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ABSTRACT
As people spend up to 87% of their time indoors, intelligent Heating,
Ventilation, and Air Conditioning (HVAC) systems in buildings are
essential for maintaining occupant comfort and reducing energy
consumption. These HVAC systems in smart buildings rely ‘on real-
time sensor readings, which in practice often suffer from various
faults and could also be vulnerable to malicious attacks. Such faulty
sensor inputs may lead to the violation of indoor environment re-
quirements (e.g., temperature, humidity, etc.) and the increase of
energy consumption. While many model-based approaches have
been proposed in the literature for building HVAC control, it is
costly to develop accurate physical models for ensuring their per-
formance and evenmore challenging to address the impact of sensor
faults. In this work, we present a novel learning-based framework
for sensor fault-tolerant HVAC control, which includes three deep
learning based components for 1) generating temperature proposals
with the consideration of possible sensor faults, 2) selecting one
of the proposals based on the assessment of their accuracy, and
3) applying reinforcement learning with the selected temperature
proposal. Moreover, to address the challenge of training data in-
sufficiency in building-related tasks, we propose a model-assisted
learning method leveraging an abstract model of building physical
dynamics. Through extensive experiments, we demonstrate that the
proposed fault-tolerant HVAC control framework can significantly
reduce building temperature violations under a variety of sensor
fault patterns while maintaining energy efficiency.

CCS CONCEPTS
• Computing methodologies → Reinforcement learning; •
Computer systems organization → Embedded and cyber -
physical systems.
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1 INTRODUCTION
People spend up to 87% of their time in enclosed buildings nowa-
days [16]. As Heating, Ventilation, and Air-Conditioning (HVAC)
systems control the indoor environment of buildings and have a
significant impact on occupant comfort, productivity, and physi-
cal/mental health, it is important to ensure their performance and
reliability. In these systems, sensors, in particular temperature sen-
sors, play a vital role in collecting real-time environment condition
and facilitating HVAC applications. However, temperature sensors
are not always in normal working condition, due to passive faults
and active cyber-attacks. Passive sensor faults such as sensor bias
and sensor drifting over a long time contribute more than 25% to the
variable air volume (VAV) terminal unit faults [27]. Cyber-attacks
on HVAC control systems (i.e., corruption of temperature sensor
readings to affect critical control programs) are becoming possible
due to increasing connectivity of buildings to external networks for
supporting remote management and cloud-based analytics. For ex-
ample, Building Automation and Control Networks (BACnet) [24],
the most popular communication protocol for buildings, has been
reported to have multiple vulnerabilities that can be used to launch
cyber-attacks on building control systems [11]. Moreover, HVAC
systems still need to provide services when under faults or attacks,
as diagnosing the problems and fixing the sensors often takes a
significant amount of time. This highlights the increasing need
for developing HVAC controls that can tolerate sensor faults and
cyber-attacks and increase system resilience.

There are a number of works in the literature related to sen-
sor fault-tolerant control for building energy systems. Ma and
Wang [20] proposed a fault-tolerant model predictive control strat-
egy to provide resilient operation of a building chiller plant system
under typical faults such as condenser water supply temperature
sensor bias. Yang et. al. [39] presented an online fault-tolerant
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control strategy for fixed bias faults in the supply air temperature
sensor. The sensor faults are detected by using a pre-trained support
vector regression (SVR) model. [9] employed a rule-based method
(e.g., using sensor reading from the nearest zone) to mitigate the
zone air temperature sensor reading spikes. The work in [25] built
a physical model for a multi-zone building and with zone air tem-
perature sensor faults, and assumed that only one thermal zone
would be affected by the sensor fault at a time. Faults in sensors
other than temperature sensors are also studied for tolerant control
design. Wang et. al. [32] applied a neural network model to detect
and compensate outdoor air flow rate sensor faults, and provided a
fault-tolerant control strategy to regain the control of outdoor air
flow rate. However, the above literature has the following limita-
tions: 1) simple assumptions in terms of fault occurrences are used:
for instance, [25] assumed that only one thermal zone would be
affected by the zone air temperature sensor fault at a time, which
is often not the case in practice; 2) studies were mostly designed
for passive faults such as fixed sensor bias [12, 20, 39], and might
not be applied to active attacks that only last for a short duration
but with high intensity; 3) significant efforts are required to obtain
an accurate online state predictor, such as detailed physics-based
models or SVR model, for fault detection in the fault-tolerant con-
trol. Therefore, how to provide resilient control for HVAC systems
under abnormal sensor readings still remains an open challenge.

In this work, we develop a learning-based sensor fault-tolerant
control framework for building HVAC systems with novel deep neu-
ral network-based learning techniques. Specifically, our framework
includes three major components. First, as the raw sensor readings
may be faulty, a neural network-based temperature predictor is
designed based on historical sensor data to provide an alternative
estimation of the true temperature. Then, both temperature pro-
posals (raw sensor reading and the temperature predictor output)
are sent to a neural network-based selector, which assesses the two
temperature proposals with consideration of the historical trend
and selects one deemed more trustworthy. Finally, a deep rein-
forcement learning (DRL) based HVAC controller takes the chosen
temperature as the current system state and applies control actu-
ation. These learning-based techniques together provide a robust
HVAC control framework that can maintain desired temperature
and reduce energy consumption under sensor faults.

While our machine learning based techniques can remove the
need for developing detailed and costly building physical models,
they face their own challenges in training data availability. In par-
ticular, for a new building, we may have to wait for months to
collect enough data for training the learning-based components.
To address this challenge, we propose a model-assisted learning
approach that helps the learning components extract knowledge
from an abstract physical model and only requires a limited amount
of additional labeled data collected from real buildings for training.
There are a number of abstract physical models available in the
literature [21, 31]. They require much less effort to develop than
the accurate physical models (e.g., those used in EnergyPlus [3]).
While they alone are often not accurate enough for building HVAC
control, their capturing of the underlying physical laws can guide
the learning process for the neural network-based components and
significantly improve the learning effectiveness.

To summarize, our work makes the following contributions:

• Wepresent a novel sensor fault-tolerant learning-based frame-
work to achieve sensor fault resilience on building HVAC
control. The framework includes three neural network-based
components: a temperature predictor that estimates the true
temperature, a selector that assesses the predictor output
and the raw sensor reading and selects one, and a DRL-based
controller that generates the control signal.

