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ABSTRACT

Real-time music accompaniment generation has a wide range of
applications in the music industry, such as music education and
live performances. However, automatic real-time music accompa-
niment generation is still understudied and often faces a trade-off
between logical latency and exposure bias. In this paper, we propose
SongDriver, a real-time music accompaniment generation system
without logical latency nor exposure bias. Specifically, SongDriver
divides one accompaniment generation task into two phases: 1)
The arrangement phase, where a Transformer model first arranges
chords for input melodies in real-time, and caches the chords for
the next phase instead of playing them out. 2) The prediction phase,
where a CRF model generates playable multi-track accompaniments
for the coming melodies based on previously cached chords. With
this two-phase strategy, SongDriver directly generates the accom-
paniment for the upcoming melody, achieving zero logical latency.
Furthermore, when predicting chords for a timestep, SongDriver
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refers to the cached chords from the first phase rather than its pre-
vious predictions, which avoids the exposure bias problem. Since
the input length is often constrained under real-time conditions,
another potential problem is the loss of long-term sequential infor-
mation. To make up for this disadvantage, we extract four musical
features from a long-term music piece before the current time step
as global information. In the experiment, we train SongDriver on
some open-source datasets and an original aiSong Dataset built
from Chinese-style modern pop music scores. The results show that
SongDriver outperforms existing SOTA (state-of-the-art) models
on both objective and subjective metrics, meanwhile significantly
reducing the physical latency.
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1 INTRODUCTION

Real-time accompaniment improvisation is an intricate task with
high entry barriers even for human musicians. To make accompa-
niment improvisation easier and accessible to not merely profes-
sionals, but also amateur music lovers, automatic real-time music
accompaniment generation models are worth further researching.

One of the central problems in automatic real-time accompani-
ment generation tasks arises from the compromise between logical
latency [8] and exposure bias [15]. The logical latency is the time
difference between accompaniment generation and playback. The
exposure bias in real-time music generation tasks, refers to the
quality decrease due to error accumulation: Sequence models often
rely on their previous predictions when making a new inference.
Therefore, an improper prediction may continuously influences its
following timesteps, which is the said error accumulation.

Previous automatic real-time accompaniment models are gener-
ally one-phase, and can be divided into two categories on the basis
of the said two problems: 1) Latency models [23][24], which avoid
the exposure bias but suffer from the logical latency by arranging
the accompaniment each time the input reaches a preset length. 2)
Bias models [1][12], which eliminate the logical latency but face
the exposure bias by generating accompaniments for the upcoming
melody.
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Figure 1: An overview of the mechanism of SongDriver. The
multi-track accompaniment in the red rectangle regions is
generated at time step i-1, while the chords in the blue rec-
tangle regions are generated at time step i.

In this paper, SongDriver divides the generation process into two
successive phases: 1) the arrangement phase and 2) the prediction
phase. The arrangement phase employs a Transformer [22] model:
The model reads instreaming melody inputs and correspondingly
arranges chords for the former beats. The chords generated in this
phase will be cached in a sequence rather than being played. The
prediction phase uses a CRF [13] model to predict playable chords
that are most likely to harmonize with the upcoming melody, with
the reference to the cached chords as well as the previous melody.
These predicted chords are directly played instead of being cached.
To enhance the musicality of the generated music, we also design
some texture generation patterns to transform the predicted chords
into multi-track pieces of accompaniment. In Fig.1, we provide an
overview of the SongDriver’s mechanism.

With this two-phase strategy, SongDriver solves the logical la-
tency and exposure bias problems at the same time: The accompa-
niment generated by SongDriver is specifically for the upcoming
melody, and is played exactly when the corresponding melody
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starts. This eliminates the logical latency and improves the imme-
diacy of accompaniment generation. Besides, the prediction phase
keeps referring to the cached chords from the arrangement phase
rather than its previous predictions, which avoids exposure bias
and thus can fully improve musicality. Furthermore, this mecha-
nism also highly improves model performance by incorporating
the advantages of both models while eliminating their potential
problems.

In real-time music accompaniment generation, the length of the
melody sequence increases with time. To reduce the difficulty of
modeling long-term sequences, we need to constrain the length
of input melody, which leads to a loss of long-term musical infor-
mation. To compensate for this drawback, we extract four musical
features from a long-term music piece ahead of the current time step
to serve as global information. 1) the weighted notes: the notes
that are more important in the melody. 2) the weighted factors:
the overall features of a melody piece. 3) the terminal chords:
the chords marking the ends of musical phrases. 4) the structural
chords: the chords which maintain the stability and continuity of
the musical accompaniment.

Apart from the open-source musical datasets, we also build an
original Chinese-style aiSong Dataset from scratch, which is mainly
based on the Chinese folk pentatonic tuning.

We train SongDriver on both open-source and aiSong Datasets,
and evaluate the result both objectively and subjectively. The results
demonstrate that SongDriver can respond to the melody in real
time input and generate music accompaniment with imperceptible
logical latency and relatively high musicality.

In summary, our main contributions are as follows:

1. We propose a real-time music accompaniment generation
mechanism that simultaneously eliminates logical latency and ex-
posure bias.

2. We introduce four musical features and their extraction meth-
ods, making up for the loss of long-term music structure informa-
tion under real-time conditions.

