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A Computational Study of Using Black-box QR Solvers for

Large-scale Sparse-dense Linear Least Squares Problems

JENNIFER SCOTT, STFC Rutherford Appleton Laboratory and University of Reading, UK

MIROSLAV TŮMA, Charles University, Czech Republic

Large-scale overdetermined linear least squares problems arise in many practical applications. One popular
solution method is based on the backward stable QR factorization of the system matrix A. This article fo-
cuses on sparse-dense least squares problems in which A is sparse except from a small number of rows that
are considered dense. For large-scale problems, the direct application of a QR solver either fails because of
insufficient memory or is unacceptably slow. We study several solution approaches based on using a sparse
QR solver without modification, focussing on the case that the sparse part of A is rank deficient. We discuss
partial matrix stretching and regularization and propose extending the augmented system formulation with
iterative refinement for sparse problems to sparse-dense problems, optionally incorporating multi-precision
arithmetic. In summary, our computational study shows that, before applying a black-box QR factorization,
a check should be made for rows that are classified as dense and, if such rows are identified, then A should
be split into sparse and dense blocks; a number of ways to use a black-box QR factorization to exploit this
splitting are possible, with no single method found to be the best in all cases.
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1 INTRODUCTION

In recent years, there has been renewed interest in the development of efficient and reliable soft-
ware packages for the solution of large sparse least squares (LS) problems using the QR algorithm
[12, 15]. Although these are general-purpose packages that may be used as “black-box” solvers,
they do not effectively tackle the not uncommon case of the system matrix containing a (small)
number of dense rows (here a row is considered to be dense if it has significantly more entries
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5:2 J. Scott and M. Tůma

than the other rows or leads to a large amount of fill in the R factor but it is not necessarily full).
These rows can result in sparse QR solvers failing because of either a lack of memory or being
unacceptably slow; numerical results included in the study of least squares solution techniques by
Gould and Scott [24, 25] demonstrate this.

To introduce our notation, we assume throughout that the rows of the system matrix A that are
to be treated as dense have been permuted to the end. With a conformal partitioning of the vector
b (and omitting the row permutation matrix for simplicity of notation) we have

A =

[
As

Ad

]
, As ∈ Rms×n , Ad ∈ Rmd×n , b =

[
bs

bd

]
, bs ∈ Rms , bd ∈ Rmd , (1)

wherems andmd denote the number of sparse and dense rows ofA, respectively, withm =ms+md ,
ms ≥ n and md ≥ 1 is small (md � ms ). As and Ad are referred to as the sparse and dense row
blocks ofA and the rows ofAd are termed dense rows. The linear LS problem that we are interested
in solving is then

min
x
‖Ax − b‖22 = min

x

�����
[
As

Ad

]
x −

[
bs

bd

]�����
2

2

. (2)

We assume that A has full column rank, in which case the solution of Equation (2) is unique and
is given by the solution to the system of normal equations

Cx = ATb, C = ATA.

It is well understood that there are a number of possible problems associated with the normal
equations. First, there is a potential loss of information in explicitly computing the n×n symmetric
positive definite normal matrixC and the vectorATb. Second, ifA contains just a single dense row,
thenC is not sparse, and, thus, if n is large, then it cannot be stored or factorized by a direct solver
that computes a Cholesky factorization. Third, there is the fact that the condition number of C
is the square of that of A, so that an accurate solution may be difficult to compute if A is poorly
conditioned. If A is not full rank, then the Cholesky factorization of C breaks down; near rank
degeneracy causes similar numerical problems in finite precision arithmetic. One way to try and
lessen the numerical issues is to avoid computing C and to obtain its Cholesky factor R directly
from A by computing its QR factorization. An orthogonal matrix Q is computed such that

AP = Q

[
R
0

]
and b = Q

[
c
d

]
, (3)

where R ∈ Rn×n is upper triangular (and nonsingular if A is of full rank) and P ∈ Rn×n is a
permutation matrix that performs column interchanges to limit the fill in R. Since the Euclidean
norm is invariant under orthogonal transformation, the solution to Equation (2) may be obtained
by solving the system

RPTx = c . (4)

Over the years, there has been significant work on QR factorizations for solving large sparse LS
problems (see, for example, the book by Björck [11] and the references therein as well as References
[4, 12, 15, 47]). Unfortunately, for large problems of the form of Equation (2), a straightforward
application of the QR algorithm will fail, because, as already observed, the block Ad of dense rows
causes the factor R to fill in, limiting the usefulness of black-box sparse QR solvers.

In the 1980s and 1990s, the difficulties that a (small) dense row block presents were studied by
several authors, see References [2, 11, 21, 27, 43–45]. Recently, Scott and Tůma have revisited this
problem and have considered a number of possible approaches:
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QR Solvers for Sparse-dense Least Squares Problems 5:3

• a block factorization method that processes the rows that are identified as dense separately
within an iterative solver [39];
• a Schur complement approach that exploits the block structure within the augmented sys-

tem formulation of the LS problem and can be combined with a direct or an iterative
solver [40];
• new sparse stretching strategies that replace the dense row block by a sparser but larger

block [41, 42].

The purpose of this article is to build on these ideas and to incorporate them with other ideas into
looking at how we can use a black-box QR package to solve LS problems with a small number of
dense rows both efficiently and robustly. Several approaches are considered and compared using
problems from practical applications. This was lacking in earlier papers on using QR for sparse-
dense LS problems, such as References [2, 27] that present algorithms with no numerical results to
show how effective they are. A key challenge is that the sparse row blockAs is often rank deficient
so that a QR package cannot be applied directly to it.

This article offers the following novel contributions:

(a) it brings together different QR-based ideas in a single, cohesive presentation;
(b) it compares their performance on a range of practical applications;
(c) it proposes computing a QR factorization of the regularized problem and then using an
iterative approach to recover the solution of the unregularized problem;
(d) it explores the use of mixed-precision computation to try to reduce the computational
cost.

In Section 2, we discuss the software packages and test examples that are used in this study. We
then commence our study by considering direct methods. Section 3 recalls the use of updating [27]
to handle dense rows. We then consider two preprocessing approaches that extend the applicability
of updating when As is rank deficient: partial matrix stretching [42] and regularization [36]. Both
avoid break down of the QR algorithm by enlarging the problem that it is applied to. In Section 4,
we discuss a hybrid approach that combines using a QR factorization of the (possibly enlarged)
sparse row block with an iterative solver. An alternative method based on the augmented system
formulation of the LS problem is considered in Section 5. Our proposed extension to sparse-dense
LS problems allows the incorporation of iterative refinement with a preconditioned Krylov sub-
space solver. Numerical experiments to illustrate the performance of the different approaches are
presented in Section 6. These show that updating works well if As is of full rank: it is straightfor-
ward to implement and robust and offers significant savings compared to applying the QR solver
with no special handling of dense rows (even if the rows that are classified as dense are far from
being full). For the more challenging case of rank-deficientAs , we find that preprocessing using ei-
ther regularization or partial stretching is effective, with the former being the easier to implement
using existing software packages while the latter obtains more accurate solutions. A key attrac-
tion of the augmented system approach is that it can employ multi-precision arithmetic, which
has the potential to reduce the solution cost (in terms of memory and/or time), while still return-
ing the requested accuracy. In Section 7, we summarise our findings and propose possible future
directions.

2 TEST ENVIRONMENT

We start by describing our test environment, the software packages we use, and our test examples.
The characteristics of the test machine that we use in our numerical experiments are summarized
in Table 1.

ACM Transactions on Mathematical Software, Vol. 48, No. 1, Article 5. Publication date: February 2022.



5:4 J. Scott and M. Tůma

Table 1. Test Machine Characteristics

CPU Two Intel Core i7-7700 3.6 GHz Quad Core processors
Memory 16 GB
Compiler gfortran version 7.4.0 with options -O3 -fopenmp
BLAS/LAPACK Intel MKL Version 2020.0.1

The serial HSL QR package MA49 [29] was developed in the 1990s [4]; more recently, there is
SuiteSparseQR of Davis [15]1 and qr_mumps of Buttari [12].2 These are general-purpose multi-
frontal sparse QR packages, and the latter two are designed to exploit parallelism. It is not our
intention to try and compare these codes or to assess their efficiency for solving general sparse
LS problems: our interest is in using an existing sparse QR package without modification to solve
mixed sparse-dense LS problems. In our numerical experiments, we employ SuiteSparseQR (Ver-
sion 2.0.9) with default settings and COLAMD ordering for sparsity [16]. The Fortran interface
that we use here was also used in Reference [25]. We note that, for sparse matrices, SuiteSparseQR
appears in MATLAB as qr and as x = A\b for rectangular systems and thus is widely used. In
Section 6.4, we report on using multi-precision arithmetic, and here we employ MA49, because
(unlike SuiteSparseQR) it is available in both double and single precision versions.

