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Multi-stage ranking pipelines have been a practical solution in modern search systems, where the first-stage
retrieval is to return a subset of candidate documents, and latter stages attempt to re-rank those candidates.
Unlike re-ranking stages going through quick technique shifts during past decades, the first-stage retrieval has
long been dominated by classical term-based models. Unfortunately, these models suffer from the vocabulary
mismatch problem, which may block re-ranking stages from relevant documents at the very beginning.
Therefore, it has been a long-term desire to build semantic models for the first-stage retrieval that can achieve
high recall efficiently. Recently, we have witnessed an explosive growth of research interests on the first-stage
semantic retrieval models. We believe it is the right time to survey current status, learn from existing methods,
and gain some insights for future development. In this paper, we describe the current landscape of the first-
stage retrieval models under a unified framework to clarify the connection between classical term-based
retrieval methods, early semantic retrieval methods and neural semantic retrieval methods. Moreover, we
identify some open challenges and envision some future directions, with the hope of inspiring more researches
on these important yet less investigated topics.
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1 INTRODUCTION
Large-scale query-document retrieval is a key problem in search systems, e.g., Web search engines,
which aims to return a set of relevant documents from a large document repository given a user
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Fig. 1. The multi-stage architecture of modern information retrieval systems.
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Fig. 1. The multi-stage architecture of modern information retrieval systems.

query. To balance the search efficiency and effectiveness, modern search systems typically employ
a multi-stage ranking pipeline in practice, as shown in Figure 1. The first-stage retrieval aims to
return an initial set of candidate documents from a large repository by some cheaper ranking
models assisted by some specially-designed indexing structures. Later, several re-ranking stages
take more complex and effective ranking models to prune and improve the ranked document list
output by the previous stage. Such a “retrieval and re-ranking” pipeline has been widely adopted in
both academia [40, 147] and industry [133, 167] and achieved state-of-the-art results on multiple
IR benchmarks [59, 160, 205].

Besides the pipeline architecture, to achieve a successful retrieval, it is generally recognized that
the system needs to understand the query and the document well so that it can find relevant results
to users’ information needs. Therefore, semantic models are expected throughout the pipeline but
with different requirements and goals at different stages. For the first-stage retrieval, the model
aims to recall all potentially relevant documents from the whole collection. Thus, it is desired to
build semantic models that can achieve high recall efficiently, i.e., to return a subset of documents
that contain relevant documents as many as possible within a short time-span. For latter re-ranking
stages, only a small number of documents are fed into the ranking model. As a result, semantic
models used for re-ranking are allowed to employ more sophisticated architectures to achieve high
precision, i.e., to put as many relevant documents as possible to top positions of the list.

During past decades, we have witnessed re-ranking stages going through quick technique shifts
towards more and more powerful semantic models, from early probabilistic models [177, 178, 202],
learning to rank models [126, 134], to recent neural ranking models [82, 96, 161]. Specifically, with
BERT-style pre-training tasks on cross-attention models, better contextualized representations
and deeper interactions between query-document pairs have led to significant improvement on
the re-ranking effectiveness [161, 163]. However, these models are often very computationally
expensive, which makes them unable to handle high-throughput incoming queries each with a
large collection of candidate documents in the first-stage retrieval.
On the contrary, the first-stage retrieval has long been dominated by classical term-based

models. Specifically, the discrete symbolic representation, i.e., bag-of-words (BoW) representation,
is adopted for both queries and documents, and the inverted indexing technique is leveraged
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to manage large-scale documents. Term-based retrieval models such as BM25 (term matching +
TF-IDF weights) are then applied for the first-stage retrieval. Apparently, such term-based models
are very efficient due to the simple logic and powerful index. Meanwhile, they have also been
demonstrated to achieve reasonable good recall performance in practice [40, 133]. However, there
are still clear drawbacks with such term-based models: (1) They may suffer from the vocabulary
mismatch problem [72, 239] due to the independence assumption; (2) They may not well capture
document semantics by ignoring term ordering information [127]. Due to these limitations, term-
based models may play as a “blocker” which prevents re-ranking models from relevant documents
at the very beginning. To resolve this problem, continuous efforts have been made during past
decades, including query expansion [119, 124, 171, 217], document expansion [3, 65, 135], term
dependency models [76, 148, 218], topic models [54, 213], translation models for IR [21, 108], etc.
However, the research progress on the first-stage retrieval is relatively slow since most of these
approaches are still within the discrete symbolic representation paradigm and inherit its limitations
inevitably.

In recent years, along with the development of representation learning methods in information
retrieval (IR), we have witnessed an explosive growth of research interests in the first-stage semantic
retrieval models. Since 2013, the rise of word embedding technique [26, 149, 168] stimulates a large
amount of work on exploiting it for the first-stage retrieval [45, 73, 207]. Unlike the discrete symbolic
representation, word embedding is a dense representation which may alleviate the vocabulary
mismatch problem to some extent. After 2016, there is a surge of research interest in applying deep
learning technique for the first-stage retrieval [28, 87]. These approaches have been studied either
to improve document representations within the conventional discrete symbolic representation
paradigm [14, 49, 164], or directly form a new series of semantic retrieval models within the
sparse/dense representation paradigm [81, 100, 112, 228]. Since there has been a significant body of
works created, we believe it is the right time to survey current status, learn from existing methods,
and gain some insights for future development.

This survey focuses on semantic models for the first-stage retrieval of unstructured texts, referred
to as semantic retrieval models for short in the following sections. We describe the current landscape
of the first-stage retrieval models under a unified framework to clarify the connection between
classical term-based retrieval methods, early semantic retrieval methods and neural semantic
retrieval methods. Specifically, we pay attention to recent neural semantic retrieval methods,
summarizing them into three paradigms from the perspective of model architecture, namely sparse
retrieval methods, dense retrieval methods and hybrid retrieval methods. We also refer to key
topics about neural semantic retrieval models learning. Moreover, we discuss unresolved challenges
and suggest potentially promising directions for future works. It should be noted that: (1) Some
studies also call the first-stage retrieval as a ranking stage, a search stage, or a recall stage. In
this survey, we will refer to it as the retrieval stage for consistency and simplicity; (2) The survey
mainly focuses on ranking algorithms of semantic retrieval models, thus will only briefly mention
indexing methods. Readers who are interested in sparse or dense indexing techniques could refer
to [38, 157, 235, 241].

So far as we know, this is the first survey on both traditional and neural semantic models for the
first-stage retrieval. It reviews early semantic retrieval models proposed from 1990 to 2013, and
covers neural semantic retrieval models published in major conferences (e.g., ACL, ICLR, AAAI,
SIGIR, TheWebConf, CIKM, WSDM, EMNLP, and ECIR) and journals (e.g., TOIS, TKDE, TACL, and
IP&M) in the fields of deep learning, natural language processing and information retrieval from
2013 to June 2021. There have been some surveys on neural models for IR [83, 151, 152, 165], but
none of them focused on the first-stage retrieval. For example, Onal et al. [165] paid attention to the
application of neural methods to different IR tasks. Guo et al. [83] took a deep look into deep neural

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:4 Jiafeng Guo, Yinqiong Cai, Yixing Fan, Fei Sun, Ruqing Zhang, and Xueqi Cheng

networks for re-ranking stages. For the first-stage retrieval, the booklet by Li and Xu [127] talked
about early semantic retrieval models, but without recent booming neural models for the first-stage
retrieval. Recently, Lin et al. [131] discussed several pre-training models for the first-stage retrieval
and re-ranking stages. Different from them, we make an comprehensive overview of semantic
models for the first-stage retrieval under a unified framework, including early semantic retrieval
models, neural semantic retrieval models and the connection between them.

To sum up, our contributions include:
(1) We describe the current landscape of the first-stage retrieval models under a unified frame-

work to clarify the connection between the classical term-based retrieval, early methods for
semantic retrieval and neural methods for semantic retrieval.

(2) We provide a comprehensive and up-to-date review of semantic retrieval models, with a
brief review of early semantic retrieval models and a detailed description of recent neural
semantic retrieval models.

(3) We summarize neural semantic retrieval models into three paradigms from the perspective
of model architecture, i.e., sparse retrieval methods, dense retrieval methods and hybrid
retrieval methods. We also discuss key topics on model learning, including loss functions
and negative sampling strategies.

(4) We discuss some open challenges and suggest potentially promising directions for future
works.

We organize this survey as follows. We first introduce three typical applications of semantic
retrieval models in Section 2. Then, we provide some background knowledge, including problem
formalization, index methods and classical term-based retrieval methods in Section 3. We sketch
early methods for semantic retrieval in Section 4. In Section 5, we review existing neural methods
for semantic retrieval from the perspective of model architecture, and introduce key topics on
model learning. Finally, we discuss challenges and future directions in Section 6, and conclude this
survey in Section 7.

2 MAJOR APPLICATIONS OF SEMANTIC RETRIEVAL MODELS
The first-stage retrieval plays an essential role in almost all large-scale IR applications. In this section,
we describe three major text retrieval applications, including ad-hoc retrieval [12], open-domain
question answering [191, 206], and community-based question answering [31, 193].

Ad-hoc retrieval is a typical retrieval task, and there has been a long research history on ad-hoc
retrieval models. In this task, users express their information needs as queries, then trigger searches
in the retrieval system to obtain relevant documents. All retrieved documents are often returned as
a ranked list according to the degree of relevance to the user query. A major characteristic of ad-hoc
retrieval is the length heterogeneity between the query and the document. Queries are often short
in length, consisting of only a few keywords [151]. While documents have longer texts, ranging
from multiple sentences to several paragraphs. Such heterogeneity between queries and documents
leads to the classical vocabulary mismatch problem, which has been a long-term challenge in both
the retrieval stage as well as re-ranking stages in ad-hoc retrieval [127]. The earliest datasets to
support reliable evaluation of the first-stage retrieval models are always based on TREC collections,
such as Associated Press Newswire (AP), Wall Street Journal (WSJ) and Robust [117]. The number
of documents in these collections is usually hundreds of thousands, and documents are usually
news articles. Later, larger collections based on Web data, such as ClueWeb [44], are built for the
evaluation of retrieval technology. However, the number of queries in these datasets is only a
few hundred, which is not enough for the training of neural-based retrieval models. In recent
years, large-scale datasets, such as MS MARCO [160], TREC CAR [59] and TREC Deep Learning
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Track [47], are released, which label relevant documents for hundreds of thousands of queries. The
availability of these large-scale datasets has greatly promoted the development of neural retrieval
models. Besides, there are also some domain-specific retrieval datasets, e.g., GOV2 [43], TREC
Medical Records Track (MedTrack) and TREC-COVID [203], which are also commonly used for
the evaluation.
Open-domain question answering (OpenQA) is a task to answer any sort of (factoid) questions

that humans might ask, using a large collection of documents (e.g., Wikipedia, or Web page) as
the information source [110]. Unlike the ad-hoc retrieval which aims to return a ranked list of
documents, the OpenQA task is to extract a text span as the answer to the question. To achieve this,
most existing works build the OpenQA system as a two-stage pipeline [36]: (1) A document retriever
selects a small set of relevant documents that probably contain the answer from a large-scale
collection; (2) A document reader extracts the answer from relevant documents returned by the
document retriever. In our work, we only consider the document retriever component since the
document reader is out of the scope of this paper. Typically, the question in OpenQA tasks is a
natural language sentence, which has well-formatted linguistic structures. While the document
is often a small snippet of text, ranging from several sentences to a passage [56, 63]. Moreover,
relevant documents are required to be not only topically related to but also correctly address the
question, which requires more semantics understanding except for exact term matching features.
For the evaluation of the first-stage retrieval models on OpenQA tasks, several benchmark datasets
are available. Most commonly used datasets, such as SQuAD-open [36], SearchQA [63], TriviaQA-
unfiltered [107] and Natural Questions Open [116], have tens of thousands of queries for model
training. Several smaller-scale datasets, e.g., WebQuestions [20] and CuratedTREC [16], are also
often used for model evaluation. The document collection in these datasets is usually based on
Wikipedia pages (e.g., SQuAD-open and Natural Questions Open) or Web pages (e.g. SearchQA,
and WebQuestions), and queries are written by crowd-workers (e.g., SQuAD-open) or crawled from
existing websites (e.g., SearchQA and TriviaQA-unfiltered).

