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ABSTRACT
Visual Entailment with natural language explanations aims to infer
the relationship between a text-image pair and generate a sen-
tence to explain the decision-making process. Previous methods
rely mainly on a pre-trained vision-language model to perform
the relation inference and a language model to generate the corre-
sponding explanation. However, the pre-trained vision-language
models mainly build token-level alignment between text and image
yet ignore the high-level semantic alignment between the phrases
(chunks) and visual contents, which is critical for vision-language
reasoning. Moreover, the explanation generator based only on the
encoded joint representation does not explicitly consider the critical
decision-making points of relation inference. Thus the generated ex-
planations are less faithful to visual-language reasoning. Tomitigate
these problems, we propose a unified Chunk-aware Alignment and
Lexical Constraint based method, dubbed as CALeC. It contains
a Chunk-aware Semantic Interactor (arr. CSI), a relation inferrer,
and a Lexical Constraint-aware Generator (arr. LeCG). Specifi-
cally, CSI exploits the sentence structure inherent in language and
various image regions to build chunk-aware semantic alignment.
Relation inferrer uses an attention-based reasoning network to
incorporate the token-level and chunk-level vision-language rep-
resentations. LeCG utilizes lexical constraints to expressly incor-
porate the words or chunks focused by the relation inferrer into
explanation generation, improving the faithfulness and informa-
tiveness of the explanations. We conduct extensive experiments
on three datasets, and experimental results indicate that CALeC
significantly outperforms other competitor models on inference
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accuracy and quality of generated explanations. Code is available
here: https://github.com/HITsz-TMG/ExplainableVisualEntailment.
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1 INTRODUCTION
Visual Entailment with Natural Language Explanations (VE-NLE)
aims to infer the relationship (entailment, contradiction, neutral)
between a text-image pair and generate an explanation that can
reflect the decision-making process. Compared to conventional
image-text matching tasks [18, 43], Visual Entailment (VE) requires
discerning more fine-grained cross-modal information on the input
pair, because “neutral” needs the model to conclude the uncertainty
between “entailment (yes)” and “contradiction (no)”. Moreover, input
text in VE contains more abundant information related to the image
than Visual Question Answering [11, 29, 46]. Thus, it requires more
precise sentence comprehension and proper visual grounding to
infer the relationship. Natural language explanations (NLE) could
help correct the model bias and understand the decision-making
process [14, 31] in a human-friendly way. And a convincing expla-
nation should center around the input text-image pair and reflect
the inference process faithfully.

For VE-NLE, typical methods [14, 21, 23, 40] adopt a vision-
language model to obtain the inference result via learning a joint
representation of the input pair. The representation is fed to a lan-
guage model to generate the corresponding explanation. Despite
improvements on inference accuracy and explanation quality, these
works still have certain limitations. First, most vision-languagemod-
els [6, 9, 13, 16] focus on building token-level alignment to learn the
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Previous Methods

Our Method

Relation: Neural

Explanation: The youth
is either Asian orAsian.

Relation: Contradiction

Explanation: The Asian
youth cannot be sitting
and doing a skateboard
trick at the same time.

Hypothesis: An Asian youth
is doing a skateboard trick.

skateboard

trick

An Asian youth

is doing
a skateboard trick

Asian

youth

doing

Figure 1: Visual comparison between our method and previ-
ous methods. Our method can accurately align “is doing a
skateboard trick” to the semantically relevant region rather
than separate objects like previous methods. It can also gen-
erate an explanation centered around the keywords of the
inference process, which is more informative and faithful
than previous methods.

joint representation, neglecting the high-level semantic alignment
between the phrase and image region. It often leads to ambiguous
semantic understanding and vague alignment, making the classifier
error-prone. For example, as previous methods shown in Figure 1,
although they align the words (e.g., youth, doing, skateboard) to
different image regions, the discrete token-level alignments can not
capture that the chunk describes an action “is doing a skateboard
trick”. The misinterpretation of the chunk leads to the incorrect
alignment of doing and trick and results in the wrong inference
result. Secondly, the above methods generate explanations by solely
applying attention to the joint representation, neglecting the critical
decision-making points of relation inference. Thus, the explanation
is easily confined to limited words, e.g., the explanation only attends
to “Asian youth” and is irrelevant to the second half of the input (
see the explanation generated by previous methods in Figure 1). To
enhance the correlation between relation inference and generation,
Dua et al. [8] and Sammani et al. [31] utilize a language model to
generate the inference result and explanation in a sequence simul-
taneously. Nevertheless, they can only attend to the results in each
step of explanation generation, and the vital information of the
inference process is still neglected.

To tackle the two problems, we propose a unified Chunk-aware
Alignment and Lexical Constraint based method (CALeC). CALeC
contains a Chunk-aware Semantic Interactor (CSI), a relation infer-
rer and a Lexical Constraint-awareGenerator (LeCG). CSI exploits
the rich semantics contained in chunks. It adopts a within-chunk
interactor and an inter-chunk interactor to learn chunk-level seman-
tics. Then it utilizes a cross-modal interactor to build alignments
between chunks and regions, removing the ambiguous alignments.
Relation inferrer combines the outputs of CSI and a pre-trained
vision-language model to gain a comprehensive representation of
the input text-image pair and utilizes an attention-based reason-
ing network to predict the relation. After that, LeCG generates
explanations related to the inference process and input. It utilizes a
transformer-based generator to obtain the initial generation prob-
ability conditioned on the encoded representation and inferred

result. Then LeCG chooses the keywords with higher attention
weight during inference as the lexical constraint set and gains a
lexical constraint probability over this set. The two probabilities
are combined to generate the explanation. Moreover, we utilize a
constrained beam sample during testing to score each beam with
the probability and number of constraint words occurrences.