We have developed Fortran code for performing sparse and partial stretching. The LS iterative
solver we use is a Fortran implementation of LSMR [20].3 The initial solution guess is taken to
be x (0) = 0, and we require the computed residual r = b − Ax to satisfy either ‖r ‖2 < δ1‖b‖2 or
ratio < δ2, where

ratio =
‖AT r ‖2/‖r ‖2
‖ATb‖2/‖b‖2

. (5)

The convergence tolerances δ1 and δ2 are set to 10−8 and 10−6, respectively. Note that for our test
examples, the residual norm ‖r ‖2 is not small and it is Equation (5) that controls the termination
of LSMR.

When working with the augmented system, we employ preconditioned GMRES and MINRES.
The implementations we use are MI24 (Version 1.3.1) and HSL_MI32 (Version 1.0.0) from the HSL
mathematical software library, with the convergence tolerance for both codes set to 10−7.

In our experiments, the vectorb is taken to be the vector of 1’s and we prescaleA by normalizing
each of its columns. That is, we replace A by AD, where D is the diagonal matrix with entries Dii

satisfying D2
ii = 1/‖Aei ‖2 (ei denotes the ith unit vector). The entries of AD are at most one in

absolute value. For simplicity of notation, D is omitted from our discussions.
With the exception of PDE1 (which comes from the CUTEst linear program test set [23]), our test

problems, which are given in Table 2, are from the SuiteSparse Matrix Collection.4 If necessary, a
test matrix is transposed to give an over determined system (m > n). The problems are a subset
of those used in the study [25]. They were selected because they are real rectangular matrices of
full rank that contain a small number of dense rows, they are sufficiently large and challenging
to demonstrate the effectiveness of the algorithms considered in this article (all have an R factor
with more than 106 entries), but, except for PDE1, they can still be solved in our test environment
using QR applied to A. PDE1 was included, because it is a large problem that illustrates that a
single dense row can cause real difficulties. The problems were also chosen to have a range of row

1http://faculty.cse.tamu.edu/davis/suitesparse.html.
2http://buttari.perso.enseeiht.fr/qr_mumps/.
3http://stanford.edu/group/SOL/software/lsmr/.
4https://sparse.tamu.edu/.
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Table 2. Test Examples

Identifier m n md nds dense κ (A) κ (As )

lp_fit2p 13,525 3,000 25 0 1.000 5.021 × 104 7.200 × 102

sctap1-2b 33,858 15,390 34 0 0.005 1.152 × 103 1.842 × 102

sctap1-2r 63,426 28,830 34 0 0.005 1.570 × 103 1.842 × 102

south31 36,321 18,425 5 0 0.951 5.062 × 105 7.102 × 104

PDE1 271,792 270,595 1 0 0.670 NS

aircraft 7,517 3,754 17 4 0.200 2.265 × 103 7.681 × 103

sc205-2r 62,423 35,213 8 1 0.005 1.089 × 103 1.493 × 105

scagr7-2b 13,847 9,743 7 1 0.184 1.849 × 103 1.843 × 105

scagr7-2br 46,679 32,847 7 1 0.184 5.978 × 103 1.780 × 105

scrs8-2r 27,691 14,364 22 7 0.143 9.628 × 103 1.383 × 105

scsd8-2r 60,550 8,650 50 5 0.100 7.246 × 102 1.198 × 105

m and n are the row and column dimensions of A, md is the number of dense rows, nds is the
number of null columns in As after the removal of the block Ad of md dense rows from A. κ (A) is
the condition number of (scaled) A. For the examples in the top part of the table, κ (As ) is the
condition number of As ; for the other examples it is the condition number of the regularized matrix[

As

α In

]
with α = 1.0−5. NS indicates insufficient memory to compute the condition numbers.

densities. In our experiments, themd dense rows are identified using the variant of the approach of
Meszaros [32] described in Reference [42] (with the density parameter set to 0.05). In Table 2, nds

denotes the number of null columns in the sparse row block As . dense is the density of the densest
row in A (that is, the ratio of the largest number of entries in a row of A to n); this ranges from
0.05 to 1. κ (A) is the condition number of A (after scaling). For the examples with nds = 0, κ (As ) is

the condition number of As ; otherwise, it is the condition number of the regularized matrix
[

As

α In

]
with α = 10−5. Here, and elsewhere, for n ≥ 1, In denotes the n × n identity matrix. The condition
numbers are computed using MATLAB (the R factor is first computed R = qr(A) and then the
largest and smallest singular values of the R are determined using svds).

In Table 3, we report the results of employing SuiteSparseQR on our test machine to solve the
LS problems with no special handling of the dense rows. PDE1 is omitted, because the memory
requirements cause an error return. These results are included for later comparison purposes.

3 THE UPDATING APPROACH

Updating procedures are used in least squares applications when new observations are added to
a previously solved problem; they can also handle dense rows by omitting such rows from the QR
factorization and then updating the solution (but not the factorization) to incorporate the effects
of the omitted rows. The approach is described (with no computational results) in the 1982 paper
of Heath [27]. Assume that the sparse block As is of full rank and start by computing the QR
factorization

AsPs = Qs

[
Rs

0

]
and bs = Qs

[
cs

ds

]
. (6)

The solution y of the sparse LS problem

min
y
‖Asy − bs ‖22 , (7)

is then found by solving

RsP
T
s y = cs . (8)

ACM Transactions on Mathematical Software, Vol. 48, No. 1, Article 5. Publication date: February 2022.



5:6 J. Scott and M. Tůma

Table 3. QR Results for the Test Problems

Identifier nnz (R) f lops ‖x ‖2 ‖r ‖2 ratio Time

lp_fit2p 4.502 × 106 5.687 × 1010 1.689 × 101 1.105 × 102 3.841 × 10−9 0.86
sctap1-2b 8.532 × 106 7.572 × 1010 8.171 × 101 1.237 × 102 3.375 × 10−13 1.67
sctap1-2r 2.952 × 107 4.973 × 1011 1.117 × 102 1.694 × 102 5.603 × 10−13 14.0
south31 1.618 × 108 3.839 × 1012 2.748 × 101 1.881 × 102 3.008 × 10−13 48.4

aircraft 3.108 × 106 8.287 × 109 2.000 8.660 × 101 1.514 × 10−14 0.15
sc205-2r 2.331 × 107 1.374 × 1011 3.478 × 102 2.034 × 102 8.560 × 10−14 3.00
scagr7-2b 2.388 × 106 8.961 × 109 1.387 × 102 6.068 × 101 3.561 × 10−13 0.05
scagr7-2br 2.650 × 107 3.414 × 1011 5.693 × 102 1.132 × 102 1.665 × 10−12 1.13
scrs8-2r 2.218 × 107 1.989 × 1011 6.436 × 103 1.354 × 102 9.289 × 10−12 6.47
scsd8-2r 7.900 × 106 9.999 × 1010 2.837 2.461 × 102 1.210 × 10−14 1.78

nnz (R ) is the number of entries in the R factor of A and f lops is the number of floating-point operations to
compute it using SuiteSparseQR. ratio is given by Equation (5). The SuiteSparseQR solution time (denoted Time) is
in seconds.

Let the solution of Equation (2) be x = y + z; it remains to determine z. Using Equations (6)
and (8),

bs −Asx = bs −AsPs

(
PT

s y + P
T
s z
)
= Qs

[
cs

ds

]
−Qs

[
Rs

0

] (
PT

s y + P
T
s z
)
= Qs

[
−RsP

T
s z

ds

]
.

Let rd = bd − Ady. Then bd − Adx = rd − Adz, and we see that z is given by the solution of the
LS problem

min
z

�����
[
RsP

T
s

Ad

]
z −

[
0
rd

]�����
2

2

. (9)

Let KT
d
∈ Rn×md be the solution of the linear system PsR

T
s K

T
d
= AT

d
. Using the change of variables

u = RsP
T
s z and v = rd −Adz = rd −KdRsP

T
s z = rd −Kdu, problem (9) becomes that of finding the

minimum-norm solution of the under determinedmd × (n +md ) system[
Kd Imd

] [u
v

]
= rd . (10)

This leads to Algorithm 1 for solving Equatin (2) (see Algorithm 3 of Reference [27]).

ALGORITHM 1: QR with updating for solving the sparse-dense LS problem (2)

1: Compute the sparse QR factorization
[
AsPs bs

]
= Qs

[
Rs cs

0 ds

]
.