Community-based question answering (CQA) aims to address user’s questions using the archived
question-answer (QA) pairs in the repository, since CQA systems have already accumulated a large
amount of high-quality human-generated QA pairs, such as Yahoo! Answers1, Stack Overflow2

and Quora3. There are two different ways to produce the answer to a user’s question. One is
to directly retrieve answers from the collection if the answer exists [208]. The other is to select
the duplicate question from the collection and take the accompanied answer as the result [212].
Both of these two ways require the retrieval system to firstly recall a subset of candidates from
the whole collection, and then re-rank candidates to generate the final result. However, targets
(i.e., answers and questions) in these two ways often have very different expressions, leading to
different challenges in terms of semantic modeling. Firstly, the duplicate question retrieval needs
to capture semantic similarities between words (phrases) since there are often different ways to
express the same question. Secondly, the answer retrieval needs to model logical relationships
between questions and answers. Although many datasets are constructed based on CQA data, few
of them are suitable for evaluating the first-stage retrieval models. Existing related works usually
conduct experiments on QQP4 and WikiAnswers [66] datasets.

There are also some other retrieval scenarios, such as entity linking [80], e-commerce search [125,
128, 234] and sponsored search [68]. For these applications, academic researchers and industrial
developers have realized the importance of utilizing semantic information for the first-stage retrieval.
1https://answers.yahoo.com
2http://www.stackoverflow.com/
3http://www.quora.com/
4https://data.quora.com/First-Quora-Dataset-ReleaseQuestion-Pairs
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Due to page limitations, wewill not discuss theseworks in this survey, but it is possible and necessary
to generalize techniques applied in text retrieval to other retrieval tasks.

3 BACKGROUND
In this section, we first characterize the first-stage retrieval by giving a unified formulation of the
first-stage retrieval models. Then, we introduce typical indexing methods cooperating retrieval
models to support efficient retrieval. Finally, we summarize classical term-based retrieval methods.

3.1 Problem Formalization
Given a query 𝑞, the first-stage retrieval aims to recall all potentially relevant documents from a
large corpus C = {𝑑1, 𝑑2, · · · , 𝑑𝑁 }. Different from re-ranking stages with a small set of candidates,
the corpus size 𝑁 for the first-stage retrieval can range from millions (e.g., Wikipedia) to billions
(e.g., the Web). Thus, efficiency is a crucial concern for models used in the first-stage retrieval.

Formally, given a datasetD = {(𝑞𝑖 , 𝐷𝑖 , 𝑌𝑖 )}𝑛𝑖=1, where𝑞𝑖 denotes a user query,𝐷𝑖=[𝑑𝑖1, 𝑑𝑖2, · · · , 𝑑𝑖𝑘 ]
denotes a list of documents to the query 𝑞𝑖 , and 𝑌𝑖 = [𝑦𝑖1, 𝑦𝑖2, · · · , 𝑦𝑖𝑘 ] ∈ {1, 2, · · · , 𝑙} is the corre-
sponding relevance label of each document in 𝐷𝑖 . There exists a total order between relevance
labels 𝑙 > 𝑙 − 1 > · · · > 1, where > denotes the order relation. Note here the number of labeled
documents 𝑘 to each query is often significantly smaller than the corpus size𝑁 , since it is impossible
to manually annotate all the huge amount of documents. The goal of the first-stage retrieval is
to learn a model 𝑠 (·, ·) from D that gives high scores to relevant (𝑞, 𝑑) pairs and low scores to
irrelevant ones. For any query-document pair (𝑞, 𝑑), 𝑠 (𝑞, 𝑑) gives a score that reflects the relevance
degree between 𝑞 and 𝑑 , and thus allows one to rank all the documents in the corpus C according to
predicted scores. Without loss of generality, the scoring function can be abstracted by the following
unified formulation:

𝑠 (𝑞, 𝑑) = 𝑓 (𝜙 (𝑞),𝜓 (𝑑)), (1)
where 𝑞 ∈ 𝑋 and 𝑑 ∈ 𝑌 are the input query and document, and two representation functions
𝜙 : 𝑋 → R𝑘1 and𝜓 : 𝑌 → R𝑘2 map a sequence of tokens in 𝑋 and 𝑌 to their associated embeddings
𝜙 (𝑞) and𝜓 (𝑑), respectively. To build a responsive model for the first-stage retrieval, it leads to a
number of requirements on these three components:

• The document representation function𝜓 should be independent of the query since queries
are unknown before the search system is deployed. In this way, document representations
can be pre-computed and indexed offline with methods in Section 3.2. Meanwhile, this means
that the𝜓 (𝑑) component can be sophisticated to some extent since it has no impact on the
online serving.

• The query representation function 𝜙 is required to be as efficient as possible since it needs to
compute query embeddings online. Thanks to the nature of independence, two components
𝜙 and𝜓 can be identical or different, which is flexible enough to design models for different
retrieval tasks with homogeneous or heterogeneous inputs.

• To satisfy the real-time retrieval requirement, on the one hand the scoring function 𝑓 should
be as simple as possible to minimize the amount of online computation, and on the other
hand, it must take the indexing method into account.

3.2 Indexing Methods
As mentioned above, one major difference between the first-stage retrieval and re-ranking stages
is that the former does ranking on large-scale documents in the repository. Thus, the efficiency
of the first-stage retrieval models is one of the core considerations. In practice, to support storing
and fast retrieval of documents in the whole repository, retrieval systems need to build an index,
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where the indexing technique is crucial to the rapid response during the online serving. There are
many indexing techniques, such as signature, inverted index, and dense vector index. Rather than
exploring all the existing approaches, we only describe the fundamental principle of two typical
indexing schemes.
The inverted index is currently the most popular indexing scheme and is used for many appli-

cations due to its simplicity and efficiency. Before building an inverted index, each document in
the collection is parsed and segmented into a list of tokens. Then, the inverted index is created,
which mainly consists of a dictionary and a collection of posting lists. The dictionary includes
all the terms found in the collection and their document frequencies. Each posting list records
document identifiers, term occurrence frequencies, and possibly other information of documents
in which the corresponding term appears. During the online serving, for a user’s query, top 𝑘 most
similar documents are fetched in turn with the help of the inverted index. Concretely, the query is
processed with one term at a time. Initially, each document has a similarity of zero to the query.
Then, for each query term 𝑡 , the similarity score of each document in 𝑡 ’s posting list increases by
the contribution of 𝑡 to the similarity of the query-document pair. Once all query terms have been
processed, the 𝑘 largest similarity scores are identified, and the corresponding document list is
returned to the user. In fact, many acceleration strategies are applied during the process to improve
retrieval efficiency, but they are omitted here. More details about the inverted index technique
could be found in [214, 241].
Along with the development of neural representation learning methods, dense vector index

based on approximate nearest neighbor search algorithms is used to support the new representation
paradigm. One of reasons why the inverted index works well is that the documents–term matrix is
very sparse. However, most semantic retrieval models produce dense and distributed document rep-
resentations, thus the inverted index method is no longer feasible to retrieve documents efficiently
from a large collection. From the equation (1), the retrieval problem could be viewed as the nearest
neighbor search problem [188], once the query embedding and all the document embeddings have
been calculated. This fundamental problem has been well studied in the research community [1, 8].
The simplest approach to the nearest neighbor search is the brute-force search, which scans all the
candidates and computes similarity scores one by one. However, the brute-force search becomes
impractical when the size of collections exceeds a certain point. Thus, most researches resort to
an approximate nearest neighbor (ANN) search [11, 64, 129], which allows for a slight loss in
precision while yielding multiple orders of magnitude improvement in speed. Generally, existing
ANN search algorithms can be categorized into four major types, including tree-based [17, 19],
hashing-based [53, 99], quantization-based [79, 102] and proximity graph approaches [113, 144].
The earliest solutions to ANN search are based on locality-sensitive hashing [99], but currently
proximity graph methods [113, 144] yield a better performance among all the approaches in most
respects based on a popular benchmark5. Graph-based methods build the index by retaining the
neighborhood information for each individual data point towards other data points or a set of
pivot points. Then, various greedy heuristics are proposed to navigate the proximity graph for a
given query point. So far, several open-source libraries for ANN search, such as Faiss [105] and
SPTAG [39], have been developed, and search engines6,7,8 supporting ANN search have been built
and applied widely.

5http://ann-benchmarks.com/
6https://www.elastic.co/cn/elasticsearch/
7https://vespa.ai/
8https://milvus.io/

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

http://ann-benchmarks.com/
https://www.elastic.co/cn/elasticsearch/
https://vespa.ai/
https://milvus.io/


1:8 Jiafeng Guo, Yinqiong Cai, Yixing Fan, Fei Sun, Ruqing Zhang, and Xueqi Cheng

3.3 Classical Term-based Retrieval
This subsection provides an overview of classical term-based methods for the first-stage retrieval,
including the vector space model, probabilistic retrieval models and language models for IR. In
general, these methods build representations of queries and documents based on the bag-of-words
(BoW) assumption where each text is represented as a bag (multiset) of its words, disregarding
grammar and even word order. Particularly, the representation functions 𝜙 and 𝜓 are set to be
manually defined feature functions, such as word frequency, and dimensions of representations
(i.e., 𝑘1 and 𝑘2) are generally equal to the vocabulary size. The representation functions 𝜙 and𝜓 are
usually different for queries and documents, but they all pledge the sparsity of representations so
that the inverted index could be used to support efficient retrieval.
The early representative of term-based methods is the vector space model (VSM) [185] which

represents queries and documents as high-dimensional sparse vectors in a common vector space.
Under this framework, queries and documents are viewed as vectors with each dimension corre-
sponding to a term in the vocabulary, where the weight of each dimension can be determined by
different functions, e.g., term frequency (TF), inverse document frequency (IDF) or the composite
of them [183, 184]. Then, one can use the similarity (usually cosine similarity) between a query
vector and a document vector as the relevance measure of the query-document pair. The resulting
scores can then be used to select the top relevant documents for the query. The VSM has become
the fundamental of a series of IR solutions—the probabilistic retrieval model and language model
for IR can be both viewed as the instantiation of VSM with different weighting schemes.

Probabilistic methods are one of the oldest formal models in IR, which introduce the probability
theory as a principled foundation to estimate the relevance probability 𝑃 (𝑦 = 1|𝑞, 𝑑) of a document
𝑑 to the query 𝑞. The Binary Independence Model (BIM) [178] is the most original and influential
probabilistic retrieval model. It represents documents and queries to binary term vectors, that an
entry is 1 if the corresponding term occurs in the document, and otherwise the entry is 0. With
these representations, “binary” and “term independency” assumptions are introduced by BIM. But
these assumptions are contrary to facts, so a number of extensions are proposed to relax some
assumptions of BIM, such as the Tree Dependence Model [202] and BM25 [177]. In particular, the
BM25 model takes into account the document frequency, document length and term frequency,
which has been widely used and quite successful across different academic researches as well as
commercial systems [133, 167].

Instead of modeling the relevance probability explicitly, language models (LM) for IR [170] build
a language model𝑀𝑑 for each document 𝑑 , then documents are ranked based on the likelihood of
generating the query𝑞, i.e., 𝑃 (𝑞 |𝑀𝑑 ). The document languagemodel is also built on the bag-of-words
assumption, and could be instantiated as either multiple Bernoulli [170] or Multinomial [89, 150].
Experimental results in [170] prove the effectiveness of term weights coming from language models
over the traditional TF-IDF weight. Moreover, language models provide another perspective for
modeling retrieval tasks, and subsequently inspire many extended approaches [29, 229].

