
Constant-Cost Spatio-Angular Prefiltering of Glinty Appearance Using
Tensor Decomposition

HONG DENG, School of Computer Science and Engineering, Nanjing University of Science and Technology, China
YANG LIU, School of Computer Science and Engineering, Nanjing University of Science and Technology, China
BEIBEI WANG∗, School of Computer Science and Engineering, Nanjing University of Science and Technology, China
JIAN YANG, School of Computer Science and Engineering, Nanjing University of Science and Technology, China
LEI MA, National Engineering Laboratory for Video Technology, Peking University, China
NICOLAS HOLZSCHUCH, University Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, France
LINGQI YAN, University of California, Santa Barbara, USA

Yan et al. [2016], 8.7 hOurs, 5.16 min

Fig. 1. Comparison between our method and Yan et al. [2016] on the Car scene, using a seamlessly tileable normal map of metallic flakes with resolution
2𝐾 × 2𝐾 under geometric optics. The rendered glints are almost identical, but our method costs less than 1% of time compared to Yan et al. [2016], and does
not scale with the view distance.

The detailed glinty appearance from complex surface microstructures en-
hances the level of realism, but is both space- and time-consuming to render,
especially when viewed from far away (large spatial coverage) and/or illumi-
nated by area lights (large angular coverage). In this paper, we formulate the
glinty appearance rendering process as a spatio-angular range query prob-
lem of the Normal Distribution Functions (NDFs), and introduce an efficient
spatio-angular prefiltering solution to it. We start by exhaustively precom-
puting all possible NDFs with differently sized positional coverages. Then
we compress the precomputed data using tensor rank decomposition, which
enables accurate and fast angular range queries. With our spatio-angular
prefiltering scheme, we are able to solve both the storage and performance
issues at the same time, leading to efficient rendering of glinty appearance
with both constant storage and constant performance, regardless of the
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range of spatio-angular queries. Finally, we demonstrate that our method
easily applies to practical rendering applications that were traditionally con-
sidered difficult. For example, efficient bidirectional reflection distribution
function (BRDF) evaluation accurate NDF importance sampling, fast global
illumination between glinty objects, high-frequency preserving rendering
with environment lighting, and tile-based synthesis of glinty appearance.

CCSConcepts: •Computingmethodologies→Rendering;Reflectance
modeling.

Additional KeyWords and Phrases: Rendering, surface microstructure, glints,
constant storage, procedural by-example noise

1 INTRODUCTION
Many materials in the real life have microstructures, such as the tiny
metallic flakes in car paints, and scratches and brushes on heavily
used cutleries. These microstructures have their own way of interac-
tion with the light, and when aggregated, change the overall visual
appearance of the materials. Microstructure rendering [Yan et al.
2014] studies the modeling and rendering of such details, and has
increased the realism to rendering individual specular highlights (i.e.
glints), a core effect in computer graphics. But in order to represent,
store and render the complex appearance from details, the storage
is usually prohibitively costly and the performance is often too slow,
even for offline productions such as animations.
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The fundamental difficulty is that in order to bring out the com-
plex light transport from microstructures, one has to define all
the details. For general appearance, it is common practice to use
high-resolution normal maps or heightfields to explicitly define
every microfacet. For example, Yan et al. [2018] define heightfields
with resolutions up to one micron per texel. The size of such high-
resolution details is large – 10𝐾×10𝐾 texels just to cover one square
centimeter, and it grows with the area of surfaces.
However, an even bigger issue is the computation. During ren-

dering, it is the NDF of the microstructures that determines specific
appearance. However, the more microstructures are being consid-
ered, the longer it takes to resolve the interactions between the
light and the microstructures. This imposes strong difficulties on
the rendering performance. When the viewpoint is far away from
the objects, the surface region covered by one pixel, a.k.a. pixel foot-
print, will include more microstructures inside. Also, when large
area lights exist, multiple NDF queries will be needed for different
samples on the lights. Noise will emerge, and will consume a lot
of samples to diminish, because the microstructures contribute to
different parts of the light quite differently. Recent works (Gamboa
et al. [2018]) have solved this issue with Summed Area Table (SAT)
or Integral Histogram (IH), at cost of expensive storage or limited
microfacet models (Beckmann only).

From these difficulties, we can see that the performance of render-
ing glinty appearance heavily depends on the spatial and angular
coverages of NDF queries. Therefore, at the core of rendering glinty
appearance from microstructures is an efficient method that per-
forms spatio-angular prefiltering of NDFs. That is, with some proper
treatments before rendering, we should be able to quickly find the
NDF value from microfacets within an arbitrary pixel footprint
towards an arbitrary range of solid angles. Preferably, the time it
takes to answer such questions should be independent of the query
sizes, both spatially and angularly, known as constant performance.
Even better, if the prefiltering can be combined with dynamic syn-
thesis methods of the microstructure, we will be able to generate
microstructures in an infinite positional range, while keeping the
prefiltering only on the given finite sized microstructures. This gives
us constant storage.

In this paper, we present a precomputation-based prefiltering ap-
proach that answers spatio-angular range queries of NDFs, achiev-
ing both constant performance and constant storage, a.k.a. constant
cost. We start from an exhaustive precomputation of all NDFs at
all possible centers and sizes of pixel footprints, to cover all possi-
ble NDF queries during rendering. We organize the precomputed
data into a 3D “NDF tensor”, and use tensor rank decomposition
to compress it. Then we propose a novel decompression scheme
that answers arbitrarily-sized spatio-angular queries on the original
NDF tensor at constant performance.
Our prefiltering scheme leads to efficient rendering of glinty ap-

pearance. We demonstrate that our method elegantly applies to
practical rendering operations/applications that were traditionally
considered difficult: accurate NDF importance sampling, fast global
illumination between glinty objects, high-frequency preserving ren-
dering with environment lighting. And we complete our constant-
cost goal by combining our prefiltering with tile-based synthesis

methods that achieves constant storage of rendering a large range
of microstructures.
Compared with previous glinty appearance rendering methods,

our method is the first that does not have to tradeoff between qual-
ity and cost. In practice, the performance of our method is also
constant w.r.t. view distances and light sizes, and is 1-2 orders of
magnitude faster than traditional approaches. And the storage cost
of our method is constant to the granularity of the scene, taking up
only several megabytes (e.g. for 1𝐾 × 1𝐾 patches) to hundreds of
megabytes (e.g. for 8𝐾 × 8𝐾 patches) after compression.