3. We build an original aiSong Dataset from scratch based on
Chinese-style modern pop music scores.

4. We highly improve the model performance thanks to the
parallel two-phase strategy, where the physical latency infinitely
approaches the processing time of the second-phase model (CRF).

5. We also distill traditional Transformer to be suitable for real-
time tasks, which helps us maintain high generation quality while
keeping the extremely low physical latency of CRF.

2 RELATED WORK

Automatic music generation has been a heated research topic for
more than half a century [9]. In recent years, the rapid development
of neural networks has resulted in more and more deep learning-
based music generation models, including CNN [26], RNN [21], and
GAN [5]. Transformer, based solely on self-attention mechanisms,
has been proved to be the state-of-the-art model for language gener-
ation by various evaluations [11][4][2]. Some research successfully
employed the Transformer to compose music pieces, such as Music
Transformer [11] and MuseNet [16]. Music accompaniment gener-
ation is an important topic of the automatic music generation, and
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can be categorized into two groups: non-real-time accompaniment
generation and real-time accompaniment generation.

Non-real-time Automatic Music Accompaniment Genera-
tion. Many previous researches have proposed a series of effective
systems for non-real-time music accompaniment generation. Early
studies in this field only select the pre-recorded audio tracks to
accompany human soloists [3][17]. Later, the automatic accompa-
niment generation was implemented with HMM model, such as
MySong[20]. Some recent studies resort to deep learning methods
to generate accompaniment for the input melody. MuseGAN[5]
employs GAN-based model to generate multi-track music, which
can also be extended as a human-Al cooperative system, but the
training of GAN-based model is difficult and often requires big
data. PopMAG][18] uses Transformer to capture the long-term fea-
tures of music sequences, generating multi-instrument pop music
accompaniment.
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Figure 2: The overall architecture of SongDriver. Only the
multi-track accompaniment (music in the pink zone at the
top) after the texture generation will be played.

Real-time Automatic Music Accompaniment Generation.
In contrast with non-real-time tasks, only a few explorations into
real-time automatic music accompaniment generation can be found.
These existing models could be classified into two categories: la-
tency models and bias models. Latency models can be represented
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by [24], which uses HMM and RNN to ensure the accuracy of the
improvised accompaniment. But the accompaniment often slightly
lags behind its corresponding melody, thus leading to a logical
latency. The bias models, on the other hand, usually adopt forecast-
ing strategies. For example, RL-Duet [12] uses deep reinforcement
learning to predict the next machine note based on the previous
human and machine music parts. Another example[14] simplifies
HMM into Markov Chains to support real-time music accompani-
ment generation, using previous melodies and predicted results to
infer the chords of the next time step. These bias models eliminate
the logical latency by predicting the accompaniment for the subse-
quent melody, but their performance may decline because of the
exposure bias. Therefore, our goal in designing SongDriver is to
tackle both the logical latency and exposure bias, making up for
the limitations of existing models.

Additional Information Guidance in Music Generation. Some

previous works employ unconditional autoregressive models, which
are majorly trained with only sequences of note tokens, and thus
cannot well capture the high-level musical features crucial to musi-
cal quality. To tackle this problem, some scholars intend to generate
music by introducing additional conditions. For example, MuseNet
[16] uses a conditional scenario to guide Transformer to generate
musical compositions with patterns of harmony, rhythm and style
information. Besides, MuseMorphose[25] proposes three mecha-
nisms to constrain Transformer decoder, where the pre-attention
conditioning is similar to our guiding strategy, under which the con-
ditions enter the Transformer decoder before all the self-attention
layers. These works all demonstrate the feasibility of using addi-
tional conditions in music generation. Therefore, we extracted four
types of musical features as global information to guide the model
to capture crucial musical features.

3 METHOD

Fig.2 shows the two-phase architecture of SongDriver. The arrange-
ment phase includes a Transformer model with four musical fea-
tures embedded. The prediction phase consists of a CRF architecture
and also texture generation algorithms that output playable accom-
paniments of higher musicality.

3.1 Arrangement Phase

3.1.1 Feature Embedding. Inspired by Compound Word [10], we
apply the extracted four features as global information in the ar-
rangement phase. This can compensate for the loss of the long-term
sequence information and guide the Transformer to capture the
important musical features. We adopt a strategy similar to pre-
attention [25], where the conditions enter the Transformer encoder
or decoder before all the self-attention layers: Weighted factors and
weighted notes are embedded with each sixteenth note before be-
ing input into the Transformer Encoder , while structural chords
and terminal chords are embedded with each arranged chord as
Transformer Decoder inputs. The embedding at each timestep is
shown in Fig.3.

3.1.2  Chord Arrangement. Thanks to the self-attention mechanism,
Transformer is able to capture long-term dependencies in sequential
data. Therefore, we employ Transformer in this phase for sake
of a higher musicality. To reduce the difficulty of modeling long
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Figure 3: The embeddlng strategy of the musical features.
The subscript is incremented by one for each extraction.

And the same color indicates the same value.

sequences in real-time, the length of the input melody stream is
constrained, and here we specify the length to be one beat. Although
Transformer cannot see the complete melody sequence under this
condition, the proposed musical features can provide contextual
information and guide Transformer to capture important musical
structures. We also modify the wait-k [19] strategy used in the
real-time translation task to ensure the input having sufficient
information: Instead of arranging once per sample, Transformer
will wait for 4 samples, that is, arranging once per beat.