We conduct extensive experiments on the current biggest VE-
NLE dataset e-SNLI-VE [14]. To demonstrate the generalizability of
CALeC to other vision-language tasks, we also report results on two
VQA-NLE datasets, VQA-X [23] and VCR [44]. Experimental results
show that CALeC surpasses the previous state-of-the-art method on
a wide range of automatic evaluation metrics. Our quality analysis
indicates that the generated explanations of CALeC improve on the
aspects of faithfulness and relevance.

In summary, the contributions of our work are three-fold: 1) We
propose a unified chunk-aware alignment and lexical constraint
based method (CALeC), which contains a chunk-aware semantic
interactor (CSI) to exploit the rich semantics of chunks, a relation
inferrer to obtain relations, and a lexical constraint-aware gener-
ator (LeCG) to produce correlated explanations according to the
inference process and input. 2) We introduce CSI and LeCG. CSI
explicitly utilizes the chunks and various image regions to build the
chunk-aware semantic alignment. LeCG incorporates keywords
related to inference results to generate faithful explanations. 3) Ex-
perimental results show that CALeC remarkably surpasses existing
methods for inference accuracy and explanation faithfulness on
the VE-NLE dataset. It also generalizes well across two VQA-NLE
datasets.

2 RELATEDWORKS
To help decrease the class bias and enhance the ability of fine-
grained reasoning, Xie et al. [41] build the visual entailment dataset
SNLI-VE, which combines Stanford Natural Language Inference
(SNLI) [4] and Flickr30k [43]. They design a two-stream atten-
tion network to model the fine-grained cross-modal reasoning and
demonstrate their interpretability via attention visualizations. To
explain the decision-making process more human-friendly and
detailed, Kayser et al. [14] propose combining visual entailment
with natural language explanations and building the first VE-NLE
dataset e-SNLI-VE, which is also the current largest NLE dataset for
vision-language tasks. Based on it, they establish a benchmark e-ViL
for vision-language tasks with NLE, which contains e-SNLI-VE and
two VQA-NLE datasets: VQA-X [23] and VCR [44].

Inference Accuracy. Some works focus on improving infer-
ence accuracy. Park et al. [23] combine multi-modal information
via bilinear pooling to predict the answer and utilize an LSTM-
based language model to generate the explanation conditioned on
the pooling representations. Kayser et al. [14] propose e-UG that
adopts a powerful pre-trained vision-language model UNITER [6]
to learn joint representations and GPT-2 [28] to generate explana-
tions. However, though existing pre-trained models [6, 13, 38, 39]
have made progress in inference accuracy, the general sequential at-
tentive models focus on building token-level alignment, neglecting
the rich semantics contained in phrase.

Explanation Faithfulness.Other works focus on getting more
faithful explanations. Wu and Mooney [40] filter out the samples
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Figure 2: The overall architecture of CALeC for VE-NLE. Words of the input text in the same chunk are depicted using the
same color. First, the chunk-aware semantic interactor exploits rich semantics contained in chunks to build chunk-aware
semantic alignment. Then, the relation inferrer uses an attention-based reasoning network to incorporate the token-level
and chunk-level vision-language representations. Finally, the lexical constraint-aware generator incorporates the keywords
during inference into the explanation to improve the relevance and faithfulness.

whose visual explanation does not relevant to the predicted an-
swer via GradCAM [34]. They utilize an improved Up-Down VQA
model [2] for answer inference, and an Up-Down LSTM model [2]
to generate explanations. Marasović et al. [21] use different vision-
language models to obtain expressive text-image representations,
and feed the encoded representations to GPT-2 [28] to generate ex-
planations. However, the language model can only attend to input
pairs via attention, treating inference and generation as separate
tasks. To enhance the correlation between inference and expla-
nation generation, Patro et al. [24] use a mutually collaborating
module to conduct a jointly adversarial attack on answering and
explanation, which also helps improve the robustness of the model.
Dua et al. [8] and Sammani et al. [31] convert inference as a text
generation task and utilize the language model to generate the
answer and explanation simultaneously. Nevertheless, they fail to
incorporate the critical words of the inference into generation.

3 METHODOLOGY
Given an image premise 𝐼 and a text hypothesis 𝑇 , VE-NLE aims
to infer the relationship 𝑦 between the input pair and generate an
explanation 𝐸 that can reflect the decision-making process. An accu-
rate inference requires a precise understanding of the sentence, and
a convincing explanation needs to reflect the inference process faith-
fully. To this end, we propose CALeC, whose architecture is shown
in Figure 2. It consists of three key components: a chunk-aware
semantic interactor that exploits the rich semantics contained in
phrases (Section 3.1); a relation inferrer that conducts fine-grained

inference on the combined outputs of the chunk-aware semantics
interactor and a pre-trained vision-language model (Section 3.2); a
lexical constraint-aware generator that incorporates the keywords
during inference into explanation to improve the faithfulness (Sec-
tion 3.3). We train CALeC separately and utilize a constrained beam
sample during testing. The training and testing detail descriptions
are in Section 3.4.

3.1 Chunk-aware Semantic Interactor
We utilize a chunk-aware semantic interactor (CSI) to exploit se-
mantics in phrases and build chunk-level alignment. CSI takes the
concatenation of text and image [𝑇 ; 𝐼 ] as the input.