In summary, modeling relevance in a shallow lexical way, especially combined with the inverted
index, endows classical term-based models a key advantage on efficiency, making it possible to
retrieve from billions of documents quickly. However, such a paradigm is also accompanied by
clear drawbacks, like the well-known vocabulary mismatch problem or not well capturing text
semantics. Therefore, more sophisticated semantic models for improving the first-stage retrieval
performance start to attract researchers’ interests in the following.
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4 EARLY METHODS FOR SEMANTIC RETRIEVAL
From the 1990s to the 2000s, extensive studies have been carried out to improve term-based retrieval
methods. Most of them mine information from external resources or the collection itself to enrich
query representations 𝜙 (𝑞), document representations𝜓 (𝑑) or both of them for semantic retrieval.
Here, we sketch a brief picture of some of them.

4.1 Query Expansion
To compensate for the mismatch between queries and documents, the query expansion technique
is used to expand the original query with terms selected from external resources [217]. In this
way, query representations 𝜙 (𝑞) are enriched, and more documents could be considered during the
retrieval process through the extended query terms.
Query expansion is the process of adding relevant terms to a query to improve retrieval ef-

fectiveness. There are a number of query expansion methods, and they can be classified into
global methods [124, 171] and local methods [2, 230]. Global methods expand or reformulate query
words by analyzing word co-occurrences from the corpus being searched or using an external
hand-crafted thesaurus (e.g., WordNet) [204]. Although a number of data-driven query expansion
methods, such as [13], can improve the average retrieval performance, they are shown to be unstable
across queries. On the other hand, local methods adjust a query based on top-ranked documents
retrieved by the original query. This kind of query expansion is called pseudo-relevance feedback
(PRF) [33], which has been proven to be highly effective to improve the performance of many
retrieval models [138, 179]. Relevance model [119], mixture model, and divergence minimization
model [230] are the first PRF methods proposed under the language modeling framework. Since
then, several other local methods have been proposed, but the relevance model is shown to be still
among state-of-the-art PRF methods and performs more robustly than many other methods [138].
In general, query expansion methods have been widely studied and adopted in IR applications,

but they do not always yield a consistent improvement. Especially expansion methods based
on pseudo-relevance feedback are prone to the query drift problem [46]. Subsequently, with the
development of deep learning technique, neural word embeddings and deep language models are
used to enhance query expansion methods [58, 146, 181].

4.2 Document Expansion
An alternative to query expansion is to perform the expansion for all documents in the corpus, then
those enriched documents are indexed and searched as before. Intuitively, document expansion
methods supplement each posting list in the inverted index, which have shown to be particularly
effective for information retrieval tasks [3, 65, 200].
Document expansion is first proposed in the speech retrieval community [192]. Singhal and

Pereira [192] proposed to use the original document as a query into the collection, and the ten
most relevant documents were selected. Then, they enhanced the representation of the original
document by adding to the document vector a linearly weighted mixture of related documents.
Similarly, Efron et al. [65] followed a similar approach on short text retrieval tasks. They submitted
documents as pseudo-queries and performed document expansion based on the analysis of the result
set. Different from the retrieval-based method to determine related documents for expansion, it is
another way to use document clustering to determine similar documents, and document expansion
is carried out with respect to these results [114, 135]. Both works report significant improvements
over non-expanded baselines on the TREC ad-hoc document retrieval task. In addition to using
the document collection itself, it is also helpful to use external information to augment document
representations [3, 190]. For example, Agirre et al. [3] presented a novel document expansion
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method based on a WordNet-based system to find related concepts and words, which is the first to
perform document expansion using lexical semantic resources.
Document expansion technique has been less popular with IR research because they are less

amenable to rapid experiments. The corpus needs to be re-indexed every time the expansion
technique changes, which is a costly process. In contrast, manipulations to query representations
can happen at retrieval time and hence are much faster. Besides, the success of document expansion
has been mixed. Billerbeck and Zobel [23] explored both query expansion and document expansion
in the same framework and concluded that the former is consistently more effective. Nevertheless,
dramatic improvement for the first-stage retrieval has been achieved after equipping the document
expansion technique with neural models, such as doc2query [164] and docTTTTTquery [162] (See
Section 5.1).

4.3 Term Dependency Models
Typically, term-based methods consider terms in the document independently and ignore the
term orders. As a result, concepts represented by multiple contiguous words cannot be depicted
correctly, and the stronger relevance of consecutive or ordered terms matching between queries
and documents cannot be reflected well. Term dependency models attempt to address the above
problem by incorporating term dependencies into the representation functions 𝜙 and𝜓 .
A natural way is to extend the dictionary in the inverted index with frequent phrases. For

example, Fagan [67] tried to incorporate phrases into the VSM, where phrases are viewed as
additional dimensions in the representation space. Then, the scoring function can be formalized to
the combination of term-level score and phrase-level score:

𝑠 (𝑞, 𝑑) = 𝑤term · 𝑠term (𝑞, 𝑑)︸     ︷︷     ︸
term score

+𝑤phr · 𝑠phr (𝑞, 𝑑)︸    ︷︷    ︸
phrase score

, (2)

where𝑤term and𝑤phr are weights to achieve weight normalization, and the score of a phrase can be
defined as the average of TF-IDF weights of its component terms. Xu et al. [218] also investigated
the approach that extends BM25 with n-grams. They defined the BM25 kernel as follows:

BM25-Kernel(𝑞, 𝑑) =
∑︁
𝑡

BM25-Kernel𝑡 (𝑞, 𝑑), (3)

where BM25-Kernel𝑡 (𝑞, 𝑑) denotes the BM25 kernel of type 𝑡 , and 𝑡 can be bigram, trigram, etc.

BM25-Kernel𝑡 (𝑞, 𝑑) =
∑︁
𝑥

IDF𝑡 (𝑥) × (𝑘3 + 1) × 𝑓𝑡 (𝑥, 𝑞)
𝑘3 + 𝑓𝑡 (𝑥, 𝑞) × (𝑘1 + 1) × 𝑓𝑡 (𝑥, 𝑑)

𝑘1
(
1 − 𝑏 + 𝑏 𝑓𝑡 (𝑑)

𝑓𝑡

)
+ 𝑓𝑡 (𝑥, 𝑑)

, (4)

where 𝑥 denotes a n-gram of type 𝑡 , 𝑓𝑡 (𝑥, 𝑞) and 𝑓𝑡 (𝑥, 𝑑) are frequency of unit 𝑥 in query 𝑞 and
document 𝑑 respectively, 𝑓𝑡 (𝑑) is total number of units with type 𝑡 in document 𝑑 , 𝑓𝑡 is average
number of 𝑓𝑡 (𝑑) within the whole collection, 𝑘1, 𝑘3, and 𝑏 are parameters.
Integrating term dependencies to term-based methods increases the complexity, but gains are

not significant as expected [118]. The Markov Random Field (MRF) approach proposed by Metzler
and Croft [148] reports the first clear improvement for term dependency models over term-based
baselines. In MRF, the document and each term in the query are represented as a node respectively.
The document node is connected to every query term node. Moreover, there are some edges
between query term nodes, based on pre-defined dependency relations (e.g., bigram, named entity,
or co-occurrence within a distance), to represent their dependencies. Then, the joint probability of
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query 𝑞 and document 𝑑 can be formally represented as

𝑃 (𝑞, 𝑑) = 1
𝑍

∏
𝑐∈clique(G)

exp
(
𝜆𝑐 𝑓 (𝑐)

)
, (5)

where 𝑐 denotes a clique on the constructed graph G, 𝜆𝑐 is the interpolation coefficient, 𝑓 (𝑐) is
the potential function defined on clique 𝑐 , and 𝑍 denotes the partition function. In practice, we
can define different feature functions to capture different types of term dependencies, and the
coefficient 𝜆𝑐 can be optimized towards designative retrieval metrics, as in [148].
While those methods are capable of capturing certain syntactics and semantics, their “under-

standing” capability is much limited. How to go beyond these simple counting statistics and mine
deeper signals to better query-document matching is still an open question. Nevertheless, there is
no doubt that term dependency models demonstrate the importance of understanding document
semantics with context, stimulating a series of neural retrieval models that emphasize the capturing
of contextual information [112, 232].

4.4 Topic Models
Another line to improve 𝜙 and 𝜓 simultaneously focuses on semantic relationships between
words—usually modeling words’ co-occurrence relation to discover latent topics in texts and
matching queries and documents by their topic representations. In this way, each dimension of the
representation indicates a topic instead of a term. Besides, the inverted index becomes impractical
since topic representations lose sparsity.
Topic modeling methods have received much attention in natural language processing (NLP)

tasks. Overall, they can be divided into two categories, including probabilistic and non-probabilistic
approaches. The non-probabilistic topic model, such as latent semantic indexing (LSI) [54], non-
negative matrix factorization (NMF) [121], and regularized latent semantic indexing (RLSI) [211], is
usually obtained by matrix factorization. Taking LSI as an example, it uses a truncated singular value
decomposition (SVD) to obtain a low-rank approximation to the document-term matrix, then each
document can be represented as a mixture of topics. Other topic models choose different strategies
to conduct the matrix factorization. For example, NMF introduces the non-negative constraint and
RLSI assumes topics are sparse. For probabilistic approaches, probabilistic latent semantic indexing
(pLSI) [90] and latent dirichlet allocation (LDA) [25] are most widely used. Probabilistic topic models
are usually generative models, where each topic is defined as a probabilistic distribution over terms
in the vocabulary and each document in the collection is defined as a probabilistic distribution over
topics.

Studies that apply topic models to improve retrieval results can be classified in two ways. The first
is to obtain query and document representations in the topic space, and then calculate relevance
scores based on topic representations. For example, the LSI learns a linear projection that casts the
sparse bag-of-words text vector into a dense vector in latent topic space, then the relevance score
between a query and a document is the cosine similarity of their corresponding dense vectors. In
the LDA-based retrieval model [213], queries and documents are represented by their latent topic
distributions. The relevance score of each query-document pair is computed by the Kullback-Leibler
divergence as follows:

𝑠 (𝑞, 𝑑) = 1 − 1
2

(
KL

(
𝑣𝑞 ∥𝑣𝑑

) + KL
(
𝑣𝑑 ∥𝑣𝑞

) )
= 1 − 1

2

𝐾∑︁
𝑘=1

((
𝑣𝑘𝑞 − 𝑣𝑘𝑑

)
log

𝑣𝑘𝑞

𝑣𝑘
𝑑

)
, (6)

where 𝑣𝑞 and 𝑣𝑑 are topic representations of query 𝑞 and document 𝑑 respectively, and 𝑣𝑘𝑞 and 𝑣𝑘
𝑑

are the 𝑘-th element of 𝑣𝑞 and 𝑣𝑑 .
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Another way is to combine topic models with term-based methods. A simple and direct approach
is to linearly combine relevance scores calculated by topic models and term-based models [90]:

𝑠 (𝑞, 𝑑) = 𝛼𝑠topic (𝑞, 𝑑) + (1 − 𝛼)𝑠term (𝑞, 𝑑), (7)
where 𝛼 is the coefficient, 𝑠topic (𝑞, 𝑑) and 𝑠term (𝑞, 𝑑) are the topic matching score and term matching
score respectively. In addition, probabilistic topic models can be taken as the smoothing method to
language models for IR [57, 213, 224].

𝑃 (𝑞 |𝑑) =
∏
𝑤∈𝑞

𝑃 (𝑤 |𝑑) =
∏
𝑤∈𝑞

(
𝛼𝑃LM (𝑤 |𝑑) + (1 − 𝛼)𝑃TM (𝑤 |𝑑)

)
, (8)

where 𝛼 is the coefficient, 𝑃LM (𝑤 |𝑑) and 𝑃TM (𝑤 |𝑑) are generating probabilities of word 𝑤 given
document 𝑑 estimated by a language model and a topic model. The 𝑃TM (𝑤 |𝑑) can be defined as:

𝑃TM (𝑤 |𝑑) =
𝐾∑︁
𝑧=1

𝑃 (𝑤 |𝑧)𝑃 (𝑧 |𝑑), (9)

where 𝑧 denotes a latent topic.
According to results in [10], using latent topic representations obtained by topic models alone for

IR tasks only has small gains or poor performance over term-based baselines, unless combining them
with term-based methods. Possible reasons include: (1) These topic models are mostly unsupervised,
learning with a reconstruction objective, either based on mean squared error [54] or likelihood [25,
90]. They may not learn a matching score that works well for specific retrieval tasks; (2) Word
co-occurrence patterns learned by these topic models are from documents, ignoring the fact that
language usages in searching texts (queries) can be different from those in writing texts (documents),
especially when the heterogeneity between queries and documents is significant; (3) Topic models
represent documents as compact vectors, losing detailed matching signals over term-level. Later,
using more powerful neural models, e.g., doc2vec [120], instead of topic models for information
retrieval has achieved better results [5, 6].