2: Solve PsR
T
s K

T
d
= AT

d
.

3: Solve RsP
T
s y = cs .

4: Form rd = bd −Ady.
5: Compute the minimum norm solution of (10).
6: Solve RsP

T
s z = u.

7: Set x = y + z.

The sparse triangular factor Rs is used to solve the large linear systems in this algorithm (Steps
2, 3, and 6); once Equation (6) is performed, Qs is not needed, unless there is a requirement to

ACM Transactions on Mathematical Software, Vol. 48, No. 1, Article 5. Publication date: February 2022.



QR Solvers for Sparse-dense Least Squares Problems 5:7

solve for further vectors b. Steps 3 and 4 involve dense linear algebra; in particular, the solution of
Equation (10) can be efficiently computed using the LAPACK routine _getsls. Observe that the
minimum norm problem (10) is the same as the following problem of size (md + n) ×md :

min
u

�����
[
Kd

Imd

]
v −

[
0
rd

]�����
2

2

, u = KT
d v

(see, for example, References [28, 37]); both problems have the normal equations
(Imd
+ KdK

T
d

)v = rd .

3.1 Updating When As Has Some Null Columns

In practice, As frequently has one or more null columns or is close to being rank deficient [42].
In this case, the QR factorization is backward stable but the computed R factor is ill conditioned.
This usually leads to the computed LS solution having a very large norm. In our case, there will be
problems with Steps 2, 3, and 6 of Algorithm 1, leading to an inaccurate x . This also happens if the
R factor is used as a preconditioner for an iterative solver: the solver terminates after a very few
iterations with a solution that has a huge norm. Thus, we want to avoid ill conditioning inR. Avron,
Ng, and Toledo [5] propose a strategy involving adding singleton rows to the matrix A. They do
this dynamically (during the factorization), and then, once the factorization is finished, a check is
made of the conditioning of R, and, if necessary, further rows are added and rotated into R using
Givens rotations. Their aim is to ensure R is not ill conditioned while doing as few modifications as
possible (a low rank modification). Because our objective is to use an existing QR package as a black
box solver (without modification), we are unable to dynamically add rows during the factorization.
In the following two subsections, we consider two approaches for handling null columns in As

that allow us to use an unmodified QR package: matrix stretching and regularization.

3.1.1 Sparse and Partial Matrix Stretching. Matrix stretching aims to split each dense row (that
is, each row of Ad ) into a number of sparser rows and to formulate a (larger) modified problem
from which the solution to the original LS problem can be derived. The idea was proposed by
Grcar [26] and was subsequently used in a number of different contexts for solving linear systems
[3, 6, 18, 19]. Stretching has also been applied to LS problems [1, 2]. Stretching treats the dense rows
one by one. Standard stretching splits the row indices of the nonzero entries in each dense row
into sets of (almost) equal contiguous segments; an extra row and column is added to the matrix
with entries corresponding to each of these sets. However, this splitting can result in significant fill
in the normal matrix for the resulting stretched matrix (and also in its factors). Simply increasing
the number of segments each dense row is split into does not necessarily alleviate the problem
(the stretched system increases in size with the number of parts) and may adversely effect the
conditioning. This led us to introduce a new approach, which we termed sparse stretching [41].
It aims to choose the splitting so as to limit the fill in the stretched normal matrix. It does this
by considering the pattern of the normal matrix AT

s As corresponding to the sparse row block and,
for each row in Ad , chooses the subsets of row indices so as to minimise the number of entries in
the normal matrix for the stretched matrix. While numerical experiments have shown that sparse
stretching successfully reduces the fill in compared to standard stretching, it can result in the
stretched system being much larger than the original system (particularly in the case where As is
highly sparse, for example, close to diagonal) and the cost of the factorization (in terms of time
and memory) may still be prohibitive.

To circumvent this, we recently proposed partial stretching [42]. The idea here is to select a small
subset of the rows of Ad that contain entries in the columns of As that are null. Sparse stretching

ACM Transactions on Mathematical Software, Vol. 48, No. 1, Article 5. Publication date: February 2022.



5:8 J. Scott and M. Tůma

is applied to each of the rows in this subset. The stretched rows are sparse so they are added to an
enlarged sparse row block Ãs (which incorporatesAs and the stretched rows) while the remaining
dense rows are moved to a dense block Ãd that has fewer rows than Ad . The result is a partially
stretched matrix with no null columns that, in general, is smaller than would result from stretching
all the dense rows. The dense rows in Ãd can be handled by applying the updating Algorithm 1
to the partially stretched problem. In the event that Ãs is rank deficient (or highly ill conditioned)
after partial stretching, further rows of Ad may be stretched before updating is employed.

3.1.2 Regularization. An alternative approach to handling null columns in As is to use regular-
ization (see, for example, Reference [36]). This increases the row dimension by replacing Equation
(2) with the regularized (or damped) LS problem,

min
x
‖Ax − b ‖22 + ‖αx ‖22 = min

x

�������
⎡⎢⎢⎢⎢⎢⎣
As

αIn
Ad

⎤⎥⎥⎥⎥⎥⎦ x −
⎡⎢⎢⎢⎢⎢⎣
bs

0
bd

⎤⎥⎥⎥⎥⎥⎦
�������

2

2

= min
x

���Ãx − b̃ ���2

2
, (11)

where α > 0 is the regularization (or damping) parameter. A key advantage of regularization is
that appending αIn to As gives a full rank sparse block, and thus Algorithm 1 can be successfully
applied to the regularized problem. The regularized matrix Ã is of size (ms +n) ×n, but it involves
only n additional entries compared to the original A. An important issue is how to choose the
parameter α : too little regularization (“small” α ) can lead to the QR factorization having numeri-
cal difficulties while for excessive regularization (“large” α ), the computed objective value may be
unacceptably different from the optimum for the original problem. Saunders [36] looks at linear
programming problems (without dense rows) from the Netlib test set (http://www.netlib.org/). For
these, provided the problem has been prescaled, he reports that α = 10−4 gives satisfactory solu-
tions. More generally, Saunders recommends α ≥ 10−5‖A‖2. In Section 6.2, we include results for
regularization combined with updating using a range of values of α .

4 HYBRID APPROACH COMBINING QR WITH AN ITERATIVE SOLVER

So far, we have considered purely direct approaches. We now consider a hybrid approach that
involves a QR factorization and an iterative solver. In their paper on QR factorizations for LS
problems, Avron et al. [5] suggest computing the QR factorization of the sparse row block As

and then using the computed R factor as a preconditioner for an iterative method (such as LSQR
[33] or LSMR [20]) applied to the original problem. Again, success of the QR step requires As

to be of full rank and not too ill conditioned. When As has full rank, fast convergence of LSQR
preconditioned with Rs can be expected, because the preconditioned matrix has only md distinct
singular values. In exact arithmetic, convergence should be in at most md + 1 iterations. If As

contains null columns, then we can extend the applicability of the hybrid approach, either by first
applying partial stretching or, for more general rank-deficient As , by employing regularization
before the QR step.

In Reference [5], limited numerical experiments are reported and the authors state that the
updating approach of Heath is sometimes more efficient than using their preconditioned solver
method but not always. Further details are not given. If we compare the two approaches under
the assumption that As is of full rank, then both compute the QR factorization of As and this
is typically the most expensive step. The updating Algorithm 1 then involves a solve with Rs at
Steps 3 and 6 (single right-hand side) and a solve with RT

s at Step 2 withmd right-hand sides (recall
that md is the number of rows in Ad ), thus a total of md + 2 triangular solves are performed. In
addition, there is a _gemv operation at Step 4 and the application of the dense routine _getsls at
Step 5. By comparison, each iteration of an iterative solver with Rs as the preconditioner requires
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a matrix-vector product withA and withAT plus a solve with Rs and a solve with RT
s . Thus, unless

the number of iterations required is very small (md is small) and products with As and AT
s very

cheap, the QR direct-iterative approach of Avron et al. will be more expensive than the updating of
Heath. The QR direct-iterative method is, however, potentially attractive if the LS problem needs
to be solved for different vectors b, because it is not necessary to store the Q factor, whereas the
Heath approach requires cs = QT

s bs to be computed for each bs and so sufficient information on
Qs must be held to allow this. Note that because Qs is typically much denser than As , it may be
prohibitively expensive to storeQs explicitly. IfA is nearly square, then memory requirements can
reduced by storing the Householder transformations used to compute Qs . However, ifms is much
larger than n, then this does not offer significant savings [22].