For text 𝑇 = (𝑤1,𝑤2, ...,𝑤𝑀 ), we add special tokens [CLS] and
[SEP] to denote the start and end of the text. The tokens are fed
into an embedding layer to get H𝑤 = (h𝐶𝐿𝑆 ,h𝑤1 , ...,h

𝑤
𝑀
,h𝑆𝐸𝑃 ),

where h𝑤𝑖 is the representation of 𝑖-th token. For image 𝐼 with
𝑁 regions, we utilize a pre-trained Faster R-CNN [30] to extract
the global image feature and region features. We feed them into
a fully-connected layer, obtaining the final representation H𝑟 =

(h𝑔,h𝑟1, ...,h
𝑟
𝑁
), where h𝑔 is the representation of the global image

and h𝑟𝑖 is the representation of the 𝑖-th region. We use a tagging
model to get the borders 𝐵 of text chunks. 𝐵 contains the start
index and end index of each chunk, which can be formulated as
𝐵 = ( [𝑏1,𝑠 , 𝑏1,𝑒 ], ..., [𝑏𝐾,𝑠 , 𝑏𝐾,𝑒 ]), 𝑏𝑖,𝑠 and 𝑏𝑖,𝑒 denotes the start in-
dex and end token index of 𝑖-th chunk, respectively. Then, three
interactors of different levels are used to learn the chunk-aware
representations.
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3.1.1 Within-chunk Semantic Interactor. We first adopt a within-
chunk semantic interactor to exploit the rich semantics contained
in chunks. Each token has access only to the tokens in the same
chunk group as itself. For example, as showed in Figure 2, “road”
can only attend to “a road sign”. Specifically, for the 𝑖-th token𝑤𝑖
in the 𝑘-th chunk, we calculate its attention score to the 𝑗-th token
𝑤 𝑗 as follows,

𝑢𝑖 𝑗 =


(h𝑤

𝑖 W𝑞

1) (h
𝑤
𝑗 W

𝑘
1)T√

𝑑
, where 𝑗 ∈ [𝑏𝑘,𝑠 , 𝑏𝑘,𝑒 ]

−∞, where 𝑗 ∉ [𝑏𝑘,𝑠 , 𝑏𝑘,𝑒 ]
(1)

where h𝑤𝑖 denotes the representation of 𝑖-th token, 𝑑 denotes the
dimension of the h, 𝑏𝑘,𝑠 and 𝑏𝑘,𝑒 denote the start and end border of
𝑘-th chunk, respectively. W𝑞

1,W
𝑘
1 ∈ R𝑑×𝑑 are projection matrices.

If𝑤𝑖 and𝑤 𝑗 are not in the same chunk, the attention score between
them is set to an infinitely negative value so that the resulting
attention score after softmax becomes zero.

Then we apply softmax on 𝑢𝑖 to obtain the normalized scores 𝛼𝑖 ,
by which we gain the correlation between𝑤𝑖 and other tokens. We
aggregate the within-chunk semantics into each token,

h̃
𝑤

𝑖 =

𝑀∑︁
𝑗=1

𝛼𝑖 𝑗 (h𝑤𝑗 W
𝑣
1) (2)

where h̃
𝑤

𝑖 denotes the updated representation of h𝑤𝑖 , 𝑀 is the
number of tokens, W𝑣

1 ∈ R𝑑×𝑑 is the projection matrix.
The within-chunk semantic interactor explicitly integrates sen-

tence constituents into H𝑤 , which helps learn the local seman-
tics. To model the relationship between image regions, previous
works [10, 19, 32] use scene graph parsers to encode regions into
visual graphs. We adopt some advanced scene graph parsers ap-
proaches [42, 45] but find the dependencies between regions are
ambiguous. These fuzzy relationships can cause error propagation,
leading to sub-optimal performance. So we consider each image
region as a separate vector, and each region can attend to other
regions without limitation. In this way, we integrate the image
information into each region representation.

3.1.2 Cross-chunk Semantic Interactor. After obtaining the chunk-
level semantics via within-chunk semantic interactor, we utilize
a cross-chunk semantic interactor to incorporate the global infor-
mation into each token. We consider each token as the smallest
unit and calculate the attention scores of 𝑤𝑖 to the concatenated
text-image sequence as follows,

𝑢𝑖 𝑗 =
(h𝑤𝑖 W

𝑞

2) (h𝑗W
𝑘
2)

T

√
𝑑

(3)

where h𝑗 denotes the representation of the concatenated sequence,
W𝑞

2,W
𝑘
2 ∈ R𝑑×𝑑 are projection matrices.

Then we apply softmax on 𝑢𝑖 to obtain the normalized scores 𝛼𝑖 ,
and aggregate the cross-chunk semantics into each token,

h̃
𝑤

𝑖 =
∑︁
𝑗

𝛼𝑖 𝑗 (h𝑗W𝑣
2) (4)

whereW𝑣
2 ∈ R𝑑×𝑑 is the projection matrix.

For image representations H𝑟 , we consider each region as the
smallest unit and update H𝑟 in a similar way. The cross-chunk

semantic interactor helps learn the inter-chunk semantics, fusing
the global information in a coarse level.

3.1.3 Cross-modal Semantic Interactor. Cross-modal semantic in-
teractor aims to conduct semantic vision-language fusion in a fine
level. Unlike previous works [6, 16, 23] that consider each token
separately and build vision-language alignments on token-level,
we consider each text chunk as a component to build chunk-level
alignments. More specifically, we use the average of the tokens in
𝑘-th chunk as the chunk representation v𝑘 ,

v𝑘 =
1

𝑏𝑘,𝑒 − 𝑏𝑘,𝑠

𝑏𝑒
𝑘∑︁

𝑗=𝑏𝑠
𝑘

h𝑤𝑗 (5)

In this way, we aggregate the semantics within the same chunk.
Thereafter, we calculate the relative attention of the 𝑘-th chunk to
the 𝑖-th region,

𝑢𝑘 𝑗 =
(v𝑘W

𝑞

3) (h
𝑟
𝑗W

𝑘
3)

T

√
𝑑

(6)

where h𝑟𝑗 denotes the representation of 𝑗-th region, W𝑞

3,W
𝑘
3 ∈

R𝑑×𝑑 are projection matrices.𝑢𝑘 𝑗 measures the correlation between
𝑘-th chunk and 𝑖-th region, by which we build chunk-level semantic
alignments.

