatial patterns from nearby or similar nodes (i.e., loca-
tions), assuming they have similar data updating patterns. To better
quantify such similarity, we learn a spatial information embedding
(SIE) v𝑠 for each node, where the spatial information includes pop-
ulations, the numbers of hospitals and ICU beds, longitude, and
latitude. For node 𝑖 , SIE is obtained via Eq. (5),

v𝑠𝑖 = 𝑀𝐿𝑃 (S𝑖 ) (5)

where S𝑖 denotes the spatial information of node 𝑖 . Since these
spatial information are in general static, same nodes in both GATs
share the same S𝑖 . Based on the the node embedding and the SIE,
we compute the cross-graph attention score as in Eq. (6),

𝑒𝑖 𝑗 = 𝜎 (W𝑎 (W𝑔 (g𝑖 |v𝑠𝑖 ) +W𝑢 (g𝑢𝑗 |v
𝑠
𝑗 ))) (6)

where 𝑗 ∈ N (𝑖), N(𝑖) is the neighboring nodes set of node 𝑖 in the
location graph G.

In addition to spatial similarity, we also notice that the longer
the latency is, the smaller the marginal influence the new data will
have on our final prediction, thus we use time latency to regularize
this attention score. To be specific, we utilize the temporal latency
Δ𝑡𝑖 𝑗 between node 𝑖 and 𝑗 , and design a heuristic function to use
this temporal latency Δ𝑡 as in Eq. (7),

𝑓 (Δ𝑡𝑖 𝑗 ) =
1

log (1 + exp (Δ𝑡𝑖 𝑗 ))
. (7)

Then the attention weight 𝑎𝑖 𝑗 is regularized as in Eq. (8),

𝑒𝑖 𝑗 = 𝑒𝑖 𝑗 𝑓 (Δ𝑡𝑖 𝑗 ), 𝑎𝑖 𝑗 =
exp (𝑒𝑖 𝑗 )∑

𝑘∈N𝑢 (𝑖) exp (𝑒𝑖𝑘 )
, (8)

and we can get the aggregated updated embedding as in Eq (9).

ĝ𝑢𝑖 = 𝜎 (
∑︁

𝑗 ∈N𝑢 (𝑖)
𝑎𝑖 𝑗g𝑢𝑗 ) (9)

Finally, we concatenate the node embedding g𝑖 , the aggregated
updated embedding ĝ𝑢

𝑖
and the original input data x𝑖 as in Eq. (10).

ĝ𝑖 = (g𝑖 |ĝ𝑢𝑖 |x𝑖 ) (10)

4.3 Recurrent Neural Network with Temporal
Latency-aware Attention

In addition to spatial patterns, we also employ the gated recur-
rent unit networks [6] to extract the temporal patterns based on
multivariate time series from each node. To simplify, we focus our



WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Junyi Gao, Cao Xiao, Lucas M. Glass, and Jimeng Sun

GAT

GAT

Spatial 
information 
embedding

MLP

Real time 
data 𝑿𝑿𝑖𝑖𝑡𝑡

Updated 
data 𝑼𝑼𝑖𝑖

𝑡𝑡

Node Embedding 
�𝒈𝒈𝑖𝑖

Temporal 
information 
embedding

𝒈𝒈𝒊𝒊𝒖𝒖

𝒗𝒗𝒔𝒔

S-LAtt T-LAtt
GRU

�𝒄𝒄𝑡𝑡
𝒙𝒙𝒎𝒎 𝑜𝑜𝑜𝑜 𝒖𝒖𝒎𝒎

·

GRU
�𝒚𝒚𝒕𝒕+𝟏𝟏𝒖𝒖

�𝒚𝒚𝒕𝒕+𝟏𝟏

𝓛𝓛𝛼𝛼

�𝒄𝒄𝑡𝑡𝑢𝑢

𝒉𝒉𝑡𝑡
𝓛𝓛𝛼𝛼

𝒄𝒄𝒕𝒕
𝝓𝝓 𝑜𝑜𝑜𝑜 𝒄𝒄𝒕𝒕

𝝓𝝓,𝒖𝒖

�𝒉𝒉𝒕𝒕

GAT

GAT

Dual Graph 
Attention Network

Cross-graph Embedding Fusion with 
Spatial Latency-aware Attention (S-LAtt)

Spatial & 
medical 
resources 
data S

RNN with Temporal Latency-aware 
Attention (T-LAtt)

CNN with different 
dilation rate 

𝑿𝑿𝑖𝑖 𝑜𝑜𝑜𝑜 𝑼𝑼𝑖𝑖

𝒉𝒉𝑡𝑡𝑢𝑢

Figure 1: Our PopNetmodel consists of two graph attention networks to receive real-time data (X) and updated data (U) respec-
tively. It uses spatial latency-aware attention (S-LAtt) to fuse two graphs and generate node embedding for each location. The
spatial latency-aware attention is enriched by spatial information embedding (SIE) v𝑠 learned using location-wise geographi-
cal and medical resource features. The node embeddings in two graph networks are fed into two GRUs respectively to extract
temporal relations. PopNet also utilizes temporal latency-aware attention (T-LAtt) to fuse temporal embeddings. Similarly,
T-LAtt is enriched by temporal information embeddings (TIE) ĉ𝑡 and c𝑢𝑡 , which can adaptively embed the most informative
multi-scale disease patterns to improve predictions. PopNet also aligns the hidden states of GRU ĥ𝑡 , h𝑢𝑡 with the learned TIE ĉ𝑡
and c𝑢𝑡 respectively to achieve efficient update. Finally, PopNet will output predictions 𝑦𝑡+1 using fused temporal embedding.

discussion on one location and omit the subscript node index 𝑖 . The
real-time and updated embeddings are fed into GRUs as in Eq. (11),

h𝑡 = 𝐺𝑅𝑈 (ĝ1, ĝ2, ..., ĝ𝑡 )
h𝑢𝑡 = 𝐺𝑅𝑈𝑢 (g𝑢1 , g

𝑢
2 , ..., g

𝑢
𝑡 )

(11)

We use the hidden states of the GRU h𝑡 and h𝑢𝑡 as the temporal
embeddings. Similarly, we design a temporal latency-aware atten-
tion mechanism (T-LAtt) to fuse two embeddings and deal with
the latency between h𝑡 and h𝑢𝑡 . As previously discussed, utilizing
temporal-related data updating patterns may benefit the predic-
tions. This involves extracting complex temporal patterns such as
increasing or declining from different time scales. Besides, we also
consider the updating patterns of comorbidities of target diseases.
To extract and leverage these patterns, we enrich the T-LAtt with
temporal information embeddings (TIE).