• We develop a novel learning method called model-assisted
learning, which leverages the knowledge from an abstract
physical model to enable learning with a small amount of
labeled data.

• We conduct a number of experiments on buildings with a
single thermal zone and multiple zones, and demonstrate the
effectiveness of our fault-tolerant framework under various
types of sensor anomalies. We also highlight how model-
assisted learning can improve the learning process and re-
duce the need for training data.

The rest of the paper is as follows. Section 2 discusses further
about the related literature. Section 3 introduces our approach,
including the design of the sensor fault-tolerant framework and
model-assisted learning. Section 4 shows the experiments and re-
lated ablation studies. Section 5 concludes the paper.

2 RELATEDWORK
2.1 Building HVAC control
Building HVAC supervisory controllers can be categorized into
two groups, model-based controllers and model-free controllers. Clas-
sic model-based HVAC controllers are often developed based on
fundamental physics laws (e.g., considering heat transfer and air-
flow balance). For example, [21] designed a hierarchical control
algorithm based on modeling building thermal dynamics as an
RC network, which uses resistance and capacitance elements to
model the building envelope heat transfer. [31] also used an RC
network model and designed a model predictive control algorithm
for minimizing the building energy consumption. There are other
works [29, 37] that use similar abstract physical models. However,
While being easy to develop and fast to run, these abstract physical
models often suffer from inaccuracy. In contrast, detailed physical
models such as EnergyPlus consider a variety of complex factors,
including building layout, wall materials, light, shading, occupant
behaviors, etc. They are much more accurate, but are typically hard
to build and slow to run.

Model-free HVAC controllers usually learn control strategies
from historical data. In recent years, DRL-based methods have
been explored in works such as [34, 40], where techniques such as
deep Q-learning (DQN) and asynchronous advantage actor-critic
algorithms (A3C) are applied. Methods have also been proposed to
learn DRL parameters by leveraging building simulation tools [8,
17, 23, 38]. In this paper, we combine the strength of both model-
free and model-based methods, by developing a learning-based
framework with neural network-based components and leveraging
abstract physical models to improve the learning process.

2.2 Addressing sensor faults in buildings
There has been a number of works in the literature addressing
sensor faults in buildings. In [5], a fault detection method based



Learning-based Framework for Sensor Fault-Tolerant Building HVAC Control with Model-assisted Learning Arxiv ’21, November 17–18, 2021, Arxiv

on correlation analysis was proposed for detecting sensor bias or
complete failure. [6] proposed a neural network-based strategy
with clustering analysis to detect sensor faults in the HVAC system
and diagnose the sources. [33] presented an online strategy based
on the principal component analysis (PCA) to detect, diagnose and
validate sensor faults in centrifugal chillers. More investigations
can be found in [4, 7, 13, 19, 22, 28]. However, these works focus
on fault detection and diagnosis, not fault-tolerant control.

There are some existing works for sensor fault-tolerant control in
building energy systems, such as [9, 12, 20, 25, 32, 39]. For instance,
Gunes et. al. [9] followed the model-based design paradigm and
used rule-based methods to mitigate the negative effect of specific
sensor faults. Papadopoulos et. al. [25] built a complex physical
model for building, and designed a fault model based on the as-
sumption that sensor faults occur in a single zone at each time. Jin
and Du [12] used principal component analysis, joint angle method
and compensatory reconstruction to detect, isolate and reconstruct
the fixed bias fault in supply air temperature sensors. However, as
we outlined in the introduction, the above studies have significant
limitations in the usage of simple or restricted assumptions, the
focus on only passive faults with fixed sensor bias, and the need of
significant efforts for obtaining an accurate online state predictor
(e.g., with detailed physics-based models or SVR model). In contrast,
our learning-based approach provides resilient control in broader
and more practical cases.

2.3 Learning with limited data and abstract
physical model

When dealing with a limited amount of labeled data in training,
techniques such as weakly supervised learning [30, 41] and semi-
supervised learning [1, 26, 42] are often considered. However, in our
case, even obtaining unlabeled data from real building operations
could be a long process. Thus, we leverage the information from
abstract physical models such as those in [21, 31] to reduce the data
needed for training. This approach is in principle related to model
distillation techniques [10, 14] that distill the physical model into
a neural network and then fine-tune the network with available
labeled data. However, unlike in the case for those approaches
(which focus on domains such as computer vision), there is not
enough unlabeled data in the realistic data distribution that can be
fed into the model for distillation in our problem. Thus, we propose
model-assisted learning to overcome this difficulty, by leveraging
abstract physical models to generate better initial points for model
find-tuning.

3 METHODOLOGY
3.1 System model
We adopted a multi-zone building model with the fan-coil system
from [34, 38], where there is a building with 𝑛 thermal zones, and
a fan-coil system is equipped to provide the conditioned air at
a given supply air temperature 𝑇𝑎𝑖𝑟 for each thermal zone. The
airflow rate in each zone is chosen from multiple discrete levels
{𝑓1, 𝑓2, · · · , 𝑓𝑚}, and corresponding to𝑚 control actions 𝑎𝑖 for each
zone 𝑖 . With all 𝑛 thermal zones, the control action set is denoted as
𝐴 = {𝑎1, 𝑎2, · · · , 𝑎𝑛}. In this paper, we denote the current physical
time as 𝑡 , the ambient temperature, indoor temperature for zone

𝑖 , and the control action at time 𝑡 as 𝑇𝑜𝑢𝑡
𝑡 , 𝑇 𝑖𝑛 (𝑖)

𝑡 , 𝐴𝑡 , respectively,
and we set 𝑇 𝑖𝑛

𝑡 = {𝑇 𝑖𝑛 (𝑖)
𝑡 |𝑖 ∈ 1 · · ·𝑛}. The system sends current

states (indoor and ambient temperatures) to the HVAC system
with a period of Δ𝑡𝑠 (which is the simulation period on building
simulation platform), and the building HVAC controller provides
the control signal (supply airflow rates) with a period of Δ𝑡𝑐 (i.e.,
the control period).

