
Geometric Graph Representation Learning via
Maximizing Rate Reduction

Xiaotian Han
Texas A&M University, TX, USA

han@tamu.edu

Zhimeng Jiang
Texas A&M University, TX, USA

zhimengj@tamu.edu

Ninghao Liu
University of Georgia, GA, USA

ninghao.liu@uga.edu

Qingquan Song
LinkedIn, CA, USA
qsong@linkedin.com

Jundong Li
University of Virginia, VA, USA

jundong@virginia.edu

Xia Hu
Rice University, TX, USA

xia.hu@rice.edu

ABSTRACT
Learning discriminative node representations benefits various down-
stream tasks in graph analysis such as community detection and
node classification. Existing graph representation learning methods
(e.g., based on random walk and contrastive learning) are limited to
maximizing the local similarity of connected nodes. Such pair-wise
learning schemes could fail to capture the global distribution of
representations, since it has no explicit constraints on the global
geometric properties of representation space. To this end, we pro-
pose Geometric Graph Representation Learning (G2R) to learn node
representations in an unsupervised manner via maximizing rate
reduction. In this way, G2R maps nodes in distinct groups (implic-
itly stored in the adjacency matrix) into different subspaces, while
each subspace is compact and different subspaces are dispersedly
distributed. G2R adopts a graph neural network as the encoder
and maximizes the rate reduction with the adjacency matrix. Fur-
thermore, we theoretically and empirically demonstrate that rate
reduction maximization is equivalent to maximizing the principal
angles between different subspaces. Experiments on real-world
datasets show that G2R outperforms various baselines on node
classification and community detection tasks.

CCS CONCEPTS
• Computing methodologies→Unsupervised learning;Neu-
ral networks; • Networks→ Social media networks.

KEYWORDS
Graph representation learning, Graph neural networks, Unsuper-
vised learning, Rate reduction

ACM Reference Format:
Xiaotian Han, Zhimeng Jiang, Ninghao Liu, Qingquan Song, Jundong Li,
and Xia Hu. 2022. Geometric Graph Representation Learning viaMaximizing
Rate Reduction. In Proceedings of the ACMWeb Conference 2022 (WWW ’22),
April 25–29, 2022, Virtual Event, Lyon, France. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3485447.3512170

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France
© 2022 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
ACM Web Conference 2022 (WWW ’22), April 25–29, 2022, Virtual Event, Lyon, France,
https://doi.org/10.1145/3485447.3512170.

1 INTRODUCTION
Learning effective node representations [14] benefits various graph
analytical tasks, such as social science [43], chemistry [6], and biol-
ogy [49]. Recently, graph neural networks (GNNs) [41, 46] have be-
come dominant technique to process graph-structured data, which
typically need high-quality labels as supervision. However, acquir-
ing labels for graphs could be time-consuming and unaffordable.
The noise in labels will also negatively affect model training, thus
limiting the performance of GNNs. In this regard, learning high-
quality low-dimensional representations with GNNs in an unsuper-
vised manner is essential for many downstream tasks.

Recently, many research efforts have been devoted to learning
node representations in an unsupervised manner. Most existing
methods can be divided into two categories, including random walk
based methods [13, 30] and contrastive learning methods [38, 44].
These methods learn node representations mainly through control-
ling the representation similarity of connected nodes. For example,
DeepWalk [30] considers the similarity of nodes in the same context
window of random walks. GRACE [48] uses contrastive learning
to model the similarity of connected nodes with features. Such
a pair-wise learning scheme encourages the local representation
similarity between connected nodes, but could fail to capture the
global distribution of node representations, since it does not directly
specify the geometrical property of latent space.

To bridge the gap, we propose to explicitly control the global geo-
metrical discriminativeness of node representations instead of only
enforce the local similarity of connected nodes. However, directly
constraining the global geometric property of the representation
space remains challenging due to the following reasons. First, it is
difficult to measure the diversity of representations within the same
group or across different groups, since the global information such
as community distribution is not available in unsupervised settings.
Pre-computed node clustering will not fully solve the problem, be-
cause there is no guarantee on the quality of resultant clusters,
and it even introduces noisy supervised information. Second, it is
hard to balance the global geometric property and local similarity,
especially when considering the downstream tasks. Since the local
similarity of connected nodes is crucial to the performance of down-
stream tasks, we need to control the global geometric property and
local similarity simultaneously.

To address the above challenges, we propose Geometric Graph
Representation Learning (G2R) to learn node representations via
maximizing coding rate reduction. First, we leverage the coding
rate [45] to estimate the diversity of a set of node representations.

ar
X

iv
:2

20
2.

06
24

1v
1

 [
cs

.L
G

]
 1

3
Fe

b
20

22

https://orcid.org/0000-0002-1344-3658
https://doi.org/10.1145/3485447.3512170
https://doi.org/10.1145/3485447.3512170

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Xiaotian Han, Zhimeng Jiang, Ninghao Liu, Qingquan Song, Jundong Li, and Xia Hu

(a) Graph (b) Node Representation

𝜷𝟏

𝜷𝟐
ℝ𝟑

Maximize
Rate ReductionGNN 𝜷𝟑

Figure 1: Overview of G2R. It maps nodes in distinct groups
(implicitly preserved in adjacencymatrix) into different sub-
spaces, while each subspace is compact and different sub-
spaces are dispersedly distributed. Different colors indicate
different subspaces and node groups.

A higher coding rate means representations are diversely spread in
the latent space. Also, we define rate reduction as the difference of
coding rates between representations of the entire nodes and each
of the groups. Then, we maximize the rate reduction to learn geo-
metrically discriminative representations. A higher rate reduction
means node representations are close to each other within each
group, while they are far away from each other across different
groups. This can be achieved even without explicitly knowing the
node-group assignments. We use graph neural networks as the en-
coder to generate node representations, and map the nodes in the
same group into the identical latent subspace. Specifically, Figure 1
presents an intuitive overview of G2R. The nodes in green, blue and
red (Figure 1(a)) are projected to different subspaces (Figure 1(b)),
and the difference between subspaces are maximized. The main
contributions are summarized as follows:

• We propose a new objective for unsupervised graph learning
via maximizing rate reduction, which encourages the encoder
to learn discriminative node representations with only the adja-
cency matrix (Section 3).

• We provide theoretical justification for the proposed method
from the perspective of maximizing the principal angles between
different latent subspaces. (Section 4).

• Experimental results on synthetic graphs validate the theoretical
results of the proposed method (Section 5.1). And the visual-
ization results on real-world datasets also verify that resultant
node representations are nearly orthogonal (Section 5.3).

• Experimental results on real-world datasets show that the node
representations learned by G2R are consistently competitive on
the node classification and community detection tasks. Besides,
G2R achieves comparable performance to supervised baselines
on node classification (Section 5.2 and 5.8).

2 PRELIMINARIES
In this section, we present essential preliminaries. First, we intro-
duce the notations in this work. Then we introduce the idea of rate
reduction for representation learning.

2.1 Notations
A graph is denoted as G = {V, E}, where V is the node set
and E is the edge set. The number of nodes is 𝑁 . The adjacency
matrix is denoted as A = [a1, a2, · · · , a𝑁] ∈ R𝑁×𝑁 , where a𝑖
is the neighbor indicator vector of node 𝑖 . The feature matrix

is X = [x1, x2, · · · , x𝑁] ∈ R𝑑0×𝑁 , where 𝑑0 is the dimension
of node features. A graph neural network encoder is denoted as
Enc(A,X), which transforms the nodes to representations Z =

[z1, z2, · · · , z𝑁] ∈ R𝑑×𝑁 , where 𝑑 is the dimension of z𝑖 .