The output of the arrangement phase at each time step is a chord
arranged for the former beat of melody. This chord will not be
played and will be cached into a chord sequence as an input of the
decoder for the next generation. The chord sequence will be used
as references in the predicted phase, as shown in the middle part
of Fig. 2.

3.2 Prediction Phase
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Figure 4: The architecture of the CRF model in the predic-
tion phase. ny is the first longest melodic note on time step
k. c is the arranged chord on time step k. Bar index indicates

the number of bars. Pre is the predicted chord on time step
k.

3.2.1 Chord Prediction. In the prediction phase, we firstly use Con-
ditional Random Fields (CRF) to predict the chord for the upcoming
melody. We adopt the linear-chain form of CRF, which is more
suitable for sequential data. Based on the cached chord sequence
from the arrangement phase and also the previous melody, CRF
calculates the conditional probability to predict the next chord. The
architecture of the predicted phase is shown in Fig. 4. Regarding
the input at each time step, we take the music information from
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the previous eight beats, including the beat’s bar index, arranged
chord for the beat, and the longest note in this beat. The chords
obtained in the prediction phase are only played instead of being
used as references for the subsequent predictions, which avoids the
exposure bias.

3.2.2 Texture Generation. Texture arrangement can enhance the
expressiveness of harmonics, which is also a basic technique broadly
utilized among music professionals. Therefore, we design various
texture patterns which may change according to the melodic pro-
gression and musical phrase-level structures. The choice of texture
pattern and its application to the current chord are briefly shown
in Fig.5.
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Figure 5: The process of texture generation

Different texture generation patterns correspond to different
parts of music. We choose the most appropriate texture pattern for
different musical structures, transforming the predicted chords into
multi-track accompaniments for playback. For every four bars, we
determine whether the current time step is in the verse or in the
chorus parts by the variation rate of pitches. Next, we utilize the
terminal chord to segment the music at the phrase level to switch
between multiple textures. Within a phrase, regular textures will be
played in a pre-set order. And between different phrases, a bar will
be played in a decorative texture. The details of texture patterns
are included in Section A of Appendices.

4 THE EXTRACTION OF MUSICAL FEATURES

The proposed four musical features are based on Schenkerian anal-
ysis method and the fundamentals of music theory. The features
provide SongDriver with global music information to compensate
for the loss of the long-term dependencies. Detailed explanations
regarding all the following equations, illustrations and algorithms
in this section are listed in the Section B of Appendices.

4.1 Weighted Note

T= Nstrong U Nnext—strong (1)
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3
C = N,ear N (L(N) > Esteps) (2)
L = Nigtest N Nlongest 3)
Weighted Note = (TNC)U(TNCNL) 4)

In the melody, the importance of notes is not equal. Some notes
are decisive to the musicality, and we define these notes as the
weighted notes. Weighted notes shown in Equation (4) are derived
from three musical concepts, accent(1), syncopation(2) and long
note(3). During the generation process, the weighted notes can
mark the importance degree of the current note and optimize the
model’s attention distribution.

4.2 Weighted Factor
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Figure 6: The extraction process of weighted factors.

Based on Schenker’s theory and the harmonic analysis techniques,
we propose the concept of weighted factor(in Fig. 6). After building
a ChordMap ranging from the most basic major and minor triads to
polychords, we select a chord from this ChordMap for the current
beat with the minimum editing cost using greedy algorithm (in
Algorithm 1) as its weighted factor.

Algorithm 1 The greedy algorithm in splicing

N=[] # splicing result
N.append(S[-1]) # get current beat
S.pop()

while True do
W_old = w(N) +w(S[-1]) +1
# calculate cost using only the current beat
W_new = w(N + S[-1])
# calculate cost if splicing
if W_new > W_old then
# if the cost increase after splicing,do not splice them
break;
else # otherwise, splice
Nappend (S[-1])
end if
S.pop()
end while
S.extend(N) # put Nback to S
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4.3 Terminal Chord
Terminal Chord = Chordy_; U Chordpy -1V

Chordy _ysupy—1 Y Chord._y vig ®
A terminal chord marks the termination of a harmony progres-
sion at the end of a musical period or an entire piece. The identifica-
tion of terminal chords is implemented by detecting the harmonic
cadences in the chord progression. The common harmonic cadences
majorly consist of four types shown in Equation (5). The terminal
chords remind Transformer of the chords’ positions in the music
piece, and play an important role in the texture generation process.

4.4 Structural Chord
Structural Chord = Chord,on—invertedN

(Chordy U Chordpp U Chordpy U Chordy) ©)

Equation (6) shows that structural chords are the 1° t Z"d, 4th and
5thchords of the current musical mode and also have to be non-
inversions, which means the chord has the tonic as the lowest
note. The structural chords, which are important in the harmonic
progression, further provide the model with the long-term musical
information.

5 DATASET
5.1 aiSong Dataset

To enrich the music styles of our dataset, we built the aiSong
Dataset! from scratch. We first collected 6,000 guitar scores, where
we selected 650 oriental songs that meet our requirements. Fur-
thermore, several music professionals are invited to manually stan-
dardize the naming rules and formats of our experimental data. We
also split each song into mutually-different sections to reduce data
repetition. Segments with different tonalities in the same song will
also be listed separately. After 4 months of collection and process-
ing, aiSong Dataset is finally completed, containing 2323 musical
pieces.