5 SPARSE-DENSE AUGMENTED SYSTEM APPROACH WITH

ITERATIVE REFINEMENT

In this section, we extend the augmented system formulation of LS problems to sparse-dense LS
problems. In particular, we propose a QR-based approach for handling dense rows inA that enables
the incorporation of iterative refinement. As already noted, LS problems can be ill conditioned, and
so rounding errors may result in an insufficiently accurate solution; accuracy may be improved by
employing iterative refinement. Before describing our extension, we recall the standard augmented
system LS formulation with iterative refinement.

The idea was first suggested by Björck [10] in 1967. He proposed applying iterative refinement
to the mathematically equivalent (m + n) × (m + n) augmented system[

Im A
AT 0

] [
r
x

]
=

[
b
0

]
, r = b −Ax . (12)

Given an initial solution x (0) and r (0) = b −Ax (0) , the (i + 1)st refinement step proceeds as follows.

(1) Compute the residual vector for the augmented system[
f (i )

д(i )

]
=

[
b
0

]
−
[
Im A
AT 0

] [
r (i )

x (i )

]
=

[
b − r (i ) −Ax (i )

−AT r (i )

]
. (13)

(2) Solve for the corrections [
Im A
AT 0

] [
δr (i )

δx (i )

]
=

[
f (i )

д(i )

]
. (14)

(3) Update the solution to the augmented system[
r (i+1)

x (i+1)

]
=

[
δr (i )

δx (i )

]
+

[
r (i )

x (i )

]
. (15)

In this way, the solution x (i ) and residual r (i ) are simultaneously refined. If the QR factorization of
A has been computed, then Björck showed that Equation (14) can be solved by reusing the factors.
To introduce our notation, consider the augmented system[

Im A
AT 0

] [
u
v

]
=

[
w
t

]
. (16)

Using the QR factorization (3), we have[
Im AP

PTAT 0

] [
u

PTv

]
=

[
Q

In

] ⎡⎢⎢⎢⎢⎢⎣
In 0 R
0 Im−n 0
RT 0 0

⎤⎥⎥⎥⎥⎥⎦
[
QT

In

] [
u

PTv

]
=

[
w
PT t

]
,
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so that ⎡⎢⎢⎢⎢⎢⎣
In 0 R
0 Im−n 0
RT 0 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
e
f

PTv

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣
c
d
PT t

⎤⎥⎥⎥⎥⎥⎦ ,
where [

c
d

]
= QTw and u = Q

[
e
f

]
= Q

[
e
d

]
.

The component e is found by solving
PRT e = t ,

and finally v is the solution of
RPTv = c − e .

Thus, a solve with R and with RT plus one multiplication with Q and one with QT are required.
The augmented system approach has been used by Demmel, Hida, Riedy, and Li [17] and, very re-
cently, by Carson, Higham, and Pranesh [14] in their work on multi-precision iterative refinement
algorithm for LS problems.

Consider now the sparse-dense LS problem in which A is of the form (1). Assume a conformal
partitioning of u and w . Performing the QR factorization (6) of the sparse block As , we obtain⎡⎢⎢⎢⎢⎢⎢⎢⎣

In 0 0 Rs

0 Ims−n 0 0
0 0 Imd

AdPs

RT
s 0 PT

s A
T
d

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣
es

fs
ud

PT
s v

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
cs

ds

wd

PT
s t

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where Ps is the permutation from Equation (6) and[
cs

ds

]
= QT

s ws and us = Qs

[
es

fs

]
= Qs

[
es

ds

]
.

Setting z = RsP
T
s v and PsR

T
s K

T
d
= AT

d
, we have⎡⎢⎢⎢⎢⎢⎣

In 0 In
0 Imd

Kd

In KT
d

0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
es

ud

z

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣
cs

wd

p

⎤⎥⎥⎥⎥⎥⎦ ,
where PsR

T
s p = t . The first block gives z = cs − es and eliminating es from the above equation

gives [
Imd

Kd

KT
d
−In

] [
ud

z

]
=

[
wd

p − cs

]
.

Finally, eliminating z we obtain

(Imd
+ KdK

T
d )ud = wd + Kd (p − cs ).

These are the normal equation of the LS problem

min
ud

�����
[
KT

d
Imd

]
ud −

[
p − cs

wd

]�����
2

2

. (17)

We summarize the solution steps needed to solve the sparse-dense augmented system⎡⎢⎢⎢⎢⎢⎣
Ims

0 As

0 Imd
Ad

AT
s AT

d
0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
us

ud

v

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣
ws

wd

t

⎤⎥⎥⎥⎥⎥⎦ , (18)

as Algorithm 2.
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ALGORITHM 2: Solve the sparse-dense augmented system (18)

1: Compute the sparse QR factorization AsPs = Qs

[
Rs

0

]
and set

[
cs

ds

]
= QT

s ws .

2: Solve PsR
T
s K

T
d
= AT

d
.

3: Solve PsR
T
s p = t .

4: Solve the LS problem (17) to obtain ud .
5: Form es = p − KT

d
ud .

6: Solve RsP
T
s v = cs − es .

7: Set us = Qs

[
es

ds

]
.

8: Return us , ud and v .

It requires one solve with Rs , md + 1 solves with RT
s plus one multiplication with Qs and one

with QT
s . Thus the main additional costs compared to the case when A has no dense rows are md

solves with RT
s plus dense linear algebra operations that also depend onmd . In the special case of

the sparse-dense LS augmented system, the system is

Aauдy = bauд , (19)

where

Aauд =

⎡⎢⎢⎢⎢⎢⎣
Ims

0 As

0 Imd
Ad

AT
s AT

d
0

⎤⎥⎥⎥⎥⎥⎦ , y =

⎡⎢⎢⎢⎢⎢⎣
rs

rd

x

⎤⎥⎥⎥⎥⎥⎦ , bauд =

⎡⎢⎢⎢⎢⎢⎣
bs

bd

0

⎤⎥⎥⎥⎥⎥⎦ . (20)

Algorithm 2 simplifies, because t = 0 implies p = 0, reducing the number of solves with RT
s tomd .

Observe thatKd is independent of the right-hand side vector. Thus, once an initial solutiony (0) has
been computed, Kd can be reused, limiting the amount of work needed to perform refinement. For
small md it is clear that the work per refinement iteration for the sparse-dense case is essentially
the same as for A with no dense rows.

5.1 Augmented Approach with Krylov Subspace Refinement

Suppose now thatAs is rank deficient. We can use a hybrid method that first solves the augmented
system corresponding to the regularized LS problem and then uses a preconditioned Krylov sub-
space solver (such as GMRES or MINRES) as a refinement algorithm to recover the solution of
the original system. We emphasize that the regularization is used only in the construction of the
preconditioner and starting vector for the iterative method, which is applied to the unregularized
augmented system (Equation (19)) (note the iterative solver is not invariant with respect to the
regularization). A straightforward choice is the simple R̃s -block diagonal preconditioner[

Im 0

0 R̃T
s R̃s

]
=

[
Im 0

0 R̃T
s

] [
Im 0

0 R̃s

]
= MTM, (21)

where R̃s is the computed R factor of the regularized sparse matrix Ãs This could be used for left
preconditioning or, using it as a split preconditioner to retain symmetry, gives the preconditioned
augmented matrix

M−T

[
Im A
AT 0

]
M−1 =

[
Im AR̃−1

s

R̃−T
s AT 0

]
. (22)

Each application of the preconditioner (and thus each iteration of the Krylov subspace solver)
requires a solve with R̃s and with R̃T

s . If there is no regularization, then the nonzero eigenvalues
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of Equation (22) are 1 and 1
2 (1 ±

√
1 + 4σ ), where n −md of the n the singular values σ of AR−1

s

are equal to 1, and so we can expect convergence of a Krylov method to require approximately
3 + 2md iterations. The numerical results for a small regularization parameter given in the lower
half of Table 10 appear to confirm this dependence on md , in particular, see the last two matrices
scrs8-2r and scsd8-2r.

The hybrid approach is summarized as Algorithm 3, where we use the notation (20) and define

y (i ) =

⎡⎢⎢⎢⎢⎢⎢⎣
r (i )

s

r (i )
d

x (i )

⎤⎥⎥⎥⎥⎥⎥⎦
, δy (i ) =

⎡⎢⎢⎢⎢⎢⎢⎣
δr (i )

s

δr (i )
d

δx (i )

⎤⎥⎥⎥⎥⎥⎥⎦
, s (i ) =

⎡⎢⎢⎢⎢⎢⎢⎣
f (i )
s

f (i )
d

д(i )

⎤⎥⎥⎥⎥⎥⎥⎦
. (23)

Observe that the Q factor need not be retained for the refinement.