2.2 Representation Learning via Maximizing
Rate Reduction

In this part, we introduce rate reduction [45], which was proposed
to learn diverse and discriminative representations. The coding
rate [21] is a metric in information theory to measure the compact-
ness of representations over all data instances. A lower coding rate
means more compact representations. Suppose a set of instances
can be divided into multiple non-overlapping groups. Rate reduc-
tion measures the difference of coding rates between the entire
dataset and the sum of that of all groups. Higher rate reduction
implies more discriminative representation among different groups
and more compact representation within the same group.
Representation Compactness for the Entire Dataset. Let 𝑓 (·)
denote the encoder, where the representation of a data instance x𝑖 is
z𝑖 = 𝑓 (x𝑖) ∈ R𝑑 . Given the representations Z = [z1, z2, · · · , z𝑁] ∈
R𝑑×𝑁 of all data instances, the coding rate is defined as the number
of binary bits to encode Z, which is estimated as below [21]:

𝑅(Z, 𝜖) � 1
2 log det

(
I + 𝑑

𝑁𝜖2 ZZ⊤
)
, (1)

where I is the identity matrix, 𝑁 and 𝑑 denote the length and
dimension of learned representation Z, and 𝜖 is the tolerated recon-
struction error (usually set as a heuristic value 0.05).
Representation Compactness for Groups. Given Z = [z1, z2,
· · · , z𝑁] ∈ R𝑑×𝑁 , we assume the representations can be partitioned
to 𝐾 groups with a probability matrix 𝜋 ∈ R𝑁×𝐾 . Here 𝜋𝑖𝑘 ∈ [0, 1]
indicates the probability of instance x𝑖 assigned to the subset 𝑘 , and∑𝐾
𝑘=1 𝜋𝑖𝑘 = 1 for any 𝑖 ∈ [𝑁]. We define the membership matrix

for subset 𝑘 as Π𝑘 = 𝑑𝑖𝑎𝑔[𝜋1𝑘 , 𝜋2𝑘 , · · · , 𝜋𝑁𝑘] ∈ R𝑁×𝑁 , and the
membership matrices for all groups are denoted as Π = {Π𝑘 |𝑘 =

[𝐾]}. Thus, the coding rate for the entire dataset is equal to the
summation of coding rate for each subset:

𝑅𝑐 (Z, 𝜖 |Π) �
𝐾∑︁
𝑘=1

𝑡𝑟 (Π𝑘)
2 · 𝑁 · log det

(
I + 𝑑

𝑡𝑟 (Π𝑘)𝜖2 ZΠ𝑘Z⊤
)
. (2)

Rate Reduction for Representation Learning. Intuitively, the
learned representations should be diverse in order to distinguish
instances from different groups. That is, i) the coding rate for the
entire dataset should be as large as possible to encourage diverse
representations ; ii) the representations for different groups should
span different subspaces and be compacted within a small volume for
each subspace. Therefore, a good representation achieves a larger
rate reduction (i.e., difference between the coding rate for datasets
and the summation of that for all groups):

Δ𝑅(Z,Π, 𝜖) = 𝑅(Z, 𝜖) − 𝑅𝑐 (Z, 𝜖 |Π) . (3)

Note that the rate reduction is monotonic with respect to the norm
of representation Z. So we need to normalize the scale of the learned
features, each z𝑖 in Z is normalized in our case.

Geometric Graph Representation Learning WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

3 METHODOLOGY
In this section, we introduce our G2R model based on rate reduc-
tion for unsupervised graph representation learning. Specifically,
we first introduce how to compute the coding rate of node rep-
resentations for the nodes in the whole graph and in each group,
respectively. Then, we introduce how to incorporate rate reduction
into the design of the learning objective and how to train G2R.

3.1 Coding Rate of Node Representations
Our goal is to learn an encoder Z = Enc(A,X|𝜃), which transforms
the graph to the node representations, where Z ∈ R𝑑×𝑁 and 𝜃
is the encoder parameters to be optimized. The encoder in this
work is instantiated as a graph neural network. The learned node
representations will be used for various downstream applications,
such as node classification and community detection.

3.1.1 Computing Coding Rate of Entire Node Representations. Let
Z = [z1, z2, · · · , z𝑁] ∈ R𝑑×𝑁 be the node representations. We use
coding rate to estimate the number of bits for representing Z within
a specific tolerated reconstruction error 𝜖 . Therefore, in graph G,
the coding rate of node representations is 𝑅G (Z, 𝜖) = 𝑅(Z, 𝜖) as
defined in Equation 1. A larger 𝑅G corresponds to more diverse
representations across nodes, while a smaller 𝑅G means a more
compact representation distribution.

3.1.2 Computing Coding Rate for Groups. To enforce the connected
nodes have the similar representations, we cast the node 𝑖 and its
neighbors as a group and then map them to identical subspace. To do
this, we assemble the membership matrix based on the adjacency
matrix. The adjacency matrix is A = [a1, a2, · · · , a𝑁] ∈ R𝑁×𝑁

where a𝑖 ∈ R𝑁 is the neighbor indicator vector of node 𝑖 . Then we
assign membership matrix for the node group as A𝑖 = 𝑑𝑖𝑎𝑔(a𝑖) ∈
R𝑁×𝑁 . The coding rate for the group of node representations with
membership matrix A𝑖 is as follows:

𝑅𝑐G (Z, 𝜖 |A𝑖) �
tr(A𝑖)

2𝑁 · log det
(
I + 𝑑

tr(A𝑖)𝜖2 ZA𝑖Z⊤
)
. (4)

Thus for all nodes in the graph, the membership matrix set will
be A = {A𝑖 ∈ R𝑁×𝑁 , 𝑖 ∈ [𝑁]}. Since the

∑𝑁
𝑖=1 A𝑖 = D, where

D = 𝑑𝑖𝑎𝑔(𝑑1, 𝑑2, · · · , 𝑑𝑁) ∈ R𝑁×𝑁 is degree matrix and 𝑑𝑖 is the
degree of node 𝑖 . The different groups of node is overlapping and
will be computed multiple times, thus we normalize the coding
rate of node representations for groups with the average degree
𝑑 of all nodes. Consequently, the sum of the coding rate of node
representations for each group is given as the following:

𝑅𝑐G (Z, 𝜖 |A) � 1
𝑑

𝑁∑︁
𝑖=1

tr(A𝑖)
2𝑁 · log det

(
I + 𝑑

tr(A𝑖)𝜖2 ZA𝑖Z⊤
)
, (5)

where 𝑁 is the total number of nodes in the graph, 𝑑 is the average
degree of nodes, and A is the membership matrix set.

3.2 Rate Reduction Maximization for Training
3.2.1 Objective function. Combining Equations (4) and (5), the rate
reduction for the graph with adjacency matrix A is given as follows:
Δ𝑅G (Z,A, 𝜖) = 𝑅G (Z, 𝜖) − 𝑅𝑐G (Z, 𝜖 | A)

�
1
2 log det

(
I + 𝑑

𝑁𝜖2 ZZ⊤
)

− 1
𝑑

𝑁∑︁
𝑖=1

tr(A𝑖)
2𝑁 · log det

(
I + 𝑑

tr(A𝑖)𝜖2 ZA𝑖Z⊤
)
.

(6)

In practice, we control the strength of compactness of the node
representations by adding two hyperparameters 𝛾1 and 𝛾2 to the
first term in Equation (6). The 𝛾1 controls compression of the node
representations while the 𝛾2 balances the coding rate of the entire
node representations and that of the groups. Thus we have

Δ𝑅G (Z,A, 𝜖, 𝛾1, 𝛾2)

�
1

2𝛾1
log det

(
I + 𝑑𝛾2

𝑁𝜖2 ZZ⊤
)

− 1
𝑑

𝑁∑︁
𝑖=1

tr(A𝑖)
2𝑁 · log det

(
I + 𝑑

tr(A𝑖)𝜖2 ZA𝑖Z⊤
)
,

(7)

where 𝜖 , 𝛾1, and 𝛾2 serve as the hyperparameters of our model.

3.2.2 Model Training. We adopt graph neural network as the en-
coder to transform the input graph to node representations, where
Z = GNN(X,A|𝜃) and 𝜃 denotes the parameters to be optimized.
The output of the last GNN layer is the learned node representations,
which is 𝐿 − 1 normalized as mentioned before. The parameters 𝜃
will be optimized by maximizing the following objective:

max
𝜃

Δ𝑅G (GNN(X,A|𝜃),A, 𝜖, 𝛾1, 𝛾2), (8)

where 𝜖 , 𝛾1, and 𝛾2 serve as the hyperparameters of our model. We
also conduct experiments to explore the effect of hyperparameters
𝛾1 and 𝛾2 in Section 5.7. We set hyperparameters 𝜖 to a heuristic
value 0.05. For large graphs, the adjacency matrix is large and the
length of membership matrix set is |A| = 𝑁 , thus we need to
compute coding rate for groups 𝑁 times in Equations (5) and (6). To
reduce the computational complexity, we randomly sample fixed
number 𝑁𝑠 rows of adjacency matrix for each training batch. Then
we use sampled adjacency matrix to assemble the membership
matrix set, which only has 𝑁𝑠 membership metrics. Thus we only
compute the coding rate 𝑁𝑠 times.