4.5 Translation Models
A notable attempt to address the vocabulary mismatch problem is the statistical translation ap-
proach, which enriches the document representation function𝜓 from term frequency to translation
models. Statistical machine translation (SMT) is leveraged for IR by viewing queries as texts in
one language and documents as texts in another language. Retrieval by translation models needs
to learn translation probabilities from queries to associated relevant documents, which can be
obtained from labeled data, and thus belongs to the supervised learning approach.

Berger and Lafferty [21] firstly proposed to formulate retrieval tasks as SMT problem, in which
query 𝑞 is translated into document 𝑑 with the conditional probability 𝑃 (𝑑 |𝑞). The model can be
written as:

𝑃 (𝑑 |𝑞) ∝ 𝑃 (𝑞 |𝑑)𝑃 (𝑑), (10)
where 𝑃 (𝑞 |𝑑) denotes a translation model which translates 𝑑 to 𝑞, and 𝑃 (𝑑) denotes a language
model giving rise to 𝑑 . Translation probabilities can be estimated with queries and their associated
relevant documents, e.g., click-through datasets, and the language model can be learned with
different schemes, such as BM25. As Karimzadehgan and Zhai have noted [108], the translation
probability 𝑃 (𝑞 |𝑑) allows for the incorporation of semantic relations between terms with non-zero
probabilities, which provides a sort of “semantic smoothing” for 𝑃 (𝑞 |𝑑).
One important difference between conventional machine translation and machine translation

for retrieval is that both queries (target language) and documents (source language) are in the same
language. The probability of translating a word to itself should be quite high, i.e., 𝑃 (𝑤 | 𝑤) > 0,
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which corresponds to exact term matching in retrieval tasks. How to accurately calculate self-
translation probabilities is an important issue. If self-translation probabilities are too large, it will
make other translation probabilities small and decrease the effect of using translation. On the other
hand, if self-translation probabilities are too small, then it will make exact matching less effective
and hurt the performance of retrieval. A number of methods [74, 108, 109] have been proposed to
estimate self-translation probabilities. For example, Karimzadehgan and Zhai [108] proposed to
address this estimation problem based on normalized mutual information between words, which is
less computationally expensive and has better coverage of query words than the synthetic query
method of estimation [21]:

𝑃mi−𝛼 =

{
𝛼 + (1 − 𝛼)𝑃mi (𝑤 | 𝑢) if𝑤 = 𝑢

(1 − 𝛼)𝑃mi (𝑤 | 𝑢) if𝑤 ≠ 𝑢
(11)

where 𝛼 is the weight which is empirically set on heldout data. Similarly, an alternative heuristic is
to impose constant self-translation probabilities for all words in the vocabulary [109], i.e., setting
𝑃 (𝑢 |𝑢) to a constant value 𝑠 for every 𝑢, where 𝑃𝑡 (𝑤 |𝑢) is estimated according to:

𝑃mi−𝑠 =

{
𝑠 if𝑤 = 𝑢

(1 − 𝑠) 𝑃mi (𝑤 |𝑢)∑
𝑣≠𝑢 𝑃mi (𝑣 |𝑢) if𝑤 ≠ 𝑢

(12)

All these methods assume that self-translation probabilities estimated directly from data are not
optimal for retrieval tasks, and the authors have demonstrated that significant improvement can be
achieved by adjusting the probabilities [74].
Statistical translation models have also been applied to query expansion. For example, Riezler

and Liu [176] suggested utilizing a word-based translation model for query expansion. The model
is trained with click-through data consisting of queries and snippets of clicked web pages. Gao and
Nie [75] generalized the word-based translation model to a concept-based model and employed the
model in query expansion.
Nevertheless, SMT models have not been used much because they are difficult to train due

to data sparsity, and are not more effective than the term-based retrieval with pseudo-relevance
feedback [119] in most situations. Subsequently, after the appearance of neural word embeddings,
using distributed representations to calculate translation probabilities and improve translation
models are proposed naturally [73, 242].

Takeaway. Early semantic retrieval models, such as query expansion, document expansion,
term dependency models, topic models, and translation models, aim to improve classical BoW
representations with semantic units extracted from external resources or the collection itself. Most
of them still follow classical term-based methods by representing texts with high-dimensional
sparse vectors in symbolic space, so as to be easily integrated with the inverted index to support
efficient retrieval. However, these approaches always rely on hand-crafted features to build repre-
sentation functions. As a result, only shallow syntactic and semantic information can be captured.
Nevertheless, these early proposals are crucial because they have initially explored beneficial factors
for the first-stage retrieval. Thereby, a series of new semantic retrieval models could be inspired
when the deep learning technique breaks out, and exciting results could be obtained concomitantly.

5 NEURAL METHODS FOR SEMANTIC RETRIEVAL
During the past decade, big data and fast computer processors have brought a new era for deep
learning technique. A set of simple math units, called neurons, are organized into layers, and
stacked into neural networks. Neural networks have the expressive power to represent complex
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Table 1. Overview of Neural Methods for Semantic Retrieval.

Model Task
Type Representative Work Ad-hoc Retrieval OpenQA CQA

Sparse Retrieval Methods

Neural Weighting Schemes

DeepTR [240]
√

NTLM [242]
√

TVD [71]
√

DeepCT [49, 51]
√

HDCT [50]
√

Mitra et al. [156]
√

Mitra et al. [154]
√

GAR [146]
√

doc2query [164]
√

docTTTTTquery [162]
√

UED [219]
√

SparTerm [14]
√

DeepImpact [145]
√

Sparse Representation Learning

Semantic Hashing [182]
√

SNRM [228]
√

UHD-BERT [100]
√

Ji et al. [103]
√

Dense Retrieval Methods

Term-level Representation Learning

OoB [111]
√

DESM [155]
√

DC-BERT [237]
√

ColBERT [112]
√

COIL [77]
√

De-Former [34]
√

PreTTR [141]
√

PIQA [186]
√

DenSPI [187]
√

SPARC [122]
√

MUPPET [69]
√

Document-level Representation Learning

FV [45]
√

Gillick et al. [81]
√

Ai et al. [5]
√

NVSM[85]
√

SAFIR [4]
√

Liu et al. [136]
√

Tamine et al. [197]
√

Henderson et al. [87]
√

DPR [110]
√

RepBERT [232]
√

Lin et al. [132]
√

Tahami et al. [196]
DSSM [96]

√
ARC-I [93]

√
QA_LSTM [198]

√
ORQA [123]

√
REALM [84]

√
Chang et al. [35]

√
Liang et al. [130]

√ √
Poly-encoders [97]

√ √
ME-BERT [137]

√ √
Tang et al. [199]

√ √

Hybrid Retrieval Methods

Vulić and Moens [207]
√

GLM [73]
√

DESM𝑀𝐼𝑋𝑇𝑈𝑅𝐸 [155]
√

Roy et al. [180]
√

BOW-CNN [62]
√

EPIC [142]
√

DenSPI [187]
√

SPARC [122]
√

Hybrid [137]
√ √

CLEAR [78]
√

Kuzi et al. [115]
√
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functions and fit hidden correlations in complicated tasks [98]. For example, it converts discrete
symbols (e.g., words, phrases and sentences) into low-dimensional dense vectors which are able to
capture semantic and syntactic features for various NLP tasks [48, 223]. Naturally, it also attracts
researchers from the IR field and leads to the research wave of neural approaches to IR (neural IR).
However, most earlier researches focus on re-ranking stages [82, 96]. Until recently, much attention
is paid to explore neural networks to improve the semantic matching for the first-stage retrieval.

Different from early semantic retrieval models, neural semantic retrieval models employ neural
networks to build the representation functions (i.e., 𝜙 and/or 𝜓 ) as well as the scoring function
(i.e., 𝑓 ). In this way, these models can learn deep semantics and complex interactions from data
in an end-to-end way. From the perspective of model architecture, neural methods for semantic
retrieval can be categorized into three classes, including sparse retrieval methods, dense retrieval
methods, and hybrid retrieval methods. In this section, we will review major works about them.
Table 1 summaries surveyed neural semantic retrieval models in different categories.

5.1 Sparse Retrieval Methods
Sparse retrieval methods usually represent each document and each query with sparse vectors,
where only a small number of dimensions are active. The sparse representation has attracted great
attention as it connects to the nature of human memories and shows better interpretability [14].
Besides, sparse representations can be easily integrated into existing inverted indexing engines
for efficient retrieval. Without loss of generality, sparse retrieval methods can be categorized into
two classes. One is to encode queries and documents still in the symbolic space but employ neural
models to improve term weighting schemes, namely neural weighting schemes. The other is to
directly learn sparse representations, i.e., 𝜙 (𝑞) and𝜓 (𝑑), in latent space for queries and documents
with neural networks, which we call sparse representation learning.

5.1.1 Neural Weighting Schemes. One of basic methods to leverage the advantage of neural models
while still employing sparse term-based retrieval is to re-weight the term importance before
indexing. To this purpose, a direct way is to design neural models to predict term weights based on
semantics rather than pre-defined heuristic functions. An alternative method is to augment each
document with additional terms, then, expanded documents are stored and indexed with classical
term-based methods.
One of the earliest methods to learn term weights is the DeepTR model [240], which leverages

neural word embeddings to estimate the term importance. Specifically, it constructs a feature vector
for each query term and learns a regression model to map feature vectors onto ground truth weights
of terms. Estimated weights can be directly used to replace classical term weighting schemes in the
inverted index, e.g., BM25 and LM, to generate bag-of-words query representations to improve the
retrieval performance. More recently, Frej et al. [71] proposed a term discrimination values (TDVs)
learning method, which replaces the IDF field in the original inverted index based on FastText [26].
In addition to the pairwise ranking objective, they also minimized the ℓ1-norm of bag-of-words
document representations to reduce the memory footprint of the inverted index and speed up
the retrieval process. Besides, Zuccon et al. [242] used word embeddings within the translation
language model for information retrieval. They leveraged word embeddings to estimate translation
probabilities between words. This language model captures implicit semantic relations between
words in queries and those in relevant documents, thus bridging the vocabulary mismatch and
producing more accurate estimations of document relevance.

In recent years, contextual word embeddings, which are often learned with pre-trained language
models, have achieved great success in many NLP tasks [55, 169, 221]. Compared with static word
embeddings (e.g., Word2Vec [149], GloVe [168], and FastText [26]), contextual word embeddings
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model the semantic information of words under the global context. There are also several works
trying to utilize contextual word embeddings to estimate term weights. For example, Dai and
Callan [49, 51] proposed a BERT-based framework (DeepCT) to evaluate the term importance of
sentences/passages in a context-aware manner. It maps contextualized representations learned
by BERT to term weights, then uses predicted term weights to replace the original TF field in
the inverted index. Experimental results show that predicted weights could better estimate the
term importance and improve term-based methods for the first-stage retrieval. Moreover, results
in [143] verify that DeepCT can improve search efficiency via static index pruning technique.
Furthermore, Dai et al. [50] introduced the HDCT model to learn term weights for long documents.
It firstly estimates passage-level term weights using contextual term representations produced by
BERT. Then, passage-level term weights are combined into document-level term weights through a
weighted sum. It is worth noting that the learned term weights by the above models, including
DeepCT and HDCT, are in the range of 0-1. Then, they scale the real-valued predictions into a
tf -like integer. In this way, these term weights can be directly integrated into the existing inverted
index and be implemented with existing retrieval models.
Above mentioned approaches rely on neural embeddings, which are learned within local or

global contexts, to predict term weights directly. Besides, there are also some works trying to esti-
mate term weights by evaluating the matching score between each term and the whole document
through a complex interaction network. For example, Mitra et al. [156] proposed to incorporate
query term independence assumption into three state-of-the-art neural ranking models (BERT [55],
Duet [153], and Conv-KNRM [52]), and the final relevance score of the document can be decom-
posed with respect to each query term. In this way, these neural ranking models can be used to
predict the matching score of each term to the document, which can be pre-computed and indexed
offline. Experimental results on a passage retrieval task show that this method exhibits significant
improvement over classical term-based methods, with only a small degradation compared with
original neural ranking models. Similarity, Mitra et al. [154] extended the Transformer-Kernel [92]
architecture to the full retrieval setting by incorporating the query term independence assump-
tion. Firstly, they simplified the query encoder by getting rid of all Transformer layers and only
considering non-contextualized embeddings for query terms. Secondly, instead of applying the
aggregation function over the full interaction matrix, they applied it to each row of the matrix
individually, which corresponds to an individual matching score between each query term and the
whole document.