ALGORITHM 3: Solve the sparse-dense LS problem (2) using the augmented system hybrid ap-
proach with regularization and Krylov solver refinement

1: Apply Algorithm 2 to the regularized sparse-dense LS problem minx

�������
⎡⎢⎢⎢⎢⎢⎣
As

αIn
Ad

⎤⎥⎥⎥⎥⎥⎦ x −
⎡⎢⎢⎢⎢⎢⎣
bs

0
bd

⎤⎥⎥⎥⎥⎥⎦
�������

2

2

.

Store the computed R factor R̃s and the solution xauд .

2: Set x (0) = xauд and compute
⎡⎢⎢⎢⎢⎣
r (0)

s

r (0)
d

⎤⎥⎥⎥⎥⎦ =
[
bs −Asx

(0)

bd −Adx
(0)

]
. Set y (0) =

⎡⎢⎢⎢⎢⎢⎢⎣
r (0)

s

r (0)
d

x (0)

⎤⎥⎥⎥⎥⎥⎥⎦
.

3: for i = 0 : itmax − 1 do

4: Compute the residual vector s (i ) = bauд −Aauдy
(i ) .

5: Use the Krylov subspace solver with the R̃s -block diagonal preconditioner to solve the
correction system Aauдδy

(i ) = s (i ) .

6: Set y (i+1) = y (i ) + δy (i ) .

7: if converged then

8: Return x = x (i+1) , r =
⎡⎢⎢⎢⎢⎣
r (i+1)

s

r (i+1)
d

⎤⎥⎥⎥⎥⎦ stop

9: end if

10: end for

5.2 Augmented Approach with Multi-precision Refinement

Motivated by the emergence of multi-precision capabilities in hardware, Carson, Higham, and
Pranesh [14] have recently studied multi-precision iterative refinement for LS problems using the
augmented system formulation (12) [10]. They propose trying to reduce the overall solution cost
by performing the QR factorization using low precision arithmetic. The reduction in cost may
be in terms of time and/or memory requirements. Their GMRES-LSIR algorithm then solves (12)
using GMRES preconditioned by a matrix based on the low precision QR factors to obtain the LS
solution to working precision. Extending their work on multi-precision for square linear systems
[13], they employ three precisions: the unit roundoff is uf for the matrix factorization, u for the
working precision, and ur for the computation of residuals. Results are presented for uf equal to
half and to single precision, u equal to single or double precision and ur equal to single, double or
quad precision such that uf ≥ u ≥ ur . The reported numerical experiments [14] demonstrate that,
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ALGORITHM 4: Solve the sparse-dense LS problem (2) using GMRES-based iterative refinement
with precisions uf ≥ u ≥ ur . As is assumed to be full rank.

1: Apply Algorithm 2 to the sparse-dense LS problem (2) using precision uf . Store the computed
R factor Rs using precision uf , and store the solution xauд and residual rauд using precision u.

2: Set y (0) =

[
rauд

xauд

]
using precision u.

3: for i = 0 : itmax − 1 do

4: Compute the residual vector s (i ) = bauд − Aauдy
(i ) using precision ur ; round s (i ) to

precision u.
5: Use GMRES with the Rs -block diagonal preconditioner to solve the correction system

Aauдδy
(i ) = s (i ) using precisionu, with matrix-vector products computed using precision

ur .
6: Set y (i+1) = y (i ) + δy (i ) using precision u.

7: if converged then

8: Return x = x (i+1) , r =
⎡⎢⎢⎢⎢⎣
r (i+1)

s

r (i+1)
d

⎤⎥⎥⎥⎥⎦ stop

9: end if

10: end for

provided the condition number of the system matrix is not too large, three-precision refinement
using GMRES is able to solve a range of problems. Algorithm 4 extends the approach to sparse-
dense LS problems with As of full rank. The notation is as defined in Equations (20) and (23). As
before, MINRES could be used in place of GMRES.

If As is rank deficient, then we can derive a multi-precision version of Algorithm 3 by choosing
a regularization parameter α and replacing Steps 1 and 2 of Algorithm 4 as follows:

1: Apply Algorithm 2 to the regularized sparse-dense LS problem minx

�������
⎡⎢⎢⎢⎢⎢⎣
As

αIn
Ad

⎤⎥⎥⎥⎥⎥⎦ x −
⎡⎢⎢⎢⎢⎢⎣
bs

0
bd

⎤⎥⎥⎥⎥⎥⎦
�������

2

2

using precision uf . Store the computed R factor R̃s using precision uf and the solution xauд

using precision u.

2: Set x (0) = xauд and compute
⎡⎢⎢⎢⎢⎣
r (0)

s

r (0)
d

⎤⎥⎥⎥⎥⎦ =
[
bs −Asx

(0)

bd −Adx
(0)

]
. Set y (0) =

⎡⎢⎢⎢⎢⎢⎢⎣
r (0)

s

r (0)
d

x (0)

⎤⎥⎥⎥⎥⎥⎥⎦
using precision u.

6 NUMERICAL EXPERIMENTS

In this section, we look at the performance of the different approaches that we have presented
when applied to practical applications.

6.1 As Full Rank

We first present results for the problems in the top half of Table 3 for whichAs has no null columns
(and so regularization is not employed). We compare three approaches:

• updating (Algorithm 1);
• sparse stretching (each row of Ad is stretched);
• the hybrid QR direct-iterative method of Section 4.
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Table 4. A Performance Comparison of QR-based Approaches When As Is Full Rank

Identifier Approach m̃ ñ nnz (Rs ) f lops iters ratio

lp_fit2p Updating 13,500 3,000 3.000 × 103 4.050 × 104 5.570 × 10−11

Stretching 50,284 39,759 7.478 × 106 2.782 × 1011 3.821 × 10−9

QR+LSMR 13,500 3,000 3.000 × 103 4.050 × 104 44 9.734 × 10−8

sctap1-2b Updating 33,826 15,390 1.111 × 105 4.063 × 106 3.348 × 10−12

Stretching 45,172 26,704 2.522 × 106 6.467 × 109 8.210 × 10−14

QR+LSMR 33,826 15,390 1.111 × 105 4.063 × 106 43 8.420 × 10−7

sctap1-2r Updating 63,392 28,830 2.084 × 105 7.618 × 106 1.427 × 10−11

Stretching 84,596 50,000 5.571 × 106 1.943 × 1010 1.677 × 10−13

QR+LSMR 63,392 28,830 2.084 × 105 7.618 × 106 40 8.459 × 10−7

south31 Updating 36,317 18,425 1.985 × 106 9.400 × 108 7.095 × 10−15

Stretching 36,810 18,914 5.905 × 106 1.888 × 1010 4.675 × 10−15

QR+LSMR 36,317 18,425 1.985 × 106 9.400 × 108 6 9.704 × 10−15

PDE1 Updating 271,791 270,595 1.392 × 107 7.813 × 109 1.337 × 10−11

Stretching 362,388 361,191 3.349 × 107 3.336 × 1010 1.054 × 10−10

QR+LSMR 271,791 270,595 1.392 × 107 7.813 × 109 2 2.122 × 10−9

m̃ and ñ are the row and column dimensions of the matrix that are factorized using SuiteSparseQR. nnz (Rs ) is the
number of entries in the R factor, and f lops is the number of floating-point operations to compute it. iter s denotes the
number of LSMR iterations performed (QR + LSMR only). r atio is given by Equation (5).