Our aiSong Dataset is mainly based on the Chinese national pen-
tatonic, which is composed of five positive tones, namely, "Gong(Do),
Shang(Re), Jue(Mi), Zhi(Sol) and Yu(La)" and various partial tones.
We also transpose the national pentatonic into a natural major with
Gong as the tonic.

5.2 Data Processing of other Datasets

Apart from our original aiSong Dataset, we also use three open-
source datasets (in table 1). These datasets are further standardized
following the steps below.

Table 1: The information of datasets

Dataset ‘ Musical Pieces | Bars ‘ Duration(hours)
Theorytab 11270 125999 105.00
Wikifornia 4017 154643 128.87
Nottingham 591 20575 17.15

aiSong 2323 14297 11.91

!https://github.com/CarlWangChina/-iSong-Music-Dataset
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5.2.1 Rhythm Screening. We only reserve the music pieces in
4/4 and 2/4 time for subsequent sampling. To maintain a stable
sampling granularity, pieces containing chords shorter than one
beat are also deleted.
5.2.2  Octave Transposition. For each piece of music, we calculate
the current octave of the melody and accompaniment according
to the note distribution. Then by adding to or subtracting several
interval differences, we transpose the melody to the 6 h row of the
MIDI standard pitch table and the accompaniment to the 4th row,
5.2.3 Mode Unification. Based on the music mode information in
the dataset, we convert all major mode music to C major and all
minor mode music to A minor. The distinguishment between major
mode and minor mode is important because the extraction of our
proposed four features is influenced by the mode of current music.
After our processing, the final dataset contains 19,217 musical
pieces, including our original aiSong Dataset, which can be directly
used for music generation tasks.

5.3 Music Representation

We separately sample the melody and accompaniment data in each
song into two 1-dimensional time-sequential arrays, which reduces
the space complexity and the learning cost of the model.

For the melody sequence, the sample rate is every sixteenth
note. For chord sequence, we take a sample every quarter note.
We use pitch values of notes and chord notes to represent notes
and chords, respectively. An example is shown in Fig. 7.

60 Melody:
5 [0,67,64,60,59,59,55,52]
= 50
o 1 [ T Chords:
so——————— | [[41,45,48],[40,43,47,50]]
0.0 0.5 1.0 1.5 2.0
Beat

Figure 7: An example of our music representation method.
The orange bars (top) represent melody information, and
the blue bars (bottom) represent chord information.

6 EXPERIMENT SETUP

6.1 Implementation Details

The detailed architecture of SongDriver is shown in Figure 2. In the
experiment, 18367 and 850 clips in the dataset are used for training
and testing, respectively.

For the arrangement phase, we employ a Transformer with only
one pair of encoder-decoder. The maximum input lengths of the
encoder and decoder are set to 4 notes and 3 chords, respectively.
We use a single self-attention layer with 8 attention heads. The
model hidden size is 256 and the target dimension of the pointwise
feedforward net is 2048. In the training, the batch size of one epoch
is set to 50 bars, with a learning rate of 0.0001, a dropout rate of 0.1
in each layer and an Adam Optimizer. We train this Transformer
for 1000 epochs on a 2080ti GPU with 64GB memory and it takes
33 hours until model convergence.

For the prediction phase, we train a CRF++0.58 for 20 hours on a
cloud server ecs.r6.26xlarge, which has a 104-core CPU with 768G
memory. The maximum number of iterations, frequency and cost
are set to 35, 3, 4.0, respectively.

Zihao Wang et al.

In the real-time cases, the model can only read the inputs ahead
of the current time step. To simulate this mechanism in the model
training, we adopt a stream input method to step-by-step feed the
melody data, instead of giving all musical data to the model at once.

6.2 Ground Truth

Previous works usually adopt human-arranged music resources as
the ground truth. However, they are not real-time and hence are
not comparable to real-time improvisations. Therefore, we invite
professional musicians to real-time improvise accompaniments for
the 66-minute monophonic melody sample with a BPM(Beat Per
Minute) of 80. The improvisations are recorded as the ground truth
for the experiment. It is also kept unknown to the musicians before
the experiment to ensure the validity of the ground truth.

Though there can be differences among the works by different
musicians, the evaluative metrics only focus on the basic evalua-
tion of musicality, instead of emphasizing personal styles. We only
intend to compare the accompaniments generated by machines
and humans, and find the model with the closest performance to
humans.

6.3 Objective Evaluation Metrics

Nine objective metrics are used to evaluate the accompaniments
arranged by models. The quality of generated music is not indicated
by the absolute scores on these metrics, but by their closeness
to the ground truth. In all the following tables, the scores of
models on objective metrics are all their differences from
the ground truth.