3.2.3 Computational Complexity. Due to the commutative prop-
erty 1 of coding rate, computational complexity of the proposal is
not high. In this work, we have Z ∈ R𝑁×𝑑 , where 𝑑 is the dimen-
sion of node representations and 𝑁 is the total number of nodes.
So we have Z⊤Z ∈ R𝑑×𝑑 and ZZ⊤ ∈ R𝑁×𝑁 . Even though the
computation of log det

(
I + 𝑑

𝑚𝜖2 ZZ⊤
)
takes O(𝑁 3) times, we can

compute log det
(
I + 𝑑

𝑚𝜖2 Z⊤Z
)
instead, which takes O(𝑑3) times

and 𝑑 ≪ 𝑁 . In our experiment setting, we set 𝑑 to 512. Thus the

1Commutative property of coding rate: 𝑅 (Z, 𝜖) � 1
2 log det

(
I + 𝑑

𝑚𝜖2 ZZ⊤
)

=

1
2 log det

(
I + 𝑑

𝑚𝜖2 Z⊤Z
)

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Xiaotian Han, Zhimeng Jiang, Ninghao Liu, Qingquan Song, Jundong Li, and Xia Hu

operation logdet(·) will only take O(𝑑3) times, which is constant
time and does not depend on the nodes number 𝑁 . Besides, since
ZZ⊤ ∈ R𝑑×𝑑 , the memory usage will not increase while the number
of nodes (𝑁) increases, leading to the scalability of G2R.

3.3 Discussion: what is G2R doing intuitively?
To understand the proposed objective function in Equation (6), we
informally discuss the intuition behind it.

• Thefirst termenforces diverse node representations space.
Maximizing the first term in Equation (6) tends to increase the
diversity of representation vectors for all nodes, thus leading to
a more diverse distribution of node representations.

• The second term enforces more similar representations
for connected nodes. The second term in Equation (6) mea-
sures the compactness of the representation of node groups.
Minimizing the second term enforces the similarity of node
representations. As a result, the learned representations of con-
nected nodes will cluster together, as shown in Figure 5.

4 THEORETICAL JUSTIFICATION
To gain a deeper insight of G2R, we theoretically investigate the
Equation (6) on an example graph with two communities as a sim-
plified illustration. Consequently, we prove that G2R maps represen-
tations of nodes in different communities to different subspaces and
aim to maximize the principal angle 2 between different subspaces,
thus encouraging them to be (nearly) orthogonal.

4.1 Principal Angle Between Subspaces
To measure the difference between two subspaces, we introduce
the principal angle 𝜃 [23] to generalize the angle between subspaces
with arbitrary dimensions. We give the formal definition as follows:

Definition 1 (Principal angle). Given subspace L,M ⊆ R𝑛 with
dimL = 𝑙 ≥ dimM =𝑚, there are𝑚 principal angles between L and
M denoted as 0 ≤ 𝜃1 ≤ 𝜃2 ≤ · · · ≤ 𝜃𝑚 ≤ 𝜋

2 between L and M are
recursively defined, where

cos(𝜃𝑖) B min
{
< x, y >

| |x | | | |y | |

���x ∈ L, y ∈ M, x⊥x𝑘 , y⊥y𝑘 , 𝑘 = 1, · · · , 𝑖 − 1
}
.

Weadopt product of sines of principal angles, denoted as 𝑠𝑖𝑛{L,M} =
𝑠𝑖𝑛𝜃1 · · · 𝑠𝑖𝑛𝜃𝑚 ∈ [0, 1], to measure the difference between two sub-
spaces. Notably, when two subspaces are orthogonal, the product
of principal sines equals 1.

4.2 Graph with Two Communities
Without loss of generality, we analyze the graphwith two equal-size
communities. We assume each community has𝑀 nodes. The graph
adjacency matrix A is generated from the Bernoulli distribution of
matrix P ∈ R2𝑀×2𝑀 . The matrix P is defined as follows:

𝑝𝑖, 𝑗 =

{
𝑝𝑖 , if nodes 𝑖, 𝑗 are in the same community;
𝑝𝑜 , otherwise, (9)

where 𝑝𝑖, 𝑗 is the element of matrix P for 𝑖𝑡ℎ row and 𝑗𝑡ℎ column.
In other words, the relation between P, A are shown as follows:
2The principal angle measures the difference of subspaces. The higher principal angle
indicates more discriminative subspaces.

P =



𝑝𝑖 · · · 𝑝𝑖 𝑝𝑜 · · · 𝑝𝑜

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

𝑝𝑖 · · · 𝑝𝑖 𝑝𝑜 · · · 𝑝𝑜

𝑝𝑜 · · · 𝑝𝑜 𝑝𝑖 · · · 𝑝𝑖

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

𝑝𝑜 · · · 𝑝𝑜 𝑝𝑖 · · · 𝑝𝑖



𝐵𝑒𝑟𝑛

=====⇒ A ∈ R2𝑀×2𝑀 , (10)

The 𝑖-th row of adjacencymatrixA is denoted as a𝑖 = [𝑎𝑖1, · · · , 𝑎𝑖𝑁] ∈
R𝑁 , which is generated from Bernoulli distributions 𝐵𝑒𝑟𝑛(P𝑖∗) in-
dependently. To compute the coding rate in graphs, we rewrite the
connectivity probability matrix P as follows:

P = 𝑝𝑜 · 11⊤ +



𝑝𝑖 − 𝑝𝑜 · · · 𝑝𝑖 − 𝑝𝑜 0 · · · 0
.
.
.

.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

𝑝𝑖 − 𝑝𝑜 · · · 𝑝𝑖 − 𝑝𝑜 0 · · · 0
0 · · · 0 𝑝𝑖 − 𝑝𝑜 · · · 𝑝𝑖 − 𝑝𝑜
.
.
.

.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

0 · · · 0 𝑝𝑖 − 𝑝𝑜 · · · 𝑝𝑖 − 𝑝𝑜

︸ ︷︷ ︸
≜C

,
(11)

where 1 ∈ R𝑁×1 is an all-ones vector and 11⊤ ∈ R𝑁×𝑁 is an
all-ones matrix. The first term 𝑝𝑜 · 11⊤ extracts the uniform back-
ground factor that is equally applied to all edges. The second term in
Equation (11) C = [C1, · · · ,C𝑀 ,C𝑀+1, · · · ,C2𝑀] ∈ R2𝑀×2𝑀 tells
the difference of node connections in different communities, so we
only focus on the second term in the following analysis.

4.3 Coding Rate for Graph with Communities
Since there are two communities, the membership matrices set
is defined as C = {C1, · · · ,C𝑀 ,C𝑀+1, · · · ,C2𝑀 }. Since the C1 =

C2 = · · · = C𝑀 and C𝑀+1 = C𝑀+2 = · · · = C2𝑀 , we can rewrite
the membership matrix to C = {C1, · · · ,C1︸ ︷︷ ︸

𝑀

,C2, · · · ,C2︸ ︷︷ ︸
𝑀

} where

C1 = C1 = · · · = C𝑀 and C2 = C𝑀+1 = · · · = C2𝑀 .
Thus we soften the Equation (4) by replacing A𝑖 with its C𝑖 ,

𝑅𝑐G (Z, 𝜖 |C) �
1
𝑑

2𝑀∑︁
𝑖=1

tr(C𝑖)
2𝑁 · log det

(
I + 𝑑

tr(C𝑖)𝜖2 ZC𝑖Z⊤
)

�
𝑀

𝑑

2∑︁
𝑖=1

tr(C𝑖)
2𝑁 · log det

(
I + 𝑑

tr(C𝑖)𝜖2 ZC𝑖Z⊤
)
.

(12)

The rate reduction will take
Δ𝑅G (Z, C, 𝜖) = 𝑅G (Z, 𝜖) − 𝑅𝑐G (Z, 𝜖 |C)

=

2∑︁
𝑗=1

log
©­­«

det
1
4
(
I + 𝑑

𝑁𝜖2 Z⊤
𝑗

Z𝑗
)

det
𝑝𝑖−𝑝𝑜

2𝑁
(
I + 𝑑

𝑀𝜖2 Z⊤
𝑗

Z𝑗
) ª®®¬ +

1
2 · log𝛽.

(13)

where I+ 𝑑
𝑁𝜖2 Z⊤Z = Z̃⊤Z̃ and 𝛽 = sin{𝑅(Z̃1), 𝑅(Z̃2)}. The detailed

proof is provided in Appendix A.3.

4.4 Discussion: what is G2R doing theoretically?
Equation (13) attempts to optimize the principal angle of different
subspaces. Different representation subspaces are more distinguish-
able if 𝛽 is larger. Thus, maximizing the second term in Equation (13)
promises the following desirable properties:

Geometric Graph Representation Learning WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

(a) Synthetic
graph

(b) Adjacency
matric

(c) Original node
features

(d) Learned node
representation

Figure 2: Synthetic graph and visualization of its node fea-
tures and representations. The different colors in (a)(c)(d) in-
dicate different communities. The learned node representa-
tions in (d) are 3-dimensional vectors obtained by G2R.

• Inter-communities. The representations of nodes in different
communities are mutually distinguishable. The node representa-
tions of different communities should lie in different subspaces
and the principal angle of subspaces are maximized (i.e., nearly
pairwise orthogonal), which is verified by experimental results in
Figure 2 and Figure 3.

• Intra-communities. The representations of nodes in the same
community share the same subspace. So the representations of
nodes in the same community should be more similar than nodes
in different communities.