First, for TIE to extract temporal patterns frommultiple timescales,
we use dilated convolutional networks [24] with different dila-
tion rates to extract temporal patterns from different time scales.
Concretely, at each location, the input disease data sequence X =

[x1, x2, ..., x𝑡 ] is fed into the CNN as in Eq. (12),

c𝜙𝑡 = m(𝐿, 𝜙) ∗ X, (12)

where ∗ denotes the convolution operation, m(𝐿, 𝜙) is the 1D con-
volution filter with size 𝐿 and dilation rate 𝜙 . The larger the 𝜙 is,
the larger the filter’s receptive field is, making the convolution
filter extract temporal patterns from a broader time scale. In our
experiments, we use a combination of different 𝜙 to extract pat-
terns in different scales, from small to large. The feature maps are
concatenated to get the final feature map vector c𝑡 ∈ R𝐶 ,𝐶 denotes
the number of convolution filters. Each value in c𝑡 represents an
extracted temporal feature.

Following previous CNN-based models [12, 14, 21], we also try
to select the most informative patterns in c𝑡 based on attention

weights. Here, we first use mean pooling over time dimension for X
as x𝑚 = 𝑀𝑒𝑎𝑛𝑃𝑜𝑜𝑙 (X), x𝑚 ∈ R𝐹 . x𝑚 can be regarded as a summary
for 𝐹 diseases. This vector is used to calculate the attention score
for the temporal patterns as in Eq. (13),

a𝑐𝑡 = 𝜎 (𝑀𝐿𝑃 (x𝑚)) (13)

where 𝜎 denotes the sigmoid activation. We use the multi-layer
perceptron to do themappingR𝐹 → R𝐶 , and the sigmoid activation
to generate importance score between 0 and 1. The obtained score
vector a𝑐 is used to re-calibrate the feature map vector as in Eq. (14),

ĉ𝑡 = c𝑡 ⊙ a𝑐𝑡 (14)

The obtained ĉ𝑡 is the final temporal information embedding (TIE).
We can also get the TIE for updated series ĉ𝑢𝑡 in this way.

Similar to the spatial latency-aware attention, we use the TIE
to enrich the attention and use time latency between current tem-
poral embedding h𝑡 and historical updated temporal embeddings
[h𝑢1 , h

𝑢
2 , ..., h

𝑢
𝑡 ] to regularize the attention score as in Eq. (15),

𝑒𝑡𝑖 = 𝑓 (Δ𝑡𝑡𝑖 ) ∗ 𝜎 (W𝑎 (Wℎ1 (h𝑡 |ĉ𝑡 ) +Wℎ2 (h𝑢𝑖 |ĉ
𝑢
𝑡 )))

𝑎𝑡𝑖 =
exp (𝑒𝑡𝑖 )∑𝑡
𝑗=1 exp (𝑒𝑡 𝑗 )

(15)

And the aggregated updated temporal embedding is given by Eq. (16),

ĥ𝑢𝑡 =

𝑡∑︁
𝑖=1

𝑎𝑡𝑖h𝑢𝑖 . (16)

Finally, we concatenate the aggregated updated temporal embed-
ding ĥ𝑢𝑡 , the original temporal embedding and the TIE to calculate
the final temporal embedding as in Eq. (17),

ĥ𝑡 = (h𝑡 |ĥ𝑢𝑡 |ĉ𝑡 ). (17)
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4.4 Efficient Iterative Training and Prediction
Model update challenge: In clinical practice, an online population-
level disease prediction model needs routine updates when new
data become available. For model updating with new data, it usu-
ally requires model retraining which is time-consuming as the data
sequence becomes longer, or directly fine-tuning on the new data
which discards historical patterns. Some also initialize a model us-
ing new data and the last hidden state of RNN trained using old
data. However, this solution assumes there is no large time gap
between the two datasets. Otherwise, capturing the continuous
behavior of the system becomes more difficult for the model and
leads to even worse performance [22].

Our Solution. PopNet introduces an alignment module to address
this issue via providing a better initialization for the hidden states
of the RNN on the new data without assuming the data continuity.
This is achieved by learning a mapping function between the TIE
ĉ𝑡 , c𝑢𝑡 and the hidden states of RNN 𝒉̂𝑡 and h𝑢𝑡 at each timestep
respectively. When applying to new data, directly using the last
hidden states is not optimal due to the new disease patterns may be
different. But convolutional features can provide a better initializa-
tion for the RNN since they are not strictly sequential-dependent.
Concretely, we first use a mapping function𝑚𝜃 parameterized by
𝜃 to map the learned TIE to another latent space as in Eq. (18),

𝒄𝑚𝑡 =𝑚𝜃 (𝒄𝑡 ) (18)

Then we calculate the probability distribution of the mapped TIE
embedding and the current hidden state of the RNN 𝒉𝑡 using soft-
max function as in Eq. (19),

𝑝 (𝒄𝑚𝑡 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝒄𝑚𝑡 ); 𝑞(𝒉𝑡 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝒉𝑡 ) (19)

Then we define the alignment loss function between 𝑝 (𝒄𝑚𝑡 ) and
𝑞(𝒉𝑡 ) using Kullback-Leibler divergence as in Eq. (20),

L𝑎 =

𝑛∑︁
𝑖=1

𝑝 (𝒄𝑚𝑡 ) log(
𝑝 (𝒄𝑚𝑡 )
𝑞(𝒉𝑡 )

) (20)

Note that here we use the Kullback-Leibler divergence since its
asymmetric characteristic naturally fits our design: we expect the
loss term can help the model learn a close estimation to 𝒉𝑡 using
𝒄𝑡 . Besides, since the dimensionality of two embeddings is large,
using KL divergence instead of L1 or L2 distance can also help
avoid the learned𝑚𝜃 simply mapping the embeddings to random
normal distributions. When applied to new data, the model will
first calculate the TIE using the entire sequence and then use𝑚𝜃
to provide the initialization for the hidden states of the RNN. The
detailed algorithm is shown in Alg.1.