1) Average Chord Pitch Interval (CPI)[27], which is the aver-
age value of intervals between two consecutive chords; 2) Average
Chord Inter-Onset Interval (CIOI) [27], which finds the aver-
age time difference between two consecutive chords; 3) Chord
Tone to Non-chord Tone Ratio (CTnCTR) [28], which calcu-
lates the ratio of the number of chord tones to non-chord tones; 4)
Pitch Consonance Score (PCS) [28], which is the tone difference
in intervals between the melody and the chord; 5) Melody-Chord
Tonal Distance (MCTD) [7], which calculates the Euclidean dis-
tance between the melody vectors and the chord vectors in a 6D lin-
ear space; 6) Chord Histogram Entropy(CHE)[28], which mea-
sures the entropy of a given chord sequence, and reaches maxima
when the chord sequence follows a uniform distribution; 7) Chord
Stability (CS) is a metric based on Schenker’s theory, which indi-
cates the stability of chord progression. It calculates the difference
between the generated chords and the 15¢, 2"d, 4th and 5" non-
inverted chords of the current music mode, which are important
chords in maintaining the stability of the accompaniment; 8) Har-
monic Structuredness (HS) calculates the general distribution of
harmonic cadences. It reflects the overall structure of arranged ac-
companiments; 9) Weighted Melody-Chord Harmoniousness
(WMCH) Based on Schenker’s music theory, WMCH reflects the
difference between the generated chords and the chords composed
of the most representative notes in the preceding melody, which
indicates the consonance between the original melody and its ar-
ranged accompaniment.
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Table 2: The objective and subjective analyses of model architecture

Objective | Ground | HMM- | HMM- | Transformer- | Transformer- | RNN- | RNN- | RNN- | HMM- SongDriver
Metrics Truth | LSTM | Markov Markov LSTM Markov | LSTM | CRF CRF | (Transformer-CRF)
CTnCTR 0.575 +0.064 | +0.013 +0.022 +0.047 +0.014 | +0.092 | -0.034 | -0.034 -0.010
MCTD 0.478 +0.018 | +0.003 +0.006 +0.017 +0.005 | +0.029 | -0.009 | -0.009 -0.004
HS 0.208 -0.028 -0.105 -0.161 +0.020 -0.018 +0.147 | +0.178 | +0.178 +0.008
Subjective | HMM- | HMM- | Transformer- | Transformer- | RNN- | RNN- | RNN- | HMM- SongDriver
Metrics LSTM | Markov Markov LSTM Markov | LSTM | CRF CRF | (Transformer-CRF)
MAH 2.61 3.27 3.39 3.25 3.47 3.45 3.10 3.13 3.92
CPC 2.90 3.22 3.29 3.75 3.45 3.69 3.07 2.94 4.08

6.4 Subjective Evaluation Metrics &
Participants

We employ three different subjective metrics and conduct Mann-
Whitney U tests for statistical data comparison. 1)MAH: The har-
monious level between the melody and the accompaniment; 2)CPC:
The coherence of the accompaniment’s chord progression; 3)MHS:
Melody-Harmonic Synchronization.

For the subjective evaluations, we randomly select 3 excerpts
(beginning, middle, and end) from the 66-minute real-time accompa-
niments generated by different models. This method can evaluate
the changes in music quality with time, which is crucial for as-
sessing the exposure bias problem. In the experiment, we design a
questionnaire and invite 17 participants from different backgrounds,
including 12 professionals and 5 amateurs. The average time of pro-
fessional training is 10.57 years. All participants are asked to score
the shuffled music excerpts. To simulate the real-time situation, we
keep the latency between melody and accompaniment in music
samples for subjective evaluation.

7 METHOD ANALYSIS
7.1 Model Architecture

To find out the optimal model architecture of SongDriver under the
two-phase strategy, we make comparisons among several different
combinations of alternative SOTA models, including Transformer,
RNN, HMM for the arrangement phase, and CRF, LSTM, Markov
for the prediction phase.

SongDriver (the Transformer-CRF pair) almost outperforms all
other model combinations on objective metrics (in Table 2). Though
narrowly beaten by the HMM-Markov pair on MCTD, SongDriver
is overall the best-performed with its shorter processing time.

The scores of SongDriver on subjective metrics (in Table 2) are
also the highest among all other groups (all p < 0.023), which justi-
fies the best performance of SongDriver again.

7.2 Ablation Study

We use four ablation variants of SongDriver to understand the
contribution of each musical feature in real-time accompaniment
generation tasks. Each ablation variant corresponds to a different set
of our proposed musical features. 1) SDRW: SongDriver, removing
the weighted factors; 2) SDRS: SongDriver, removing the structural
chord flags; 3) SDRT: SongDriver, removing the terminal chord
flags; 4) SDRN: SongDriver, removing the weighted notes.

By “removing”, we assign the musical features with their corre-
sponding null values before embedding.

Both subjective and objective studies (in Table 3) demonstrate
that the model suffers from performance declines without any one
of four musical features (with all p < 0.012), which advocates the
necessity of introducing four musical features. We suppose this
might be caused by the loss of long-term information in real-time
conditions.

Table 3: Ablation study results

Obj. | Ground Song
Met. ‘ Truth ‘ SDRW ‘ SDRS ‘ SDRT ‘ SDRN ‘ Driver
CIOI 0.247 +0.341 | +0.365 | +0.356 | +0.355 | +0.335
CPI 0.288 +0.398 | +0.420 | +0.417 | +0.414 | +0.395
HS 0.208 -0.015 | +0.055 | -0.001 | -0.009 | +0.008
Subjective .
. SDRW | SDRS | SDRT | SDRN | SongDriver
Metrics
MAH 3.45 3.18 3.20 3.45 3.92
CPC 3.63 3.43 3.33 3.53 4.08

8 EVALUATION

8.1 Objective Evaluation

We compare the performance of SongDriver with SOTA (state-of-
the-art) methods for real-time music accompaniment generation,
including 3 latency models and 3 bias models shown in Table 4.
Since these SOTA methods are originally evaluated on different
metrics, we cannot directly conclude which one should be the best
performed. Hence, we list all of them in the contrast group to
equally consider their performances.