In addition to explicitly predicting term weights, another kind of method is to augment the
document with additional terms using neural sequence-to-sequence (seq2seq) models. In this way,
term weights of those elite terms can be promoted in the inverted index. In fact, this kind of method
follows the idea of document expansion described in Section 4.2, yet it does the expansion with
neural networks. For example, the doc2query [164] model trains a seq2seq model based on relevant
query-document pairs. Then, the seq2seq model generates several queries for each document, and
those synthetic queries are appended to the original document, forming the “expanded document”.
This expansion procedure is performed on every document in the corpus, and the expanded doc-
ument collection is indexed as usual. Finally, it relies on a BM25 algorithm to retrieve relevant
candidates. When combined with a re-ranking component, it achieves the state-of-the-art perfor-
mance on MS MARCO [160] and TREC CAR [59] retrieval benchmarks. Later, the docTTTTTquery
model [162] employs a stronger pre-trained model T5 [173] to generate queries and achieves large
gains compared with doc2query. Moreover, Yan et al. [219] proposed a Unified Encoder-Decoder
networks (UED) to enhance document expansion with the document ranking task. Experimental
results on two large-scale datasets show that UED achieves a new state-of-the-art performance on
both MS MARCO passage retrieval task and TREC 2019 Deep Learning Track.
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There are also some works trying to learn term weights as well as document expansion si-
multaneously in a unified framework [14, 70, 145]. For example, Bai et al. [14] proposed a novel
framework SparTerm to build term-based sparse representations in the full vocabulary space. It
takes the pre-trained language model to map the frequency-based BoW representation to a sparse
term importance distribution in the whole vocabulary. In this way, it can simultaneously learn
the weights of existing terms and expand new terms for the document. Besides, SparTerm also
constructs a gating controller to generate binary and sparse signals across the dimension of vo-
cabulary size, ensuring the sparsity of final representations. Besides, DeepImpact [145] leverages
docTTTTTquery to enrich the document collection, and then uses a contextualized language model
to estimate the semantic importance of tokens in the document. In this way, it can produce a
single-value representation for the original token and expanded token in each document.

5.1.2 Sparse Representation Learning. In contrast to weighting terms in the symbolic space, sparse
representation learning methods focus on building sparse vectors for queries and documents, where
representations are expected to capture semantic meanings of each input text. In this way, queries
and documents are represented in the latent space. But different from topic models in Section
4.4, each dimension of the latent space learned by neural models has no clear concepts. Then, the
learned sparse representations can be stored and searched with an inverted index efficiently, where
each unit in the inverted index table corresponds to a “latent word” instead of a term.
Learning sparse embeddings can be traced back to semantic hashing [182], which employs

deep auto-encoders for semantic modeling. It takes a multi-layer auto-encoder to learn distributed
representations for documents. This model captures the document-term information, but it does
not model the relevance relationship between queries and documents. Thus, it still cannot outper-
form classical term-based retrieval models, such as BM25 and QL. Zamani et al. [228] proposed a
standalone neural ranking model to learn latent sparse representation for each query and document.
Specifically, it firstly maps each n-gram in queries and documents to a low-dimensional dense
vector to compress the information and learn the low dimensional manifold of the data. Then, it
learns a function to transform n-gram representations to high-dimensional sparse vectors. Finally,
the dot product is used as the matching function to calculate the similarity between each query and
document. This architecture learns latent sparse representations to better capture semantic rela-
tionships between query-document pairs, showing better performance over traditional term-based
retrieval and several neural ranking models. But it uses n-gram as an encoding unit, which can only
capture local dependencies and cannot adjust dynamically to the global context. Recently, Jang
et al. [100] presented UHD-BERT, a novel sparse retrieval method empowered by extremely high
dimensionality and controllable sparsity. They showed that the model outperforms previous sparse
retrieval models significantly and delivers competitive performance compared to dense retrieval
models.
To make interaction-focused models applicable for the first-stage retrieval, Ji et al. [103] pro-

posed to use sparse representations to improve the efficiency of three interaction-focused neural
algorithms (DRMM [82], KNRM [215], and Conv-KNRM [52]). The work investigates a Locality
Sensitive Hashing (LSH [53]) approximation of three neural methods with fast histogram-based
kernel calculation and term vector precomputing for a runtime cache. Evaluation results show
that the proposed method yields 4.12x, 80.54x, and 106.52x time speedups for DRMM, KNRM, and
Conv-KNRM respectively on the ClueWeb dataset.

5.2 Dense Retrieval Methods
One of the biggest benefits of neural retrieval methods is to move away from sparse representations
to dense representations, which is able to capture semantic meanings of input texts for better
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Fig. 2. Dual-encoder architecture of dense retrieval methods.

relevance evaluation. As shown in Figure 2, dense retrieval models usually have dual-encoder
architecture, also called Siamese network [30], which consists of twin networks that accept distinct
inputs (queries and documents) and learn standalone dense embeddings for them independently.
Then, the learned dense representations 𝜙 (𝑞) and 𝜓 (𝑑) are fed into a matching layer 𝑓 , which
is often implemented via a simple similarity function, to produce the final relevance score. To
support the online serving, the learned dense representations are often indexed and searched via
approximate nearest neighbor (ANN) algorithms [38, 106].
Researchers have devoted a lot of effort to designing sophisticated architectures to learn dense

representations for retrieval. Due to the heterogeneous nature of text retrieval, the document
often has abundant contents and complicated structures, so that much attention has been paid
to the design of the document-side representation function 𝜓 . According to the form of learned
document representations, we can divide dense retrieval models into two classes, as shown in
Figure 3, term-level representation learning and document-level representation learning.

5.2.1 Term-level Representation Learning. Term-level representation learning methods learn fine-
grained term-level representations for queries and documents, and queries and documents are
represented as a sequence/set of term embeddings. As is shown in Figure 3 (a), the similarity
function 𝑓 then calculates term-level matching scores between the query and the document and
aggregates them as the final relevance score.

One of the easiest methods is to take word embeddings, which have been proved to be effective in
building ranking models for later re-ranking stages [82, 215], to build term-level representations for
queries and documents. For example, Kenter and de Rijke [111] investigated whether it is possible
to rely only on semantic features, e.g., word embeddings, rather than syntactic representations to
calculate similarities between short texts. They replaced the 𝑡 𝑓 (𝑞𝑖 , 𝑑) in BM25 with the maximum
cosine similarity between the word embedding of 𝑞𝑖 and words in the document 𝑑 . Their results
show that the model can outperform baseline methods that work under the same condition. Mitra
et al. [155] trained a word2vec embedding model on a large unlabelled query corpus, but in contrast
to only retain the output lookup table, they retained both input and output projections, allowing
to leverage both embedding spaces to derive richer distributional relationships. During ranking,
they mapped query words into the input space and document words into the output space, and
computed the relevance score by aggregating cosine similarities across all query-document word
pairs. The experimental results show that the DESM can re-rank top documents returned by a
commercial Web search engine, like Bing, better than a term-based signal like TF-IDF. However,
when retrieving in a non-telescoping setting, DESM features are very susceptible to false positive
matches and can only be used either in conjunction with other document ranking features, such as
TF-IDF, or for re-ranking a smaller set of candidate documents.
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Fig. 3. Different dense retrieval models for the first-stage retrieval.

In recent years, the combination of contextual word embeddings and self-supervised pre-training
has revolutionized the field of NLP and obtained state-of-the-art performance on many NLP
tasks [55, 169, 221]. There are also a number of works that employ contextual word embeddings to
learn query/document representations for IR. For example, Zhang et al. [237] proposed the DC-
BERT which employs dual BERT encoders for low layers, as shown in Figure 4 (a), where an online
BERT encodes the query only once and an offline BERT pre-encodes all documents and caches all
term representations. Then, the obtained contextual term representations are fed into high-layer
Transformer interaction, which is initialized by the last 𝑘 layers of the pre-trained BERT [55]. The
number of Transformer layers 𝐾 is configurable to a trade-off between the model capacity and
efficiency. On the SQuAD dataset and Natural Questions dataset, DC-BERT achieves 10x speedup
over the original BERT model on document retrieval, while retaining most (about 98%) of the
QA performance compared to state-of-the-art approaches for open-domain question answering.
An alternative way to use BERT for the term-level representation learning is the ColBERT [112]
model, which employs a cheap yet powerful interaction function, i.e., a term-based MaxSim, to
model fine-grained matching signals, as shown in Figure 4 (b). Concretely, every query term
embedding interacts with all document term embeddings via a MaxSim operator, which computes
maximum similarity (e.g., cosine similarity or L2 distance), and scalar outputs of these operators
are summed across query terms. Based on this, it can achieve cheap interaction and high-efficient
pruning for top-𝑘 relevant documents retrieval. Results on MS MARCO and TREC CAR show
that ColBERT’s effectiveness is competitive with existing BERT-based models (and outperforms
every non-BERT baseline), while executing two orders-of-magnitude faster and requiring four
orders-of-magnitude fewer FLOPs per query. A similar model COIL is proposed by Gao et al. [77],
but the query term embedding only interacts with exactly matched document term embeddings in
the MaxSim operator. Experimental results show that COIL performs on par with more expensive
and complex all-to-all matching retrievers (e.g., ColBERT). Besides, Cao et al. [34] and MacAvaney
et al. [141] proposed DeFormer and PreTTR to decompose lower layers of BERT, which substitutes
the full self-attention with question-wide and passage-wide self-attentions, as shown in Figure
5. The proposed approaches considerably reduce the query-time latency of deep Transformer
networks. The difference between them is that the PreTTR model [141] inserts a compression layer
to match attention scores to reduce the storage requirement up to 95% but without substantial
degradation in retrieval performance.
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Fig. 4. Term-level representation learning methods. The left sub-figure shows the architecture of DC-
BERT [237] model, and the right shows the architecture of ColBERT [112].

A natural extension of the term-level representation learning is to learn phrase-level (i.e, n-
grams, sentences) representations for documents, and documents are finally represented as a
sequence/set of embeddings. Meanwhile, the query is usually viewed as one phrase and abstracted
into a single vector as it is often short in length. Then, the similarity function 𝑓 calculates matching
scores between the query with all phrases in the document and aggregates these local matching
signals to produce the final relevance score. For example, Seo et al. [186] proposed to learn phrase
representations based on BiLSTM for OpenQA task. It leads to a significant scalability advantage
since encodings of answer candidate phrases in the document can be pre-computed and indexed
offline for efficient retrieval. Subsequently, Seo et al. [187] and Lee et al. [122] replaced the LSTM-
based architecture with a BERT-based encoder, and augmented dense representations learned by
BERT with contextualized sparse representations, improving the quality of each phrase embedding.
Different from the document encoder, the query encoder only generates one embedding in capturing
the whole contextual information of queries. Experimental results show that the OpenQAmodel that
augments learned dense representationswith learned contextual sparse representations outperforms
previous OpenQA models, including recent BERT-based pipeline models, with two orders of
magnitude faster inference time. For the multi-hop OpenQA task, Feldman and El-Yaniv [69]
proposed the MUPPET model for efficient retrieval. The retrieval is performed by considering
similarities between the question and contextualized sentence-level representations of the paragraph
in the knowledge source. Given the sentence representations (𝒔1, 𝒔2, . . . , 𝒔𝒌 ) of a paragraph 𝑃 , and
the question encoding 𝒒 for 𝑄 , the relevance score of 𝑃 with respect to a question 𝑄 is calculated
in the following way:

s(𝑄, 𝑃) = max
𝑖=1,...,𝑘

𝜎
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where𝒘1,𝒘2,𝒘4 ∈ R𝑑 and𝑤3, 𝑏 ∈ R are learned parameters. The method achieves state-of-the-art
performance over two well-known datasets, SQuAD-Open and HotpotQA.