To summarize, our contributions include:

(1) a NDF precomputation-based approach with compact com-
pression and decompression using tensor decomposition,
which enables fast evaluation of BRDF with large footprint,

(2) a large range of applications to several difficult rendering
problems: accurate NDF importance sampling,multiple-bounce
glints rendering and prefiltering, and

(3) a combination with tile-based texture synthesis methods, re-
sulting in constant storage for glints rendering.

2 RELATED WORK
In this section, we first briefly review previous work on microstruc-
ture rendering and synthesis, and then introduce related work on
precomputation and prefiltering.

Microstructure rendering. Yan et al. [2014] proposed to simu-
late the spatially and directionally varying appearance using patch-
local normal distribution functions (P-NDFs), which is later acceler-
ated by Yan et al. [2016] via a position-normal distribution method.
Recently, Yan et al. [2018] managed to wave optics effects. As an-
alyzed in Sec. 1, all these methods share a common problem with
performance that grows with the size of the pixel footprint.

More generally, Zeltner et al. [2020] exploit the specular manifold
to efficiently find specular paths in rendering complex appearance.
Wang et al. [2020b] introduce the idea of path cuts to find all specular
paths of arbitrary lengths. These methods aim at efficient specific-
purpose light transport, possibly with microstructure, but do not
focus on appearance models. Our method makes no assumption to
light transport methods. It automatically fits the Multiple Impor-
tance Sampling (MIS) framework, and naturally handles multiple
bounces of light between complex surfaces.

Microstructure synthesis.Considerable efforts have beenmade
to relieve the storage issue in microstructure rendering. And they
can be subscribed into two categories. The first category is the
procedural creation of the microstructure, realizing the actual distri-
butions of microstructures on the fly from a list of predefined rules
[Chermain et al. 2021; Jakob et al. 2014; Raymond et al. 2016; Veli-
nov et al. 2018; Wang et al. 2020a, 2018; Werner et al. 2017; Zirr and
Kaplanyan 2016]. These methods work well for specific effects, such
as discrete glitters and scratches, but do not support general appear-
ances. The other category of microstructure synthesis is by-example
[Wang et al. 2020c; Zhu et al. 2019], using texture synthesis [Cohen
et al. 2003; Heitz and Neyret 2018] or using a Generative Adversar-
ial Network to generate NDF images [Kuznetsov et al. 2019]. Our
method combines with the by-example synthesis idea, bringing out
the constant storage property.
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Precomputation followed by efficient compression has been
widely adopted in computer graphics. Precomputed Radiance Trans-
fer (PRT) precomputes complex light transport and compresses them
in order to allow real-time rendering with complex lighting [Ng et al.
2004; Sloan et al. 2003, 2002; Tsai and Shih 2006; Wang et al. 2009; Xu
et al. 2013]. Precomputation also takes place pervasively in appear-
ance modeling and rendering. Yan et al. [2017] use precomputed
2D profiles to describe the scattering behavior in different types
of animal fur fibers. Donner et al. [2009] exhaustively precompute
one BSSRDF for every different combination of scattering param-
eters, and use confocal ellipses to fit the resulting data, leading to
an efficient empirical BSSRDF model. Wang et al. [2020] propose to
represent the multiple scattering in participating media with a pre-
computed table, which is later improved to neural networks [2019]
for further compression. Rainer et al. [2020; 2019] uses a neural
network to compress measured 6D Bidirectional Texture Functions
(BTFs) to relieve the heavy data storage. We analyze the pros and
cons of precomputation in Sec. 3, and exploit precomputation to
achieve constant performance.
Prefiltering can be treated as a specific type of precomputation

on the appearance, in order to improve run-time performance. For
example, to enable efficient level of detail rendering of cloth, Wu
et al. [2019] prefilter the heightfield and Zhao et al. [2016] prefilter
anisotropic participating media. Prefiltering has also been used in
real-time rendering with environment maps [Karis 2013] and to
account for the curvature of surfaces [Kaplanyan et al. 2016].

Specifically, prefiltering has been applied to glinty appearance ren-
dering. Belcour et al. [2017] prefilter color-, normal-, and displacement-
mapped appearance in the context of multi-bounce global illumi-
nation with footprints predicted by covariance tracing. Gamboa et
al. [2018] precompute all possible NDFs as histograms for arbitrary
spatial range queries at constant performance. However, the resolu-
tion of the NDFs is too low (9×32) to preserve the glinty appearance
(e.g. metallic flakes) angularly. It focuses on fast performance during
rendering, but still suffers from prohibitively expensive storage cost
in practice. Concurrent work [Atanasov et al. 2021] proposes a nor-
mal map filtering approach via inverse binning mapping, throwing
microstructures into corresponding directional bins as a preprocess,
taking advantage of the fact that directional resolution can be fixed
regardless of the sizes of pixel footprints. However, this work is
limited to Beckmann function.

3 PRELIMINARIES AND MOTIVATION
In this section, we first briefly provide the fundamentals of render-
ing complex appearance. Then we analyze the related storage and
performance issues of existing methods to motivate our approach.
For clarity, we list the symbols used throughout our paper in Table 1.