In our tables of results, these approaches are termed Updating, Stretching, and QR+LSMR, respec-
tively. Updating and QR+LSMR compute the same QR factorization of As while Stretching com-
putes the QR factorization of the stretched matrix. In Table 4, we report statistics for the QR fac-
torization (and for QR+LSMR, the number of iterations required to achieve convergence is given);
timings are presented in Table 5. We give timings for each phase of the solution process together
with the total time. For Updating, Solve is the time for solving the triangular linear systems in Steps
2, 3, and 6 of Algorithm 1 plus the time for solving (10). For QR+LSMR, Solve is the time to run pre-
conditioned LSMR and, for Stretching, it is the time to taken to solve Equation (4) with the R factor
for the stretched system. Each method successfully computed the solution x and residual r with
norms identical to those reported in Table 3 (for problem PDE, each computed ‖x ‖2 = 4.282 × 102

and ‖r ‖2 = 3.030 × 102).
As expected, Updating is faster than QR+LSMR, with the additional cost dependent on the num-

ber of LSMR iterations (which increases withmd ). For Updating, Solve can account for more than
half the total solution time (for example, the sctap1 test cases) but for problems for which the
numerical factorization is expensive, it adds little overhead. Observe, in particular, problem PDE1
that has only one dense row (which is 67% full). For this example, the majority of the Updating run
time is taken by the QR step whereas for Stretching, the initial stretching of A dominates the time.
We note that our software that implements stretching has not been optimised and it may be possi-
ble to improve its efficiency. Nevertheless, the time to stretch the matrix clearly adds a significant
overhead. In general, QR after Stretching is expensive, both in terms of time and storage require-
ments, because the stretched matrix can be much larger than the original one. Problem lp_fit2p
is an extreme example of this, because, in this instance, the sparsity pattern of As is close to diag-
onal, causing the sparse stretching algorithm to split each dense row into a large number of parts,
which determines the dimensions of the stretched system. Overall, our experiments suggest that
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Table 5. A Comparison Timings (in Seconds) for QR-based Approaches
When As Is Full Rank

Identifier Approach Stretch Symbolic Numeric Solve Total

lp_fit2p Updating 0.001 0.001 0.002 0.004
Stretching 0.443 0.055 1.166 0.006 1.670
QR+LSMR 0.001 0.001 0.013 0.015

sctap1-2b Updating 0.005 0.005 0.011 0.021
Stretching 0.397 0.019 0.152 0.003 0.571
QR+LSMR 0.009 0.006 0.048 0.063

sctap1-2r Updating 0.012 0.009 0.025 0.046
Stretching 1.158 0.042 0.460 0.008 1.668
QR+LSMR 0.013 0.010 0.096 0.119

south31 Updating 0.006 0.071 0.018 0.095
Stretching 0.019 0.010 0.397 0.006 0.432
QR+LSMR 0.006 0.069 0.037 0.112

PDE1 Updating 0.150 0.485 0.057 0.692
Stretching 21.17 0.215 1.269 0.035 22.69
QR+LSMR 0.159 0.472 0.103 0.734

Stretch denotes the time to perform stretching. Symbolic and Numeric are the times for the
symbolic analysis and numerical factorization phases of SuiteSparseQR, respectively. Solve
is the solution time after the QR factorization has been computed. Total denotes the total
solution time.

if As is full rank, then using Algorithm 1 (Updating) is the best of the approaches considered and
it offers very significant savings compared to the results of Table 3 that did not handle the dense
rows separately. Note, in particular, the reduction in the total solution time for problem south31
(which has just 5 dense rows) from 48 s to less than 0.1 s. Furthermore, we observe that it is not
necessary for the densest rows to be close to being full for it to be advantageous to treat them
separately. This is illustrated by examples sctap1-2b and sctap1-2r for which the densest row
is only 5% full.

6.2 As Rank Deficient

We now move to the more challenging case in which the sparse row block As is rank deficient.
Here and elsewhere, we use Ãs to denote either the sparse row block of the partially stretched A

or the regularized sparse matrix

[
As

αIn

]
and R̃s is its R factor.

In Table 6, we report results for partial stretching combined with Updating (Algorithm 1 is
applied to the partially stretched problem). Here nds is the number of rows that are stretched,
which is equal to the number of null columns in As . Partial stretching generally leads to a modest
increase in the size of the matrix that is factorized (the exception is problem aircraft, because
for this example As is highly sparse).

The reported ‖x ‖2 and ‖r ‖2 are for the original system; they agree with those in Table 3. The only
problem for which partial stretching with updating as currently implemented is unsuccessful is
scsd8-2r. For this example,As has 5 null columns but its rank deficiency is 6. Thus after stretching
nds = 5 rows, the sparse part Ãs has rank deficiency 1 and it is necessary to stretch additional rows
to make Ãs full rank.

ACM Transactions on Mathematical Software, Vol. 48, No. 1, Article 5. Publication date: February 2022.



5:16 J. Scott and M. Tůma

Table 6. Results for Partial Stretching Combined with Updating When As Is Rank Deficient

Identifier nds m̃ ñ nnz (R̃s ) f lops ‖x ‖2 ‖r ‖2 ratio

aircraft 4 10,517 6,754 4.719 × 104 9.333 × 105 2.000 8.660 × 101 2.879 × 10−14

sc205-2r 1 64,023 36,813 3.175 × 105 8.253 × 106 3.478 × 102 2.033 × 102 6.728 × 10−11

scagr7-2b 1 15,127 11,023 1.186 × 105 5.029 × 106 1.387 × 102 6.068 × 101 8.845 × 10−12

scagr7-2br 1 50,999 37,167 4.673 × 105 1.881 × 107 5.693 × 102 1.132 × 102 4.343 × 10−11

scrs8-2r 7 32,820 19,493 4.242 × 105 4.655 × 107 6.435 × 103 1.354 × 102 2.457 × 10−12

nds denotes the number of rows that are stretched; m̃ and ñ are the row and column dimensions of the matrix that
are factorized using SuiteSparseQR. nnz (R̃s ) is the number of entries in R̃s and f lops is the number of
floating-point operations needed to compute it. r atio is given by Equation (5).

Table 7. Results for Regularization Combined with Updating for a Range
of Values of the Regularization Parameter α

α scagr7-2b scrs8-2r
‖x ‖2 ‖r ‖2 ratio ‖x ‖2 ‖r ‖2 ratio

1.0 × 10−11 1.1045 × 102 6.0686 × 101 7.7845 × 10−5 7.9612 × 101 1.4595 × 102 3.9660 × 10−3

1.0 × 10−10 1.1045 × 102 6.0686 × 101 7.7845 × 10−5 7.9612 × 101 1.4595 × 102 3.9660 × 10−3

1.0 × 10−9 1.3868 × 102 6.0677 × 101 9.8318 × 10−8 6.4355 × 103 1.3537 × 102 3.5548 × 10−8

1.0 × 10−8 1.3868 × 102 6.0677 × 101 5.8658 × 10−8 6.4355 × 103 1.3537 × 102 5.5789 × 10−9

1.0 × 10−7 1.3868 × 102 6.0677 × 101 6.9576 × 10−9 6.4355 × 103 1.3537 × 102 5.6097 × 10−10

1.0 × 10−6 1.3868 × 102 6.0677 × 101 2.4533 × 10−10 6.4355 × 103 1.3537 × 102 5.2442 × 10−11

1.0 × 10−5 1.3868 × 102 6.0677 × 101 3.0287 × 10−10 6.4354 × 103 1.3537 × 102 1.6714 × 10−8

1.0 × 10−4 1.3867 × 102 6.0677 × 101 2.9832 × 10−8 6.4250 × 103 1.3537 × 102 1.6677 × 10−6

1.0 × 10−3 1.3836 × 102 6.0677 × 101 2.9826 × 10−6 5.5945 × 103 1.3539 × 102 1.5535 × 10−4

1.0 × 10−2 1.2140 × 102 6.0679 × 101 2.9486 × 10−4 3.1728 × 103 1.3587 × 102 1.0847 × 10−2

1.0 × 10−1 8.7196 × 101 6.0969 × 101 2.7369 × 10−2 8.9678 × 102 1.4093 × 102 1.5157 × 10−1

1.0 2.8011 × 101 8.4479 × 101 5.9665 × 10−1 1.8850 × 101 1.5274 × 102 5.0195

Ratio is given by Equation (5).

Regularization requires the selection of an appropriate regularization parameter α . Table 7
illustrates that, if regularization is combined with Updating (that is, Algorithm 1 applied to
Equation (11)), then as α increases, the deviation of the computed solution from the desired so-
lution may be unacceptable; it is also unacceptable for very small α .

The computed solution is for the regularized problem. However, if we compute the QR factoriza-
tion of the regularized sparse matrix, then we can use R̃s as a preconditioner for LSMR applied to
the original system and thus compute the solution of the (unregularized) problem. That is, within
the LSMR algorithm, matrix-vector products are with the original A and the stopping criteria are
applied to the original system. In Figures 1 and 2, for 10−7 ≤ α ≤ 1 we plot the number of LSMR it-
erations needed for this approach and the values of ratio given by Equation (5), respectively. As we
expect, the iteration count increases with α but, for a range of values, there is little variation in the
count; it is only once α > 10−3 that a large number of iterations is needed and ratio also becomes
large for such values. The lack of sensitivity is encouraging, because it implies that, provided the
problem is well scaled, the precise choice of the regularization parameter is not important.

We next consider combining LSMR with partial stretching and with regularization. Results are
given in Tables 8 and 9. For the approach denoted by PStretching, we apply partial stretching,
compute the QR factorization of Ãs , use the R factor R̃s as a preconditioner for LSMR applied to
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Fig. 1. LSMR iteration counts for a range of values of the regularization parameter α for problems scagr7_2b
(blue solid line) and scrs8-2r (red dashed line).