8.1.1 Latency Model. As Table 4 shows, SongDriver has the clos-
est performance to the Ground Truth on almost all metrics. On
CTnCTR and MCTD especially, SongDriver can accompany the
current melody more harmoniously compared with other latency
models, which corroborates that the generated accompaniment of
SongDriver is more logically synchronized with the melody. Besides,
the CS score also justifies the high harmonic stability of SongDriver
generated accompaniments, proving the effectiveness of the two-
phase strategy. On WMCH, SongDriver is narrowly surpassed by
PSCA-HMM. We suppose this might be attributed to HMM’s capa-
bility to model conditional probabilities, where the dependencies
among melodies and chords can be better learned. However, the
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Table 4: The results of the objective evaluation
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Objective | Ground Latency Models Bias Models Song
Metrics Truth | PSCA-HMM [24] ‘ PSCA-RNN [24] ‘ Music Transformer[11] | Markov-Lin [14] ‘ Real-CPG [6] ‘ CRF | Driver
CTnCTR 0.575 +0.060 +0.087 +0.034 +0.030 +0.042 -0.037 | -0.010
PCS 0.667 -0.016 +0.042 +0.019 +0.027 +0.034 -0.016 | -0.015
MCTD 0.479 +0.016 +0.028 +0.013 +0.011 +0.013 -0.009 | -0.004
WMCH 3.296 -0.123 -0.324 -0.445 -0.256 -0.732 +0.233 | +0.197
CS 1.938 +0.890 -0.878 +0.929 -1.776 +1.046 +1.195 | +0.874
HS 0.208 -0.014 -0.141 +0.028 -0.204 +0.192 +0.137 | +0.008
CHE CPI MCTD HS CS
0.00 0.00 0.0000 0.00 0.00
0.01 -0.0005 /\/_/\/’_/_/ﬁ . ,
-0.01 Wl M
-0.02 __————| -000t0] 002 " T A ~
M—A\ -_— -0.10
-0.03 — 002 -0.0015 003 T
I [ — —_—— _ 00020 T N /\f\/\’\,_,\ 015
G 720 40 60 8 G 5 0 15 G 20 ) R 0 20 30 G 20 % 0
16 beats 16 beats 16 beats 20 beats 20 beats
——— Ground Truth ——— SongDriver -~ Real-CPG —— CRF Markov-Lin

Figure 8: The results of the objective evaluation with bias models as the length of the melody sequence increases.

Table 5: The results of subjective evaluation

Subjective ‘ Latency Models ‘ Bias Models ‘ SoneDriver
Metrics | PSCA-HMM[24] | PSCA-RNN[24] | Music Transformer[11] | Markov-Lin[14] | Real-CPG[6] | CRF | &
MAH 2.74 3.45 3.47 3.12 — 3.06 | 314 | 3.92—
CPC 2.90 3.61 3.82 312 2.98 | 3.02) | 4.08—
MHS 3.00 3.67 3.82 - - - 4.14

major problem of HMM-like models lies in its incompetence in
capturing contextual dependencies, which may hurt the overall
quality of harmonic progression.

8.1.2 Bias Model. Fig. 8 show that SongDriver achieves the most
similar effect to the Ground Truth. As the length of melody se-
quences increases, the curve of SongDriver gradually approaches
that of the Ground Truth, while the listed three bias models all
exhibit a pattern of performance decline or fluctuation.

8.2 Subjective Evaluation

Table 5 shows the mean opinion scores on subjective metrics. The
results demonstrate the effectiveness of our approach: SongDriver
outperforms other systems on all metrics by a large margin (p < 0.05
for almost all metrics). Though SongDriver exhibits only a slight
advantage over Transformer (with a p-value of 0.06), it has achieved
a shorter processing time thanks to its two-phase mechanism.
Musicality evaluation. Compared with the listed latency and
bias models, SongDriver achieves the highest score on MAH and
CPC, the metrics that reflect overall musicality.
Synchronization evaluation. Participants’ scores on MHS show
that the accompaniments generated by the latency models sound
more lagging behind the melody. By contrast, the accompaniment

generated by SongDriver is more synchronized with melodies,
which demonstrates SongDriver’s ability to eliminate the logical
latency.

Bias evaluation. According to the participants’ feedback, the
musicality of SongDriver-generated accompaniment is more stable,
while that of other models almost all declines. Though the score
of Markov-Lin on MAH is also stable, it is significantly lower than
that of SongDriver. Therefore, SongDriver is still overall the best-
performed model.

9 CONCLUSION

In this paper, we propose SongDriver, a real-time music accom-
paniment generation system without logical latency or exposure
bias. The innovative combination of the two generation phases
compensates for the deficiencies of the latency and bias model.
Meanwhile, the four musical features we propose also make up for
the loss of long-term sequence information in real-time conditions
and can guide SongDriver to generate accompaniments with higher
accuracy. In the future, we plan to make SongDriver available for
commercial applications, such as developing purchasable hardware
products that can provide more tangible experiences to consumers.
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A TEXTURE PATTERNS

To enrich the auditory effects, we designed multiple texture gener-
ation patterns to transform the chords generated during the predic-
tion phase into multi-track accompaniments.