Based on the above analysis, G2R achieves geometric representation
learning by constraining the distribution of node representations
in different subspaces and encouraging different subspaces to be
orthogonal. The geometric information considers a broader scope
of embedding distribution in latent space.

5 EXPERIMENTS
In this section, we conduct experiments with synthetic graph and
real-world graphs to comprehensively evaluate G2R. The main
observations in experiments are highlighted as # boldface.

5.1 What is G2R Doing? Empirical Verification
with Synthetic Graph Data

We experiment with a synthetic graph to empirically verify that
G2R tends to project node representations in different communities
into different subspaces. The results are presented in Figure 2.
5.1.1 Synthetic Graph Generation. The synthetic graph is gener-
ated as follows: i) Graph structure. We partition nodes into 3 bal-
anced communities and construct edges with Gaussian random
partition3. The nodes within the same community have a high
probability 0.5 to form edges and a lower probability 0.01 for nodes
in different communities. Figure 2(a) and Figure 2(b) show the struc-
ture of the synthetic graph and its adjacency matrix, respectively.
ii) Node features. The node feature is generated from multivariate
Gaussian distributions with the same mean and standard deviation,
the dimension of which is 32. t-SNE [36] of node features to 3-
dimensional space are in Figure 2(c). Figure 2(d) is the visualization
of the learned node representations, the dimension of which is 3.
5.1.2 Results. Comparing Figures 2(c) and 2(d), we observed that
1 the learned node representations in different communi-
ties are nearly orthogonal in the three-dimensional space. More-
over, we also compute the cosine similarity between each pair of the
3https://networkx.org

node representations to quantify the geometric relation and we ob-
serve that the cosine similarity scores for node representations pair
between the different communities are extremely close to 0. This ob-
servation indicates that G2R tends to maximize the principal angle
of representation spaces of nodes in different communities. 2 The
node representations in the same community are compact.
Figure 2(c) shows the original features of nodes in the same color
are loose while node representations in Figure 2(d) in the same color
cluster together. This observation shows that G2R can compact the
node representations in the same community. The experimental
results on synthetic data are remarkably consistent with the the-
oretical analysis in Section 4.4 that the node representations in
different communities will be (nearly) orthogonal.

5.2 Will G2R Perform Better than Unsupervised
Counterparts?

We contrast the performance of the node classification task of G2R
and various unsupervised baselines.
5.2.1 Experiment Setting. For dataset, we experiment on eight real-
world datasets, including citation network [1, 42] (Cora, CiteSeer,
PubMed, CoraFull), co-authorship networks [33] (Physics, CS), and
Amazon co-purchase networks [22] (Photo, Computers). The details
of datasets are provided in Appendix B.3. For baselines, we compare
three categories of unsupervised baselines. The first category only
utilizes node features, including original node features, PCA [39],
SVD [12], LLE [32] and Isomap [35]. The second only considers ad-
jacency information, including DeepWalk [30] and Node2vec [13].
The third considers both, including DGI [38], GMI [29], GRACE [44]
and GraphCL [44]. For evaluation, we follow the linear evaluation
scheme adopted by [38, 48], which first trains models in an unsu-
pervised fashion and then output the node representations to be
evaluated by a logistic regression classifier [2]. We use the same
random train/validation/test split as [8, 20]. To ensure a fair compar-
ison, we use 1)the same logistic regression classifier, and 2)the same
data split for all models. The results are summarized in Table 1.
5.2.2 Results. From Table 1, we observe that 3 G2R outperforms
all baselines by significantmargins on seven datasets among
eight dataset. Except for the Photo dataset, G2R achieves the state-
of-the-art performance by significant margins. The average percent-
age of improvement to DGI (representative unsupervised method)
and GRACE (representative contrastive learning method) is 5.1%
and 5.9%, respectively. Moreover, G2R is capable of handling large
graph data. The reason is partial leverage of adjacency matrix in
each training batch requires lower memory usage and less time.

5.3 Will Representation learned by G2R
(nearly) orthogonal? Visualization Analysis

We perform a visualization experiment to analyze the representa-
tions learned by G2R to verify its effectiveness further. The visual-
ization of nodes representations of different classes is in Figure 3.
5.3.1 Results. Figure 3 remarkably shows that 4 the representa-
tions of nodes in different classes learned by G2R are nearly
orthogonal to each other. Since the nodes in the same class typi-
cally connected densely, leading them to be nearly orthogonal to
each other according to the proof in Section 4. This observation
also strongly supports our theoretical analysis Section 4.

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Xiaotian Han, Zhimeng Jiang, Ninghao Liu, Qingquan Song, Jundong Li, and Xia Hu

Table 1: Performance comparison to unsupervised methods. The accuracy with standard deviation are based on 5 runs for
all methods. The second column shows the information used by the method, where X,A denote node features and adjacency
matrix, respectively. ‘OOM’means out ofmemorywhile running onNVIDIARTX3090 (24GBmemory). ‘Public/Random’ repre-
sents the public/random data split. The best performance among baselines is underlined. The best performance is in boldface.

Statistic Cora CiteSeer PubMed CoraFull CS Physics Computers Photo

#Nodes 2708 3327 19717 19793 18333 34493 13381 7487
#Edges 5278 4552 44324 130622 81894 24762 245778 119043

#Features 1433 3703 500 8710 6805 8415 767 745
#Density 0.0014 0.0008 0.0002 0.0003 0.0005 0.0004 0.0027 0.0042
#Classes 7 6 3 70 15 5 10 8

#Data Split 140/500/1000 120/500/1000 60/500/1000 1400/2100/rest 300/450/rest 100/150/rest 200/300/rest 160/240/rest
Metric Feature Public Random Public Random Public Random Random Random Random Random Random

Feature X 58.90±1.35 60.19±0.00 58.69±1.28 61.70±0.00 69.96±2.89 73.90±0.00 40.06±1.07 88.14±0.26 87.49±1.16 67.48±1.48 59.52±3.60
PCA X 57.91±1.36 59.90±0.00 58.31±1.46 60.00±0.00 69.74±2.79 74.00±0.00 38.46±1.13 88.59±0.29 87.66±1.05 72.65±1.43 57.45±4.38
SVD X 58.57±1.30 60.21±0.19 58.10±1.14 60.80±0.26 69.89±2.66 73.79±0.29 38.64±1.11 88.55±0.31 87.98±1.10 68.17±1.39 60.98±3.58
isomap X 40.19±1.24 44.60±0.00 18.20±2.49 18.90±0.00 62.41±3.65 63.90±0.00 4.21±0.25 73.68±1.25 82.84±0.81 72.66±1.38 44.00±6.43
LLE X 29.34±1.24 36.70±0.00 18.26±1.60 21.80±0.00 52.82±2.08 54.00±0.00 5.70±0.38 72.23±1.57 81.35±1.59 45.29±1.31 35.37±1.82
DeepWalk A 74.03±1.99 73.76±0.26 48.04±2.59 51.80±0.62 68.72±1.43 71.28±1.07 51.65±0.83 83.25±0.54 88.08±1.45 86.47±1.55 76.58±1.09
Node2vec A 73.64±1.94 72.54±1.12 46.95±1.24 49.37±1.53 70.17±1.39 68.70±0.96 50.35±0.74 82.12±1.09 86.77±0.83 85.15±1.32 75.67±1.98
DeepWalk+F X,A 77.36±0.97 77.62±0.27 64.30±1.01 66.96±0.30 69.65±1.84 71.84±1.15 54.63±0.74 83.34±0.53 88.15±1.45 86.49±1.55 65.97±3.68
Node2vec+F X,A 75.44±1.80 76.84±0.25 63.22±1.50 66.75±0.74 70.6±1.36 69.12±0.96 54.00±0.17 82.20±1.09 86.86±0.80 85.15±1.33 65.01±2.91
GAE X,A 73.68±1.08 74.30±1.42 58.21±1.26 59.69±3.29 76.16±1.81 80.08±0.70 42.54±2.69 88.88±0.83 91.01±0.84 37.72±9.01 48.72±5.28
VGAE X,A 77.44±2.20 76.42±1.26 59.53±1.06 60.37±1.40 78.00±1.94 77.75±0.77 53.69±1.32 88.66±1.04 90.33±1.77 49.09±5.95 48.33±1.74
DGI X,A 81.26±1.24 82.11±0.25 69.50±1.29 70.15±1.10 77.70±3.17 79.06±0.51 53.89±1.38 91.22±0.48 92.12±1.29 79.62±3.31 70.65±1.72
GRACE X,A 80.46±0.05 80.36±0.51 68.72±0.04 68.04±1.06 80.67±0.04 OOM 53.95±0.11 90.04±0.11 OOM 81.94±0.48 70.38±0.46
GraphCL X,A 81.89±1.34 81.12±0.04 68.40±1.07 69.67±0.13 OOM 81.41±0.10 OOM OOM OOM 79.90±2.05 OOM
GMI X,A 80.28±1.06 81.20±0.78 65.99±2.75 70.50±0.36 OOM OOM OOM OOM OOM 52.36±5.22 OOM

G2R(ours) X,A 82.58±1.41 83.32±0.75 71.2±1.01 70.66±0.49 81.69±0.98 81.69±0.42 59.70±0.59 92.64±0.40 94.93±0.07 82.24±0.71 90.68±0.31

C
or
a

C
S

Figure 3: PCA4 visualization of node representations
learned by G2R on Cora and CS dataset. Every figure only
has two classes of nodes and they are nearly orthogonal. Dif-
ferent colors represent different classes. The direction of
in the first two columns show the (nearly) orthogonality of
node representations in the two classes.