Finally, we use a two-layer perceptron to generate predictions
via 𝑦𝑡+1 = 𝑀𝐿𝑃 (ĥ𝑡 ). We also let the 𝐺𝑅𝑈𝑢 to make predictions
as 𝑦𝑢

𝑡+1 = 𝑀𝐿𝑃 (h𝑢𝑡 ). Note that 𝑦𝑢𝑡+1 is the prediction for the day
after the update point, so it may be earlier than current timestep
𝑡 . However, we use this as an auxiliary task to better optimize the
GRU and GAT. At testing time, only 𝑦𝑡+1 is the model output. We
use mean squared error as the loss function as in Eq. (21),

L𝑟 =
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖+1 − 𝑦𝑖+1)2; L𝑢 =
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑢𝑖+1 − 𝑦
𝑢
𝑖+1)

2 (21)

We finally optimize the entire model using Eq. (22).

L = L𝑟 + L𝑢 + L𝑎 (22)

Algorithm 1 The PopNet model
Input:
Real-time disease statistics X, updated disease statisticsU, up-
date intervals 𝚫𝒕 = [𝚫𝒕1,𝚫𝒕2, ...,𝚫𝒕𝑇 ], prediction targets 𝒀 =

[𝒀1, 𝒀2, ..., 𝒀𝑇 ] and location graph G.
Training:
for 𝑖 = 1 to 𝑇 do

Input X andU and get node embeddings using Eq. 4;
Aggregate ĝ𝑢 to ĝ using Eq. 9 and 10;
Input spatial embeddings to GRU networks using Eq. 11;
Calculate temporal information embeddings using Eq. 14;
Aggregate h𝑢

𝑖
to h𝑖 using Eq. 16 and 17;

Make predictions for 𝑖 + 1 timestep;
end for
Generate distributions using Eq. 18 and 19;
Calculate KL divergence using Eq. 20;
Optimize model parameters by minimizing loss in Eq. 22.
Iterative training:
Calculate TIE for the input sequence using Eq. 14;
Use learned𝑚𝜃 to generate the initial hidden state of GRU;
Repeat the normal training steps.

5 EXPERIMENT
We evaluate PopNet by comparing against several spatial-temporal
prediction and disease prediction baselines using real-world datasets.

5.1 Experimental Setup
Data We extract disease statistics from patients’ claims data in a
real-world patient database from IQVIA. The patients’ claims data
are collected from 2952 counties in the US starting from 2018. We
aggregate the ICD-10 codes in claims data into 21 categories, which
include 17 diseases and 4 other codes (see detailed category descrip-
tions in Appendix). We use week-level statistics. Since patients’
claims data cannot be completed collected at one time, the disease
statistics in a certain week will be updated over several weeks. We
use the statistics collected in the first week as the real-time data,
and we use the data collected from future weeks as the updated
data. We conduct experiments to predict two diseases:
(1) Respiratory Disease Dataset: Respiratory diseases include

ICD10 codes J00-J99, which are common and most of them
are contagious. The number of cases is larger than most other
diseases. Therefore, the claims data collection procedure is also
longer, so that the disease statistics for one week will be fully
collected in the following up to 13 weeks. We filter out locations
that have very few cases (less than 100). Finally, we get 1,693
counties for respiratory diseases prediction.

(2) Tumors Dataset: Tumors include ICD10 codes C00-D49. Com-
pared to respiratory diseases, the tumors have fewer cases, and
the data update period is also shorter. Most statistics of one
week can be fully collected in the following 7 weeks. We also
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filter out locations with very few cases (less than 10), and we
get 1,829 counties for tumor prediction.

In addition, we conduct experiments on other 15 diseases and a
synthetic dataset generated based on real-world disease update
distributions. The detailed statistics and the results can be found
in the Appendix. The code and the synthetic dataset is publicly
available in 1.

BaselinesWeevaluated PopNet against the following spatio-temporal
prediction baselines: SARIMAX,GRU [6],ASTGCN [13],GMAN [39],
EvolveGCN, ColaGNN [8] and STAN [9]. The detailed descrip-
tions of baselines can be found in Appendix.

We also compare PopNetwith the reduced version as the ablation
study.
(1) PopNet-LAttWe reduce both S-LAtt and T-LAtt mechanisms

from PopNet. PopNet-LAtt is essentially two branches that re-
ceive real-time and updated data independently, and the outputs
of two networks are concatenated to make final predictions.

(2) PopNet-SLAtt We only reduce the spatial latency-aware atten-
tion from PopNet.

(3) PopNet-TLAttWe only reduce the temporal latency-aware at-
tention from PopNet.

(4) PopNet-L𝛼 We reduce the alignment module and the loss term
L𝛼 from PopNet. Since this term is only related to the iterative
training, it will only be evaluated in Q3 section. PopNet-L𝛼
simply uses normal initialization for RNN hidden states.

Metrics. Following the similar work [9, 33], we use the follow-
ing regression metrics to evaluate all the models: The root mean
squared error (RMSE), mean absolute error (MAE) and the
mean absolute percentage error (MAPE) measures the differ-
ence between predicted values and true values:

𝑅𝑀𝑆𝐸 =

√√
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2 (23)

𝑀𝐴𝐸 =
1
𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 | (24)

𝑀𝐴𝑃𝐸 =
1
𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 |
𝑦𝑖

(25)

All metrics are calculated after projecting the values into the real
range.