We apply softmax on 𝑢𝑘 to obtain the normalized scores 𝛼𝑘 , by
which we capture the most salient regions related to the 𝑘-th chunk.
We aggregate these regions to each token via 𝛼𝑘 ,

h̃
𝑤

𝑖 =

𝑁∑︁
𝑗=1

𝛼𝑘 𝑗 (h𝑟𝑗W
𝑣
3) where 𝑖 ∈ [𝑏𝑘,𝑠 , 𝑏𝑘,𝑒 ] (7)

where h𝑟𝑗 denotes the representation of the 𝑗-th region, 𝑁 is the
number of regions, W𝑣

3 ∈ R𝑑×𝑑 is projection matrix.
Cross-modal semantic interactor incorporates each chunk and

its semantically related regions, which helps remove the ambigu-
ous vision-language alignments and obtain the high-order vision-
semantic representations.

3.2 Relation Inferrer
We utilize CSI and a pre-trained vision-language model (i.e., Os-
car) to obtain comprehensive joint representations of the input
pair. To better retain the alignments of different granularity, we
concatenate the outputs of cross-chunk semantic interactor and
cross-modal semantic interactor as the final outputs of CSI, rep-
resented as O𝐶 = (o𝐶

𝐶𝐿𝑆
, o𝐶,𝑤1 , ..., o𝐶,𝑤

𝑀
, o𝐶
𝑆𝐸𝑃

, o𝐶,𝑟𝑔 , o𝐶,𝑟1 , ..., o𝐶,𝑟
𝑁

),
where o𝐶,𝑤

𝑖
and o𝐶,𝑟

𝑖
denote the text representations and region

representations, respectively. Similarly, we denote the outputs of
Oscar as O𝑇 = (o𝑇

𝐶𝐿𝑆
, o𝑇,𝑤1 , ..., o𝑇,𝑤

𝑀
, o𝑇
𝑆𝐸𝑃

, o𝑇,𝑟𝑔 , o𝑇,𝑟1 , ..., o𝑇,𝑟
𝑁

).
o𝑇
𝐶𝐿𝑆

and o𝐶
𝐶𝐿𝑆

contain coarse-grained holistic vision-language
representation on token-level and chunk-level, respectively, which
ignores the fine-grained alignments of each token. To better in-
corporate the fine-grained vision-language alignments of different
levels, we utilize attention mechanism to look back on o𝑇,𝑤

𝑖
and

o𝐶,𝑤
𝑖

. First, we stack 𝑜𝑇
𝐶𝐿𝑆

and 𝑜𝐶
𝐶𝐿𝑆

, and use a linear projection to
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keep the dimension unchanged,

o𝐶𝐿𝑆 = [o𝑇𝐶𝐿𝑆 ; o
𝐶
𝐶𝐿𝑆 ]W

𝑝 (8)

whereW𝑝 ∈ R2𝑑×𝑑 is a projection matrix.
Then we concatenate o𝑇,𝑤

𝑖
and o𝐶,𝑤

𝑖
to obtain a comprehensive

representation O𝑤 , which contains token-level and chunk-level
cross-modal alignments,

O𝑤 = (o𝑇,𝑤1 , ..., o𝑇,𝑤
𝑀

, o𝐶,𝑤1 , ..., o𝐶,𝑤
𝑀

) (9)

We calculate the relative score between o𝐶𝐿𝑆 and O𝑤 ,

𝛼𝐼 = softmax((o𝐶𝐿𝑆W
𝑞

4) (O
𝑤W𝑘

4)
T) (10)

where W𝑞

4,W
𝑘
4 ∈ R𝑑×𝑑 are projection matrices, 𝛼𝐼 denotes the

importance of each alignment. Then we aggregate the salient align-
ments via 𝛼𝐼 and refine 𝑜𝐶𝐿𝑆 ,

õ𝐶𝐿𝑆 = 𝛼𝐼 (O𝑤W𝑣
4) + o𝐶𝐿𝑆 (11)

where õ𝐶𝐿𝑆 denotes the updated o𝐶𝐿𝑆 , W𝑣
4 ∈ R𝑑×𝑑 is projection

matrix.
We refine o𝐶𝐿𝑆 iteratively via Eq. 10 and Eq. 11. Finally, a linear

classifier is applied to obtain the probability of each relation,

𝑦 = o𝐶𝐿𝑆W𝑦 (12)

whereW𝑦 ∈ R𝑑×𝑛 is projection matrix, 𝑛 is the number of relations.
We select the relation with the highest probability as the result.

3.3 Lexical Constraint-aware Generator
Lexical constraint-aware generator (LeCG) aims to generate an
explanation 𝐸 = (𝑒1, ..., 𝑒𝑖 , ..., 𝑒𝐿) to interpret the decision-making
process. Previous works [14, 23, 31] fail to associate explanation
generation with the inference process. To alleviate this problem,
LeCG explicitly guides explanation generation with the lexical
constraint obtained from the inference process.

First, we adopt a transformer-based [36] language model as the
generator. The generator operates cross-attention over the compre-
hensive representation O𝑤 (obtained via Eq. 9) to exploit the input
information. The hidden state h𝑑𝑡 of the top layer of the generator
at time step 𝑡 is fed to a projection linear and softmax to get the
initial generation probability 𝑃𝑣𝑜𝑐𝑎𝑏 (𝑒𝑡 ) of target token 𝑒𝑡 .