5.4 What is the Effect of Encoders and
Objective Functions? Ablation Studies

We investigate the effect of encoder and objective function in G2R
using ablation studies. Specifically, we replace the graph neural net-
works in G2R with other encoders or replace the proposed objective
functions with cross-entropy. The results are in Figure 4.
5.4.1 Results. Figures 4(a) and 4(b) show that 5 the superiority
of G2RGCN is attributed to the graph neural network and the
proposed objective. Figure 4(a) indicates that graph neural net-
works as the encoder significantly improve the effectiveness of G2R.

4The reason why we choice PCA here is that PCA will preserve the orthogonality
between vectors when transform the high-dimensional vectors to low-dimension [16].
Each figure includes two classes of node since we display node representation in
two-dimensional space.

(a) Encoders (b) Objectives

Figure 4: Ablation studies. (a): We compare the performance
of different encoders by instantiating the encoder as GCN
or MLP, respectively. (b): we compare the performance of
different objective functions, Cross-Entropy(CE, supervised
method for node classification) and ours (unsupervised).

Figure 4(b) shows that performance of CEGCN drops significantly
compared to the G2RGCN even though the it is a supervised method
for node classification. This observation indicates that superoity of
G2R largely stems from the proposed objective function.

5.5 Will the Graph Structure be Preserved in
the Learned Representation?

To investigate whether the learned node representations preserves
the graph structure, we perform two visualization experiments,
including 1) t-SNE [36] visualization of the original features and
the node representations learned by different methods in Figure 5,
and 2) visualization of the adjacency metrics of graphs and cosine
similarity between learned node representations Z in Figure 6.
5.5.1 Results. From Figure 5, 6 the distinctly separable clus-
ters demonstrate the discriminative capability of G2R. The

Geometric Graph Representation Learning WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Original Features DGI GraphCL 𝑮𝟐𝑹(Ours)

C
or
a

C
ite
Se
er

Figure 5: t-SNE [36] visualization of original node features
and node representations learned by different methods. Dif-
ferent colors represent different classes.

Cora CiteSeer PubMed CS Physics

A
dj
ac
en
cy

M
at
ri
x

C
os
in
e

Si
m
ila
ri
ty

Figure 6: Visualization of adjacency matrices and the cosine
similarity of learned node representations. Notably, cosine
similarity can visually "recover" the adjacency matrix.

node representations learned by G2R are more compact within
class, leading to the discriminative node representations. The rea-
son is that G2R can map the nodes in different communities into
different subspaces and maximize the difference of these subspaces.
Figure 6 shows that 7 G2R is able to map the nodes represen-
tations in the different communities to different subspace
and thus implicitly preserve the graph structure. The cosine
similarity of the node representations can noticeably "recover" the
adjacency matrix of the graph, demonstrating the learned node
representations preserved the graph structure.
5.6 Will Learned Representation PerformWell

on Community Detection? A Case Study
We conduct community detection on the Cora dataset using the
learned node representations by G2R.
5.6.1 Experimental Setting. We conduct community detection by
applying K-Means to node representations learned by G2R and use
the predicted cluster labels as communities. We use traditional com-
munity detection methods as baselines, including asynchronous
fluid communities algorithm [27] and spectral clustering [26]. We
also use the node representations learned by other unsupervised
methods as baselines. The metrics to evaluate the community detec-
tion are modularity [4], coverage, performance.5 The results are in
Figure 7. We also show a case of community detection in Figure 8.
5.6.2 Results. Figures 7 and 8, quantitatively and qualitatively,
show 8 G2R outperforms the traditional community detec-
tion methods as well as unsupervised baselines for commu-
nity detection task. Figure 7 shows that G2R outperforms various
community detection methods by a large margin on three metrics.
In Figure 8, communities detected in Cora are visually consistent
with the node representations clusters. The better performance

5The detail about these metric are presented in Appendix C

Figure 7: Performance of community detection on Cora
dataset. The x-axis indicates the number of communities to
be detected, the y-axis indicates the differentmetrics of com-
munity detection,including modularity, performance and
coverage (higher is better for all metrics).

(a) K-Means (b) Communities

Figure 8: Community detection on Cora. We detect the com-
munities only utilizing the learned node representations.
Specifically, we use K-Means to cluster the node representa-
tions and the nodeswith the same cluster label is in identical
community. According to the communities label obtained
from the node representations, we draw the original graph
and color the communities in the same colors to Figure 8.
The same color indicates the same community.

of G2R results from the orthogonality of different subspaces, into
which the nodes in different communities are projected.

5.7 What is the Effect of the Hyperparameters
𝛾1nd 𝛾2?

We investigate the effect of hyperparameters 𝛾1 and 𝛾2 on G2R via
training with 20 evenly spaced values of both𝛾1 and𝛾2 within (0, 1]
on Cora, CiteSeer, PubMed datasets. The results are presented in
Figure 9. From Figure 9, we observed that 9 hyperparameters
strongly influence the performance of G2R and the best per-
formance is achieved around 𝛾1 = 𝛾2 = 0.5 The performance is
lower while 𝛾1 < 0.5 and 𝛾2 < 0.5, which shows that it is impor-
tant to control the dynamics of the expansion and compression
of the node representations. 10 G2R is not sensitive to hyperpa-
rameter across different datasets, since G2R achieves the best
performance with the similar hyperparameters (𝛾1 = 𝛾2 = 0.5) on
Cora, CiteSeer, PubMed datasets. Based on this observation, we set
𝛾1 = 𝛾2 = 0.5 on all datasets in our performance experiments.

(a) Cora (b) CiteSeer (c) PubMed

Figure 9: The effect of the hyperparameters𝛾1 and𝛾2 onnode
classification task. The x-axis indicates the values of 𝛾1, the
y-axis indicates the values of 𝛾2 and the z-axis indicates the
model performance on node classification task.

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Xiaotian Han, Zhimeng Jiang, Ninghao Liu, Qingquan Song, Jundong Li, and Xia Hu

Table 2: Comparison to supervised baselines with public
data split on node classification. ‘P’ means public data split
while ‘R’ means random data split. ‘Phy./Com./Pho.’ means
Physics/Computers/Photo dataset. The ‘Avg.Rank’ is the av-
erage rank among all the methods on all datasets.

Methods Cora CiteSeer PubMed CS Phy. Com. Pho. Avg.

P R P R P R Rank

LogReg 52.0 58.3 55.8 60.8 73.6 69.7 86.4 86.7 64.1 73.0 11.3
MLP 61.6 59.8 61.0 58.8 74.2 70.1 88.3 88.9 44.9 69.6 10.9
LP 71.0 79.0 50.8 65.8 70.6 73.3 73.6 86.6 70.8 72.6 11.2
LP NL 71.2 79.7 51.2 66.9 72.6 77.8 76.7 86.8 75.0 83.9 9.5
ChebNet 80.5 76.8 69.6 67.5 78.1 75.3 89.1 - 15.2 25.2 10.0
GCN 81.3 79.1 71.1 68.2 78.8 77.1 91.1 92.8 82.6 91.2 5.7
GAT 83.1 80.8 70.8 68.9 79.1 77.8 90.5 92.5 78.0 85.7 5.8
MoNet 79.0 84.4 70.3 71.4 78.9 83.3 90.8 92.5 83.5 91.2 4.0
SAGE 78.0 84.0 70.1 71.1 78.8 79.2 91.3 93.0 82.4 91.4 4.7
APPNP 83.3 81.9 71.8 69.8 80.1 79.5 90.1 90.9 20.6 30.0 6.0
SGC 81.7 80.4 71.3 68.7 78.9 76.8 90.8 - 79.9 90.7 5.9
DAGNN 84.4 83.7 73.3 71.2 80.5 80.1 92.8 94.0 84.5 92.0 1.7