3.2 Sensor fault-tolerant DRL framework
Fig. 1 depicts the overview of our sensor fault-tolerant DRL frame-
work. It includes three parts: the first part on the left is a neural
network-based temperature predictor for providing an alternative
estimation (rather than the raw sensor reading) of the indoor tem-
perature, the second part in the middle is a proposal selector that
assesses the temperature proposals from the raw sensor reading
𝑇 𝑖𝑛
𝑡 and the temperature prediction 𝑇𝑝𝑟𝑒

𝑡 and selects one, and the
third part on the right is a DRL-based HVAC controller. With the
design of the predictor and the selector, the DRL controller receives
a refined temperature reading as part of its inputs and can maintain
a stable performance against sensor faults or attacks. The details
of each module are introduced in the following sections. Note that
all the modules are trained individually and assembled into the
framework after training.

3.2.1 Temperature predictor. The temperature predictor aims to
provide a temperature prediction for the current temperature based
on the historical sensor readings with possible faults and other
system states. Note that we mark the current system state as 𝑆𝑡 ,
where 𝑆𝑡 = (𝑡,𝑇 𝑖𝑛

𝑡 ,𝑇𝑜𝑢𝑡
𝑡 ).

Firstly, the temperature predictor is a neural network that con-
sists of five fully-connected layers. Except for the last layer, all layers
are filtered by a ReLU activation function, and all fully-connected
layers are sequentially connected (detailed neuron number settings
can be found later in Table 1 of Section 4). In the test stage of
the temperature predictor, the network takes the historical states
aligned with the historical control actions (airflow rate) as the data
inputs at time 𝑡 , and then outputs a current temperature prediction
value 𝑇𝑝𝑟𝑒

𝑡 .
The training data for the predictor network is collected by run-

ning a straightforward ON-OFF controller on the building HVAC
system for several days (in experiments we use 8 days). For new
buildings, this could be done during the first several days of their
operation, in which case wemay assume that the data collected over
this short period of time has not been polluted by sensors faults
or attacks. And we get a (state, action) sequence from (𝑆1, 𝐴1) to
(𝑆𝐿, 𝐴𝐿). For the convenience of supervised training, we select data
sequences

{⟨(𝑆𝑡−𝑘 , 𝐴𝑡−𝑘 ), (𝑆𝑡−𝑘+1, 𝐴𝑡−𝑘+1), · · · , (𝑆𝑡−1, 𝐴𝑡−1)⟩}
with length 𝑘 and 𝑡 ∈ [𝑘 + 1, 𝐿] from the historical data. These
sequences are chosen with an interval 𝑣 , which means that 𝑡 ∈
[𝑘 + 1, 𝐿] is selected in the format 𝑘 + 1, 𝑘 + 𝑣 + 1, 𝑘 + 2𝑣 + 1, · · · . The
collected data set is used as the training data inputs of the neural
network, with the corresponding label 𝑆𝑡 for each data sequence.
Then, we train the neural network based on the loss function L𝑝𝑟𝑒

as
L𝑝𝑟𝑒 =∥ (𝑇𝑝𝑟𝑒

𝑡 +𝑇𝑝𝑟𝑒

𝑜 𝑓 𝑠
) −𝑇𝑡 ∥2, (1)
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Figure 1: Overview of our sensor fault-tolerant framework for building HAVC system. There are three main components: two
modules providing temperature proposals on the left, a selector in themiddle, a DQN-based HVAC controller on the right. The
temperature proposals consist of the raw sensor reading𝑇 𝑖𝑛

𝑡 and the current temperature prediction𝑇
𝑝𝑟𝑒
𝑡 that comes from the

learned temperature predictor, which leverages the historical sensor data. The proposal selector provides a classification result
to choose between the predictor output and the raw sensor value. Then, the DRL controller takes the selected temperature
proposal and calculates the corresponding control action.

where 𝑇𝑝𝑟𝑒
𝑡 is the temperature prediction at time 𝑡 from the net-

work’s output, 𝑇𝑝𝑟𝑒

𝑜 𝑓 𝑠
is an estimated offset for bringing the absolute

mean value of the neural network’s output close to zero, which
lowers the difficulty for the neural network learning through the
given data sequences (it is a fixed hyper-parameter; setting can be
found in Table 1 later). 𝑇𝑡 is the actual indoor temperature, which
is the ground truth label. After finishing training, the predictor can
take the historical system states containing the raw sensor reading
to generate the temperature prediction. We should mention that
these historical system states in the test stage may contain faulty
sensor readings, so we also include some faulty sensor reading
in the training data for temperature prediction. The designing of
this training strategy using historical data with slightly faults is in-
spired by our preliminary experiments, which indicated that adding
slightly faulty sensor reading to the training data could increase
the performance on temperature predictions, compared to training
with non-faulty data or data with high frequency faulty data. In
other words, for enhancing the robustness of the temperature pre-
diction, we use the historical system states under the independent
and identically distributed (IID) faults with occurring probability
𝑃𝑝𝑟𝑒 . IID faults here mean that the fault can happen at each indi-
vidual simulation step with probability 𝑃𝑝𝑟𝑒 . If the fault occurs, it
uniformly selects a random number from [𝑇𝑜𝑢𝑡

𝑙
,𝑇𝑜𝑢𝑡
𝑢 ], which is the

upper and lower boundary of the ambient temperature, to replace
the original sensor temperature reading. And the temperature pre-
dictor takes benefit from randomized faults in the reading, which
leads to a more robust output.

3.2.2 Temperature proposal selector. The temperature proposal
selector aims to choose the best candidate from the temperature

proposals and send it to the DRL controller for further control
steps. We train this module in a self-supervised way, where all the
training labels are generated automatically and the objective is to
distinguish between the normal data and the faulty data. Apart from
the comparison between the normal and faulty, we also make the
comparison among the faulty data and indicate which one is closer
to the actual temperature value. This extra comparison further
boosts the proposal selector and helps it address the scenarios with
inaccurate temperature proposals.