Then we construct a word set S as the lexical constraint. We add
up the attention weights 𝛼𝐼 (obtained via Eq. 10) of each attention
layer to get the inference attention score 𝛼𝑆

𝑖
of each token, which

indicates the importance of each token during inference.We assume
the tokens whose score is higher than the median are essential for
the decision-making process, and thus they should be in S,

S = {𝑤𝑖 } where 𝛼𝑆𝑖 > 𝛼𝑆
𝑚𝑖𝑑

(13)

where 𝛼𝑆
𝑖
is the inference attention score of 𝑖-th token, and 𝛼𝑆

𝑚𝑖𝑑
is

the median score.
We guide the explanation centering around the constraint by

combining the initial generation probability 𝑃𝑣𝑜𝑐𝑎𝑏 with a lexical
constraint probability 𝑃𝑙𝑒𝑥 , which is the probability distribution of
the tokens within S. More specifically, we adopt the cross-attention
weights of the generator as the score of each input token. We

filter those tokens that are not in S and utilize softmax to get the
normalized constrained scores,

𝑢𝑐𝑖,𝑡 =

{
𝛼𝑐
𝑖,𝑡

𝑤𝑖 ∈ S
−∞ 𝑤𝑖 ∉ S

(14)

𝛼𝑐𝑡 = softmax(𝑢𝑐𝑡 ) (15)
where 𝛼𝑐

𝑖,𝑡
denotes the original cross-attention score of𝑤𝑖 at time

step 𝑡 from the generator, and 𝛼𝑐𝑡 denotes the constrained attention
scores of each token.

We sum the 𝛼𝑐
𝑖,𝑡

where𝑤𝑖 = 𝑒𝑡 as the lexical constraint probabil-
ity of 𝑒𝑡 ,

𝑃𝑙𝑒𝑥 (𝑒𝑡 ) =
∑︁

𝑖:𝑤𝑖=𝑒𝑡

𝛼𝑐𝑖,𝑡 (16)

We use a constrained weight 𝑝𝑐𝑜𝑛 ∈ [0, 1] to control the portion
of 𝑃𝑣𝑜𝑐𝑎𝑏 (𝑒𝑡 ) and 𝑃𝑙𝑒𝑥 (𝑒𝑡 ) when calculating the final probability.
Following [27, 33], we calculate the constrained context vector c𝑡 ,

c𝑡 =
∑︁
𝑖

𝛼𝑐𝑖,𝑡O
𝑤
𝑖 (17)

Then we concatenate c𝑡 with the generator output h𝑑𝑡 and the
inputs of language model x𝑡 to obtain 𝑝𝑐𝑜𝑛 as follows,

𝑝𝑐𝑜𝑛 = 𝜎 ( [c𝑡 ;h𝑑𝑡 ;x𝑡 ]W𝑔) (18)

where 𝜎 (·) is a sigmoid activation function, W𝑔 ∈ R3𝑑×1 is the
learning weight matrix.

Last we obtain the final probability of 𝑒𝑡 under lexical constraint:

𝑃 (𝑒𝑡 ) = 𝑝𝑐𝑜𝑛𝑃𝑣𝑜𝑐𝑎𝑏 (𝑒𝑡 ) + (1 − 𝑝𝑐𝑜𝑛)𝑃𝑙𝑒𝑥 (𝑒𝑡 ) (19)

3.4 Training and Testing
3.4.1 Chunk-aware Semantic Interactor Pre-training. To improve
the accuracy of semantic vision-language alignments, we pre-train
CSI on the Flickr30k Entities dataset [25]. Flickr30k Entities dataset
provides the alignments between noun phrases and image regions,
where a phrase is aligned to only one region. Note that Flickr30k is
also the source corpus of e-SNLI-VE [14], so we split the Flickr30k
Entities dataset along e-SNLI-VE to avoid data leakage. During
pre-training, we assume that each token should attend to the most
semantically relevant region. We sum the attention weights of the
cross-modal semantic interactor layers of𝑤𝑖 and apply softmax on
it to get the normalized align score 𝑠𝑖 . We utilize cross-entropy to
enforce the alignment:

L𝐴 =
1

𝑀

𝑀∑︁
𝑖=1

(
𝑁∑︁
𝑗=1

−𝑧𝑖 𝑗 log(
exp(𝑠𝑖 𝑗 )∑𝑁
𝑘=0

exp(𝑠𝑖𝑘 )
)) (20)

where 𝑠𝑖 𝑗 is the align score of 𝑖-th token to 𝑗-th region, 𝑧𝑖 𝑗 ∈ {0, 1}
is the label that indicates whether 𝑖-th token and 𝑗-th image origin
should be aligned (i.e. 1) or not (i.e. 0), 𝑀 is the number of input
tokens and 𝑁 is the number of image regions.

3.4.2 Training Pipeline. The optimization procedure of CALeC
contains two stages. First, we train CSI and the relation inferrer for
relation inference until the cross-entropy loss converges:

L𝑌 =
∑︁
𝑖

−𝑦𝑔
𝑖
log( exp(𝑦𝑖 )∑

𝑗 exp(𝑦 𝑗 )
) (21)
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Algorithm 1 Constrained Beam Sample
Input: Max explanation length 𝑁 , beam size 𝑘 , sample size 𝑠 , lexi-

cal constraint set S, constraint coefficient 𝜆.
Output: Constrained explanation.
1: beams = Generator-Init(𝐾 )
2: for 1 ≤ 𝑡 ≤ 𝑁 do
3: probs = Generator-Step(beams);
4: new_beams = BeamSample(probs, beams, 𝑘 , 𝑠)
5: for 1 ≤ 𝑖 ≤ 𝑘 × 𝑠 do
6: if new_beams[𝑖] .sent[−1] ∈ S then
7: new_beams[𝑖] .score = 𝜆 × new_beams[𝑖] .score
8: Rank new_beams with score
9: beams = new_beams[:𝑘]
10: return beams[0].sent

where 𝑦𝑔
𝑖
∈ {0, 1} is the label of the 𝑖-th relation (e-SNLI-VE) or

answer (VQA and VCR), 𝑦𝑖 is the probability of the 𝑖-th relation.
Then we freeze the their parameters and train LeCG for explana-

tion generation. We minimize the negative log-likelihood of LeCG:

L𝐸 =

𝐿∑︁
𝑖=1

− log 𝑃 (𝑒𝑖 | 𝑇, 𝐼, 𝑒<𝑖 ) (22)

where 𝐿 denotes the length of the explanation, 𝑒𝑖 denotes the target
token at time step 𝑡 .