Ours 83.3 82.6 70.6 71.2 81.7 81.7 92.6 94.9 82.2 90.7 3.1

5.8 G2R is even Better than Supervised
Counterparts

Despite that G2R shows its superior performance compared to the
unsupervised baselines, we contrast the performance of G2R and
supervised methods on the node classification task.
5.8.1 Experiments Settings. We consider the following supervised
learning baselines: Logistic Regression (LogReg), Multilayer Percep-
tron (MLP), Label Propagation (LP) [3], Normalized Laplacian Label
Propagation (LP NL) [3], Cheb-Net [7], Graph Convolutional Net-
work (GCN) [18], Graph Attention Network (GAT) [37], Mixture
Model Network (MoNet) [25], GraphSAGE(SAGE) [14], APPNP [19],
SGC [40] and DAGNN [20]. The results of the baselines are obtained
from [20, 33], so we follow the same data split and the same datasets
in the papers [20, 33]. We follow the linear evaluation scheme for
G2R, where G2R was trained in an unsupervised manner and then
output the node representations as input features to a logistic regres-
sion classifier [2]. The details of baselines are provided in Appendix
B.4. The results are summarized in Table 2.
5.8.2 Results. From Table 2, we observed that 11 G2R shows com-
parable performance across all seven datasets, although the
baselines are all supervised methods. From the ‘Avg.rank’ col-
umn in Table 2, G2R ranks 3.1 among all the methods on all datasets.
G2R obtains a comparable performance in node classification task
even though compared to supervised baselines. This observation
shows the node representations learned by G2R preserve the infor-
mation for node classification task even though compared to the
end-to-end models for the same downstream task.

6 RELATEDWORKS
Graph representation learning with randomwalks.Many ap-
proaches [13, 30, 31, 34] learn the node representations based on
random walk sequences. Their key innovation is optimizing the
node representations so that nodes have similar representations if
they tend to co-occur over the graph. In our experiment, we use
DeepWalk and node2vec as baselines, which are the representa-
tive methods based on random walk. DeepWalk [30], as pioneer
work to learn representations of vertices in a network, uses local

information from truncated random walks as input to learn a rep-
resentation which encodes structural regularities. node2vec [13]
aims to map nodes into a low-dimensional space while maximizing
the likelihood of preserving nodes neighborhoods.
Contrastive graph representation learning. Contrastive learn-
ing is the key component to word embedding methods [5, 24], and
recently it is used to learn representations for graph-structured
data [10, 13, 14, 18, 30]. For example, DGI [38] learns node represen-
tations in an unsupervised manner by maximizing mutual informa-
tion between patch representations and the graph representation.
GRACE [44] maximizes the agreement of node representations in
two generated views. GraphCL [44] learns representations with
graph data augmentations.
Graph Neural Networks. Graph neural networks have became
the new state-of-the-art approach to process graph data [14, 15].
Starting with the success of GCN in the semi-supervised node classi-
fication task[18], a wide variety of GNN variants have proposed for
graph learning task [9, 14, 37, 38, 40]. Most of them follow amessage
passing strategy to learn node representations over a graph. Graph
Attention Network (GAT) [37] proposes masked self-attentional
layers that allow weighing nodes in the neighborhood differently
during the aggregation step. GraphSAGE [14] focuses on inductive
node classification with different neighbor sampling strategies. Sim-
ple Graph Convolution (SGC) [40] reduces the excess complexity
of GCNs by removing the nonlinearities between GCN layers and
collapsing the resulting function into a single linear transforma-
tion. Personalized propagation of neural predictions (PPNP) and
(APPNP) [19] leverage adjustable neighborhood for classification
and can be easily combined with any neural network. However,
all these methods are typically supervised, which highly rely on
reliable labels. In this work, we leverage the graph neural network
to encode the graph to node representations.

7 CONCLUSION
Graph representation learning becomes a dominant technique in an-
alyzing graph-structured data. In this work, we propose Geometric
Graph Representation Learning (G2R), an unsupervised approach
to learning discriminative node representations for graphs. Specifi-
cally, we propose an objective function to enforce discriminative
node representations via maximizing the principal angle of the
subspace of different node groups. And we provide theoretical jus-
tification for the proposed objective function, which can guarantee
the orthogonality for node in different groups. We demonstrate
competitive performance of G2R on node classification and com-
munity detection tasks. Moreover, G2R even outperforms multiple
supervised counterparts on node classification task. The strength
of G2R suggests that, despite a recent surge in deeper graph neural
networks, unsupervised learning on graph remains promising.

ACKNOWLEDGMENTS
We would like to thank all the anonymous reviewers for their
valuable suggestions. This work is in part supported by NSF IIS-
1849085, CNS-1816497, IIS-1750074, and IIS-2006844. The views and
conclusions contained in this paper are those of the authors and
should not be interpreted as representing any funding agencies.

Geometric Graph Representation Learning WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

REFERENCES
[1] Aleksandar Bojchevski and Stephan Günnemann. 2018. Deep Gaussian Embed-

ding of Graphs: Unsupervised Inductive Learning via Ranking. In ICLR.
[2] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas

Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort,
Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud Joly, Brian Holt, and Gaël
Varoquaux. 2013. API design for machine learning software: experiences from
the scikit-learn project. In ECML PKDD Workshop: Languages for Data Mining
and Machine Learning. 108–122.

[3] Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. 2009. Semi-supervised
learning (chapelle, o. et al., eds.; 2006)[book reviews]. IEEE Transactions on Neural
Networks 20, 3 (2009), 542–542.

[4] Aaron Clauset, Mark EJ Newman, and Cristopher Moore. 2004. Finding commu-
nity structure in very large networks. Physical review E 70, 6 (2004), 066111.

[5] Ronan Collobert and Jason Weston. 2008. A unified architecture for natural lan-
guage processing: Deep neural networks with multitask learning. In Proceedings
of the 25th ICML. 160–167.

[6] Nicola De Cao and Thomas Kipf. 2018. MolGAN: An implicit generative model
for small molecular graphs. arXiv preprint arXiv:1805.11973 (2018).

[7] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional neural networks on graphs with fast localized spectral filtering. In NeurIPS.
3844–3852.

[8] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with
PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs and
Manifolds.

[9] Hongyang Gao and Shuiwang Ji. 2019. Graph u-nets. In ICML. PMLR, 2083–2092.
[10] Alberto García-Durán andMathias Niepert. 2017. Learning graph representations

with embedding propagation. arXiv preprint arXiv:1710.03059 (2017).
[11] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training

deep feedforward neural networks. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics. 249–256.

[12] Gene H Golub and Christian Reinsch. 1971. Singular value decomposition and
least squares solutions. In Linear algebra. Springer, 134–151.

[13] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. 855–864.

[14] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NeurIPS. 1024–1034.

[15] Xiao Huang, Qingquan Song, Yuening Li, and Xia Hu. 2019. Graph recurrent
networks with attributed random walks. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 732–740.

[16] Ian T Jolliffe. 1995. Rotation of principal components: choice of normalization
constraints. Journal of Applied Statistics 22, 1 (1995), 29–35.

[17] Diederik P Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In ICLR.

[18] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[19] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2018. Pre-
dict then Propagate: Graph Neural Networks meet Personalized PageRank. In
ICLR.

[20] Meng Liu, Hongyang Gao, and Shuiwang Ji. 2020. Towards deeper graph neural
networks. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 338–348.

[21] Yi Ma, Harm Derksen, Wei Hong, and John Wright. 2007. Segmentation of
multivariate mixed data via lossy data coding and compression. IEEE transactions
on pattern analysis and machine intelligence 29, 9 (2007), 1546–1562.

[22] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel.
2015. Image-based recommendations on styles and substitutes. In Proceedings
of the 38th International ACM SIGIR Conference on Research and Development in
Information Retrieval. 43–52.

[23] Jianming Miao and Adi Ben-Israel. 1992. On principal angles between subspaces
in Rn. Linear algebra and its applications 171 (1992), 81–98.

[24] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.
Distributed representations of words and phrases and their compositionality.
arXiv preprint arXiv:1310.4546 (2013).

[25] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda,
andMichael M Bronstein. 2017. Geometric deep learning on graphs andmanifolds
using mixture model cnns. In Proceedings of the IEEE conference on computer vision
and pattern recognition. 5115–5124.

[26] Andrew Y Ng, Michael I Jordan, and Yair Weiss. 2002. On spectral clustering:
Analysis and an algorithm. In NeurIPS. 849–856.

[27] Ferran Parés, Dario Garcia Gasulla, Armand Vilalta, Jonatan Moreno, Eduard
Ayguadé, Jesús Labarta, Ulises Cortés, and Toyotaro Suzumura. 2017. Fluid
communities: A competitive, scalable and diverse community detection algorithm.
In International Conference on Complex Networks and their Applications. Springer,
229–240.

[28] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
PyTorch: An Imperative Style, High-Performance Deep Learning Library.. In
NeurIPS.