3.1 Preliminaries
Traditionally, people use the microfacet model [Cook and Torrance
1982; Walter et al. 2007] to describe the BRDF at a point x on a
surface:

𝑓𝑟 (i, o) =
𝐹 (i · h) 𝐺 (i · h) 𝐷 (i, o)

4 (i · n) (o · n) , (1)

where i, o are the incident and outgoing directions and n is the
normal of the macro surface. 𝐹 is the Fresnel term giving the total

Table 1. Symbols used in the paper.

symbol definition
i, o incident and outgoing directions
h half vector

𝑓𝑟 (i, o) BRDF
𝐹 (i · h) Fresnel term
𝐺 (i · h) Shadowing-Masking function
𝐷 (i, o) normal distribution function
𝐷P (x, h) P-NDF
𝐷∗ (x,𝜓 ) wave optics GNDF
𝐺 (x; 𝜇, 𝜎) Gaussian function

𝐺𝑐 coherence area
𝑠 sample stride on normal map
𝑡 image block size of a NDF image
𝐿 count of non-empty NDF image blocks in a cluster
𝑅 rank of compression

𝑿𝑟 , 𝒀𝑟 tensor vectors with size 𝑅 × 𝑡
𝒁𝑟 tensor vectors with size 𝑅 × 𝐿
𝐶 tensor vectors with size 𝑅

amount of reflection,𝐺 is the shadowing-masking term considering
self-occlusions frommicrofacets, andmost importantly,𝐷 is the NDF
term, statistically defining the distribution of microfacets’ normals
at/around x. Yan et al. [2014] and subsequent work replace the
statistical distribution 𝐷 with an actual distribution of normals 𝐷P
(the P-NDF) in an area around x, namely the pixel footprint P seen
through each pixel. This leads to a P-NDF defined as

𝐷P (x, h) =
∫

IR2
𝐺𝑝 (u; x, 𝜎𝑝 ) 𝐺𝑟 (n(u); h, 𝜎𝑟 ) du, (2)

where 𝐺 (x; 𝜇, 𝜎) is a 2D Gaussian function centered at 𝜇 with a
standard deviation of 𝜎 . 𝐺𝑝 (·; ·, 𝜎𝑝 ) and 𝐺𝑟 (·; ·, 𝜎𝑟 ) determine the
size of the pixel footprint and the “intrinsic roughness” of each
microfacet, respectively. h = i+o

|i+o | is known as the half vector.
In this way, the actual distributions bring out the variation of ap-

pearance at different pixels, resulting in interesting glinting effects,
especially when the camera or the light moves.

The wave optics variation of the NDF [Kuznetsov et al. 2019] takes
diffraction into account, producing colored appearance. Strictly
speaking, the concept of NDFs do not exist in wave optics. Com-
monly adopted wave optics theories (Harvey-Shack or Kirchhoff)
directly predicts the BRDF using Fourier transform of the spatially-
varying phase shift of light induced by a heightfield [Yan et al. 2018],
in a coherence area of fixed size (typically 5 − 10 microns as the
standard deviation of a 2D Gaussian) where the light interferes in a
non-linear fashion.
For convenience, Kuznetsov et al. [2019] define a “wave optics

GNDF (generalized NDF)”, formally written as

𝐷∗ (x,𝜓 ) = 4
𝐴𝑐𝜆

2

����∫IR2
𝐺𝑐 (s; u, 𝜎𝑐 )𝑒

−𝑖 4𝜋
𝜆

[
ℎ (s)+𝜓 ·s

]
ds
����2 , (3)

where a heightfield ℎ is required instead of normals,𝐺𝑐 is the coher-
ence area,𝜓 is the first two components of the sum i+o

2 , and 𝐴𝑐 is a
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angular range

Fig. 2. Motivation of spatio-angular filtering of glinty appearance. Left:
larger spatial footprint results in smoother NDF, but takes longer to compute.
Right: larger angular range results in smoother NDF, but previously solved
with heavy sampling rather than simple range query.

normalization factor. We refer readers to Kuznetsov et al. [2019] for
more details.

When the pixel footprint is greater than the coherence area, which
is almost true at all times even when viewed from closeup, we are
able to quickly integrate over the pixel footprint to get the (linearly)
aggregated GNDFs as

𝐷∗
P (x,𝜓 ) =

∫
IR2 𝐺𝑝 (x; u, 𝜎𝑝 ) 𝐷∗ (u,𝜓 ) du∫

IR2 𝐺𝑝 (x; u, 𝜎𝑝 ) du
. (4)

Aswe can see, the NDFs for both geometric optics andwave optics
are able to be defined consistently as 2D images with given sizes of
pixel footprints. Also note that, as shown in Figure 3, even when
the pixel’s footprint becomes rather large, the NDF still contains
a lot of high-frequency information. This indicates that the NDF
images still needs accurate computation.

3.2 Motivation
From the way P-NDFs and GNDFs are computed (Eqns. 2 and 4),
we immediately find that the complexity is corresponding to the
spatial size of the pixel footprint. This is undesired and often against
intuition. For a large pixel footprint (Fig. 2 (left)), it takes longer to
compute or query the NDF, even though there are fewer high fre-
quency details in the NDF. Also, when an area light or environment
light is involved (Fig. 2 (right)), sampling the solid angle subtended
by the light results in different incident directions, indicating that
the NDF needs to be queried multiple times at different half vec-
tors. However, this is equivalent to rendering with a fixed incident
direction using an angularly blurred NDF.
The above analysis inspires us to design a spatio-angular pre-

filtering scheme — given any spatial range on the surface and any
angular range on half vectors, we want to find the corresponding
NDF image (spatial filtering), then find the average of NDF values
within a block on this image (angular filtering). Even better, we
should be able to skip producing the entire NDF image and only
focus on the angular block, and we should avoid looping over all
places inside this block but directly acquiring the average value.
This is crucial to achieve constant performance.