A.1 Pattern Selection

First, we need to determine whether the current time step is in
the verse or chorus by the rate of pitch change. Next, we need to
check if the chords in the preceding 4-16 beats can form a harmonic
cadence, which indicates whether the current phrase ends or pauses.
Afterward, the texture generation pattern will be selected based on
the phrase structure. Where there is a harmonic cadence (switches
between phrases or periods), the system plays a piece of decorative
accompaniment at the length of one bar. Within a phrase, regular
textures will be used in a pre-set order to play accompaniments,
where each texture pattern lasts for four bars. We set the switching
frequency of textures as per four bars, which is also the length of a
basic musical phrase.

A.2 Process & Example

Since most songs often start with verses, the verse piano NO. 1
and NO. 2 are first played in order at the beginning of each song.
We then calculate the rate of the pitch change every four bars. If
the rate satisfies the conditions of the chorus patterns, then chorus
piano NO. 1 (shown in the 5th to 8th bar of the score in Fig. 5 in
the paper) and chorus guitar, chorus piano NO. 2, and chorus guitar
are played in order repeatedly; If the rate meets the conditions of
the verse patterns, then verse piano NO. 1 (shown in the 1st bar of
the score and the rest 3 bars are the same as it) and verse guitar,
verse piano NO. 2 (shown in the 2nd bar of the score and the rest
3 bars are the same as it) and verse guitar, verse piano NO.3 and
verse guitar, are played in order repeatedly.

Additionally, three points need to be noted. First, the lowest
pitches of the piano tracks are played by a cello. Second, the score
of texture patterns (in the middle of Fig. 5 in the paper) is only an
example after combining some chords, because texture patterns
cannot directly give expression to any changes in scores. Third,
due to the limitation of space, the scores of the guitar, chorus piano
NO.2 and verse piano NO.3 are omitted.

A.3 Texture Representation

To better represent the texture generation patterns, we use the
following textual form to describe each note in the pattern: [The
i-th note of the chord from low to high, start time (in beat), duration
(in beat), instrument name, intensity]. Here is a simple example: [1,
0, 1, Piano, p5], [2, 1, 1, Piano, p7], [3, 2, 1, Piano, p7], [2, 3, 1, Piano,
p7]- This example indicates that the 1st, 2nd, 3rd and 2nd notes of
the chord will be played in order on a piano, and the duration of
each note is one beat. The intensity of the 1st note is p5 and p7 for
the other notes.

For example, the chord generated at the current timestep is suit-
able for the chorus texture pattern and has reached the fourth bar.
Therefore, the notes in the Current Pattern box will be played.
These notes can be expressed in a special text format. When gen-

erating the final accompaniment, these text formats need to be
combined with the currently predicted chord and generate midi

files for accompaniment.
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B MUSICAL FEATURES

This section aims to elaborate on the concepts and extraction meth-
ods of the proposed four musical features in the paper.

B.1 Terminology Explanation

Modes and tonality: Modes are certain fixed arrangements of
tones in an octave, like the major or minor scales. The nature
and characteristics of a mode are called tonality. Scale degrees of
chord: The note scales in a certain mode are arranged in order, and
the scale degree of a chord corresponds to the index of its tonic. For
example, the 157 scale degree chord (1%? chord for short) of C major
is a C chord. Chord progression: Two or more chords played in
time order. For example, V-I chord progression means to play the
5t" chord first, and then play the 15 chord.

B.2 Chord Scale Degree

The extraction of four musical features relies heavily on chord
scale degrees, instead of mere chord names. A chord degree can be
determined by its name and the current tonality it is under, based
on which an algorithm that converts chord names to chord degrees
is proposed, shown in Algorithm 2

Algorithm 2 Chord Degree Identification Algorithm

Define integer variables: tonality,0,1,2..11 representing
C,C#,D,D#E,FF#,G,G#,A,A# B respectively

Define integer variables:mode,0 for minor,1 for major

Major list=[2,4,5,7,9,11]

Minor list=[2,3,5,7,8,10]

Degree=[tonality]
if mode==1 then
for x do in Major list
Degree.append((tonality+x)
end for
end if
if mode==0 then
for x do in Minor list
Degree.append((tonality+x)
end for
end if

B.3 Weighted factor

ChordMap construction. To find the weighted factors, a chord
cross-reference table, namely the ChordMap, is constructed. This
Chord-Map ranges from basic major and minor triads to polychords,
including 36*12=432 chords. There are 36 chord combinations for
each root note, corresponding to 36 different emotional styles. On
this basis, the 12 notes in each octave are used as root tones to form
36"12=432 chords. One excerpt of the ChordMap is shown in Fig. 9.