The temperature proposal selector module is made of a neural
network that consists of eight layers. The selector firstly takes
the historical system state and the historical control actions ⟨
(𝑆𝑡−𝑘 , 𝐴𝑡−𝑘 ), (𝑆𝑡−𝑘+1, 𝐴𝑡−𝑘+1), · · · , (𝑆𝑡−1, 𝐴𝑡−1) ⟩ as the part of the
network input. Then this historical information will be sent to the
first network layer. Including the first layer, there are four sequen-
tially connected one-dimensional convolutional layers with the
ReLU activation function on the bottom of the network. The out-
put feature of these layers is two-dimensional in each data sample,
and we convert it to a one-dimension feature vector 𝐹1. Then the
rest of the network inputs are two selected temperature proposals,
the raw sensor reading 𝑝𝑙1 and the temperature prediction value
𝑝𝑙2, and they will be concatenated with the feature vector 𝐹1. As
shown in Fig. 1, four fully-connected layers receive features vector
𝐹1 and with those two selected temperature proposals 𝑝𝑙1, 𝑝𝑙2 (note
that the first three of them have RuLU activation function). The
last fully-connected layer has two neurons, which will be sent to a
softmax layer and output a binary classification result by selecting
the index with the maximum output value.

Furthermore, the construction of the training data used for the
temperature proposal selector differs from the previous module.
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The historical system state 𝑆𝑡−𝑖 (𝑖 ∈ [1, 𝑘]) and the historical control
actions𝐴𝑡−𝑖 (𝑖 ∈ [1, 𝑘]) are selected from the simulation data which
is the same as in Section 3.2.1. The data in the two temperature
proposals contain both normal and faulty data. So the training data
consists of three types:
• Training data: ⟨ historical system states 𝑆𝑡−𝑖 , control actions
𝐴𝑡−𝑖 , (𝑖 ∈ [1, 𝑘]), normal temperature, faulty temperature ⟩.
Label: (1, 0).

• Training data: ⟨ historical system states 𝑆𝑡−𝑖 , control actions
𝐴𝑡−𝑖 , (𝑖 ∈ [1, 𝑘]), faulty temperature, normal temperature ⟩.
Label: (0, 1).

• Training data: ⟨ historical system states 𝑆𝑡−𝑖 , control actions
𝐴𝑡−𝑖 , (𝑖 ∈ [1, 𝑘]), faulty temperature, faulty temperature ⟩.
Label: 1 is assigned to the value that is closer to the normal
temperature. The other is assigned with 0.
Similar to the data construction strategy in the temperature

predictor module, the historical system states we utilize include the
faulty sensor readings. Specifically, for enhancing the robustness
of the temperature proposal selector, we use the historical system
states under the independent and identically distributed (IID) faults
with occurring probability 𝑃𝑠𝑒𝑙 . Besides, during constructing these
data-label pairs, we sample the faulty temperature three times for
each normal temperature value in the first and second kind of data-
label pair. For the last kind of data-label pair, we sample the faulty
temperature data four times for each historical sequence. All faulty
temperature readings come from the IID faults. Finally, we learn the
temperature proposal selector network through the cross-entropy
loss function. The learning rate 𝑙𝑟𝑠𝑒𝑙 and training epochs 𝑙𝑠𝑒𝑙 are
set as in Table 1 later.

3.2.3 DRL-based controller for building HVAC system. Because the
thermal zone temperature in the next time step only relies on the
observation of the current system state, the building HVAC control
can be treated as a Markov decision process. We use a DQN-based
DRL method that takes the current state 𝑆𝐷𝑅𝐿

𝑡 as inputs, which
contain
• Current physical time 𝑡 ,
• Current indoor air temperature 𝑇 𝑖𝑛

𝑡 ,
• Current ambient air temperature 𝑇𝑜𝑢𝑡

𝑡 ,
• Current solar irradiance intensity 𝑆𝑢𝑛𝑡 ,
• Weather forecast in the next three time steps.
The weather forecast includes ambient temperature and solar irradi-
ance intensity 𝑇𝑜𝑢𝑡

𝑡+1 , · · · ,𝑇
𝑜𝑢𝑡
𝑡+3 , 𝑆𝑢𝑛𝑡+1, · · · , 𝑆𝑢𝑛𝑡+3, which helps the

network capture the trend of the environment. The deep Q-network
𝑄 provides the Q-value estimation of current control actions. The
algorithm takes the control action with the maximum Q-value and
sends it to the HVAC system.

Furthermore, the goal of this DRL controller is to minimize total
energy cost while maintaining indoor temperature within a comfort
temperature bound [𝑇𝑙 ,𝑇𝑢 ]. The reward function 𝑅𝑡 collected from
the control steps is designed accordingly as

𝑅𝑡 = 𝛼 · 𝑅𝑐 + 𝛽 · 𝑅𝑣 (2)

𝑅𝑐 = −𝑐𝑜𝑠𝑡 (𝑡 − 1, 𝐴𝑡−1) (3)

𝑅𝑣 = −
𝑛∑︁
𝑖=1

max(𝑇𝑙 −𝑇
𝑖𝑛 (𝑖)
𝑡 , 0) +max(𝑇 𝑖𝑛 (𝑖)

𝑡 −𝑇𝑢 , 0) (4)

where𝛼 and 𝛽 are the scaling factors.𝑅𝑐 is the reward of energy cost,
𝑅𝑣 is the reward of temperature violation with respect to comfort
temperature bound [𝑇𝑙 ,𝑇𝑢 ]. 𝑐𝑜𝑠𝑡 (𝑡 −1, 𝐴𝑡−1) is a price function that
gives the money cost of the HVAC system from control time 𝑡 − 1
to 𝑡 under control action 𝐴𝑡−1. It is designed based on the local
electricity price. Following the definition of the reward function,
the update of deep Q-network is defined as

𝑄𝑡+1 (𝑆𝐷𝑅𝐿
𝑡 , 𝐴𝑡 ) = 𝑄𝑡 (𝑆𝐷𝑅𝐿

𝑡 , 𝐴𝑡 ) + 𝜂0 (𝑅𝑡+1
+ 𝛾 max

𝐴𝑡+1
𝑄𝑡 (𝑆𝐷𝑅𝐿

𝑡+1 , 𝐴𝑡+1) −𝑄𝑡 (𝑆𝐷𝑅𝐿
𝑡 , 𝐴𝑡 )))

(5)

where 𝜂0 is the learning rate for the deep Q-network, and 𝛾 is the
decay factor of the accumulative reward.