Evaluation Strategy. We split the data into training, validation,
and testing sets. The training set is 60 weeks, starting from January
2018 to March 2019. The validation set is 20 weeks, starting from
April 2019 to July 2019. The testing set is 20 weeks, starting from
August 2019 to December 2019. All the models use the same train-
ing data and are also evaluated and tested using the same sets. To
be fair, the training, validation and test data for all models are the
same. For baseline models, we concatenate the updated data at each
time step with the real-time data for model inputs. Compared to all
baselines, PopNet does not access any extra data. In order to reduce
the variance caused by time shift, we save three model checkpoints

1https://github.com/v1xerunt/PopNet

with (1) lowest loss on the training set; (2) lowest MSE on the vali-
dation set; (3) last training epoch. We test each checkpoint on the
test set and report the best performance.

Implementation Details. All methods are implemented in Py-
Torch [26] and trained on an Ubuntu 16.04 with 64GB memory and
a Tesla V100 GPU. We use Adam optimizer [18] with a learning rate
of 0.001 and trained for 200 epochs. The hyper-parameter settings
of each baseline model can be found in the appendix.

5.2 Results
Q1. Performance on Disease Prediction
The prediction results on respiratory disease and tumors are listed
in Table 1. We also conduct two-tailed student’s T-test of MAE be-
tween PopNet and other baseline models to test the significance of
performance improvement. The p-values are also in Table 1. PopNet
outperforms all baseline methods on all metrics. On respiration dis-
ease dataset, PopNet achieves 47% lower RMSE, 23.2% lower MAE,
and 29.4% lower MAPE, and on tumors dataset, PopNet achieves
29% lower RMSE, 24% lower MAE, and 13.2% lower MAPE, both
compared with the best baseline ColaGNN.

Table 1: Disease Prediction Performance

Respiratory Diseases Prediction
Model RMSE (×105) MAE MAPE P-value
SARIMAX 15.54 542.5 51.3 0.0
GRU 10.89 340.2 43.2 5e-20
GMAN 9.10 329.8 37.4 4e-15
ASTGCN 10.33 303.6 39.9 4e-13
EvolveGCN 9.85 312.4 36.9 8e-9
STAN 9.54 305.7 36.8 4e-9
ColaGNN 8.06 291.3 33.7 5e-5
PopNet-LAtt 9.82 311.6 39.2 4e-10
PopNet-TLAtt 6.32 271.3 29.9 5e-4
PopNet-SLAtt 8.85 297.5 31.3 7e-8
PopNet 4.29 223.8 23.8 -

Tumors Prediction
Model RMSE (×105) MAE MAPE P-value
SARIMAX 21.41 426.0 69.8 0.0
GRU 16.20 313.3 60.7 0.0
GMAN 13.12 315.7 53.4 7e-25
ASTGCN 15.59 332.5 56.2 0.0
EvolveGCN 8.94 269.0 50.4 5e-11
STAN 6.56 215.8 48.7 7e-9
ColaGNN 4.75 172.5 42.3 9e-5
PopNet-LAtt 8.92 283.4 51.5 4e-10
PopNet-TLAtt 3.25 142.9 38.1 3e-4
PopNet-SLAtt 4.50 165.8 40.1 5e-5
PopNet 2.90 131.6 36.7 -

In addition, we evaluate the performance on other disease cat-
egories (grouped by ICD code). We report the detailed test MAE
in Appendix, and show the test MAPE of PopNet against the best
baseline in Fig. 2. The results show that PopNet outperforms all
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Figure 2: Comparison of the test MAPE between PopNet and
the best baseline on all disease code categories

baseline models for all disease categories, which indicates the po-
tential broader utility of PopNet. It is worth noting that for some
disease codes, PopNet achieves much better performance than base-
line models, for example, musculoskeletal disease or pregnancy
prediction. These data often receive more frequent updates due to
the large number of cases or the particularity. Therefore, PopNet
achieves better performance since it can better extract and utilize
update patterns.

Q2. Performance at Different Locations
This section further explores the performance of PopNet on differ-
ent locations We report the number of locations that each model
has the best performance in Table. 2. Here ’Others’ sums up the
results of SARIMAX, GMAN, GRU, ASTGCN and EvolveGCN.

Table 2: # of locations where each model performs the best.

Respiratory Diseases
Model # of Locations % of Locations Mean Δ𝑀𝐴𝑃𝐸
STAN 42 2.5% 3.5%
ColaGNN 33 1.9% 2.7%
Others 6 0.4% 4.1%
PopNet 1612 95.2% 12.4%

Tumors
Model # of Locations % of Locations Mean Δ𝑀𝐴𝑃𝐸
STAN 40 2.2% 8.5%
ColaGNN 122 6.7% 4.6%
Others 22 1.2% 5.5%
PopNet 1645 89.9% 10.7%

It is easy to see PopNet achieves the best performance on over
90% of locations for both tasks. For respiratory diseases, PopNet
has 12.4% improved MAPE on average than the best baseline. For
tumors prediction, PopNet achieves the best performance on 1645
locations, and the average MAPE improvement is 10.7%. Even for
the locations that baselines perform the best, theMAPE gap is small.

Q3. Performance with Iterative Training
To evaluate whether the iterative training of PopNet improves the
efficiency of model updating, we simulate the following deployment
setting: train on the original dataset (week 1-50), and deploy into
practice (week 50-80). Then refresh the model using newly collected
data during the deployment phase (week 60-80). Finally, we re-
deploy the model to test the performance (week 80-100). The entire
splitting process is shown in Fig. 3.

1 50 70 1008060
Week

Initial Training
Initial testing

Iterative training

Final testing

Figure 3: Data splitting process to simulate iterative training

We report the performance on the final testing phase in Ta-
ble 3. PopNet outperforms baselines, achieving 39% lower RMSE,
34% lower MAE, and 25.6% lower MAPE on respiratory disease
prediction. and 70% lower RMSE and 49% lower MAE on tumor
prediction, compared with the best baseline. Compared with the
reduced model PopNet-L𝛼 , we can see the alignment loss can in-
deed help improve the predictive performance by providing RNN
with a better initialization.