3.4.3 Testing. To enhance the constraints, we utilize a constrained
beam sample during testing. Conventional beam sample [12] gen-
erates a sentence with the highest probability, which ignores the
faithfulness of generated explanation. To alleviate this problem, we
propose a constrained beam sample that scores each beam with
the probability and the number of occurrences of the constraint
words. In every step, we multiplied a constraint coefficient 𝜆 to the
candidate who generates a word that is in the lexical constraint set
S. By this way, the candidate who meets more constraints will have
a higher score. We choose the candidate with the highest score as
the output. The pseudo-code is in Algorithm 1.

4 EXPERIMENTS
4.1 Settings
4.1.1 Datasets. Following the benchmark e-ViL [14] for vision-
language tasks with NLE, we evaluate our method on the VE-NLE
dataset e-SNLI-VE [14] and two VQA-NLE datasets VQA-X [23] and
VCR [44]. e-SNLI-VE is the current biggest VE-NLE dataset that
combines SNLI-VE [41] and e-SNLI [5]. The training, validation, and
test sets contain 401.7k/14.3k/14.7k image-text pairs, respectively.
There are three relations of the input pair: entailment, contradic-
tion and neutral. VQA-X is a subset of the VQA v2 dataset [11],
in which each sample contains an image, a question, an answer,
and the corresponding explanation. The training, validation, and
test sets contain 29.5k/1.5k/2k image-text pairs, respectively. VCR
provides an image, a question and a list of annotated objects. For
each question, a model needs to select one answer from four can-
didates. After that, it needs to select one explanation from four
candidates. The test set for VCR is not publicly available. e-ViL [14]
reorganizes the dataset, and reformulates the explanation selection

task as a generation task. The training, validation, and test sets
contain 191.6k/21.3k/26.5k image-text pairs, respectively.

4.1.2 Evaluation Metrics. Following the e-ViL benchmark, we
define three evaluation scores 𝑆𝑇 , 𝑆𝐸 , and 𝑆𝑂 . 𝑆𝑇 represents the
inference accuracy. 𝑆𝐸 represents the average explanation score
of examples inferred correctly. This assumes that an explanation
is wrong if it justifies an incorrect answer [14]. We adopt BLEU-
4 [22], ROUGE-L [17], METEOR [3], CIDEr [37] and SPICE [1] as
the explanation scores. All scores are computed with the publicly
available code1. 𝑆𝑂 represents the overall performance, which is
defined as 𝑆𝑂 = 𝑆𝑇 × 𝑆𝐸 .

4.1.3 Baselines. Similar to the e-ViL benchmark, we compare
our method with five strong baselines. Pointing and Justification
(PJ-X) [23] uses a simplified MCB model [9] as the vision-language
encoder and an LSTM-based language model as the decoder. Faith-
ful Multimodal Explanations (FME) [40] requires the answer and
explanation to focus on the same image regions. It utilizes an im-
proved Up-Down VQA model [2] for answer inference, and an
LSTM-based language model for explanation generation. Rationale-
VT Transformer (RVT) [21] utilizes different vision-language models
to extract vision information and feeds the encoded representa-
tions with the question and ground-truth answer to the pre-trained
GPT-2 [28]. Note that RVT omits the question answering part, so
we directly quoted the results from the e-ViL benchmark, which
extends RVTwith Bert [7] to obtain the answer. e-UG [14] combines
the powerful pre-trained vision-language model UNITER [6] and
GPT-2. NLX-GPT [31] utilizes a large-scale pre-trained language
model to generate the answer and explanation simultaneously.

4.1.4 ImplementationDetails. Weadopt Oscar𝑏𝑎𝑠𝑒 as the vision-
language pre-trained model. We also utilize its parameters to ini-
tialize CSI. The number of layers of within-chunk, cross-chunk,
and cross-modal semantic interactors are 3/6/3. We use a tagging
model [26] pre-trained on Chunk-CoNLL2000 [35] to get the text
chunk borders. The number of attention layers of the relation infer-
rer is 3.We adopt GPT-2𝑏𝑎𝑠𝑒 [28] as the transformer-based language
model in LeCG and randomly initialize the parameters of cross-
attention sub-layers. We regard the input text and answer as prefix
information and concatenate them before the explanation. For train-
ing, we use the Adam optimizer [15] with the 10−5 initial learning
rate and linear decay of the learning rate during CSI pre-training
and CALeC training pipeline. To maintain the semantic alignment
ability of CSI, the initial learning rate of CSI during the training
pipeline is set to 10−6. The beam size and top-k of beam sample2
are set to 5 and 32. The constraint coefficient 𝜆 is set to 0.86.

4.2 Quantitative Analysis
4.2.1 PerformanceComparison. We compare our proposedmethod
CALeC against five strong methods on three datasets. The auto-
matic evaluation results are shown in Table 1. We can see that
CALeC achieves the best performance, substantially surpassing
all the baseline on 𝑆𝑂 . By effectively performing chunk-aware se-
mantic alignment and conducting inference over the fine-grained

1https://github.com/tylin/coco-caption
2https://huggingface.co/transformers/internal/generation_utils
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Table 1: Automatic evaluation results on the test sets of three datasets. B4, R-L, MET are short for BLEU-4, ROUGE-L and
METEOR, respectively. We directly quote the results of these baselines from their original papers except the ones marked by
∗, which are obtained by running their released code (e-UG) or evaluating their released output results (NLX-GPT). NLX-GPT
evaluates its results using PTBTokenizer [20], while others do not. For a fair comparison, we provide our 𝑆𝐸 w/ (marked by †)
and w/o PTBTokenizer. The best performance is highlighted in bold.