Fig. 2. Values of ratio for a range of values of the regularization parameter α for problems scagr7_2b (blue
solid line) and scrs8-2r (red dashed line).

the stretched problem and then recover the solution of the original problem. For the approach
Regular, we perform regularization (with α = 10−5), and use the computed R factor to precon-
dition LSMR applied to the original problem. We report ratio for the original problem. Both
approaches are successful (the computed ‖x ‖2 and ‖r ‖2 are consistent with Table 3 and so are not
explicitly reported) and the iteration counts are similar. However, ratio is consistently smaller
for PStretching. To try to reduce ratio further for approach Regular, additional LSMR iterations
can be performed. But in our experiments we observed that, in general, Regular was unable
to produce values of ratio as small as those obtained with PStretching. The disadvantages of
PStretching are that the number of entries in the R factor and the flop count to compute it are
generally greater and, again, it is expensive to perform the partial stretching. Observe that ratio
for partial stretching combined with Updating (Table 6) is generally smaller than for PStretching.

Next, we illustrate how the number of dense rows affects the performance of preconditioned
LSMR. We have already seen in Table 5 that the first three problems, which contain more dense
rows than the final two, have a higher iteration count. We now explore varying the number of
dense rows using the test problem south31. If the density threshold is set to 0.01 in the algorithm
used for dense row detection, then 381 rows are classified as dense (with varying numbers of
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Table 8. A Performance Comparison of Employing R̃s Computed Using Partial Stretching and
Regularization as a Preconditioner for LSMR When As Is Rank Deficient

Identifier Approach m̃ ñ nnz (R̃s ) f lops iters ratio

aircraft PStretching 10,517 6,754 4.719 × 104 9.333 × 105 9 4.947 × 10−12

Regularization 11,271 3,754 3.754 × 103 3.376 × 104 7 5.476 × 10−7

sc205-2r PStretching 64,023 36,813 3.175 × 105 8.253 × 106 6 9.983 × 10−9

Regularization 97,636 35,213 2.704 × 105 1.209 × 107 7 1.002 × 10−8

scagr7-2b PStretching 15,127 11,023 1.186 × 105 5.029 × 106 7 2.129 × 10−12

Regularization 23,590 9,743 6.027 × 104 3.667 × 106 8 3.979 × 10−9

scagr7-2br PStretching 50,999 37,167 4.673 × 105 1.881 × 107 7 1.046 × 10−10

Regularization 79,526 32,847 2.273 × 105 1.275 × 107 8 3.470 × 10−8

scrs8-2r PStretching 32,820 19,493 4.242 × 105 4.655 × 107 7 3.311 × 10−12

Regularization 42,055 14,364 8.200 × 104 2.835 × 106 16 3.532 × 10−7

m̃ and ñ are the row and column dimensions of the matrix that is factorized using SuiteSparseQR. nnz (R̃s ) is the

number of entries in the factor R̃s , and f lops is the number of floating-point operations needed to compute it. iter s

denotes the number of LSMR iterations performed. r atio is given by Equation (5).

Table 9. A Comparison of Timings (Seconds) of Employing R̃s Computed Using Partial
Stretching and Regularization as a Preconditioner for LSMR When As Is Rank Deficient

Identifier Approach Stretch Symbolic Numeric Solve Total

aircraft PStretching 0.058 0.002 0.002 0.004 0.066
Regularization 0.001 0.001 0.001 0.003

sc205-2r PStretching 0.091 0.016 0.011 0.021 0.139
Regularization 0.015 0.010 0.017 0.042

scagr7-2b PStretching 0.017 0.005 0.005 0.006 0.033
Regularization 0.005 0.003 0.007 0.015

scagr7-2br PStretching 0.179 0.016 0.017 0.024 0.236
Regularization 0.017 0.012 0.022 0.051

scrs8-2r PStretching 0.128 0.008 0.016 0.013 0.165
Regularization 0.004 0.004 0.013 0.021

scsd8-2r Regularization 0.010 0.007 0.041 0.058

Stretch denotes the time to perform stretching. Symbolic and Numeric are the times for the
symbolic analysis and numerical factorization phases of SuiteSparseQR, respectively. Solve is the
solution time after the QR factorization has been computed. Total denotes the total solution time.

entries) and As is rank deficient. We select dense rows in a random order and solve a modified
problem in which we take As to be the matrix with the 381 dense rows discarded and then choose
md to lie in the range 1 to 381 (the other 381 −md rows identified as dense are discarded). We
perform regularization combined with LSMR and, in Figure 3, we report the number of iterations
for each choice ofmd . As expected, the number of iterations increases steadily withmd , confirming
that the approach is most suited to problems with a limited number of dense rows.

6.3 Numerical Results for the Augmented Approach

We now turn our attention to the augmented approach of Section 5. In Table 10, results are pre-
sented for our test problems for which As is rank deficient. Results are given for split precondi-
tioned GMRES and MINRES applied to the augmented system (19) with initial solution x (0) = 0
and for Algorithm 3 (with GMRES and MINRES as the iterative refinement solver). For the latter,
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Fig. 3. The LSMR iteration count for the (modified) problem south31 as the number md of dense rows
increases.

Table 10. A Performance Comparison of Split-preconditioned GMRES and MINRES Used Directly to
Solve the Augmented System (19) and for Refinement (Algorithm 3 Using GMRES

and MINRES with itmax = 1)

Identifier Approach iters ratioinit ratio

aircraft GMRES/MINRES 18/24 1.058 × 10−14/4.682 × 10−9

Algorithm 3+GMRES/MINRES 18/22 1.274 × 10−7 3.659 × 10−16/1.751 × 10−13

sc205-2r GMRES/MINRES 20/28 4.658 × 10−9/1.376 × 10−8

Algorithm 3+GMRES/MINRES 20/30 2.240 × 10−4 1.602 × 10−12/1.835 × 10−12

scagr7-2b GMRES/MINRES 22/40 8.761 × 10−11/1.060 × 10−10

Algorithm 3+GMRES/MINRES 22/40 2.949 × 10−4 8.961 × 10−13/1.391 × 10−13

scagr7-2br GMRES/MINRES 22/40 3.151 × 10−10/1.824 × 10−9

Algorithm 3+GMRES/MINRES 22/40 3.181 × 10−4 4.492 × 10−11/3.442 × 10−11

scrs8-2r GMRES/MINRES 38/42 3.229 × 10−8/3.270 × 10−8

Algorithm 3+GMRES/MINRES 42/98 1.246 × 10−3 2.999 × 10−12/1.268 × 10−11

scsd8-2r GMRES/MINRES 38/70 1.924 × 10−9/2.706 × 10−8

Algorithm 3+GMRES/MINRES 40/88 1.070 × 10−4 3.220 × 10−14/3.264 × 10−11

aircraft GMRES/MINRES 18/20 8.033 × 10−15/2.437 × 10−9

Algorithm 3+GMRES/MINRES 20/24 1.298 × 10−13 1.022 × 10−17/1.010 × 10−17

sc205-2r GMRES/MINRES 14/30 2.445 × 10−9/2.404 × 10−9

Algorithm 3+GMRES/MINRES 16/30 4.514 × 10−7 1.635 × 10−12/1.635 × 10−12

scagr7-2b GMRES/MINRES 16/28 3.425 × 10−9/7.308 × 10−9

Algorithm 3+GMRES/MINRES 18/38 2.985 × 10−10 1.282 × 10−12/1.282 × 10−12

scagr7-2br GMRES/MINRES 16/28 1.943 × 10−8/5.031 × 10−8

Algorithm 3+GMRES/MINRES 18/46 3.594 × 10−10 6.906 × 10−12/6.905 × 10−12

scrs8-2r GMRES/MINRES 30/44 1.958 × 10−9/4.654 × 10−8

Algorithm 3+GMRES/MINRES 30/48 2.429 × 10−9 4.039 × 10−12/4.039 × 10−12

scsd8-2r GMRES/MINRES 36/98 6.843 × 10−13/7.359 × 10−8

Algorithm 3+GMRES/MINRES 36/100 2.685 × 10−6 1.793 × 10−14/8.231 × 10−14

In each case, the sparse block As is rank deficient and the QR factorization of the regularized sparse matrix Ãs is
computed using SuiteSparseQR. Results in the upper (respectively, lower) half of the table are for the
regularization parameter α = 10−2 (respectively, α = 10−5). iter s denotes the number of GMRES or MINRES
iterations performed. r atio is given by Equation (5) and r atioinit by Equation (24).
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Table 11. Timings (in Seconds) for Split-preconditioned GMRES and MINRES Used Directly to Solve the
Augmented System (19) and for Refinement (Algorithm 3 Using GMRES and MINRES with itmax = 1)