3.3 Model-assisted learning
Our sensor fault-tolerant framework has three modules that require
neural network training. The performance of a learning model is
typically strongly correlated with the amount of available labeled
data. However, collecting labeled data from real building operations
takes significant amount of time, which often leads to the problem
of training data insufficiency. With the techniques in [2, 18], the
training time and the required data of the DRL control module can
be substantially reduced.With the special training data construction
strategy introduced in Section 3.2.2, the selector also has sufficient
data for training. Thus, we focus our effort on the data insufficiency
issue for the temperature predictor. We develop a novel model-
assisted learningmethod to combine a limited number of accurately-
labeled data 𝐷𝐿 with the knowledge we can gain from an abstract
physical model𝑀 for the training, as shown in Fig. 2.

Ourmodel-assisted learning consists of two stages: model-assisted
self-supervised learning (called model-assisted SSL) and model-
assisted redirected updating (called model-assisted RU). To begin
with, we realize that the biggest challenge in this learning scenario
is that we do not have enough training data (even unlabeled data),
which makes the typical semi-supervised or weakly supervised
learning methods not applicable. However, one available resource
that we can leverage is the human-designed abstract physical mod-
els for buildings. While they may not accurately describe the build-
ing dynamics, they do reflect some of the fundamental physical
laws for the system. By ‘extracting’ these physical laws, we can
significantly improve the learning process and reduce the need for
training data. Specifically, for each element 𝑢 in the neural network
input 𝑠 , we can define its range based on its physical meaning. Then
considering the range for all the elements in 𝑠 , we can define a space
𝐻 that contains all 𝑠 in its range combinations and 𝑠 ∈ 𝐻 . Note that
𝐻 is a space that is much larger than the actual data distribution for
network inputs, which means that many unrealistic cases that will
never happen in the real world might still occur when sampling
from 𝐻 .

In model-assisted learning process, a required step is to collect
enough samples from data space 𝐻 . However, we notice that the
input size of the neural network (temperature predictor), (2 + 2𝑛)𝑘 ,
is large. Taking 𝑛 = 4, 𝑘 = 20 for example, the sampling is on a
200-dimensional continuous data space, which is too expensive for
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Random 
batch i

𝐿𝑀𝑆𝐸

Model-
assisted SSL 

tasks

Φ𝑖𝑛𝑖𝑡
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Figure 2: Overview of our model-assisted learning for training with a limited amount of labeled data and an abstract physical
model, where the algorithm consists of two stages – model-assisted self-supervised learning (model-assisted SSL) and model-
assisted redirected updating (model-assisted RU). The former stage creates auxiliary learning tasks from the abstract model,
and the latter stage extracts knowledge leveraging the random batch from the physical model and explores a better updating
direction. Then we get the final model through fine-tuning based on the pre-trained model from the previous two stages.

simple uniform sampling. Thus, we only sample the first historical
state uniformly among that sub-space of size 2 + 2𝑛, and then feed
that historical state to the physical model 𝑀 to predict the next
historical state. Then we generate the latter historical states by
repetitively applying the previous historical states to the physical
model. In this way, we can collect the sample sequences of length 𝑘
and form an input data set 𝐷 . We then divide 𝐷 into mini-batches
and call them random batches {x|x ⊂ 𝐷}, and we denote the batch
size of x as 𝑏. With the random batch, we can design the steps in
model-assisted SSL and model-assisted RU.

In the first stage of model-assisted SSL, we aim to construct
auxiliary learning tasks from the abstract model𝑀 to decide an pre-
trainedweights for the neural network. The sampled data𝑑 ∈ x ⊂ 𝐷

is a simulated states sequence based on the abstract physical model
𝑀 , and the time length of the sequence is 𝑘 . And we create 𝑘 auxil-
iary learning tasks based on the input sequence 𝑑 . Specifically, for
auxiliary task 𝑖 , it is a regression task. The corresponding training
data is {(𝑑𝑖 , 𝑦𝑖 ) |𝑑𝑖 equals to 𝑑 except that the indoor temperature
in 𝑑 at time step 𝑖 is set to −1, 𝑦𝑖 is the value of indoor temperature
in 𝑑 at time step 𝑖 , 𝑑 ∈ x ⊂ 𝐷}. In other word, we try to predict the
missing state generated by the abstract model. The training step
last for 𝑙𝑀𝑆𝑖 epochs with batch size as 𝑏𝑀𝑆 and learning rate as
𝜂0. In auxiliary task 𝑖 , we also need to edit the original neural net-
work with some changes. We keep the first three fully-connected
layers but add two extra fully-connected layers (individually for
each task 𝑖) following the third layer. The newly added layers will
provide the output for task 𝑖 . This means that we share the feature
extraction layers among all the auxiliary learning tasks, and those
tasks will help the neural network leverage the relation of variables
in the states sequence for constructing pre-trained weights. The
model-assisted SSL will be conducted for 𝑙𝑀𝑆 epochs, and we start
from the randomly initialized neural network weights Φ𝑖𝑛𝑖𝑡 . The
auxiliary learning tasks are run in order from tasks 1 to 𝑘 in each
epoch, and then we get a pre-trained weight Φ for our next stage.

In the second stage ofmodel-assisted RU, we target on redirecting
the updating direction when extracting the knowledge from the
abstract model. In each update step 𝑖 , we start from the current
network weights Φ𝑖 (the initial weights in this stage is Φ0 = Φ),
and select a random batch x and apply the abstract model 𝑀 on
them to get the corresponding labels y. Next, we are able to get a
new model Θ𝑖 by updating the parameters on Φ𝑖 using the random
batch x and its corresponding labels y, which follows the equation

Θ𝑖 = Φ𝑖 − 𝜂2∇Φ𝑖
L𝑀𝑆𝐸 (Φ𝑖 ), (6)

where L𝑀𝑆𝐸 is the mean square error loss and 𝜂2 is the learning
rate. The training lasts for 𝑛𝑖𝑡𝑒𝑟 iterations, and uses a new sampling
data batch for each iteration.

Next, we employ accurately labeled data 𝐷𝐿 to further fine-tune
the model Θ𝑖 from the last step by 𝑙𝑓 𝑡 epochs, and update to the
model weights Θ′

𝑖
, as described in the following equation

Θ
′
𝑖 = Θ𝑖 − 𝜂3∇Θ𝑖

L𝑡𝑎𝑟𝑔𝑒𝑡 (Θ𝑖 ), (7)

where L𝑡𝑎𝑟𝑔𝑒𝑡 is the loss function for the target task and 𝜂3 is the
learning rate for this step.