[29] Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua Zheng, Yu Rong, Tingyang
Xu, and Junzhou Huang. 2020. Graph representation learning via graphical
mutual information maximization. In Proceedings of The Web Conference 2020.
259–270.

[30] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. 701–710.

[31] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018.
Network embedding as matrix factorization: Unifying deepwalk, line, pte, and
node2vec. In Proceedings of the eleventh ACM international conference on web
search and data mining. 459–467.

[32] Sam T Roweis and Lawrence K Saul. 2000. Nonlinear dimensionality reduction
by locally linear embedding. science 290, 5500 (2000), 2323–2326.

[33] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan
Günnemann. 2018. Pitfalls of graph neural network evaluation. arXiv preprint
arXiv:1811.05868 (2018).

[34] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In Proceedings of the
24th international conference on world wide web. 1067–1077.

[35] Joshua B Tenenbaum, Vin De Silva, and John C Langford. 2000. A global geometric
framework for nonlinear dimensionality reduction. science 290, 5500 (2000), 2319–
2323.

[36] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, 11 (2008).

[37] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.

[38] Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio,
and R Devon Hjelm. 2018. Deep Graph Infomax. In ICLR.

[39] Svante Wold, Kim Esbensen, and Paul Geladi. 1987. Principal component analysis.
Chemometrics and intelligent laboratory systems 2, 1-3 (1987), 37–52.

[40] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian
Weinberger. 2019. Simplifying graph convolutional networks. In ICML. PMLR,
6861–6871.

[41] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems (2020).

[42] Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov. 2016. Revisiting
semi-supervised learning with graph embeddings. In Proceedings of the 33rd
ICML.

[43] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 974–983.

[44] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and
Yang Shen. 2020. Graph contrastive learning with augmentations. NeurIPS (2020).

[45] Yaodong Yu, Kwan Ho Ryan Chan, Chong You, Chaobing Song, and Yi Ma. 2020.
Learning diverse and discriminative representations via the principle of maximal
coding rate reduction. NeurIPS 33 (2020).

[46] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,
Lifeng Wang, Changcheng Li, and Maosong Sun. 2020. Graph neural networks:
A review of methods and applications. AI Open 1 (2020), 57–81.

[47] X Zhu and Z Ghahramani. 2002. Learning from labeled and unlabeled data with
label propagation. Center for Automated Learning and Discovery, CMU: Carnegie
Mellon University, USA. (2002).

[48] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2020.
Deep graph contrastive representation learning. arXiv preprint arXiv:2006.04131
(2020).

[49] Marinka Zitnik and Jure Leskovec. 2017. Predictingmulticellular function through
multi-layer tissue networks. Bioinformatics 33, 14 (2017), i190–i198.

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Xiaotian Han, Zhimeng Jiang, Ninghao Liu, Qingquan Song, Jundong Li, and Xia Hu

A THEORETICAL ANALYSIS
A.1 Preliminaries
Theorem 1. [23] Let A = (A1,A2), A1 ∈ R𝑛×𝑛1

𝑙
, A1 ∈ R𝑛×𝑛2

𝑚 , and
rank(A) = 𝑙 +𝑚. Then

vol(A) = vol(A1)vol(A2)sin{𝑅(A1), 𝑅(A2)},

where vol(A) =
√︁
det(A⊤A) measures the compactness of A and

sin{𝑅(A1), 𝑅(A2)} is the product of principal sines between 𝑅(A1)
and 𝑅(A2).

Corollary 1. Let I + 𝑎Z⊤Z and Z = [z1, z2, · · · , z𝑛] ∈ R𝑑×𝑛 , while
the z𝑖 in Z are pairwise orthogonal, then the z̃𝑖 in Z̃ are pairwise
orthogonal.

Proof: Suppose Z = UΣV⊤, then we have

I + 𝑎Z⊤Z = I + 𝑎UΣ2V⊤ = U(𝐼 + 𝑎Σ2)V⊤ = Z̃⊤Z̃. (14)

We can see from the above derivation, while the z𝑛 in Z are pairwise
orthogonal, the result of Z⊤Z is a diagonal matrix, then UΣ2V⊤ is
diagonal matrix, thus Z̃⊤Z̃ = U(𝐼 + 𝑎Σ2)V⊤ is diagonal matrix. So
the z̃𝑛 in Z̃ are pairwise orthogonal.

A.2 Insights of Coding Rate.
We first present how to derive the coding rate of entire node repre-
sentations following [21].

Suppose we have data W = (𝑤1,𝑤2, · · · ,𝑤𝑚), and let 𝜖2 be the
error allowable for encoding every vector𝑤𝑖 in W. In other words,
we are allowed to distort each vector of𝑤𝑖 with random variable
𝑧𝑖 of variance 𝜖2/𝑛. So we have

𝑤̂𝑖 = 𝑤𝑖 + 𝑧𝑖 ,with 𝑧𝑖 = N(0, 𝜖
2

𝑛
I), (15)

Then the covariance matrix of𝑤𝑖 is

Σ̂ � E[1
𝑚

𝑚∑︁
𝑖=1

𝑤̂𝑖𝑤̂
⊤
𝑖] =

𝜖2

𝑛
I + 1

𝑚
WW⊤, (16)

And the volumes of covariance matrix and random vector 𝑧𝑖 are

vol(Ŵ) ∝
√︂
det(𝜖

2

𝑛
I + 1

𝑚
WW⊤),

vol(𝑧) ∝
√︂
det(𝜖

2

𝑛
I),

(17)

Then the number of bit needed to encode the data W is

𝑅(W) = log2 (
vol(Ŵ)
vol(𝑧)) = 1

2 log2det(I +
𝑛

𝑚𝜖2 WW⊤) . (18)

A.3 Proof of Equation (13)
We take I + 𝑑

𝑁𝜖2 Z⊤Z = Z̃⊤Z̃ and 𝛽 = sin{𝑅(Z̃1), 𝑅(Z̃2)}, then we
have

Δ𝑅G (Z, C, 𝜖)
= 𝑅G (Z, 𝜖) − 𝑅𝑐G (Z, 𝜖 |C)

=
1
2 logdet

(
I + 𝑑

𝑁𝜖2 Z⊤Z
)
−

2𝑀∑︁
𝑗=1

𝑡𝑟 (C𝑗)
2𝑁 logdet

(
I + 𝑑

𝑡𝑟 (C𝑗)𝜖2 Z⊤C𝑗Z
)

=
1
2 logdet

(
I + 𝑑

𝑁𝜖2 Z⊤Z
)
− 1
𝑀

2∑︁
𝑗=1

𝑡𝑟 (C𝑗)
2𝑁 logdet

(
I + 𝑑

𝑡𝑟 (C𝑗)𝜖2 Z⊤C𝑗Z
)

=
1
2 logdet

(
I + 𝑑

𝑁𝜖2 Z⊤Z
)
− 1
𝑀

2∑︁
𝑗=1

(𝑝𝑖 − 𝑝𝑜)𝑀
2𝑁 logdet

(
I + 𝑑 · (𝑝𝑖 − 𝑝𝑜)

𝑀 · (𝑝𝑖 − 𝑝𝑜) · 𝜖2 Z⊤
𝑗 Z𝑗

)
=

1
2 logdet

(
I + 𝑑

𝑁𝜖2 Z⊤Z
)
−

2∑︁
𝑗=1

(𝑝𝑖 − 𝑝𝑜)
2𝑁 logdet

(
I + 𝑑

𝑀𝜖2 Z⊤
𝑗 Z𝑗

)
=

1
2 logdet

(
Z̃⊤Z̃

)
−

2∑︁
𝑗=1

(𝑝𝑖 − 𝑝𝑜)
2𝑁 logdet

(
I + 𝑑

𝑀𝜖2 Z⊤
𝑗 Z𝑗

)
=

1
2

2∑︁
𝑗=1

1
2 logdet

(
Z̃⊤
𝑗 Z̃𝑗

)
+ 1

2 · log𝛽 −
2𝑀∑︁
𝑗=1

(𝑝𝑖 − 𝑝𝑜)
2 logdet

(
I + 𝑑

𝑀𝜖2 Z⊤
𝑗 Z𝑗

)
=

2∑︁
𝑗=1

1
4 logdet

(
I + 𝑑

𝑁𝜖2 Z⊤
𝑗 Z𝑗

)
−

2∑︁
𝑗=1

(𝑝𝑖 − 𝑝𝑜)
2𝑁 · logdet

(
I + 𝑑

𝑀𝜖2 Z⊤
𝑗 Z𝑗

)
+ 1

2 · log𝛽

=

2∑︁
𝑗=1

log
©­­­­«

det
1
4
(
I + 𝑑

𝑁𝜖2 Z⊤
𝑗

Z𝑗

)
det

𝑝𝑖−𝑝𝑜
2𝑁

(
I + 𝑑

𝑀𝜖2 Z⊤
𝑗

Z𝑗

) ª®®®®¬
+ 1

2 · log𝛽.