Table 3: Prediction performance with iterative traing

Respiratory diseases
Model RMSE (×105) MAE MAPE P-value
GRU 14.77 495.4 52.5 0.0
GMAN 14.17 450.5 47.3 0.0
ASTGCN 12.45 432.7 46.2 3e-20
EvolveGCN 12.18 429.7 43.1 1e-18
STAN 13.90 448.5 47.0 0.0
ColaGNN 11.82 416.1 39.8 9e-17
PopNet-L𝛼 11.43 355.3 33.5 5e-10
PopNet 7.23 275.6 29.6 -

Tumors
Model RMSE (×105) MAE MAPE P-value
GRU 18.95 397.6 52.9 8e-23
GMAN 18.99 401.6 53.2 0.0
ASTGCN 19.72 401.3 55.6 0.0
EvolveGCN 17.26 385.1 50.0 0.0
STAN 10.21 304.7 40.8 6e-15
ColaGNN 8.75 264.4 35.3 1e-8
PopNet-L𝛼 4.92 182.7 35.8 3e-4
PopNet 2.60 135.4 34.7 -

To further evaluate how L𝛼 can help improve the iterative train-
ing, in Fig. 4, we compare the iterative training results with the
models that are trained on the entire sequence (results in Table 1).
Compared with the results reported in Table 3 (yellow bars), the
results in Table 1 (green bars) are obtained using the same test set
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Figure 4: Prediction MAE for models trained on entire
dataset and iterative dataset

but trained on the entire historical sequence (week 1-80). The P-L𝛼
indicates the reduced model PopNet-L𝛼 .

The figure shows that the models trained on the entire dataset
can achieve lower MAE because the model can access the entire
historical data, which makes the models can extract and utilize
more historical patterns. However, compared to all baselines and
the reduced model, the performance gap of PopNet is much smaller.
Compared to the model trained under the iterative training setting,
PopNet trained on entire sequences achieves 23% higher MAE on
respiratory diseases prediction and only 3% higher MAE on tumors
prediction. In comparison, the best baseline model trained on entire
sequences achieves 41% higher MAE on respiratory diseases predic-
tion and 53% higher MAE on tumors prediction. This indicates that
by aligning the TIE and hidden states of RNN, the model can indeed
utilize historical patterns without accessing the original sequences.

Since the entire sequence is four times longer than the iterative
training data, training on the entire dataset could be costly for time
and memory. For example, for tumor disease, training a regular
spatial-temporal model on the entire dataset generally requires
more than 12 GB memory and the average training time is about 5
seconds per epoch. But it only requires less than 4 GB memory and
2 seconds per epoch to train the same model on the iterative dataset.
PopNet can achieve almost equivalent performance using just iter-
ative training data, which can be useful for real-world applications
and efficient for long-sequence data.

Q4. Performance with Longer Prediction
Window
Long-term prediction is also significant for disease prediction in
practice. In this work, we also explore the capability of PopNet for
long-term disease prediction. We change the output size to make
PopNet and other baseline models predict future 5 weeks. We report
the performance and the p-value of MAE in Table 4.

The results show that the MAE rises as the prediction window
increases since it becomes more difficult to predict longer future
trends. However, PopNet still has the lowest MAE increase ratio.

For respiratory diseases, the MAE of PopNet increases 14% as
the prediction window length increases from 1 to 5, while the
baseline model STAN increases 24% and ColaGNN increases 31%.
For tumors, the MAE of STAN and ASTGCN increase 11% and 24%,
respectively, while PopNet only increases 6%. The results show
that PopNet can consistently outperform all other baseline models
under different lengths of prediction window. A longer prediction
window has less effect on the predictive performance of PopNet. To

Table 4: Long-term prediction (window = 5 weeks)

Respiratory Diseases
Model RMSE (×105) MAE MAPE P-value
GRU 16.90 491.4 34.7 7e-21
GMAN 17.76 440.3 35.2 6e-23
ASTGCN 15.23 410.3 33.4 2e-15
STAN 9.30 380.5 31.5 4e-8
ColaGNN 9.78 384.1 31.7 8e-8
PopNet 5.71 255.4 27.8 -

Tumors
Model RMSE (×105) MAE MAPE P-value
GRU 21.56 452.6 38.8 0.0
GMAN 19.35 420.1 35.9 5e-20
ASTGCN 19.78 425.1 36.0 6e-23
STAN 6.72 240.3 34.1 3e-9
ColaGNN 5.37 231.9 33.5 5e-7
PopNet 2.79 138.4 31.5 -
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Figure 5: Prediction MAE under prediction window 1 and 5
illustrate more clearly, we draw the performance gap of all baseline
models with different prediction windows in Fig. 5. The figure
shows that compared to baseline models, PopNet can achieve a
significantly smaller error gap as the prediction window increases
on two diseases. This indicates that PopNet is also suitable for
long-term prediction tasks.

6 CONCLUSION
In this work, we propose PopNet for real-time population-level
disease prediction with considering data latency. PopNet uses two
separate systems to model real-time and updated disease statistics
data, and then adaptively fuses the two systems using both spatial
and temporal latency-aware cross-graph attention. We augment
the latency-aware attention with spatial and temporal informa-
tion embeddings to adaptively extract and utilize geographical and
temporal progression features. We also conducted extensive experi-
ments across multiple real-world claims datasets. PopNet outper-
forms leading spatial-temporal models in all metrics and shows the
promising utility and efficacy in population-level disease prediction.
In future works, we will use more flexible way to generate better
location graph instead of using hard defined edge weights, which
is the major limitation of this work.

7 ACKNOWLEDGMENTS
This work was supported by IQVIA, NSF award SCH-2014438,
PPoSS 2028839, IIS-1838042, NIH award R01 1R01NS107291-01 and
OSF Healthcare.