There are two steps in extracting the weighted factors. First,
for all the notes in the current beat, the frequency of each note is
counted based on this weight allocation: weighted note - 2, other
notes - 1, where the first-stage weighted statistics of the current



SongDriver: Real-time Music Accompaniment Generation
without Logical Latency nor Exposure Bias

No. [ Chord names | Chord notes | No. | Chord names | Chord notes
1 C 135 19 Cmaj9,CM9 13572
2 Cm 1b35 20 C9 135b72
3 C-5 13b5 21 C9+5 13#5b72
4 | C+5C+,Cang 13 #5 22 C9-5 13b5b72
5 Cdim,C- 1b3b56 23 Cm9 1b35b72
6 Csus4,Csus 145 24 C7+9 135b7#2
7 C6 1356 25 Cmo#7 1b35b72
8 Cm6 1b356 26 C7b9 135b7b2
9 c7 135b7 27 C7-9+5 13 #5b7 b2
10 Cmaj7,CM7 1357 28 C7-9-5 13 b5b7b2
11 Cm7 1b35b7 29 C69 13562
12 Cm#7 1b357 30 Cm69 1b3562
13 C7+5,C7#5 13#5b7 31 C11 135b724
14 C7-5,C7b5 13b5b7 32 Cmll 1b35b724
15 [ Cm7-5,Cm7b5 | 1 b3 b5 b7 33 Cl1+ 135b72#4
16 C7sus4 135b74 34 C13 135b7246
17 C7/6 135b76 35 C13-9 135b7b246
18 Cm79 13572 36 C13-9-5 13 b5 b7 b2 46

Figure 9: One excerpt of the ChordMap.

beat melody are calculated. Second, the current beat is concatenated
with all the melody fragments in its preceding sequences to form
a new melody sequence. The weights of all weighted notes in this
melody sequence are set to 2 with those of all other notes to 1. The
sum of these weights is the second-stage weighted statistics of the
melody sequence. The concatenated sequences are organized in
groups of four notes, and each group has the same weighted factor.
This concatenation uses the greedy algorithm shown in Algorithm
1 in the paper, where N denotes the final result. The algorithm loops
backward from the current note and edits array S following the
criterion below: In each step, the N array is examined whether the
cost calculation value becomes smaller after it has absorbed S[idx-
1]. If the editing cost gets smaller, the greedy strategy continues
backwardly. Otherwise, the step is terminated and the current N
is the desired fragment. However, the algorithm can terminate at
the first loop, when there is only one beat of information in N.
To improve the stability, the weight of the current beat is directly
assigned with that of the previous beat. Until the next beat is read
in, the weighted factors of both beats are then extracted together.

Calculating the editing cost. As shown in Figure 6 in the paper,
the editing cost is calculated by comparing the first-stage weighting
and the second-stage weighting information with the ChordMap.
The editing cost is the sum of minimum intervals between the chord
notes from candidate weighted factors and those from the chords
in the ChordMap. There are three types of operations: 1) insertion
of chord notes, 2) deletion of chord notes, 3) replacement of chord
notes.

B.4 Weighted Note

The weighted factors are extracted based on the weighted notes.
A weighted factor can be regarded as a chord composed of the
most representative notes of the corresponding melody, which
generalizes the features of the previous tune. Here, we introduce
the detailed extraction process of the weighted factor.
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In a melody, weighted notes are decisive to the meaning of mu-
sic, while others can be only for decorative purposes. Since the
subsequent melody cannot be foreseen in real-time tasks, a sliding

window of a bar’s length is used to simultaneously process the
notes in the current beat and its three preceding beats. Then, the

statistical information in this sliding window is processed by an
algorithm deciding whether the current note is a weighted one or
not. The definitions of accents, syncopations, and long notes shown
in Equations (1)(2)(3) in the paper are as follows, all under 4/4-time
signature. Accent: The strength of 4/4 time beats in music theory
is "strong, weak, next-strong, weak". A note on the strong or the
next-strong beat is an accent. Syncopation: A syncopation is a note
starting from a weak beat, and lasts until at least half of the follow-
ing strong or next-strong beat. Long note: Long note refers to the
note with the longest duration in each sliding window. If there are
multiple longest notes, only the last one in the window is marked as
the long note. Weighted notes in paper’s Equation (4) are the notes
that are accents but not syncopations, or those that are not accents
but are both long notes and syncopations. During the generation
process, the weighted notes can mark the importance degree of the
current note and optimize the model’s attention distribution.

B.5 Terminal Chord

The terminal chords derive from the concept of harmonic cadences,
which are used to finish some harmonic progressions at the end
of the whole or partial music piece. Harmonic cadences are sig-
nificant in the chord language, as they often symbolize different
musical styles. As shown in Equation (5) in the paper, the identifi-
cation of the terminal chords is equivalently to detect the harmonic
cadences. In this paper, harmonic cadences are categorized into
four common types: 1) Perfect cadences: the V-I chord progression,
which is usually preceded by subordinate chords (II, IV or VI). 2)
Plagal cadences: The IV-I chord progression, which highlights the
support of the subordinate functional chords to the main chord. 3)
Interrupted cadences, where the V7-I progression is replaced by the
V7-VI progression. 4) Imperfect cadences: The chord progression
from any chord to a V or VII chord.

B.6 Structural Chord

Structural chords are the chords that maintain the stability and
harmoniousness of generated accompaniments (in Equation (6)
in the paper). The chords generated by Transformer must satisfy
the following conditions to be identified as structural chords: 1)
It must be a non-inverted chord, which means its root note must
be its lowest note; 2) Second, the chord must be the 15%(I), 2”d(II),
4th(1V) or 57(V) chord of current tonality. The structural chord
extraction process is as follows: First, the input chord is compared
with the ChordMap. If the input chord exists in the ChordMap,
it is considered as a candidate structural chord. For the first beat,
the input chord is the primary chord of the current key. But in the
training and generation task, the input chord is the generated chord
output by the Transformer model. Then, if the candidate chord is
the I I, IV or V chord in the current key, it is a structural chord.
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