To carry out an actual spatio-angular prefilteringmethod, we start
by considering the following question: is it possible to exhaustively
precompute all the NDF images for all possible pixel footprints, until
the footprint is large enough so that the NDFs become smooth? In
this way, the heavy computation of NDFs will become a simple
query of the precomputed data, and no matter how large a pixel

footprint is, the query could be performed in constant time. The
answer is yes, and we demonstrate the possibility in Sec. 4.
However, precomputation-based approaches often have three

fundamental problems that prevent their practical use:

(1) heavy data storage, especially for high-resolution normal
maps/heightfields used to define the microstructures,

(2) difficult partial evaluation, i.e. hard to extract part of the
compressed data instead of the entire chunk during rendering,
and,

(3) fixed representation, that is, the precomputed data usually
cannot be manipulated and used for synthesis.

We challenge all these limitations from precomputation, and
prove that even exhaustive precomputation can be made both ele-
gant and practical. We elaborate our method in the next sections,
starting by introducing the technical part of our method, explaining
how to precompute, compress and decompress data, leading to ar-
bitrary constant-cost spatio-angular prefiltering (Sec. 4). With our
prefiltering approach, we introduce applications to meet practical
rendering needs, such as importance sampling, global illumination
and dynamic appearance synthesis (Sec. 5). Finally, we show high
quality results with constant cost and compare with previous work
(Sec. 6).

Like most other works [Wang et al. 2020c; Yan et al. 2014, 2016]
on glinty appearance, we only focus on the NDF term in microfacet
models. We leave the (also important) shadowing-masking terms
and local multiple bounces among microfacets to the future work
(global multiple bounces between objects will be properly addressed).
Also, since angular prefiltering is aimed at high performance, similar
to other angular prefiltering work [Gamboa et al. 2018], we do not
deal with drastic visibility changes in the angular range. Apart
from these, no further assumptions are made w.r.t. specific types
of microstructure (though quality may vary, as will be analyzed
thoroughly), granularity of the scene, optical models (geometric
optics or wave optics), and so on.

4 SPATIAL-ANGULAR PREFILTERING:
PRECOMPUTATION, COMPRESSION AND
DECOMPRESSION

In this section, we focus on data preparation. We first explain how to
perform exhaustive precomputation. Thenwe introduce our efficient
compression scheme of the precomputed data, together with an
accurate way of decompression that enables us to quickly answer
the average value within a spatial and angular range.

4.1 Precomputation
To avoid expensive on the fly computation of NDFs during rendering,
we propose to precompute the NDFs at discrete locations on the
normal map with different pixel footprint sizes. We arrange such
pixel footprints in a pre-determined multi-level structure, as Fig. 3
illustrates. In each level, we sample the pixel footprints’ locations
(centers) uniformly in a grid, and adjust their sizes accordingly so
they can cover the entire normal map. The higher the levels are, the
sparser we sample the pixel footprints, and the larger these pixel
footprints will be, in order to guarantee full coverage.
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One query = query center + footprint size

Level i Level i+1 Level i+2

Fig. 3. We precompute NDFs at different levels. At each level, NDFs are
computed at uniformly sampled locations (the blue dot) with the same
footprint size (green transparent circle). Each higher level has 2 × 2 sparser
sample count and twice larger footprint size than the previous level. The
bounding box of the footprint size for each level is 30 × 30, 60 × 60 and
120 × 120 pixels. Normal map: isotropic noise (2K×2K).

For each sampled pixel footprint, we compute an NDF image
using the method by Yan et al. [2016]. As a result, our multi-level
structure is similar to a texture mipmap. However, note the signifi-
cant difference: each “texel” contains a color value from any level in
a texture mipmap, but it is an entire NDF image in our case. With our
multi-level structure, for any query with an arbitrary pixel footprint
(location and size), we are able to find the NDF image immediately
via trilinear interpolation between different samples in the same
level and between different levels. In this way, we have successfully
enabled constant performance spatial filtering which is irrelevant
to the footprint size.
Practical choices. We generate the pixel footprint samples in a

bottom-up fashion, as shown in Fig. 3. In the lowest level, we sample
one pixel footprint with a fixed stride 𝑠 = 32, i.e. drawing one sample
every 𝑠 × 𝑠 texels. And the size of each pixel footprint is represented
with a 2D Gaussian of standard deviation 𝜎𝑝 = 1.5𝑠/

√
12, as sug-

gested by Yan et al. [2016]. Starting from the second finest level, the
sampled pixel footprints are 2 × 2 sparser and their sizes are 2 × 2
larger than those in the next lower level. We continue this sampling
process until the NDF images for the neighboring levels are similar
(with small MSE) or the stride reaches the normal map size.

As introduced in the background, one advantage of our precom-
putation is that it does not depend on specific optical models. For
each sampled pixel footprint, we compute its NDF image using Yan
et al. [2016] under geometric optics, and Yan et al. [2018] under
wave optics. The only difference is that the NDF images under wave
optics are colored. Similar to [Kuznetsov et al. 2019], we compute
these NDF images using 8 spectrum samples then convert them to
RGB images.

Fig. 4. Before compression, we cluster the NDF image blocks both position-
ally (on the normal map) and angularly (on the NDF image). All the image
blocks which locate in the same angular grid and the same spatial grid form
a 3D tensor, and will be compressed together. 𝐿 is the count of non-empty
NDF image blocks in a cluster.

Fig. 5. Illustration of tensor decomposition. Tensor decomposition factorizes
a 3D tensor (clustered blocks) into a linear combination of rank one tensors
(𝑿𝑟 ,𝒀𝑟 and 𝒁𝑟 ), where the number of the rank one tensors is 𝑅 in this
figure. With the factorized tensor vectors, point query (purple box) could be
performed.

4.2 Compression
The precomputed NDF images can be used for BRDF evaluation
directly, however, the precomputed data can be storage-consuming,
which makes it less practical. We propose an efficient compression
scheme of the precomputed NDF images in this section.
An important observation is that the NDF images from higher

levels must contain the features from lower levels, therefore we pro-
pose an immediate solution that stacks all the NDF images together
into a 3D tensor and compresses it using tensor decomposition.
Moreover, we find that there are similar parts (e.g. the high fre-

quency curves) and large unoccupied black regions (especially when
the overall appearance is glossy) inside each NDF image, which can
be better utilized. Hence, we subdivide each NDF image into blocks
in an angular grid (Fig. 4 (middle)).