5.2.2 Document-level Representation Learning. The document-level representation learning meth-
ods learn one or more coarse-level global representation(s) for each query and each document
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Fig. 5. Decompose BERT to question-wide and passage-wide self-attentions.

by abstracting their semantic meanings with dense vectors. It often employs a simple similarity
function 𝑓 (e.g., dot product, or cosine similarity) to calculate the final relevance score based on the
query embedding 𝜙 (𝑞) and the document embedding(s)𝜓 (𝑑), as is shown in Figure 3 (b).

Initial attempts to obtain query embeddings and document embeddings are to directly aggregate
their corresponding word embeddings with some pre-defined heuristic functions. Clinchant and
Perronnin [45] was the first to propose a document representation model, Fisher Vector (FV), based
on continuous word embeddings. It firstly maps word embeddings into a higher-dimensional space,
then aggregates them into a document-level representation through the fisher kernel framework.
Although the FV model outperforms latent semantic indexing (LSI) for ad-hoc retrieval tasks, it does
not perform better than classical IR models, such as TF-IDF and the divergence from randomness [7]
retrieval model. Gillick et al. [81] proposed to utilize the average of word embeddings as the query
or document representation. The experimental results show the proposed model outperforms
term-based retrieval models (e.g., TF-IDF and BM25), which indicates dense retrieval is a viable
alternative to the discrete retrieval model. Obtaining text representations by aggregating word
embeddings loses the contextual and word orders information as classical term-based retrieval
models do. To solve this problem, Le and Mikolov [120] proposed Paragraph Vector (PV), an
unsupervised algorithm that learns fixed-length representations from variable-length pieces of
texts, such as sentences, paragraphs and documents. Ai et al. [5, 6] evaluated the effectiveness of PV
representations for ad-hoc retrieval, but produced unstable performance and limited improvements.
With many attempts that use word/document embeddings to obtain dense representations for
queries and documents, only moderate and local improvements over traditional term-based retrieval
models have been observed, suggesting the need for more IR-customized embeddings or more
powerful representation learning models.

As for embeddings customized for IR, Ai et al. [5] analyzed intrinsic problems of the original PV
model that restrict its performance on retrieval tasks. Then, they produced modifications to the PV
model, making it more suitable for IR tasks. The evaluation results on Robust04 and GOV2 show
the effectiveness of the enhanced PV model. Subsequently, Gysel et al. [85] proposed the Neural
Vector Space Model (NVSM), an unsupervised method that learns latent representations of words
and documents from scratch for news article retrieval. The query is represented by averaging its
constituent word representations and projected to the document feature space. The matching score
between a document and a query is given by the cosine similarity between their representations
in document feature space. The experiments show that the NVSM outperforms lexical retrieval
models on four article retrieval benchmarks. Similar to NVSM, another unsupervised embedding
learning method tailored for IR is SAFIR [4]. SAFIR jointly learns word, concept and document
representations from scratch. The similarity of a query to a document is calculated by averaging
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its word-concept representations and then projecting it into the document space. Finally, the
matching score between the query and the document is given by the cosine similarity between
their representations in the document space. The evaluation on shared test collections for medical
literature retrieval shows the effectiveness of SAFIR in terms of retrieving relevant documents. In
addition to optimizing word/document embeddings for retrieval objectives directly, considering
external knowledge resources, e.g, semantic graphs, ontologies and knowledge graphs, to enhance
embeddings learning for semantic retrieval is another effective solution [136, 159, 197]. For example,
Liu et al. [136] leveraged the existing knowledge (word relations) in the medical domain to constrain
word embeddings using the principle that related words should have similar embeddings. The
resulting constrained word embeddings are used for IR tasks, showing superior effectiveness to
unsupervised word embeddings.

For more powerful representation learning models for the first-stage retrieval, Henderson et al.
[87] proposed a computationally efficient neural method for natural language response suggestion.
The feed-forward neural network uses n-gram embedding features to encode messages and sug-
gested replies into vectors, which is optimized to give message-response pairs higher dot product
values. The DPR [110] model is proposed to learn dense embeddings for text blocks with a BERT-
based dual encoder. The retriever based on the DPR model outperforms a strong Lucene BM25
system on a wide range of OpenQA datasets and is beneficial for the end-to-end QA performance.
Similar to DPR, the RepBERT [232] model employs a dual encoder based on BERT to obtain query
and document representations, then inner products of query and document representations are
regarded as relevance scores. Experimental results show that the RepBERT outperforms BM25 on
the MS MARCO passage ranking task.
Another alternative approach is to distill a more complex model (e.g., term-level representa-

tion learning method or interaction-focused model) to a document-level representation learning
architecture. For example, Lin et al. [132] distilled the knowledge from ColBERT’s expressive
MaxSim operator for computing relevance scores into a simple dot product, thus enabling a single-
step ANN search. Their key insight is that during distillation, tight coupling between the teacher
model and the student model enables more flexible distillation strategies and yields better learned
representations. The approach improves query latency and greatly reduces the onerous storage
requirement of ColBERT, while only making modest sacrifices in terms of effectiveness. Tahami
et al. [196] utilized knowledge distillation to compress the complex BERT cross-encoder network
as a teacher model into the student BERT bi-encoder model. This increases the prediction quality
of BERT-based bi-encoders without affecting its inference speed. They evaluated the approach on
three domain-popular datasets, and results show that the proposed method achieves statistically
significant gains.
It should be noted that among neural models proposed early for IR tasks, such as DSSM [96],

ARC-I [93] and QA_LSTM [198], they learn highly abstract document representations based on
different network architectures, such as fully connection, CNN, and RNN. Then a simple matching
function, such as cosine similarity and bilinear, is used to evaluate similarity scores. These models
are usually proposed for re-ranking stages at the beginning, however, because of their dual-encoder
architecture, it is theoretically that they are also applicable for the first-stage retrieval. Nevertheless,
a study by Guo et al. [82] shows that DSSM, C-DSSM [189], and ARC-I perform worse when trained
on a whole document than when trained only on titles. Due to these limitations, most of these early
neural models fail to beat unsupervised term-based retrieval baselines (e.g., BM25) on academic
benchmarks. These drawbacks motivate the development of models discussed in this survey that
are designed specifically for the retrieval stage.
In addition to learn a single global representation for each query and each document, another

more sophisticated approach is to employ different encoders for queries and documents, where
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Fig. 6. Document-level multi-vector representation method in Poly-encoder [76].

baselines (e.g., BM25) on academic benchmarks. These drawbacks motivate the development of
models discussed in this survey that designed specifically for the retrieval stage.
In addition to learn a single global representation for each query and each document, another

more sophisticated approach is to employ different encoders for queries and documents, where
the document encoder abstracts the content into multiple embeddings—each embedding captures
some aspects of the document, while the query encoder obtains a single embedding for each query.
The motivation is that the documents are often lengthy and have diverse aspects in them, but
the queries are usually short and have focused topics. For example, Luan et al. [107] proposed
the Multi-Vector BERT (ME-BERT) to obtain a single-vector representation for the query and a
multi-vector representation for the document. They represented the sequence of contextualized
query/document embeddings at the top level of a deep Transformer, then defined the single-vector
query representation as the contextualized embedding of the special token “[CLS]” and the multi-
vector document representation as the first𝑚 contextualized vectors of the tokens in the document.
The value of𝑚 is always smaller than 𝑁 , where 𝑁 is the number of tokens in the document. Finally,
the relevance score is calculated as the largest inner product yielded by each document vector with
the query vector. Experimental results show that the ME-BERT model yields strong performances
than alternatives in open retrieval. Similarly, Humeau et al. [76] proposed the Poly-encoder, an
architecture with an additional learned attention mechanism to represent more global features.
The Poly-encoder, as shown in Figure 6, uses two separate Transformer models to encode contexts
and candidates. The candidate is encoded into a single vector 𝒚candi, and the input context, which
usually includes more information than a candidate, is represented with𝑚 vectors (𝒚1

ctxt, . . . ,𝒚
𝑚
ctxt)

instead of just one. Then, the𝑚 vectors are attended using the candidate encoding vector 𝒚candi to
get the final score. The value of𝑚 will give a trade-off between inference accuracy and speed. It
should be noted that different from the general retrieval tasks that the retrieved texts (documents)
are usually longer than the input texts (queries), the task in [76] has longer input texts than the
retrieved texts, thus, the multi-vector representation model is actually employed for the query
encoder in [76].
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Fig. 6. Document-level multi-vector representation method in Poly-encoders [97].

the document encoder abstracts the content into multiple embeddings—each embedding captures
some aspects of the document, while the query encoder obtains a single embedding for each
query [97, 137, 199]. The motivation is that documents are often lengthy and have diverse aspects
in them, but queries are usually short and have focused topics. For example, Luan et al. [137]
proposed the Multi-Vector BERT (ME-BERT) to obtain a single-vector representation for the
query and a multi-vector representation for the document. They represented the sequence of
contextualized query/document embeddings at the top level of a deep Transformer, then defined the
single-vector query representation as the contextualized embedding of the special token “[CLS]”
and the multi-vector document representation as the first𝑚 contextualized vectors of tokens in
the document. The value of𝑚 is always smaller than 𝑁 , where 𝑁 is the number of tokens in the
document. Finally, the relevance score is calculated as the largest inner product yielded by each
document vector with the query vector. Experimental results show that the ME-BERT model yields
strong performance than alternatives in open retrieval. Similarly, Humeau et al. [97] proposed
the Poly-encoders, an architecture with an additional learned attention mechanism to represent
more global features. The Poly-encoders, as shown in Figure 6, uses two separate Transformer
models to encode contexts and candidates. The candidate is encoded into a single vector 𝒚candi, and
the input context, which usually includes more information than a candidate, is represented with
𝑚 vectors (𝒚1

ctxt, . . . ,𝒚
𝑚
ctxt) instead of just one. Then,𝑚 vectors are attended using the candidate

encoding vector 𝒚candi to get the final score. The value of𝑚 will give a trade-off between inference
accuracy and speed. It should be noted that different from general retrieval tasks that retrieved
texts (documents) are usually longer than input texts (queries), the task in [97] has longer input
texts than retrieved texts, thus, the multi-vector representation model is actually employed for the
query encoder in [97].

5.3 Hybrid Retrieval Methods
Sparse retrieval methods take words or “latent words” as the unit of indexing, which preserves
strong discriminative power as the score is calculated by hard matching between each unit. As a
result, they can identify exact matching signals, which are momentous for retrieval tasks. On the
other hand, dense retrieval methods learn continuous embeddings to encode semantic information
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to encode contexts and candidates. The candidate is encoded into a single vector 𝒚candi, and the
input context, which usually includes more information than a candidate, is represented with𝑚
vectors (𝒚1

ctxt, . . . ,𝒚
𝑚
ctxt) instead of just one. Then,𝑚 vectors are attended using the candidate en-

coding vector 𝒚candi to get the final score. The value of𝑚 will give a trade-off between inference
accuracy and speed. It should be noted that different from general retrieval tasks that retrieved
texts (documents) are usually longer than input texts (queries), the task in [97] has longer input
texts than retrieved texts, thus, the multi-vector representation model is actually employed for the
query encoder in [97].