Identifier Approach Symbolic Numeric Augmented Iterative Total

aircraft GMRES/MINRES 0.001 0.001 0.006/0.006 0.008/0.008
Algorithm 3+GMRES/MINRES 0.001 0.001 0.003 0.007/0.007 0.012/0.013

sc205-2r GMRES/MINRES 0.013 0.010 0.037/0.086 0.060/0.106
Algorithm 3+GMRES/MINRES 0.013 0.009 0.020 0.050/0.087 0.092/0.125

scagr7-2b GMRES/MINRES 0.003 0.003 0.008/0.018 0.014/0.025
Algorithm 3+GMRES/MINRES 0.004 0.003 0.008 0.012/0.023 0.027/0.040

scagr7-2br GMRES/MINRES 0.014 0.012 0.045/0.082 0.071/0.107
Algorithm 3+GMRES/MINRES 0.014 0.011 0.028 0.049/0.132 0.102/0.185

scrs8-2r GMRES/MINRES 0.005 0.004 0.034/0.049 0.043/0.057
Algorithm 3+GMRES/MINRES 0.005 0.004 0.011 0.031/0.065 0.051/0.094

scsd8-2r GMRES/MINRES 0.008 0.007 0.079/0.180 0.094/0.195
Algorithm 3+GMRES/MINRES 0.008 0.007 0.009 0.072/0.199 0.097/0.223

Symbolic and Numeric are the times for the symbolic analysis and numerical factorization phases of SuiteSparseQR,
respectively. Augmented is the time within Algorithm 3 after the QR factorization has been computed to solve the
augmented system (19) and Iterative is the time for GMRES or MINRES. Total denotes the total solution time. The
regularization parameter is α = 10−5.

we give the ratio (5) before refinement, that is,

ratioinit =
‖AT r (0) ‖2/‖r (0) ‖2
‖ATb‖2/‖b‖2

, (24)

and after a single refinement step (itmax = 1). Timings are given in Table 11. Here “Augmented”
denotes the time within Algorithm 3 for solving the augmented system (19) using the computed QR
factorization of the regularized problem (that is, it is the time for Steps 2 to 8 of Algorithm 2). Each
approach is successful, with the GMRES iteration counts being smaller than those for MINRES,
resulting in lower times (the latter offers the advantage of requiring less memory). As we would
expect, in general the iteration counts are higher for a larger regularization parameter α . Observe
that, for α = 10−5 (the results given in the lower half of Table 10), the stopping criterion that we
employed for tests with LSMR (namely, ratio < δ2 with δ2 = 10−6) is satisfied by ratioinit for all the
examples except scsd8-2r. Thus, with the exception of this problem, refinement of the solution
xauд of the augmented system for the regularized problem is only required if we want to reduce
ratio further. Note also that the most expensive part of the solution process is the Krylov solver; the
time could potentially be reduced by optimising the implementation of the matrix-vector products.
A comparison of the total timings reported in Table 11 with those for regularization plus LSMR
given in Table 9 indicates that, in general, the latter is more efficient, because the iterative solver
time is less.

6.4 Multi-precision Results

Finally, to illustrate the use of multi-precision arithmetic, we set uf to single precision and u = ur

to double precision. Results are presented in Table 12 for itmax = 1. In the upper part of the ta-
ble, results are for the test problems for which As is of full rank and in the lower part, As is rank
deficient and we set the regularization parameter to 10−3. As already noted, these results are com-
puted using the HSL QR package MA49, because it offers single and double versions. The results
show that the multi-precision approach is feasible and offers another option for solving sparse-
dense LS problems. We do not report timings here, because, in our experiments with MA49, we did
not find that the QR factorization time of As using the single precision version was significantly
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Table 12. Multi Precision Results (Algorithm 4) Obtained Using MA49

Identifier iters ‖x ‖ ‖r ‖ ratioinit ratio

lp_fit2p 65 1.689 × 10 1.105 × 102 9.529 × 10−3 1.023 × 10−12

sctap1-2b 93 8.171 × 10 1.237 × 102 2.210 × 10−3 1.068 × 10−14

sctap1-2r 93 1.117 × 102 1.694 × 102 3.684 × 10−3 4.780 × 10−14

south31 48 2.748 × 10 1.881 × 102 2.675 × 10−6 4.259 × 10−15

aircraft 32 2.000 8.660 × 10 1.641 × 10−6 6.739 × 10−17

sc205-2r 32 3.478 × 102 2.034 × 102 1.049 × 10−2 2.099 × 10−11

scagr7-2b 34 1.387 × 102 6.068 × 10 1.045 × 10−3 5.559 × 10−16

scagr7-2r 33 5.693 × 102 1.132 × 102 1.843 × 10−2 5.268 × 10−11

scrs8-2r 63 6.436 × 103 1.354 × 102 1.334 × 10−3 4.621 × 10−13

scsd8-2r 70 2.837 2.461 × 102 1.686 × 10−1 6.070 × 10−12

The problems in the upper part do not use regularization while those in the lower part use
regularization with α = 10−3. iter s denotes the number of GMRES iterations performed.
itmax = 1. r atio is given by Equation (5) and r atioinit by Equation (24).

less than for the double precision version. Furthermore, the GMRES times dominate the total run
time, suggesting that to reduce the time the efficiency of the matrix-vector products and the appli-
cation of the preconditioner require improvement. This and exploring why, in our tests, the single
precision version of MA49 does not offer good speedups, is outside the scope of our current study.
Our findings with the current software suggests that a key advantage of the single precision ap-
proach is that it is possible in some cases to perform the QR factorization in single precision when
there is insufficient memory to perform it in double precision, potentially extending the class of
problems that can be successfully solved.

7 CONCLUDING REMARKS

This computational study has explored how to employ black-box sparse QR solvers to efficiently
and robustly solve sparse-dense LS problems. We have brought together a number of different
approaches, with particular emphasis on problems in which the sparse partAs of the system matrix
A is rank deficient. In this case, we have shown that combining basic approaches for sparse-dense
LS problems with either partial matrix stretching or regularization is effective. For the former, the
solution of the original system can be obtained directly using the sparse QR solver combined with
updating but the initial stretching step currently adds a significant overhead. Regularization is
much more straightforward to implement and less expensive, even though it may be necessary to
use a hybrid direct-iterative approach to achieve the required accuracy for the original problem.
Alternatively, a preconditioned Krylov solver can be applied to the augmented system formulation
of the LS problem. We have demonstrated that, using this formulation, there is the potential for
multi-precision solvers, which extends the class of problems for which a QR factorization of the
sparse row block can be computed. While all the proposed approaches have been shown to be
effective, no one method is the best choice for all problems.

In this article, we have assumed that a QR factorization of As (possibly after stretching or regu-
larization) can be performed. However, memory limitations may mean that for very large problems
this is not possible and an iterative approach that avoids a complete QR factorization is needed. A
number of approaches to computing a LS preconditioner based on incomplete orthogonal factor-
izations have been proposed (including References [7–9, 30, 31, 34, 35, 46]); no comparisons have
been made between them. This is probably because, with the exception of the MIQR package of Li
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and Saad [31] there is (as far as we are aware) no software available (and the implementations are
nontrivial). In their study of preconditioners for LS problems, Gould and Scott [24, 25] included
MIQR. They reported that it was generally not competitive with other preconditioners (most no-
tably, the limited memory incomplete Cholesky factorization of the normal equations available as
the HSL software package HSL_MI35 [38, 40]), and thus we have not experimented further with
it here. Designing, developing and implementing algorithms (and underlying theory) for efficient
and reliable incomplete orthogonal factorization preconditioners remains an open challenge.

Other possible future directions include designing and developing more efficient implementa-
tions of the algorithm that performs partial stretching to make the approach really viable. When
there are several rows that require stretching, our plan is to develop novel block stretching strate-
gies in which rows inAd with similar sparsity patterns are handled together. This could potentially
significantly reduce the computational costs. More work is also needed to develop efficient multi-
precision solvers. We have shown that using multi-precision is feasible but its (optional) use needs
to be built into the solver package. Furthermore, a QR-based solver that efficiently handles dense
rows for the user is needed. We have shown that it is possible to do this by writing code around an
existing solver but it would be more efficient and much more user-friendly to design the software
in the first place to allow for dense rows. Importantly, a row does not need to be very dense for it
to be worthwhile to handle it as dense.

Finally, we observe that while we have focused our experiments on LS problems whereAd corre-
sponds to dense rows in A, the proposed algorithms can also be applied when Ad represents rows
(either sparse or dense) that are added to A after an initial QR factorization has been performed.
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