However, stacking all these image blocks together results in a very
“thin” tensor, which is not desired for tensor compression. Therefore,
we further cluster these image blocks into different groups. Each
group contain image blocks generated from pixel footprints with
similar locations and levels. And then we compress each group
individually using 3D tensor decomposition.

The tensor decomposition generalizes the Singular Value Decom-
position (SVD) in 2D into higher dimensions. Specifically, in our
case, it factorizes each 3D tensor in a group 𝑗 into a weighted sum of
outer products from 3 vectors, as shown in Figure 5. Each outer prod-
uct results in a rank one tensor, and we keep the most significant 𝑅
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ranks with the largest weights. Therefore, we have

𝐷 ≈ �̂� =

𝑅∑︁
𝑟=1

𝐶𝑟 ⊗ 𝑿𝑟 ⊗ 𝒀𝑟 ⊗ 𝒁𝑟 , (5)

where 𝐷 is the original 3D tensor in the group, approximated as �̂�
after compression, 𝑿 , 𝒀 and 𝒁 are 1D vectors of length 𝑅 × 𝑡 , 𝑅 × 𝑡
and 𝑅 × 𝐿, respectively. And 𝐶 is the coefficient for different ranks.
For simplicity, we ignore the group index 𝑗 here.
Practical choices.Angularly, we set the size of each image block

as 𝑡 × 𝑡 , and we choose 𝑡 = 16 in practice. Spatially, we do not use
optimization to guide how to form clusters[Sloan et al. 2003]. Instead,
we refer to a simple deterministicmethod to perform clustering. That
is, we divide the entire normal map into a spatial grid, separating
the normal map into 8 × 8 texel regions. We cluster all the NDF
images (blocks) into one group as long as their corresponding pixel
footprints are centered inside the same region, as shown in Figure 4.

In each group, we stack the image blocks along the third dimen-
sion, resulting in a 3D tensor with size 𝑡 × 𝑡 × 𝐿, where 𝐿 is the
number of image blocks. Then we conduct tensor decomposition
for each group. Specifically, we perform Canonical Polyadic Decom-
position [Hitchcock 1927] using alternating least squares with rank
set as 𝑅, with maximum error set as 10−4 and maximum iteration
count set as 500.
We set the maximum rank 𝑅 as 16 or 32, based on specific types

of normal maps, as will be elaborated in Sec. 6. Compared to the
original 3D tensor, we have reached a compression ratio between
0.72% ∼ 3.76%. This ratio is not constant for different normal maps,
because we further optimize our compression scheme by throwing
away complete blank image blocks, which is especially efficient for
glossy appearances. With our choice of 𝑅, we have a good balance
practically between the compression ratio and the compression
quality, which is demonstrated in Fig. 18. Regarding the performance
of the compression scheme, it is about 10 ∼ 60 minutes for normal
maps of resolution 2𝐾 × 2𝐾 .

4.3 Decompression for angular point query
And as analyzed earlier, spatial prefiltering has been properly ad-
dressed using precomputation. With our compression scheme, the
storage overhead of the precomputation is also greatly reduced. But
it introduces a new issue: during rendering, we usually just need
to find the value along individual angles or in an angular range in
an NDF image. Thus, we do not need the entire 3D tensor to be
decompressed, but only need to query the locations.

In this subsection, we first deal with a specific case corresponding
to rendering under a point or directional light or light sampling.
Given a pixel footprint, an incident direction and an outgoing direc-
tion, we would like to perform point query instead of full extraction
of the compressed data.

With our compression based on tensor decomposition, the point
query can be elegantly achieved. This is because of the property of
the outer product operation – any element in the resulting rank-1
tensor is the product of corresponding elements from the resulting
1D vectors, as Fig. 6 illustrates. Therefore, given a query with an
arbitrary pixel footprint and the half vector h = (ℎ𝑥 , ℎ𝑦) between
the incident and outgoing directions, it is trivial to locate the query

range query

Fig. 6. Angular range query (green box) is performed on the compressed
tensors. The average value in a rectangle can be decomposed as the product
of the average values along its axis green segment on the right image).

point query and downsampling range query

Fig. 7. The NDFs images are computed by (left) performing point query and
downsampling and (right) performing range query directly, and they are
identical.

index (𝑥,𝑦, 𝑧) in a clustered group 𝑗 using x and h. Then we can
simply extract the specific NDF value as:

�̂� (𝑥,𝑦, 𝑧) =
𝑅∑︁
𝑟=1

𝐶𝑟 · 𝑿𝑟 (𝑥) · 𝒀𝑟 (𝑦) · 𝒁𝑟 (𝑧). (6)

Recall that when the pixel footprint is not an exact match of the
precomputed ones, we perform trilinear interpolation of the NDF
values from nearby precomputed pixel footprints. The is equivalent
to trilinearly blending the specific NDF values towards h. There-
fore, Eqn. 6 will simply be called multiple times. Also note that our
decompression for point query is as accurate as acquiring a full
NDF image followed by querying. It does not introduce any further
approximation error in addition to the compression itself.

4.4 Decompression for angular range query
As motivated in Sec. 3, when large area lights or environment light-
ing are involved, angular prefiltering can greatly increase the effi-
ciency of the rendering process. And angular prefiltering is essen-
tially asking for the average value within a range of pixels in an
NDF image. Therefore, besides angular point query, range query is
also a common operation. Moreover, as will be introduced in the
next section, importance sampling also relies heavily on the range
query. Hence, the efficiency of range query is crucial.