5.3 Hybrid Retrieval Methods
Sparse retrieval methods take words or “latent words” as the unit of indexing, which preserves
strong discriminative power as the score is calculated by hard matching between each unit. As a
result, they can identify exact matching signals, which are momentous for retrieval tasks. On the
other hand, dense retrieval methods learn continuous embeddings to encode semantic information
and softmatching signals, but detailed low-level features are always sacrificed. A natural approach
to balance between the fidelity of sparse retrieval methods and the generalization of dense retrieval
methods is to combine merits of them to build a hybrid retrieval model [78, 85, 115, 208]. Hybrid

Issue 1.1 retrieval methods define multiple representation functions (𝜙 and 𝜓 ), and then obtain sparse and
dense representations for queries/documents. Finally, these representations are used to calculate
the final matching score with different merging ways (𝑓 ). The general architecture of hybrid re-
trieval methods is shown in Figure 7.

With the development of the word embedding technique, there are a number of works on ex-
ploiting it with term-based models for the first-stage retrieval. Vulić and Moens [208] obtained
better results on monolingual and bilingual retrieval by combining the word-embedding-based
method with a uni-gram language model. However, the embedding-based model solely does not
outperform traditional language models in the monolingual retrieval task. That is to say, the
effectiveness of neural semantic retrieval models is more observed when combined with term-
based retrieval methods, instead of replacing them. The consistent observation is also obtained
in [155, 158], that direct using of word embeddings only obtains extremely poor performance in
the non-telescoping setting, unless combining it with a term-based feature, such as BM25. The
GLM [73] is an embedding-based translation model linearly combined with a traditional language
model. The probability of observing a term 𝑡 in the query from a document 𝑑 is modeled by three
parts, i.e., direct term sampling, generating a different term 𝑡 ′ either from the document itself or
from the collection, and then transforming it to the observed query term 𝑡 . The empirical results
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Fig. 7. The general architecture of hybrid retrieval methods.

and soft matching signals, but detailed low-level features are always sacrificed. A natural approach
to balance between the fidelity of sparse retrieval methods and the generalization of dense retrieval
methods is to combine merits of them to build a hybrid retrieval model [78, 85, 115, 207]. Hybrid
retrieval methods define multiple representation functions (𝜙 and𝜓 ), and then obtain sparse and
dense representations for queries/documents. Finally, these representations are used to calculate the
final matching score with different merging ways (𝑓 ). The general architecture of hybrid retrieval
methods is shown in Figure 7.
With the development of the word embedding technique, there are a number of works on

exploiting it with term-based models for the first-stage retrieval. Vulić and Moens [207] obtained
better results on monolingual and bilingual retrieval by combining the word-embedding-based
method with a uni-gram language model. However, the embedding-based model solely does not
outperform traditional language models in the monolingual retrieval task. That is to say, the
effectiveness of neural semantic retrieval models is more observed when combined with term-
based retrieval methods, instead of replacing them. The consistent observation is also obtained
in [155, 158], that direct using of word embeddings only obtains extremely poor performance in
the non-telescoping setting, unless combining it with a term-based feature, such as BM25. The
GLM [73] is an embedding-based translation model linearly combined with a traditional language
model. The probability of observing a term 𝑡 in the query from a document 𝑑 is modeled by three
parts, i.e., direct term sampling, generating a different term 𝑡 ′ either from the document itself or
from the collection, and then transforming it to the observed query term 𝑡 . The empirical results
show that GLM performs better than the traditional language model. Roy et al. [180] also proposed
to combine word vector based query likelihood with the standard language model based query
likelihood for document retrieval. Experiments on standard text collections show that the combined
similarity measure almost always outperforms the language model similarity measure significantly.
Besides, according to the experimental results got in [85], although the NVSM model outperforms
term-based retrieval models on some benchmarks, it will be more useful as a supplementary signal
to term-based models. Similar conclusions could also be found in [4, 136, 197].
Different from using word embeddings to construct dense representations and using term

frequency to obtain term-based matching scores directly, there are also some works trying to
employ simple neural networks to learn sparse and dense representations, then calculate matching
scores based on learned representations. For example, dos Santos et al. [62] proposed the BOW-CNN
architecture to retrieve similar questions in online QA community sites, as shown in Figure 8, which
combines a bag-of-words (BOW) representation with a distributed vector representation created
by a convolutional neural network (CNN). The BOW-CNN model computes two partial similarity
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Fig. 8. The sparse and dense scoring component in BOW-CNN [62].

scores: 𝑠bow (𝑞1, 𝑞2) for BOW representations and 𝑠conv (𝑞1, 𝑞2) for CNN representations. Finally,
it combines two partial scores to create the final score 𝑠 (𝑞1, 𝑞2). They performed experiments
on two datasets collected from Stack Exchange communities. The experimental results evidence
that BOW-CNN is more effective than BOW-based information retrieval methods such as TF-
IDF, and BOW-CNN is more robust than the pure CNN for long texts. Besides, MacAvaney et al.
[142] proposed a new approach for passage retrieval, which trains a model to generate query and
document representations in a given fixed-length vector space, and produce a ranking score by
computing a similarity score between two representations. Different from other representation
learning methods, it represents each query as a sparse vector and each document as a dense
vector. Finally, the dot product is used to compute the similarity between the query vector and
the document vector. The experimental results show that the proposed EPIC model significantly
outperforms prior approaches. It is also observed that the performance is additive with current
leading first-stage retrieval methods.

With the rise of more powerful pre-training neural networks (e.g., BERT, GPT-3), it is a natural
way to combine them with term-based models for improving the first-stage retrieval. Seo et al.
[187] proposed the DenSPI for the retrieval stage of OpenQA. The DenseSPI model constructs
the dense-sparse representation for each phrase unit. The dense vector is represented as pointers
to the start and end BERT-based token representations of the phrase, which is responsible for
encoding syntactic or semantic information of the phrase with respect to its context. The sparse
embedding uses 2-gram-based tf-idf for each phrase, which is good at encoding precise lexical
information. Later, Lee et al. [122] proposed to learn contextual sparse representation for each
phrase based on BERT to replace term-frequency-based sparse encodings in DenSPI [187]. This
method leverages rectified self-attention to indirectly learn sparse vectors in n-gram vocabulary
space, improving the quality of each phrase embedding by augmenting it with a contextualized
sparse representation. Experimental results show that the OpenQA model that augments DenSPI
with learned contextual sparse representations outperforms previous OpenQA models, including
recent BERT-based pipeline models, with two orders of magnitude faster inference time. Luan
et al. [137] proposed to linearly combine the term-based system (BM25-uni) and neural-based
system (dual-encoder or multi-vector model) scores using a single trainable weight 𝜆, tuned on
a development set, which yields strong performance while maintaining the scalability. Gao et al.
[78] proposed the CLEAR model, which uses a BERT-based embedding model to complement the
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term-based model (BM25). Experimental results show that retrieval from CLEARwithout re-ranking
is already almost as accurate as the BERT re-ranking pipeline. Similarly, Kuzi et al. [115] proposed
a general hybrid approach for document retrieval that leverages both a semantic model (BERT) and
a lexical retrieval model (BM25). An in-depth empirical analysis is performed, which demonstrates
the effectiveness of the hybrid approach and also sheds some light on the complementary nature of
the lexical and semantic models.

5.4 Model Learning
As described above, neural semantic retrieval models always define functions 𝜙 ,𝜓 , and 𝑓 in the
network structure. These functions are usually learned from data using deep learning technology.
Here, we discuss key topics on the learning of neural semantic retrieval models, including loss
functions and negative sampling strategies.

5.4.1 Loss Functions. We review major training objectives adopted by neural semantic retrieval
models. Ideally, after the training loss is minimized, all preference relationships between documents
should be satisfied and the model will produce the optimal result list for each query. This makes
training objectives effective in many tasks where performance is evaluated based on the ranking of
relevant documents.
In practice, the most commonly used loss function is sampled cross entropy loss, also called

negative log likelihood loss:

L (
𝑞, 𝑑+, 𝐷−) = − log exp (𝑠 (𝑞, 𝑑+))

exp (𝑠 (𝑞, 𝑑+)) + ∑
𝑑−∈𝐷− exp (𝑠 (𝑞, 𝑑−)) , (14)

where 𝑞 denotes a query, 𝑑+ is a relevant document of 𝑞, and 𝐷− is the irrelevant document set of 𝑞.
Another commonly used loss function is the hinge loss:

L (
𝑞, 𝑑+, 𝐷−) = 1

𝑛

∑︁
𝑑−∈𝐷−

max
(
0,𝑚 − (

𝑠 (𝑞, 𝑑+) − 𝑠 (𝑞, 𝑑−)) ), (15)

where 𝑞 denotes a query, 𝑑+ is a relevant document of 𝑞, 𝐷− is the irrelevant document set of 𝑞, 𝑛 is
the number of documents in 𝐷−, and𝑚 is the margin which is usually set as 1.

In fact, the negative log likelihood loss (Eq. (14)) and hinge loss (Eq. (15)) are also widely used in
many other tasks with different names, e.g., InfoNCE loss in contrastive representation learning [41,
201] and bayesian personalized ranking (BPR) loss in recommender systems [175]. These loss
functions and their variations have been well studied in other fields, including extreme multi-class
classification [15, 24, 174], representation learning [41, 201], deep metric learning [194, 209, 210],
etc. The research progress in these fields might provide some insights to inspire the loss design
in neural semantic retrieval. First of all, Wang et al. [210] showed the softmax log likelihood loss
is actually a smooth version of hinge loss. Moreover, several works have shown that the concept
of margin in hinge loss can also be introduced into softmax cross entropy loss to improve the
performance in tasks like face recognition and Person Re-identification [194, 209]. In addition,
works [41, 210, 220] in different domains all verify that applying the ℓ2 normalization to final
representations (i.e., using cosine as the score function 𝑓 ) along with temperature can make the
learning robust and improve the performance. Another line of research focuses on the bias in
sampled softmax cross entropy loss [42, 101]. For example, works in NLP [24, 101] usually focus on
the unbiased estimation of the full softmax, while Chuang et al. [42] focused on correcting the bias
introduced by the false negative samples that have the same label as the ground truth. It is worth
noting that these conclusions need to be re-examined under the first-stage retrieval task.
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5.4.2 Negative Sampling Strategies. In loss functions (Eq. (14) and Eq. (15)), the negative example
set 𝐷− is an important part of inputs. However, during the learning of the first-stage retrieval
models, it is often the case that only positive examples are available in the training dataset, while
negative examples are not explicitly labeled. In fact, the sampling strategy of negative examples is
a crucial topic in neural semantic retrieval models, because it directly determines the quality of the
learned retrieval model.
Negative sampling is a common fundamental problem in the learning of many tasks where

only positive signals are explicitly existed, like recommender system [60, 220, 225, 226, 236], graph
mining [9, 195, 222], and self-supervised representation learning [27, 37, 41, 86, 238]. Here, we
mainly focus on the research progress in the field of the first-stage retrieval. The neural semantic
retrieval models usually vary in their mechanisms to construct negative examples. But in general,
negative sampling strategies can be divided into three categories:

(1) Random Negative Sampling: random samples from the entire corpus [110, 137] or in batch [81,
87, 88, 232]. It should be noted that if using the batch as a source for random negatives, the
batch size becomes important [81]. Lee et al. [123] suggested to use a large batch size because
it makes the training task more difficult and closer to what the retriever observes at test
time. However, the batch size is usually restricted by computing resources and cannot be
set very largely. To address this problem, He et al. [86] proposed to decouple the size of
mini-batch and sampled negative examples by maintaining a queue of data samples (encoded
representations of the current mini-batch are enqueued, and the oldest are dequeued) to
provide negative samples. In this way, they can use a very large size (e.g., 65,536) for negative
samples in unsupervised visual representation learning. However, random negative sampling
is usually sub-optimal for training neural semantic retrieval models. Models can hardly focus
on improving top ranking performance since these random negative samples are usually
too easy to be distinguished. This problem would lead to serious performance dropping in
practice. To make the model better at differentiating between similar results, one can use
samples that are closer to positive examples in the embedding space as hard negatives for
training. Thus, mining hard negative samples to optimize retrieval performance is a key
problem that needs to be addressed.