PopNet: Real-Time Population-Level Disease Prediction with Data Latency WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

REFERENCES
[1] Defu Cao, Yujing Wang, Juanyong Duan, Ce Zhang, Xia Zhu, Conguri Huang,

Yunhai Tong, Bixiong Xu, Jing Bai, Jie Tong, et al. 2021. Spectral temporal
graph neural network for multivariate time-series forecasting. arXiv preprint
arXiv:2103.07719 (2021).

[2] Edward Choi, Mohammad Taha Bahadori, Andy Schuetz, Walter F Stewart, and
Jimeng Sun. 2016. Doctor ai: Predicting clinical events via recurrent neural
networks. In Machine learning for healthcare conference. PMLR, 301–318.

[3] Edward Choi, Mohammad Taha Bahadori, Le Song, Walter F Stewart, and Jimeng
Sun. 2017. GRAM: graph-based attention model for healthcare representation
learning. In Proceedings of the 23rd ACM SIGKDD international conference on
knowledge discovery and data mining. 787–795.

[4] Edward Choi, Andy Schuetz, Walter F Stewart, and Jimeng Sun. 2017. Using
recurrent neural networkmodels for early detection of heart failure onset. Journal
of the American Medical Informatics Association 24, 2 (2017), 361–370.

[5] Edward Choi, Cao Xiao,Walter F Stewart, and Jimeng Sun. 2018. Mime: Multilevel
medical embedding of electronic health records for predictive healthcare. arXiv
preprint arXiv:1810.09593 (2018).

[6] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical evaluation of gated recurrent neural networks on sequence modeling.
arXiv preprint arXiv:1412.3555 (2014).

[7] Limin X Clegg, Eric J Feuer, Douglas N Midthune, Michael P Fay, and Benjamin F
Hankey. 2002. Impact of reporting delay and reporting error on cancer incidence
rates and trends. Journal of the National Cancer Institute 94, 20 (2002), 1537–1545.

[8] Songgaojun Deng, Shusen Wang, Huzefa Rangwala, Lijing Wang, and Yue Ning.
2020. Cola-GNN: Cross-location Attention based Graph Neural Networks for
Long-term ILI Prediction. In Proceedings of the 29th ACM International Conference
on Information &amp; Knowledge Management. 245–254.

[9] Junyi Gao, Rakshith Sharma, Cheng Qian, Lucas M Glass, Jeffrey Spaeder, Justin
Romberg, Jimeng Sun, and Cao Xiao. 2020. Stan: Spatio-temporal attention
network for pandemic prediction using real world evidence. arXiv preprint
arXiv:2008.04215 (2020).

[10] Jingyue Gao, Xiting Wang, Yasha Wang, Zhao Yang, Junyi Gao, Jiangtao Wang,
Wen Tang, and Xing Xie. 2019. Camp: Co-attention memory networks for
diagnosis prediction in healthcare. In 2019 IEEE International Conference on Data
Mining (ICDM). IEEE, 1036–1041.

[11] Junyi Gao, Cao Xiao, Lucas M Glass, and Jimeng Sun. 2020. Dr. Agent: Clinical
predictive model via mimicked second opinions. Journal of the American Medical
Informatics Association 27, 7 (2020), 1084–1091.

[12] Junyi Gao, Cao Xiao, Yasha Wang, Wen Tang, Lucas M Glass, and Jimeng Sun.
2020. StageNet: Stage-Aware Neural Networks for Health Risk Prediction. In
Proceedings of The Web Conference 2020. 530–540.

[13] Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. 2019.
Attention based spatial-temporal graph convolutional networks for traffic flow
forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33.
922–929.

[14] Jie Hu, Li Shen, and Gang Sun. 2018. Squeeze-and-excitation networks. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 7132–7141.

[15] Rongzhou Huang, Chuyin Huang, Yubao Liu, Genan Dai, and Weiyang Kong.
2020. LSGCN: Long Short-Term Traffic Prediction with Graph Convolutional
Networks.. In IJCAI. 2355–2361.

[16] Amol Kapoor, Xue Ben, Luyang Liu, Bryan Perozzi, Matt Barnes, Martin Blais, and
Shawn O’Banion. 2020. Examining covid-19 forecasting using spatio-temporal
graph neural networks. arXiv preprint arXiv:2007.03113 (2020).

[17] William Ogilvy Kermack and Anderson G McKendrick. 1927. A contribution to
the mathematical theory of epidemics. Proceedings of the royal society of london.
Series A, Containing papers of a mathematical and physical character 115, 772
(1927), 700–721.

[18] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[19] Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting dynamic em-
bedding trajectory in temporal interaction networks. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
1269–1278.

[20] Fenglong Ma, Radha Chitta, Jing Zhou, Quanzeng You, Tong Sun, and Jing Gao.
2017. Dipole: Diagnosis prediction in healthcare via attention-based bidirectional
recurrent neural networks. In Proceedings of the 23rd ACM SIGKDD international
conference on knowledge discovery and data mining. 1903–1911.

[21] Liantao Ma, Junyi Gao, Yasha Wang, Chaohe Zhang, Jiangtao Wang, Wenjie
Ruan, Wen Tang, Xin Gao, and Xinyu Ma. 2020. Adacare: Explainable clinical
health status representation learning via scale-adaptive feature extraction and
recalibration. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 34. 825–832.

[22] Nima Mohajerin and Steven L Waslander. 2017. State initialization for recur-
rent neural network modeling of time-series data. In 2017 International Joint
Conference on Neural Networks (IJCNN). IEEE, 2330–2337.

[23] Kris AMurray, Nicholas Preston, TophAllen, Carlos Zambrana-Torrelio, Parviez R
Hosseini, and Peter Daszak. 2015. Global biogeography of human infectious
diseases. Proceedings of the National Academy of Sciences 112, 41 (2015), 12746–
12751.

[24] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu.
2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499
(2016).