Suppose the angular range of half vectors maps to a rectangular
(not necessarily square) region [𝑥1, 𝑥2] × [𝑦1, 𝑦2] on an NDF image
block with “depth” 𝑧 in a specific clustered group 𝑗 , a simple solution
to this range query is to perform multiple point queries at different
pixels using Eqn. 6 and average them. However, this is costly and
its performance scales with the size of the angular range. It seems

, Vol. 1, No. 1, Article . Publication date: October 2021.



Constant-Cost Spatio-Angular Prefiltering of Glinty Appearance Using Tensor Decomposition • 7

difficult to make the performance cost of range query constant to
the query size, however, with our tensor decomposition, the range
query can be solved cleanly and efficiently as:

�̂� ( [𝑥1, 𝑥2], [𝑦1, 𝑦2], 𝑧) =
𝑅∑︁
𝑟=1

𝐶𝑟 · �̄�𝑟 ( [𝑥1, 𝑥2]) · �̄�𝑟 ( [𝑦1, 𝑦2]) · 𝒁𝑟 (𝑧).

(7)
where �̄�𝑟 ( [𝑥1, 𝑥2]) means the average value in a segment [𝑥1, 𝑥2]
on the 1D vector 𝑿 , and similarly for 𝒀 .

An illustration of Eqn. 7 can be found in Fig. 6. The key observa-
tion is that the average value in a rectangle can be decomposed as
the product of the average values along its axis. Note specifically
that this observation is not generally true, but is strictly accurate in
our case. We provide proof with detailed derivation in the Appendix.
We also verify its accuracy in practice in Fig. 7, showing identical
results generated using our range query once and our point query
repeatedly.

Now the only remaining task is to quickly attain the average value
in any given segment on a 1D vector. This problem is well studied
with the help of the Summed Area Table (SAT) [Crow 1984] data
structure. In our case, this is even easier because we only need a 1D
SAT for each 1D vector. The SAT performs in linear time and exactly
doubles the storage, but makes the time cost of angular range query
𝑂 (1) (strictly, 2 memory look-ups) and gives exact results.

One might think of a 1D mipmap structure to perform the same
task, but we would like to point out that (1) mipmaps only provide
approximated range queries, (2) mipmaps also double the storage in
1D instead of introducing only 33% additional storage as in 2D cases,
and (3) mipmaps require 4 memory look-ups for each query due to
trilinear interpolation in 1D. Therefore, SAT is always superior.
Practical choices. When the angular range happen to overlap

multiple image blocks, we subdivide it into smaller ones according
to the boundary of the image blocks. In practice, this situation does
not happen frequently. Also, throughout our paper, we report the
full storage cost including the SATs.
Summary. In this section, we have elaborated our precomputa-

tion schemewhich enables constant performance spatial prefiltering.
Then we propose our compression scheme using tensor decomposi-
tion, which not only greatly reduces the storage cost, but also leads
to efficient and accurate angular prefiltering, for both point query
and range query. So, now we have a complete solution of constant
performance spatio-angular prefiltering of glinty appearance. In the
next section, we show its practical applications in different render-
ing tasks that were previously considered difficult. We also show
how our method could combine with constant storage appearance
synthesis approaches, to complete our method to an overall constant
cost approach.

5 CONSTANT-COST GLINTY APPEARANCE
RENDERING

In this section, we show several applications with our compressed
NDF images. We start from efficient BRDF evaluation (Sec. 5.1), then
extend to unique applications enabled by spatio-angular prefilter-
ing, such as accurate NDF importance sampling (Sec. 5.2), global
illumination with glinty appearance (Sec. 5.3), environment lighting

Fig. 8. We sample the outgoing direction hierarchically: start from choosing
an image block from NDF, by sampling the averaged NDF values with
CDF, and then choose sub-quad with importance sampling until reaching
the pixels, and then interpolate the surrounding directions to get the final
sampled direction.

evaluation our hierarchical sampling

Fig. 9. Comparison of NDF images computed with BRDF evaluation and
our hierarchical BRDF sampling via the binning method. Binning means
sampling a direction and accumulate into the corresponding pixel in the
NDF images, like a histogram. They are identical.

prefiltering (Sec. 5.4) and constant storage appearance synthesis
(Sec. 5.5).

5.1 BRDF evaluation
With the point angular query, it’s straightforward and fast to eval-
uate the BRDF value for arbitrary pixel footprints, incident and
outgoing directions. Our approach avoids the expensive hierarchy
traversal and the calculation of contribution from a large number
of Gaussian flakes when the footprint is large, yielding much faster
constant performance BRDF evaluation.

Since we precompute a range of pixel footprint sizes, in practice,
the pixel footprint size can exceed this range. If the pixel footprint
size is smaller than the precomputed size at the lowest level of the
tensor mipmap, we switch to the method by Yan et al. [2016], which
is now efficient with the small footprint size. If the pixel footprint
size is larger than the largest size precomputed at the highest level,
we directly clamp the size to the largest precomputed, since we stop
the precomputation when we believe that the NDFs at the highest
level have converged to a smooth distribution.
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5.2 Accurate NDF importance sampling
Besides evaluation, importance sampling is another commonly used
operation. Given the pixel footprint and an incident direction, im-
portance sampling gives a sampled outgoing direction, which equiv-
alent to a sampled half vector direction. Ideally, the half vector
should be sampled strictly according to the shape of the NDF, which
would reduce the variance to the minimum thus is called perfect
importance sampling.
One possible way to achieve perfect importance sampling is re-

constructing the entire NDF image with brute force angular point
queries, computing its 2D Cumulative Distribution Function (CDF),
and using the inverse sampling method to draw an outgoing di-
rection with this CDF. However, this is very time-consuming and
completely offsets the benefits from our efficient BRDF evaluation.