Dataset Model 𝑆𝑂 𝑆𝑇 𝑆𝐸 B4 R-L MET. CIDEr SPICE

e-SNLI-VE

PJ-X [23] 20.40 69.20 29.48 7.30 28.60 14.70 72.50 24.30
FME[40] 24.19 73.70 32.82 8.20 29.90 15.60 83.60 26.80
RVT[21] 24.47 72.00 33.98 9.60 27.30 18.80 81.70 32.50
e-UG∗ [14] 27.77 78.28 35.48 10.13 28.09 19.72 85.39 34.07
CALeC 30.28 80.92 37.42 10.53 28.53 20.02 91.61 36.42

NLX-GPT† [31] 31.07 73.91 42.04 11.90 33.40 18.10 114.70 32.10
CALeC† 37.53 80.92 46.38 13.96 35.23 19.49 127.22 35.98

VQA-X

PJ-X [23] 28.76 76.40 37.64 22.70 46.00 19.70 82.70 17.10
FME [40] 29.60 75.50 39.20 23.10 47.10 20.40 87.00 18.40
RVT [21] 20.17 68.60 29.40 17.40 42.10 19.20 52.50 15.80
e-UG [14] 29.82 80.50 37.04 23.20 45.70 22.10 74.10 20.10
CALeC 34.43 86.38 39.85 25.47 47.02 23.38 81.58 21.82

NLX-GPT† [31] 39.18 83.07 47.16 28.50 51.50 23.10 110.60 22.10
CALeC† 40.87 86.38 47.31 29.30 51.59 23.07 110.90 21.69

VCR

PJ-X [23] 4.98 39.00 12.76 3.40 20.50 16.40 19.00 4.50
FME [40] 9.42 48.90 19.26 4.40 22.70 17.30 27.70 24.20
RVT [21] 9.29 59.00 15.74 3.80 21.90 11.20 30.10 11.70
e-UG [14] 11.71 69.80 16.78 4.30 22.50 11.80 32.70 12.60
CALeC 13.95 73.03 19.10 5.59 22.99 12.78 39.61 14.54

NLX-GPT∗† [31] 1.88 13.45 13.96 3.16 20.76 8.62 27.72 9.54
CALeC† 15.70 73.03 21.50 6.34 25.22 12.22 49.35 14.37

vision-language alignments, CALeC outperforms the strongest base-
line model by 2.64, 3.31, and 3.23 points on 𝑆𝑇 metric across the
three datasets, respectively. Though the three datasets focus on
different vision-language tasks, CALeC gains accuracy improve-
ment all over them. It suggests that building accurate semantic
alignment is a common yet crucial backbone for vision-language
models. CALeC also surpasses the state-of-the-art model NLX-GPT
on 𝑆𝐸 of the three datasets. This verifies that explicitly guiding the
generator through lexical constraint can help improve the quality
of generated explanations. We observe that 𝑆𝐸 of FME in VCR is
slightly higher than CALeC. This may be attributed to the lower 𝑆𝑇
of FME, so FME only needs to count the more accessible samples
when calculating 𝑆𝐸 . Note that NLX-GPT does not provide its infer-
ence accuracy on the VCR dataset, so we calculate the scores based
on their released output results3. The 𝑆𝑇 of NLX-GPT is exception-
ally low in VCR. This probably because that the answer of VCR is
much longer than the other datasets, so it is harder for NLX-GPT
to generate the correct answer.

4.2.2 Ablation Study. We conduct ablation experiments to ver-
ify the effectiveness of CSI, relation inferrer, and LeCG in CALeC,
which are presented in Table 2. We only list 𝑆𝑂 because it summa-
rizes the performance on both 𝑆𝑇 and 𝑆𝐸 . For a fair comparison, all
the evaluated models have the same experimental settings and gen-
erate explanations through the beam sample algorithm. The second
line verifies the effectiveness of the constrained beam sample. We
can see that adding constraints to the conventional beam sample
3https://github.com/fawazsammani/nlxgpt

Table 2: Ablation studies of CALeC on the test sets. CBS, RI
are short for constrained beam sample and relation inferrer.

Model Overall e-SNLI-VE VQA-X VCR
CALeC 31.37 37.53 40.87 15.70
w/o CBS 30.72↓0.65 37.18 39.98 14.99
w/o LeCG 30.23↓1.14 36.70 38.76 15.23

w/o LeCG & CBS 29.68↓1.69 35.78 38.58 14.67
w/o RI & LeCG & CBS 28.78↓2.59 35.29 36.58 14.48

w/o CSI & RI & LeCG & CBS 27.48↓3.89 34.50 33.81 14.12

algorithm can help improve the quality of generated explanations.
The third line shows the results when we drop LeCG and only
retain the transformer-based generator. LeCG has a more signifi-
cant influence than the constrained beam sample, indicating that
directly guiding the generator with constraints can perform better
than the post-hoc edit method. When we drop LeCG and the con-
strained beam sample simultaneously, the decrease in the overall
score (1.69) is almost equal to the sum of separate reductions (1.79).
This phenomenon shows that these two constrained approaches
act at different but complementary points during generation and
can jointly improve the quality of explanations. The constraint set
is formed based on the relation inferrer and CSI, so they cannot be
dropped solely. We drop the relation inferrer along with the con-
strained methods, in which we directly utilize the linear classifier
on the concatenation of the two [CLS] outputs. The scores on the
three datasets all decrease, indicating that the relation inferrer can
better incorporate the fine-grained alignments of different level. We
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Figure 3: Human evaluation results on e-SNLI-VE.

then drop CSI along with other components, in which the model
degenerates into the vanilla transformer-based seq2seq model, i.e.,
Oscar-GPT. There is a 1.39 net decrease compared to just dropping
the relation inferrer, which is higher than other components. This
result shows that chunk-aware semantic alignment can greatly
benefit vision-language tasks with NLE.