[25] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura,
Hiroki Kanezashi, Tim Kaler, Tao Schardl, and Charles Leiserson. 2020. Evolvegcn:
Evolving graph convolutional networks for dynamic graphs. In Proceedings of
the AAAI Conference on Artificial Intelligence, Vol. 34. 5363–5370.

[26] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. arXiv
preprint arXiv:1912.01703 (2019).

[27] Sen Pei and Jeffrey Shaman. 2020. Initial Simulation of SARS-CoV2 Spread and
Intervention Effects in the Continental US. medRxiv (2020).

[28] Zhaozhi Qian, Ahmed M Alaa, and Mihaela van der Schaar. 2020. CPAS: the
UK’s national machine learning-based hospital capacity planning system for
COVID-19. Mach. Learn. (Nov. 2020), 1–21.

[29] Constantinos I Siettos and Lucia Russo. 2013. Mathematical modeling of infectious
disease dynamics. Virulence 4, 4 (2013), 295–306.

[30] Ruiguang Song and Timothy AGreen. 2012. An improved approach to accounting
for reporting delay in case surveillance systems. JP J Biostat 7, 1 (2012), 1–14.

[31] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research 15, 1 (2014), 1929–1958.

[32] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. 2019.
Dyrep: Learning representations over dynamic graphs. In International conference
on learning representations.

[33] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[34] Richard J Verrall and Mario V Wüthrich. 2016. Understanding reporting delay in
general insurance. Risks 4, 3 (2016), 25.

[35] Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. 2021.
Inductive Representation Learning in Temporal Networks via Causal Anonymous
Walks. arXiv preprint arXiv:2101.05974 (2021).

[36] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan.
2020. Inductive representation learning on temporal graphs. arXiv preprint
arXiv:2002.07962 (2020).

[37] Zifeng Yang, Zhiqi Zeng, Ke Wang, Sook-San Wong, Wenhua Liang, Mark Zanin,
Peng Liu, Xudong Cao, Zhongqiang Gao, Zhitong Mai, et al. 2020. Modified SEIR
and AI prediction of the epidemics trend of COVID-19 in China under public
health interventions. Journal of Thoracic Disease 12, 3 (2020), 165.

[38] Huaxiu Yao, Xianfeng Tang, HuaWei, Guanjie Zheng, Yanwei Yu, and Zhenhui Li.
2018. Modeling spatial-temporal dynamics for traffic prediction. arXiv preprint
arXiv:1803.01254 (2018).

[39] Chuanpan Zheng, Xiaoliang Fan, Cheng Wang, and Jianzhong Qi. 2020. Gman: A
graph multi-attention network for traffic prediction. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 34. 1234–1241.



WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Junyi Gao, Cao Xiao, Lucas M. Glass, and Jimeng Sun

A DATASET DETAILS
A.1 Real-world dataset
In this section, we report the basic statistics and disease categories in
the real-world claims dataset. The patients’ claims data are collected
from 2952 counties in the US starting from 2018. We aggregate the
codes into 17 disease categories (A00-Q99) and 4 other categories
(R00-Z99) according to the ICD-10 coding. The detailed disease
category is reported in Table 5.

ICD code Category description Avg. cases

A00-B99 Certain infectious and parasitic diseases 314.9
B00-D49 Tumors 966.1

D50-D89 Diseases of the blood, blood-forming
organs and immune mechanism 344.8

E00-E89 Endocrine, nutritional and metabolic diseases 1508.8
F01-F99 Mental, Behavioral and mental disorders 1470.1
G00-G99 Diseases of the nervous system 744.2
H00-H59 Diseases of the eye and adnexa 385.8
H60-H95 Diseases of the ear and mastoid process 192.2
I00-I99 Diseases of the circulatory system 1717.2
J00-J99 Diseases of the respiratory system 1774.7
K00-K95 Diseases of the digestive system 653.1
L00-L99 Diseases of the skin and subcutaneous tissue 496.9

M00-M99 Diseases of the musculoskeletal system
and connective tissue 2226.7

N00-N99 Diseases of the genitourinary system 897.0
O00-O99 Pregnancy, childbirth and the puerperium 152.6

P00-P96 Certain conditions originating
in the perinatal period 45.9

Q00-Q99 Congenital malformations, deformations
and chromosomal abnormalities 80.2

R00-R99 Symptoms, signs and abnormal clinical
and laboratory findings 2480.2

S00-T88 Injury, poisoning and certain other
consequences of external causes 683.3

V00-Y99 External causes of morbidity 12.4

Z00-Z99 Factors influencing health status
and contact with health services 2653.2

Table 5: ICD codes and disease category descriptions

Due to space limitations, we only report the detailed data statis-
tics of two diseases (i.e., tumors and respiratory diseases) reported
in the main text. The statistics are shown in Table 6. The spatial
features include populations, number of hospitals, number of ICU
beds, longitude, latitude and annual income.

A.2 Synthetic dataset
We construct a synthetic dataset from a real-world disease dataset.
We first randomly aggregate the data in the real-world dataset from
different locations to generate data sequences for the real-time data
and prediction targets. For each location, We randomly aggregate
data from 1-5 neighboring locations. Then for each timestep, we
use up-sampling and down-sampling to aggregate data from 1-3
continuous timesteps while keeping the length of data does not
change. Then we add random Gaussian noise (𝜇 = 0, 𝜎 = 1) to the
aggregated data. For the updated data, we assume all locations are
updated at regular intervals for the sake of simplicity. We use the

Respiratory diseases

# of locations 1693
# of features 21
# of edges 4521
Avg. # of edges per nodes 2.67
# of sequence length 63
Avg. # of target cases 1774.7
Avg. # of update frequencies 9.3
Tumors

# of locations 1829
# of features 22
# of edges 4884
Avg. # of edges per nodes 2.67
# of sequence length 63
Avg. # of target cases 966.1
Avg. # of update frequencies 3.3

Table 6: Data statistics for respiratory disease and tumors
dataset

same strategy as the real-time data to generate the updated data.
The basic statistics of the synthetic dataset are shown in Table 7.