Looking back to what we have done in this stage, we first use
the random batch x to distill the physical model 𝑀 as a further
pre-trained model for the current step, and then we fine-tune the
model using the accurately labeled data. The final performance of
model Θ′

𝑖
should reflect the quality of the initial update from Φ𝑖 to

Θ𝑖 , which depends on the corresponding random batch x and the
abstract model𝑀 ’s output knowledge y. L𝑡𝑎𝑟𝑔𝑒𝑡 shows a reference
value considering the improvement brought by the Equation (6),
while Θ′

𝑖
− Φ𝑖 provides a better updating direction for the current

knowledge extraction step compared to the Equation (6). Thus, we
determine the true updating step for the initial model Φ𝑖 as

Φ𝑖 = Φ𝑖 − 𝜂1 (Θ
′
𝑖 − Φ𝑖 ) (8)

Following this updating steps for 𝑛𝑖𝑡𝑒𝑟 iterations, we then use all
the accurately labeled data 𝐷𝐿 to fine-tune the extracted model
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Φ𝑖 to achieve our target model Φ𝑓 𝑖𝑛 . The fine-tuning step has the
learning rate 𝜂3 by 𝑙𝑓 𝑡 epochs.

4 EXPERIMENTAL RESULTS
4.1 Fault patterns, metrics and physical model

Fault patterns: We consider two types of fault patterns for the
sensors in every thermal zone in our experiments. Both patterns
could be caused by passive faults or cyber attacks.
• In the first type of faulty sensor readings, we postulate that the
fault happens at each time step with a probability 𝑝1. Note that
the fault can happen in each simulation step, not only on the
control steps. If the fault occurs, it uniformly selects a random
number from [𝑇𝑜𝑢𝑡

𝑙
,𝑇𝑜𝑢𝑡
𝑢 ] (which is the upper and lower bound-

ary of the ambient temperature in our experiments) to replace
the original sensor temperature reading. We call this type of
faults the IID faults because they have the same probability,
same distribution, and independent at each time step.

• For the second type of faulty sensor reading, the fault happens
at each time step with a probability 𝑝2. The difference between
it and the former one is that the second fault will last for 𝜛
simulation steps and not always happens individually among
the time period. Thus this type of fault can cause larger damage
to the system than the first one. And we call it continuous faults.

Metrics for evaluation: We evaluate the sensor fault-tolerant tem-
perature control results based on the average indoor temperature
violation rate 𝜃𝑖 for each thermal zone 𝑖 and the total energy cost
for running the HVAC system. We evaluate the performance of
model-assisted learning on the temperature prediction task with a
four-zone building. The measurement for the predictor is based on
the root mean square error (RMSE) between the prediction and the
actual temperature value.

Abstract physical model: Here we introduce the abstract physical
model we used in experiments for model-assisted learning. The
mass and energy conservation law for a building zone is presented
in Equation (9), where the left of the equation represents energy
changes in the zone, the first term at the right represents the intro-
duced HVAC energy to the zone, and the second term at the right
is the thermal load in the zone. The thermal load ¤𝑞𝑙 is related to
many building system and control parameters such as envelope con-
structions, internal heat gains, zone air temperature setpoints, etc.,
which eventually leads to a nonlinear differential equation to solve.
For simplification, an abstract model for the zone air temperature
dynamics is derived as in Equation (10). This model explicitly re-
lates zone air temperature to system thermal inertia (e.g., historical
zone air temperatures), zonal supply air mass flowrate ¤𝑚, outdoor
air temperature𝑇𝑜𝑢𝑡 and estimated modeling error term 𝑒 .𝑇 and𝑇
are the predicted and measured temperature, respectively.𝑚 is the
zone air thermal mass. ¤𝑚 is the zonal supply air mass flowrate. 𝐶𝑝

is the zone air specific heat. 𝑒 represents an error term. Superscripts
𝑠𝑎, and 𝑜𝑢𝑡 are the supply air, and outdoor air, respectively. 𝛼 , 𝛽 ,
and 𝛾 are identified coefficients observed from the given short-term
historical data.

𝑚𝐶𝑝
𝑑𝑇

𝑑𝑡
= ¤𝑚𝐶𝑝 (𝑇 𝑠𝑎 −𝑇 ) + ¤𝑞𝑙 (9)

𝑇𝑡+1 = 𝛼𝑇𝑡 + 𝛽 ¤𝑚𝑡+1 + 𝛾𝑇𝑜𝑢𝑡
𝑡+1 + 𝑒𝑡+1 (10)

𝑒𝑡+1 =
𝐿−1∑︁
𝑗=0

𝑇𝑡−𝑗 −𝑇𝑡−𝑗
𝐿

(11)

4.2 Experiment settings
The experiments are run on an Ubuntu OS server equipped with
NVIDIA TITAN RTX GPU cards. The learning algorithm imple-
mentations are based on the Pytorch framework. The Adam op-
timizer [15] is utilized for all neural networks’ training. We use
the EnergyPlus [3] simulation tool to simulate the behavior of
real buildings. Note that this is only for experimentation purpose.
In practice, our tool will be deployed directly on real buildings
with the modules trained on the data collected from those build-
ings. Moreover, the interaction between the building simulations
in EnergyPlus and the Pytorch learning algorithms is implemented
through the Building Controls Virtual Test Bed (BCVTB) [35]. We
use a single-zone building and a 4-zone building as the target build-
ings for conducting our experiments, which are visualized in Fig. 3.
The building simulation utilizes the summer weather data in August
at Riverside, California, USA, which is obtained from the Typical
Meteorological Year 3 database [36]. The hyper-parameter settings
mentioned in the previous sections are shown in Table 1.

Figure 3: Rendering of the experimental buildings.

4.3 Evaluation of sensor fault-tolerant
framework on IID and continuous faults

This section shows the performance of our sensor fault-tolerant
framework and its comparison with a standard DQN controller.
The experiments are conducted on a single-zone building and a
four-zone building under different sensor fault patterns.