(2) Static Hard Negative Sampling: random samples from pre-retrieved top documents by a
traditional retriever [78, 110, 137], such as BM25. Recent researches find it helps training
convergence to include BM25 negatives to provide stronger contrast for representations
learning [110, 137]. Obtaining hard negative samples with pre-retrieval is computationally
efficient. However, hard negative samples obtained by static methods are not real hard
negatives. Intuitively, strong negatives close to relevant documents in an effective neural
retrieval model space should be different from those from term-based retrieval models, as
the goal of neural semantic retrieval models is to find documents beyond those retrieved by
term-based models. If using negative samples from BM25, there exists a severe mismatch
between negatives used to train the retrieval model and those seen in testing.

(3) Dynamic Hard Negative Sampling: random samples from top-ranked irrelevant documents
predicted by the retrieval model itself. Intuitively, negative sampling dynamically according
to current semantic retrieval models, e.g., using the distribution which is proportional to
relevance scores predicted by the current model, should be a very promising choice for
producing informational negative samples [166, 195]. In this way, neural semantic retrieval
models can optimize themselves using negative samples they did wrong (i.e., predict a high
relevance score for an irrelevant document). However, it is usually impractical to score
all candidate documents in a very large corpus on the fly. Thus, in real-world settings,
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periodically refreshing the index and retrieving top-ranked documents as hard negatives is
a more practical compromise choice [61, 78, 95, 216]. For example, hard negatives mining
in [216] elevates the BERT-based siamese architecture to robustly exceed term-based methods
for document retrieval. It also convincingly surpasses concurrent neural semantic retrieval
models for passage retrieval on OpenQA benchmarks.

It should be noted that the negative sampling strategies described above are not exclusivemutually.
In practice, random sampled easy negatives and hard negatives are always used simultaneously.
For example, the counterintuitive finding in [95] shows that models trained simply using hard
negatives cannot outperform models trained with random negatives. The hypothesis is that the
presence of easy negatives in training data is still necessary, as a retrieval model is to operate on
an input space which comprises data with mixed levels of hardness, and the majority of documents
in the collection are easy cases which do not match the query at all. Having all negatives being
such hard will change the representativeness of the training data to the real retrieval task, which
might impose a non-trivial bias to learned embeddings.

Takeaway. Neural semantic retrieval methods learn the representation functions (i.e, 𝜙 and𝜓 )
and the scoring function (𝑓 ) with deep learning technologies. To support fast retrieval, document
representations are often learned with standalone networks, and pre-computed and stored with
delicate structures. According to how the representations are computed and stored, we summarize
neural semantic retrieval methods into three paradigms, i.e., sparse retrieval methods, dense retrieval
methods and hybrid retrieval methods.

• Sparse retrieval methods focus on improving classical term-based methods by either learning
to re-weight terms with contextual semantics or mapping texts into “latent word” space.
Empirical results show that sparse retrieval methods could indeed improve the performance
of the first-stage retrieval, and they are easily integrated with the existing inverted index
for efficient retrieval. Moreover, these methods often show good interpretability as each
dimension of the representation corresponds to a concrete token or a latent word.

• Dense retrieval methods employ the dual-encoder architecture to learn standalone low-
dimensional dense vectors for queries and documents, aiming to capture the global semantics
of input texts. To support online services, the learned dense representations are often indexed
and searched via approximate nearest neighbor (ANN) algorithms. These methods have
shown promising results on several benchmarks (e.g., MS MARCO and TREC CAR), and
attracted increasing attention of researchers.

• Hybrid retrieval methods define multiple representation functions for queries and documents,
and then obtain their sparse and dense representations simultaneously for matching. They
are able to achieve a balance between the fidelity of sparse retrieval methods and the gen-
eralization of dense retrieval methods. As a result, hybrid retrieval methods show better
performance in practice, but require much higher space occupation and retrieval complexity.

For neural semantic retrieval models learning, the negative sampling strategy is decisive for learning
a high-quality retrieval model. Currently, there have been several works to explore better negative
sampling methods, but it is still an open problem on how to mine negative documents for efficient
and effective model learning.

6 CHALLENGES AND FUTURE DIRECTIONS
In this section, we discuss some open challenges and several future directions related to semantic
models for the first-stage retrieval. Some of these topics are important but have not been well
addressed in this field, while some are very promising directions for future researches.
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6.1 Pre-training Objectives for the Retrieval Stage
Starting 2018, there is rapid progress in different NLP tasks with the development of large pre-
training models, such as BERT [55] and GPT [172]. They are pre-trained on the large-scale corpus
and general-purpose modeling tasks such that the knowledge can be transferred into a variety of
downstream tasks. With this intriguing property, one would expect to repeat these successes for IR
tasks.
Some researchers [35, 84, 123] have explored pre-training models for the retrieval stage with

a dual-encoder architecture. For example, Lee et al. [123] proposed to pre-train the two-tower
Transformer encoder model with the Inverse Cloze Task (ICT) to replace BM25 in the passage
retrieval stage for the OpenQA task. The advantage is that the retriever can be trained jointly
with the reader. Nevertheless, the pre-training model does not outperform BM25 on the SQuAD
dataset, potentially because the fine-tuning is only performed on the query-tower. Except for the
ICT pre-training task, Chang et al. [35] also proposed the Body First Selection (BFS) and Wiki
Link Prediction (WLP) tasks, and studied how various pre-training tasks help the large-scale
retrieval problem, e.g., passage retrieval for OpenQA. The experimental results show that with
properly designed paragraph-level pre-training tasks including ICT, BFS, and WLP, the two-tower
Transformer encoder model can considerably improve over the widely used BM25 algorithm.
Besides, Ma et al. [139, 140] proposed pre-training with the Representative Words Prediction (ROP)
task for ad-hoc retrieval, which achieves significant improvement over baselines without pre-
training or with other pre-training methods. However, whether the ROP task works for the retrieval
stage needs to be re-examined since their experiments are conducted under re-ranking stages.

In summary, there has been little effort to design large pre-training models towards the first-stage
retrieval task. As is known to all, the first-stage retrieval mainly focuses on the capability to recall
potentially relevant documents as many as possible. Thus, considering retrieval requirements in
recalling relevant documents and modeling task-dependent characteristics would be important
elements during designing novel pre-training objectives for the retrieval stage. Besides, using
cross-modal data (e.g., images) to enhance language understanding is also a promising direction in
pre-training researches.

6.2 More Effective Learning Strategies
For information retrieval tasks, the construction of benchmark datasets often relies on a pooling
process to recall a subset of documents for expert judging. Such labeling process leads to the
well-known bias problem, where the dataset only contains partially positive documents and the
rest of unlabeled documents are oftentimes assumed to be equally irrelevant [110, 232]. To address
the bias problem, it is necessary to devise smart learning strategies to achieve effective and efficient
model training. For example, Chuang et al. [42] developed a debiased contrastive objective that
corrects for the sampling of the same label data-points, even without knowledge of true labels. Next,
as discussed in Section 5.4.2, hard negative samples can improve the model’s ability to differentiate
between similar examples. However, hard negatives mining strategies have not been fully explored.
One of the state-of-the-art methods is the Asynchronous ANCE training proposed by Xiong et al.
[216], which periodically refreshes the ANN index and samples top-ranked documents as negatives.
Although ANCE is competitive in terms of effectiveness, refreshing the index periodically greatly
increases the model training cost (e.g., 10h for each period). Besides, some works conclude that it
would be more effective to learn semantic retrieval models with hard negative samples and easy
negative samples simultaneously [231]. Thus, in addition to mining hard negatives, it is also worthy
to explore arranging the position and order of training samples since negative documents often
show varied-level of difficulties. We believe it would be interesting and valuable to study more
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complex training strategies, such as curriculum learning [18], to help the model optimization for
the first-stage retrieval. Moreover, the supervised data for IR is always scarce since it requires
much manual labor to obtain. Besides, the supervised dataset is prone to long-tail, sparsity and
other issues. Thus, weak supervised or unsupervised learning, e.g., contrastive learning [41, 86], are
promising directions. For example, Dai and Callan [50] proposed a content-based weak supervision
strategy that exploits the internal structure of documents to mine training labels.

6.3 Benchmark Testbed for Efficiency Comparison
The multi-stage retrieval paradigm aims to balance between the effectiveness and efficiency of
retrieval tasks, where the first-stage retrieval focus on the efficiency and re-ranking stages pay
more attention to the effectiveness. But efficiency metrics in isolation are meaningless unless
contextualized with corresponding effectiveness measures. Ideally, the efficiency metrics at differ-
ent effectiveness cutoffs should be reported on the leaderboard. Moreover, since the customized
hardware, e.g., GPUs or TPUs, has a significant impact on the computation time of deep models,
and the response time of the first-stage retrieval models is also infamously sensitive to constraints,
such as locality of data on file systems for caching, it is expected to compare different models
under the same conditions. However, fair conditions for model efficiency comparison have not been
fully valued and studied in the IR field as in the computer vision (CV) community. For example,
the medical computer vision community has already recognized the need for a focus on run time
considerations. The medical image analysis benchmark VISCERAL [104] includes run-time mea-
surements of participant solutions on the same hardware. Additionally, CV tasks, such as object
detection and tracking, often require real-time results [94]. For IR tasks, Hofstätter and Hanbury
[91] put forward a preliminary solution, which makes the comparison of run time metrics feasible
by introducing docker-based submissions of complete retrieval systems so that all systems can be
compared under the same hardware conditions by a third party.

6.4 Advanced Indexing Schemes
As described in Section 3.2, for IR tasks, indexing schemes play an important role in determining
the way to organize and retrieve large-scale documents. Specially, most dense retrieval methods,
which learn dense representations for queries and documents, rely on ANN algorithms to perform
efficient vector search for online services [32, 112].

Existing dense retrieval methods always separate two steps of representation learning and index
building. This pattern suffers from a few drawbacks in practical scenarios. Firstly, the indexing
process cannot benefit from supervised information because it uses the task-independent function
to build the index. Besides, the representation and index are separately obtained and thus may not
be optimally compatible. These problems all result in severely decayed retrieval performance. In
fact, there have been studies [227, 233] to explore the joint training of encoders and indexes in the
fields of image retrieval and recommendation. For information retrieval, it is still in its infancy
stage to design joint learning schemes of the first-stage retrieval models and indexing methods,
and we believe it would be an interesting and promising direction.

On the other hand, how to design better ANN algorithms that can manage large-scale documents
and support efficient and precise retrieval is another important direction. Compared with the
brute-force search, the essence of ANN search is to sacrifice part of precision to get higher retrieval
efficiency. Generally, there are two kinds of ANN algorithms from the principle of improving
retrieval efficiency. One is non-exhaustive ANN search methods [22, 144], and the other is vector
compression methods [79, 99, 102]. However, each method has its limitations or deficiency, where
the non-exhaustive method has a large index size and the compression method has suboptimal
performance. Thus, with the booming development of dense retrieval methods, it is urgent to
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develop more advanced ANN search algorithms to achieve a better balance between the efficiency
and effectiveness.

7 CONCLUSION
The purpose of this survey is to summarize the current research status on semantic retrieval models,
analyze existing methodologies, and gain some insights for future development. It includes a brief
review of early semantic retrieval methods, a detailed description of recent neural semantic retrieval
methods and the connection between them. Specially, we pay attention to neural semantic retrieval
methods, and review them from three major paradigms, including sparse retrieval methods, dense
retrieval methods and hybrid retrieval methods. We also refer to key topics about neural semantic
retrieval models learning, such as loss functions and negative sampling strategies. In addition, we
discuss several challenges and promising directions that are important for future researches. We
look forward to working with the community on these issues.

We hope this survey can help researchers who are interested in this direction, and will motivate
new ideas by looking at past successes and failures. Semantic retrieval models are part of the
broader research field of neural IR, which is a joint domain of deep learning and IR technologies
with many opportunities for new researches and applications. We are expecting that, through the
effort of the community, significant breakthroughs will be achieved for the first-stage retrieval
problem in the near future, similar to those happened in re-ranking stages.
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