Thanks to our angular range query, we propose an efficient hier-
archical importance sampling approach. We start from the entire
NDF image, and subdivide it evenly into four quads. Recall that our
angular range query answers the average value in an arbitrary range
in constant time, we are able to immediately acquire the average
values in these four quads. Then we use the four average values as
relative probabilities, and randomly choose one quad to proceed. We
subdivide this quad into four sub-quads, sample one, and continue
this subdivision and sampling process iteratively until reaching the
bottom level, i.e. a pixel. In this way, the probability of drawing
a sample is guaranteed to be proportional to the “brightness” of
each pixel in an NDF image. Therefore, we have achieved perfect
importance sampling.

In practice, since an NDF image has already been subdivided into
image blocks, we do not have to start from the topmost level of the
NDF image. Instead, we first choose an image block to start, again
according to their averaged NDF values as relative probabilities.
Also, when we reach a pixel, we uniformly perturb the sample loca-
tion inside it. The full importance sampling approach is illustrated
in Fig. 8.

Note that since the range query is accurate, our importance sam-
pling approach is also accurate. Therefore, the Probability Density
Function (PDF) associated with the sampling method is exactly the
same as the evaluated NDF value. We verify this in Fig. 9. On the
left, we show an NDF image generated using point query evaluation.
On the right, we show the converged histogram of 10M sampled
half vector directions (a.k.a. using the binning method). As expected,
these two NDF images are exactly identical.
Discussion. The way we use angular range queries to do impor-

tance sampling essentially gives us an implicit hierarchical structure
on the NDF image. This results in a logarithmic performance w.r.t.
the size of NDF images, which is still a constant 256×256. Therefore,
our importance sampling approach is still constant performance
and runs efficiently in practice. We also would like to point out that
building an explicit hierarchical structure on the fly for an NDF
image is impractical, since this step will already take linear time, as
heavy as the CDF-based sampling approach.
Unlike Yan et al. [2016] that keeps the original normal map to

facilitate importance sampling, our importance sampling no longer
needs it, which further saves storage. Also note that, there are no
previous method that does perfect importance sampling under wave

Fig. 10. Global illumination with glinty appearance: Comparison between
our method (without compression), our method (with compression with
rank 16), Wang et al. [2020c] and Yan et al. [2016] on the Kettle Scene,
considering geometric optics rendering and indirect glints. Both of our
methods do not consider synthesizing. The results of these methods are
identical, however our method is 14× faster. Our method with compression
costs much less storage cost than our method (without compression). The
picture is with 1024 × 1024 pixels. Normal map: brushed metal.

optics. But in our framework, since we uniformly represent NDFs
as precomputed images for both geometric and wave optics, no
additional effort will be needed, except that we use the grayscale
NDF image to conduct importance sampling.

5.3 Global illumination with glinty appearance
Most of the previous glinty appearance rendering methods limit
themselves to the direct illumination only. This is because the pixel
footprints are amplified significantly as the light undergoes more
bounces during the light transport. To our knowledge, Belcour et
al. [2017] deal with explicit multiple-bounce global illumination on
glinty appearance. However, it only provides a way to calculate the
coverages of pixel footprints at different bounces, but still has to
clamp them to a small value for practical rendering, and still yields
drastically increasing time cost.
With our spatial prefiltering (plus angular point query), our

method automatically solves the global illumination problem, mak-
ing it practical. We follow the indirect footprint computation by
Wang et al. [2018], using accurate footprint for the direct foot-
print and amply it considering the glossiness during the following
bounces. In Fig. 10, we provide examples and discussion.

Note again that the global illumination refers to multiple bounces
of light in the level of objects and scenes. It is not related to the
multiple scattering of light between microfacets that leads to energy
conserving BSDFs.

5.4 Environment lighting prefiltering
Under distant lighting, especially defined using environment maps,
rendering of the microstructures is the convolution of the incoming
radiance and the BRDF, which in an integral over the directional
domain. Traditionally, to compute this integral, a large number of
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Ours (without prefiltering) 
spp: 64

Ours (with prefiltering) 
spp: 64

Reference 
spp: 4096

Fig. 11. Environment lighting prefiltering: Comparison between our method
with / without prefiltering and the reference, rendered with Yan et al. [2016].
We do not use multiple importance sampling to verify the prefiltering impact
more clear. Our method (with prefiltering) produces much less noise than
our method (without prefiltering). The picture is with 920 × 1024 pixels.
Normal map: isotropic noise.

samples are required to obtain noise-free results, even the environ-
ment map is low frequency. Given the knowledge of a low-frequency
light, prefiltering could be used to reduce required samples, essen-
tially computing blurred versions of the NDF images. Therefore,
our angular prefiltering scheme can be conveniently applied in this
prefiltering task.
Without loss of generality, we represent the environment map

with spherical Gaussians (SGs) ([Tsai and Shih 2006]). Other choices
are all possible as long as their frequency bandwidths can be ac-
quired. During rendering, we first importance sample the SG-represented
environment lighting to find one SG. Based on the SG’s bandwidth
(size or shape), we compute a corresponding angular range to query
the average NDF values.

To obtain this range, we first compute an angle 𝜃 in radians, where
all directions within 𝜃 around the SG’s central axis will have a value
greater than a threshold 𝜖 . This property is called SG’s compact-𝜖
support [Wang et al. 2009]:

𝜃 = arccos
(

ln 𝜖 − ln𝐴
𝜆

+ 1
)
, (8)

where 𝐴 and 𝜆 represent the amplitude and bandwidth of an SG,
respectively. And in practice, we set 𝜖 as 0.3.
Now that the incident lighting has a compact-𝜖 support of 𝜃 , as

Fig. 2 (right) indicates, we are able to safely “blur” the NDF using
an SG with an approximate compact-𝜖 support of 𝜃/2, which maps
to a square area on the NDF image with side length

𝑄 = 256 · 𝜃/2
𝜋

· 2 = 256𝜃/𝜋 (9)

where 256 is the resolution of the NDF image.
The essential effect of our angular prefiltering is that the maxi-

mum frequencies of both the light and the BRDF are significantly
reduced. This results in much lower noise level compared to naive
point sampling (Fig. 11).