4.3.1 Against IID faults. We first study how much the sensor fault-
tolerant framework can protect the control performance from the
IID faults. The IID faults happen individually at each simulation
step with the probability 𝑝1, and we test the case where 𝑝1 is cho-
sen from [0, 0.1, 0.2, 0.4, 0.6, 0.8]. The model is first tested on a sin-
gle zone building. Table 2 shows the results comparison between
the standard DQN controller (DQN) and our sensor fault-tolerant
framework (FTF). We can see that the typical DQN controller’s per-
formance significantly deteriorates when facing the IID faults, as
the heavily faulty sensor data nearly paralyzed the normal function
of the neural network. The problem gets worse with the fault oc-
curring probability 𝑝1 becomes larger. For our sensor fault-tolerant
framework, the average temperature violation rate remains very
low under varying degree of IID faults (86.4% to 98.2% reduction in
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Parameter Value Parameter Value
Temperature-
proposal-

selector layers

[2+2𝑛,512,256,
256, 128,256,
256,256,2𝑛]

DQN layers

𝑇𝑙

[9+𝑛,50,100,
200,400,16]

19 ℃
Predictor-
layers

[(2+2𝑛)𝑘 ,512,256,
256,256,256,𝑛]

𝑇𝑢
𝑃𝑝𝑟𝑒

24 ℃
0.1

𝑇
𝑝𝑟𝑒

𝑜 𝑓 𝑠
22 𝑃𝑠𝑒𝑙 0.3

𝑙𝑓 𝑡 3 𝛼 1e-3
𝛽 6.25e-4 𝑏𝑀𝑆 40
𝜂0 1e-3 𝜂1 1e-4
𝜂2 1e-6 𝜂3 1e-3
𝐿 5760 𝑘 20
Δ𝑡𝑠 1 min Δ𝑡𝑐 15 min
𝑇𝑜𝑢𝑡
𝑙

10 ℃ 𝑇𝑜𝑢𝑡
𝑢 40 ℃

𝑣 2 𝑙𝑟𝑠𝑒𝑙 1e-4
𝑙𝑠𝑒𝑙 50 𝑇𝑎𝑖𝑟 10 ℃
𝑚 2 𝜂0 0.003
𝛾 0.99 𝑏 32

𝑙𝑀𝑆𝑖 3 𝑙𝑀𝑆 2
Table 1: Hyper-parameters used in our experiments.

violation rate when compared with standard DQN under fault prob-
ability from 0.1 to 0.8). Moreover, even with our approach’s much
more robust control, the energy cost does not increase much com-
pared to the non-faulty case, which shows the cost-effectiveness of
our sensor fault-tolerant approach.

We also tested our framework on a 4-zone building against the
IID faults, and Table 3 shows its comparison with the standard
DQN. 𝜃1 to 𝜃4 are the temperature violation rate for each of the
4 thermal zones. Again, we can clearly see that our approach can
maintain the violation rate at a low level under varying level of
sensor faults, and can significantly outperform the standard DQN
(84.89% to 97.45% reduction in violation rate under fault probability
from 0.1 to 0.8). It is also worth mentioning that when there is no
fault, our framework will not introduce additional overhead. Finally,
Fig. 4 also provides a visualization of the temperature change on
the 4-zone building under IID faults with 𝑝1 = 0.4 with/without
the sensor fault-tolerant framework, and we can clearly see the
effectiveness of our framework in keeping the temperature within
comfort bound under faults.

4.3.2 Against continuous faults. We then evaluate our approach
against continuous faults. Similar to what we have shown in the
previous section, the model is tested on a single-zone building and a
four-zone building, with the probability 𝑝2 set to 0.1 and 𝜛 selected
from 0 to 5. The comparison between our approach and the standard
DQN is presented in Table 4 and Table 5. The temperature violation
rates in the tables are all higher than the previous section under
the same fault probability, which indicates that the continuous
faults can cause more damage than the IID faults. As shown in
the table, the standard DQN controller drastically increases the
violation rate for 13× to 51× for single zone and 6× to 39× for
four-zone under continuous faults. In comparison, our approach
can effectively maintain the violation rate at a low level (55.1% to
86.4% reduction for single zone and 70.0% to 87.5% reduction for

Figure 4: 4-zone building temperature under IID faults with
𝑝1 = 0.4 without FTF (above) and with FTF control (below).

𝑝1 0 0.1 0.2 0.4 0.6 0.8

DQN 𝜃 0.08 1.18 2.18 3.59 5.90 11.19
Cost 250.03 245.79 239.74 235.73 228.42 223.22

FTF 𝜃 0.15 0.16 0.45 0.20 0.62 0.20
Cost 250.97 251.14 250.18 254.87 259.40 270.08

Table 2: Comparison between standard DQN controller and
our sensor fault-tolerant framework (FTF) on a single-zone
building under IID faults. 𝑝1 is the fault occurring probabil-
ity. 𝜃 is the average indoor temperature violation rate (%).

𝑝1 0 0.1 0.2 0.4 0.6 0.8

DQN

𝜃1 0.0 1.68 3.76 14.64 32.18 48.47
𝜃2 0.37 6.27 16.3 30.6 50.70 59.56
𝜃3 1.16 3.17 7.59 15.5 27.22 36.4
𝜃4 1.42 9.33 18.46 28.22 43.50 48.13
Cost 258.33 246.07 235.17 220.53 197.86 187.76

FTF

𝜃1 0.07 0.02 0.09 0.07 0.01 0.00
𝜃2 0.34 0.32 0.38 0.13 0.02 0.11
𝜃3 1.16 0.70 0.60 0.44 0.64 0.74
𝜃4 1.59 1.51 1.91 2.63 2.86 4.06
Cost 258.8 259.11 265.79 301.50 322.64 321.17

Table 3: Comparison between standard DQN controller and
our sensor fault-tolerant framework (FTF) on a four-zone
building under IID faults. 𝑝1 is the fault probability. 𝜃𝑖 is the
avg. indoor temperature violation rate (%) in thermal zone 𝑖.

four-zone in violation rate when compared with the standard DQN
under fault probability from 0.1 to 0.8).
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𝜛 0 1 2 3 4 5

DQN 𝜃 0.08 1.18 2.35 3.01 3.16 4.17
Cost 250.03 245.79 237.95 236.48 237.67 231.25

FTF 𝜃 0.15 0.16 1.43 1.65 1.10 1.87
Cost 251.38 260.19 244.12 249.95 253.37 252.30

Table 4: Comparison between standard DQN controller and
our sensor fault-tolerant framework (FTF) on a single-zone
building under continuous faults. The fault lasts for𝜛 steps.
𝜃 is the avg. indoor temperature violation rate (%).