The 𝛽 = sin{𝑅(Z̃1), 𝑅(Z̃2)} means the principal angle of the Z̃1, Z̃2,
which measures the difference of subspaces. Maximizing 𝛽 is to
maximize the difference of the subspace. According to Corollary
1, we prove that the z∗ in Z are pairwise orthogonal, then the z̃∗
in Z̃ will also be pairwise orthogonal. So the maximum value of
the product of principal angle sines between different subspaces of
Z and Z̃ are equal to 1. And then they reach the maximum at the
same time.

B EXPERIMENTAL SETTING
To reproduce the results of the proposed method, we provide the
details of training, dataset, baselines.

B.1 Training Setting
G2R is implemented using PyTorch 1.7.1 [28] and PyTorch Geomet-
ric 1.6.3 [8]. All models are initialized with Xavier [11] initialization,
and are trained with Adam [17] optimizer. For linear evaluation
mode for node classification, we use the existing implementation
of logistic regression with 𝐿2 regularization from Scikit-learn [2].
For all datasets and baselines, we perform experiments five times
with different seeds and report the mean and standard deviation
of accuracies (%) for node classification. In training phase, we set
the dimension of node representations as 512. We perform grid
search on the number of epoch and learning rate. For unsupervised
baselines, we use the public code released by the authors. All ex-
periments are conducted on a Linux server with two AMD EPYC
7282 CPUs and four NVIDIA RTX3090 GPUs (24GB memory each).

B.2 Dataset
Following the previous works, we use eight benchmark datasets
to evaluate G2R and baselines, including Cora, CiteSeer, PubMed,
CoraFull, Coauthor CS, Coauthor Physics, Amazon Computers,
and Amazon Photo [1, 22, 33, 42]. All datasets used throughout

Geometric Graph Representation Learning WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

experiments are available in PyTorch Geometric [8] libraries. The
details of the dataset are as follows:

• Planetoid [42]. Planetoid dataset includes Cora, CiteSeer and
PubMed, which is representative citation network datasets. These
datasets contains a number of machine learning papers, where
nodes and edges denote documents and citation, respectively.
Node features are bay-of-words for documents. Class labels in-
dicate the field of documents.

• CoraFull [1] is a well-known citation network that contains
labels based on the paper topic. This dataset is additionally
extracted from the original data of the entire network of Cora.
Specifically, CoraFull contains the entire citation network of
Cora, while the Planetoid Cora dataset is its subset.

• Coauthor [33]. Coauthor Physics is co-authorship graph based
on the Microsoft Academic Graph from the KDD Cup 2016
challenge. Nodes are authors and edges indicate co-authored a
paper. Node features represent paper keywords for each author’s
papers, and class labels indicate the most active fields of study
for each author.

• Amazon [33]. Amazon dataset includes Computers and Photo
which are extracted from co-purchase graph [22]. Nodes repre-
sent goods, edges indicate that two goods were bought together.
The node features are bag-of-words encoded product reviews
and class labels are the product category.

B.3 Baselines for unsupervised learning
We list the baselines used for the unsupervised learning comparison.

• Features. We use the original feature as input.
• PCA [39] and SVD [12]. These two methods are matrix de-
composition based methods and only contain the node features
information. We use the node features after PCA(or SVD) di-
mensionality reduction as the input feature.

• LLE [32] and Isomap [35]. These two methods are manifold
based dimensionality reduction methods and only contain the
node features information. We use the reduced node feature as
the node representations.

• DGI 6 [38] is a general approach for learning node represen-
tations within graph-structured data in an unsupervised man-
ner, which relies on maximizing mutual information between
patch representations and corresponding high-level summaries
of graphs—both.

• GraphCL 7 [44] is a graph contrastive learning framework for
learning unsupervised representations of graph data with graph
data augmentations.

• GRACE 8 [44] is an unsupervised graph representation learning
method. GRACEfirst generates two views of graph by corruption
and then maximizes the agreement of node representations in
these two views.

• GMI 9 [29] measures the correlation between input graphs and
high-level hidden representations. GMI directly maximizes the

6https://github.com/rusty1s/pytorch_geometric/blob/master/examples/infomax_
inductive.py
7https://github.com/Shen-Lab/GraphCL
8https://github.com/CRIPAC-DIG/GRACE
9https://github.com/zpeng27/GMI

mutual information between the input and output of a graph
encoder in terms of node features and topological structure.

B.4 Baselines for supervised learning
We mainly adopt supervised GNN models as baselines for super-
vised learning comparison. In addition to GNNmodels, we also con-
sider the following baselines: Logistic Regression (LogReg), Multi-
Layer Perceptron (MLP), Label Propagation (LabelProp) and Nor-
malized Laplacian Label Propagation (LabelProp NL). Then details
of baseline models are listed as follows:

• MLP uses the node features as input and the node labels as
output, which only leverages the node feature information while
ignores the connection information.

• LabelProp [47] uses unlabeled data to help labeled data in clas-
sification. Labels were propagated with a combination of random
walk and clamping. LabelProp only considers the graph struc-
ture.

• GCN [18] Graph Convolutional Network is one of the earlier
models that works by performing a linear approximation to
spectral graph convolutions.

• MoNet [25] generalizes the GCN architecture and allows to
learn adaptive convolution filters.

• GAT [37] proposes masked self-attentional layers that allow
weighing nodes in the neighborhood differently during the ag-
gregation step, which overcomes the shortcomings of prior GNN
methods by approximating the convolution.

• SAGE [14]. GraphSAGE focuses on inductive node classification
but can also be applied for transductive settings.

• ChebNet [7]. ChebNet is a formulation of CNNs concerning
spectral graph theory, which provides the necessary mathemati-
cal background and efficient numerical schemes to design fast
localized convolutional filters on graphs.

• SGC [40]. Simple Graph Convolution (SGC) reduces the excess
complexity of GCNs by repeatedly removing the nonlinearities
between GCN layers and collapsing the resulting function into
a single linear transformation.

• APPNP [19]. Approximate personalized propagation of neural
predictions (APPNP) is a fast approximation to personalized
propagation of neural predictions (PPNP), which utilizes this
propagation procedure to construct a simple model. APPNP
leverages a large, adjustable neighborhood for classification and
can be easily combined with any neural network.

C METRICS OF COMMUNITY DETECTION
The metrics are implemented by https://networkx.org. The mod-

ularity is defined as 𝑄 =
∑𝑛
𝑐=1

[
𝐿𝑐
𝑚 − 𝛾

(
𝑘𝑐
2𝑚

)2
]
, where the sum

iterates over all communities 𝑐 ,𝑚 is the number of edges, 𝐿𝑐 is the
number of intra-community links for community 𝑐 , 𝑘𝑐 is the sum
of degrees of the nodes in community 𝑐 , and 𝛾 is the resolution
parameter; The coverage of a partition is the ratio of the number
of intra-community edges to the total number of edges; The per-
formance of a partition is the number of intra-community edges
plus inter-community non-edges divided by the total number of
potential edges.

https://github.com/rusty1s/pytorch_geometric/blob/master/examples/infomax_inductive.py
https://github.com/rusty1s/pytorch_geometric/blob/master/examples/infomax_inductive.py
https://github.com/Shen-Lab/GraphCL
https://github.com/CRIPAC-DIG/GRACE
https://github.com/zpeng27/GMI
https://networkx.org

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Representation Learning via Maximizing Rate Reduction

	3 Methodology
	3.1 Coding Rate of Node Representations
	3.2 Rate Reduction Maximization for Training
	3.3 Discussion: what is doing intuitively?

	4 Theoretical Justification
	4.1 Principal Angle Between Subspaces
	4.2 Graph with Two Communities
	4.3 Coding Rate for Graph with Communities
	4.4 Discussion: what is doing theoretically?

	5 Experiments
	5.1 What is Doing? Empirical Verification with Synthetic Graph Data
	5.2 Will Perform Better than Unsupervised Counterparts?
	5.3 Will Representation learned by (nearly) orthogonal? Visualization Analysis
	5.4 What is the Effect of Encoders and Objective Functions? Ablation Studies
	5.5 Will the Graph Structure be Preserved in the Learned Representation?
	5.6 Will Learned Representation Perform Well on Community Detection? A Case Study
	5.7 What is the Effect of the Hyperparameters and ?
	5.8 is even Better than Supervised Counterparts

	6 Related Works
	7 Conclusion
	Acknowledgments
	References
	A Theoretical Analysis
	A.1 Preliminaries
	A.2 Insights of Coding Rate.
	A.3 Proof of Equation

	B Experimental Setting
	B.1 Training Setting
	B.2 Dataset
	B.3 Baselines for unsupervised learning
	B.4 Baselines for supervised learning

	C Metrics of community detection