# of locations 1015
# of features 22
# of edges 6410
Avg. # of edges per nodes 6.32
# of sequence length 63
Avg. # of target cases 1098.7
Avg. # of update frequencies 5.4
Table 7: Synthetic data statistics

B PREDICTION PERFORMANCE FOR ALL
DISEASE CATEGORIES

In this section, we report the predictive performance of PopNet for
all disease categories. Due to space limitations, we only select two
baseline models (i.e., STAN and ColaGNN) to compare, which have
generally better performance. For some disease categories such as
Certain conditions originating in the perinatal period, some locations
have no case at most timesteps, so these disease datasets have fewer
locations to predict. We report the test MAE in Table 8. PopNet can
outperform two baselines for all disease code categories.

C PERFORMANCE ON SYNTHETIC DATASET
We also conducted experiments on the artificially generated syn-
thetic dataset, and report results in Table 9. From the results, PopNet
outperforms all baselines with a 𝑝 = 0.001 significance level. Com-
pared with the best baseline ColaGNN, PopNet has 19.5% lower
RMSE, 15.5% lower MAE, and 4% lower MAPE. The SARIMAX
model does not perform well on the synthetic dataset since autore-
gression models are difficult to fit random noises in the data.
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ICD code # of locations STAN ColaGNN PopNet

A00-B99 1,654 173.6 152.7 53.7
D50-D89 1,545 210.5 132.2 70.1
E00-E89 1,793 310.0 285.4 268.4
F01-F99 1,675 325.4 301.3 287.4
G00-G99 1,733 225.9 269.1 124.1
H00-H59 1,530 129.3 150.7 113.4
H60-H95 1,551 97.1 85.2 43.9
I00-I99 1,642 439.5 405.5 321.3
K00-K95 1,557 280.7 350.6 124.8
L00-L99 1,424 192.9 245.8 122.9
M00-M99 1,789 371.2 369.7 355.5
N00-N99 1,673 288.9 252.0 163.8
O00-O99 1,512 170.2 95.3 31.4
P00-P96 978 115.8 81.9 19.8
Q00-Q99 1,340 157.4 109.7 22.7

Table 8: Test MAE for all disease categories

Table 9: Prediction performance on synthetic dataset

Model RMSE (×105) MAE MAPE P-value
SARIMAX 6.42 252.4 60.0 0.0
GRU 2.37 130.3 36.7 1e-3
GMAN 3.52 142.4 41.3 5e-4
ASTGCN 2.56 128.4 37.2 8e-4
STAN 2.33 122.5 35.7 2e-3
ColaGNN 2.21 115.9 34.2 3e-3
PopNet-LAtt 2.55 135.2 37.2 9e-3
PopNet-TLAtt 2.08 106.9 33.8 1e-3
PopNet-SLAtt 2.15 113.8 34.0 2e-3
PopNet 1.78 97.9 33.0 -

D IMPLEMENTATION DETAILS
All methods are implemented in PyTorch [26] and trained on an
Ubuntu 16.04 with 64GB memory and a Tesla V100 GPU. We use
Adam optimizer [18] with a learning rate of 0.001 and trained for
200 epochs.

For hyper-parameter settings of each baseline model, our prin-
ciple is as follows: For some hyper-parameter, we will use the
recommended setting if available in the original paper. Otherwise,
we determine its value by grid search on the validation set.

• SARIMAX stands for seasonal autoregressive integrated mov-
ing average, which is a popular time series prediction model.
SARIMAX considers seasonal influence with exogenous vari-
ables, making it more suitable for our disease prediction task. We
use grid-search to determine the hyperparameters of the model
at each location.

• GRU. We use GRU to conduct temporal prediction without con-
sidering the spatial relationships. GRU model cannot utilize spa-
tial relationships and locations are regarded as independent sam-
ples to train the GRU model. The hidden units of the GRU cell
are set to 128.

• GMAN is a recently published spatial-temporal prediction model
for traffic prediction. It uses an encoder-decoder structure with
spatial-temporal attention to predict future traffic status. The
number of attention blocks is set to 3, the dimensionality of each
attention head is set to 64, and the number of attention head is 4.

• ASTGCN is a recently published spatial-temporal prediction
model for traffic prediction. It applies additional convolutional
layers and attention mechanisms on GCN. The number of convo-
lutional kernels is set to 64, and the kernel size is set to 3.

• EvolveGCN is a general spatial-temporal prediction model. It
adapts the graph convolutional network (GCN) model along the
temporal dimension without resorting to node embeddings and
uses an RNN to evolve the GCN parameters. The hidden units of
the GRU cell are set to 128, and the dimensionality of GNN is set
to 64.

• STAN is a hybrid deep learning and epidemiology spatial-temporal
model for epidemic and pandemic prediction. STAN also con-
structs a location graph based on geographic similarity and uses
graph attention network and RNN to predict future cases. Since
we do not constraint our prediction target is an infectious disease,
we remove the disease transmission dynamics regularization in
STAN. The dimensionality of GAT is set to 64 for respiratory
diseases prediction and tumors prediction, 128 for the synthetic
dataset. The number of hidden units of GRU cell is set to 128.

• ColaGNN is a spatial-temporal pandemics prediction model,
which uses a location graph to extract spatial relationships for
predicting pandemics. The number of hidden units of GRU cell is
set to 128. The number of convolutional kernels is set to 64, and
the kernel size is set to 3.

• PopNet. The 𝛼, 𝛽,𝛾 is set to 0.35, 0.37, 30. We set the kernel size
of convolutional layers to 16 and kernel size to 3. We use a set of
dilation rate 𝜙 = [1, 3, 5]. The dimensionality of the GAT layer
and attention head is set to 32. We use 2 attention heads for
respiratory diseases prediction and tumors prediction, 1 for the
synthetic dataset. The hidden units of GRU are set to 256. The
dimensionality of MLP is set to 128.
We also use a dropout layer [31] before the output layer to

prevent overfitting. The dropout rate is set to 0.5.
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