4.3 Qualitative Analysis
4.3.1 Human Evaluation. The automatic NLG metrics do not
always reflect the faithfulness of the explanations because expla-
nations can come in different forms and be very generic and data-
biased. So we adopt human evaluation to evaluate the faithfulness
of explanations. We conduct human evaluation on the test set of
e-SNLI-VE, because we do not find the public result of the base-
line models on other datasets. Following the e-ViL benchmark, we
randomly select 100 test samples with correctly predicted answers.
We ask annotators “Given the image and the hypothesis, does the
explanation justify the answer?” with four choices: Yes, Weakly
yes, Weakly no and No. To ensure the fairness of assessment, the
explanations of each sample are shuffled. As shown in the last bar
of Figure 3, CALeC gets about 77% positive scores (green region),
and about 55% of them are strongly positive (dark green region),
which far surpasses other models. The results indicate that our
explanations can justify the answer better and reflect the inference
process faithfully. We also conduct a human evaluation on CALeC
w/o LeCG (the next-to-last bar). The proportion of Yes obviously
decreases and the proportion of negative choices increases. This
phenomenon verifies that adding constraints on explanation gener-
ation can guide the generator to focus on the input and generate
explanations faithful to the inference process.

4.3.2 Case Study. In Figure 4, we show an example with the infer-
ence result and explanations of each model on e-SNLI-VE. In this ex-
ample, CALeC is the only model that infers the correct relation and
generates a faithful explanation. In contrast, e-UG mistakes a house
for a shop and generates an illogical explanation, and NLX-GPT
predicts the wrong answer. In Figure 5, we show some qualitative
results from our model on the three datasets. Based on the semantic
alignments, the relation inferrer can accurately find the keywords
(bold words in input text). LeCG can generate faithful explanations
relevant to the inference process and input pair. We observe that
although we only provide alignments for noun chunks during pre-
training for CSI, it can learn alignments for other part-of-speech
chunks (e.g. is giving) during fine-tuning, which may benefit from
the cross-chunk semantic interactor.

Hypothesis: A young boy is prepared for inclement weather.
GT: [A] Entailment [E] If someone has an umbrella that means
they are prepared for inclement weather.
e-UG: [A] Entailment [E] A young boy is prepared for inclement
weather because he is standing outside a store.
NLX-GPT: [A] Neutral [E] Just because a young boy is holding
an umbrella does not mean he is prepared for inclement.
CALeC: [A] Entailment [E] The young boy is prepared for
inclement weather because he is holding an umbrella.

Figure 4: An example on e-SNLI-VE. Bold words are chose as
the lexical constraint.

Hypothesis:The man is giving bread to
the ducks.
Answer: Contradiction
Explanation:The man cannot be reading a
book and giving breadat the same time.

Question:What event is this
person celebrating most likely?
Answer: birthday
Explanation:She is cutting a
cake.

Question:Will person1 take a bite of
his food after he finisheschewing ?
Answer: Yes , person1 will take a bite
of food.
Explanation:Person1 has a fork in
his hand.

Figure 5: Examples from our model on e-SNLI-VE, VQA-X
and VCR. The same colors show the alignments between
chunks and image regions. Bold words are the lexical con-
straint.

5 CONCLUSION AND FUTURE DIRECTIONS
We present a unified Chunk-aware Alignment and Lexical Con-
straint based method (CALeC) for Visual Entailment with Natu-
ral Language Explanations (VE-NLE). Our work is motivated by
the need to exploit the rich semantics contained in the chunks
and generate explanations faithful to the inference process. This
method builds chunk-aware semantic alignment and incorporates
the keywords of the inference process into explanation to enhance
faithfulness. We conduct extensive experiments on three datasets.
Experimental results show that our method achieves state-of-the-
art performance on relation inference and explanation generation.
It also has strong generalizability over other vision-language tasks.
Future work includes building alignments between chunks and
visual concepts rather than predetermined regions and improving
the relevance between explanations and input image.
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Hypothesis: The dog is by the water.
Answer: Entailment
Explanation: The dog is by the water.

Hypothesis: The mans hair is long.
Answer: Neutral
Explanation: Not all mans hair is long.

Hypothesis: The man is afraid of the mongoose.
Answer: Contradiction
Explanation: A monkey is not a mongoose.

Question: Is the train moving?
Answer: No
Explanation: It is stopped at the station.

Question: What breed of dog is this?
Answer: Pug
Explanation: It is small and has a big face.

Question: Is this a zoo?
Answer: Yes
Explanation: There is a giraffe behind a fence.

Figure 6: Failure cases on e-SNLI-VE and VQA-X.

A FAILURE CASES
We include failure cases on e-SNLI-VE and VQA-X of our model in
Figure 6. We observe that the failure cases mainly involve misinter-
pretation of image details (orientation between objects, the gender
of the people, the breed of the animals, and the characters). These
cases show that although CALeC can exploit the rich semantics
contained in phrase thorough chunk-aware semantic interactor, it

still has limitations on the image comprehension, which can be a
future direction of our work. For e-SNLI-VE, we observe that if the
relationship is entailment, the model tends to repeat the hypothesis,
which may result from the bias of the dataset. Although the answers
are predicted wrong, the explanations are faithful to the answers,
which shows that the lexical constraint-aware generator can reflect
the decision-making process and help correct the model bias.
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