𝜛 0 1 2 3 4 5

DQN

𝜃1 0 1.68 5.27 9.68 14.41 18.08
𝜃2 0.37 6.27 13.26 21.67 29.57 33.53
𝜃3 1.16 3.17 11.12 14.77 20.05 22.58
𝜃4 1.42 9.33 24.54 34.98 39.54 43.19
Cost 258.33 246.07 231.42 219.10 213.99 211.20

FTF

𝜃1 0.07 0.02 0.11 0.35 0.90 1.12
𝜃2 0.34 0.32 2.62 3.91 5.88 10.61
𝜃3 1.16 0.70 1.78 2.79 3.94 5.35
𝜃4 1.59 1.51 4.33 8.04 12.6 18.09
Cost 258.86 259.11 269.97 268.97 265.18 261.26

Table 5: Comparison between standard DQN controller and
our sensor fault-tolerant framework (FTF) on a four-zone
building under continuous faults. The fault lasts for𝜛 steps.
𝜃𝑖 is the avg. indoor temperature violation rate (%) in ther-
mal zone 𝑖.

Amount of data 360 720 1440 2880 5760
Labeled data only 0.650 0.447 0.265 0.198 0.137
Distillation + fine-tuning 0.649 0.412 0.258 0.222 0.149
Model-assisted SSL 0.354 0.234 0.178 0.114 0.094
Model-assisted RU 0.351 0.270 0.200 0.146 0.081
Model-assisted learning 0.261 0.226 0.130 0.052 0.045

Table 6: Comparison of different learning strategies on tem-
perature predictor performance. The first line shows train-
ing with labeled data only. The second line shows the distil-
lation approach as in [10]. The third line shows using only
the first stage (model-assisted SSL) of our model-assisted
learning approach, and the fourth line shows only using the
second stage (model-assisted RU). The last line shows using
both stages, i.e., our model-assisted learning approach.

4.4 Evaluation of model-assisted learning
In this section, we conduct experiments on the model-assisted learn-
ing algorithm and demonstrate its improvement in the performance
of the temperature predictor module. Note that the data only con-
tains non-faulty data in this section for avoiding other factors that
may affect the evaluation, which means that there is no sensor fault
in both training and testing.

We employ an abstract physical model introduced in Section 4.1
for a four-zone building. The abstract model itself has the temper-
ature prediction value with RMSE at 0.832. Then if we only use
the accurately labeled data collected from the building to train the
neural networks in the temperature predictor module, which is
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Figure 5: Comparison of different learning strategies on
temperature prediction performance, including Labeled
data only (blue line), Distillation+fine-tuning (orange line),
Model-assisted SSL and RU (green & yellow line), Model-
assisted learning (purple line). We can observe from the fig-
ure that Model-assisted learning only requires around 1400
data samples to reach the RMSE of using Labeled data only
with 5760 samples, i.e., only needs 1/4 of the labeled data by
leveraging the abstract physical model via our approach.

shown in the first line in Table 6 (the model named Labeled data
only), we can see that the RMSE remains at the relatively high level
(note that the average indoor temperature change between two
time steps is around 0 to 0.25), e.g., 0.265 for 1440 data samples,
and 0.198 for 2880 data samples. More labeled data leads to more
accurate model prediction. The maximum amount of available data
is 5760 samples for the simulation of eight days.

In addition to model-assisted learning, we also test another idea
for leveraging the abstract physical model𝑀 to gain better perfor-
mance, i.e., using the abstract physical model to set initial weights
for a neural network, so the network may cost less training data
for reaching higher accuracy as it searches from a better initial
point. The related technique for obtaining this initial value is model
distillation [10]. However, as mentioned earlier, choosing the data
to feed the neural network is challenging for distillation. Here we
use the same sampling approach as proposed in Section 3.3, i.e.,
sampling from data space 𝐻 and feeding the samples x to the ab-
stract physical model𝑀 . Then we get the corresponding data pair
(x, y), and train the network using (x, y) with learning rate 𝜂2 for
𝑛𝑖𝑡𝑒𝑟 iterations (a new sampling data batch for each iteration). Next,
we fine-tune this newly trained model with learning rate 𝜂3 in 𝑙𝑓 𝑡
epochs on the accurately labeled data. The model obtained in this
way is named as Distillation + fine-tuning (which is shown in the
second line of the Table 6).

Finally, we apply our proposed model-assisted learning to lever-
age the abstract physical model. To understand how much each
stage contributes to the final performance, we add the results of
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only applying one of the two stages, which are the third line (Model-
assisted SSL) and fourth line (Model-assisted RU ) of Table 6, respec-
tively. And when combining both, the result is our Model-assisted
learning, as in the last line.

We can observe from the table that, when the available sample is
limited (360, 720, 1440), the building dynamics directly extracted by
Distillation + fine-tuning method can help reduce the RMSE. How-
ever, those extracted knowledge is only an inaccurate estimation,
and the bias it brings prevents the model from achieving better
result when there is more available labeled data (2880, 5760). On the
other side, both stages in our Model-assisted learning approach can
make good use of the abstract model and reduce the RMSE among
all cases. When combing the two together, with the same amount of
labeled data, our Model-assisted learning can achieve significantly
better results than using only labeled data or distillation method.
Such effectiveness is also visualized in Figure 5 – it plots the same
results as Table 6, but we can clearly see that for the same level of
performance, our Model-assisted learning approach only requires
about 1/4 of the labeled data.

5 CONCLUSION
In this paper, we present a novel learning-based sensor fault-tolerant
control framework for building HVAC systems against faulty sensor
readings, which includes neural network-based components for
temperature prediction, temperature proposal selection, and DRL-
based HVAC control. We also introduce a model-assisted learning
approach that leverages abstract physical model to overcome the
difficulty in training data insufficiency. Experimental results demon-
strate the effectiveness of our framework and the model-assisted
learning method.
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