Wang tile 1 Wang tile 2 

Wang tile 3 Wang tile 4 

(a) one query on four Wang tiles (b) NDF from each tile (c)  combined NDF

Fig. 12. During precomputation, we precompute the NDF images for each
Wang tile, allowing queries whose centers are outside but still intersect
the Wang tile. During runtime, the NDF image for a query that crosses the
borders between different Wang tiles is accurately computed by combining
the precomputed NDF images from all overlapping Wang tiles.

A B

eah

eav

CD

edh

ebv

Fig. 13. To generate synthesized normal map on the fly without any index
map, we generate two random numbers with the vertex index as seed, and
thenmap these numbers to “color” via a hash table. For example, we generate
two random numbers with the index of vertex 𝐴, and then map them to
two “color” with the hash table. The two “color” are set to edges 𝑒𝑎ℎ and
𝑒𝑎𝑣 , which are the right and bottom edges of vertex 𝐴. After determining
the “color” of all the edges, we get the corresponding Wang tile.

5.5 Constant-storage appearance synthesis
With compressed NDF images, our method is able to achieve con-
stant performance, even for large footprint size. However, the stor-
age cost is still expensive for high-resolution normal maps, thus,
we would like to implicitly generate infinite large normal maps.
Wang tiles [Cohen et al. 2003] is able to synthesize large textures
by repeating precomputed seamless tiles. We propose to combine
our method with Wang tiles to synthesize a high-resolution normal
map from an input sample normal map for constant storage.

Precomputation and compression. We generate the Wang
tiles from the input normal map. Then we precompute NDF im-
ages for each Wang tile. The precomputation process is similar to
the precomputation for a normal map in Section 4.1, except the
sampled centers could locate outside the Wang tiles, as shown in
Figure 12. In practice, we represent each normal map with 16 Wang
tiles and set the Wang tile size as 512 × 512. We then compress the
NDF images for each Wang tile as described in Section 4.2 and build
the SAT for compressed tensor vectors.
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(a) NDF from offline Wang tiles (b) NDF from online Wang tiles

Fig. 14. We visualize the NDF of a normal map generated by Wang tiles
offline (generate the synthesized normal map explicitly) and online (using
the color hash table to generate the synthesized normal map implicitly).

Dynamic Wang tile generation. Originally, the Wang tiles
method still requires a pre-generated index map to determine the
locations of individual Wang tiles. Therefore, strictly speaking, it
cannot generate an infinitely large normal map at the cost of con-
stant storage. For dynamic Wang tile selection at arbitrary locations,
Lagae and Dutré [2005] proposed a method that implicitly build
an infinitely large grid, and associate each vertex in this grid with
four random numbers. During runtime, the “color” of an edge in
this grid is determined using its associated vertices’ corresponding
random numbers. We slightly improve upon Lagae and Dutré [2005]
so each vertex directly controls the “color” of edges to its right and
bottom (Figure 13). For each vertex, we generate two random num-
bers according to a hashed value of its position / index. The two
random numbers are used to determine the color of the right and
bottom edges to this vertex, respectively. During rendering, given
a query center and footprint size, we first find the “colors” of all
the edges covered by the query, then we are able to identity the
corresponding Wang tiles from a precomputed edge-to-tile map. All
the computation is quickly performed on the fly.
Evaluation and sampling. After getting theWang tiles covered

by the footprint, we perform BRDF evaluation for each Wang tile,
similar to Section 4.3 and sum all contribution of the Wang tiles, as
shown in Figure 12. In Figure 14, we compare the NDF images of
normal maps which are generated by the implicit and explicit Wang
tile algorithms, and they are identical. For importance sampling, we
first choose one Wang tile from all the Wang tiles covered by the
pixel footprint with equal probability. Then, we sample a direction
from the chosen Wang tile, similar to Sec. 5.2. After getting the
sampled direction, we computed the NDF value, which is the same
as BRDF evaluation. The PDF is set the same as NDF value. In
Figure 15, we compare our method with / without Wang tiles, and
other methods, to show our benefits.

6 RESULTS
We have implemented our algorithm inside the Mitsuba renderer
[Jakob 2010]. We compare against Yan et al. [2016] for geometric
optics glints validation and against Yan et al. [2018] for wave optics
glints validation. All timings in this section are measured on a
2.39 GHz Intel i7 (40 cores) with 256 GB of main memory. Unless

Table 2. The precomputation cost of each texture (normal map for geo-
metric optics glints, and heightfield for wave optics glints), including NDF
generation time (Pre.), compression time (Com.), total time (Tot.) and the
storage cost (Stor.). Regarding the type, G represents geometric optics glints,
and W represents wave optics glints. Res. is the resolution of the texture.
The NDF of isotropic noise (8𝐾 ) has three channels (RGB) while others have
only one channel.

Texture Type Res. Rank Time Stor.
Pre. Com. Tot.
min. min. min. MB

Metallic flakes G 2𝐾2 32 42.80 60.01 102.81 106.86
Brushed metal G 2𝐾2 16 37.39 10.01 47.40 15.19
Brushed metal G 1𝐾2 16 9.56 5.36 14.92 7.18
Isotropic noise G 5122 16 59.71 25.32 85.03 6.87
Isotropic noise W 8𝐾2 16 156.00 347.94 503.94 352.50

Table 3. The rendering time (path tracing (with evaluation only) or path
tracing (with sample only) of our method compared to microfacet model.
All timings are measured over the Elevator scene with 1024 spp.

Method Evaluation Sampling
Ours 2.30 m 6.57 m
Microfacet 2.00 m 3.43 m

otherwise specified, all timings correspond to pictures with 1280 ×
720 pixels.

6.1 Performance Analysis.
Precomputation Cost. In Table 2, we report the precomputation
cost for each normal map or heightfield, including the NDF genera-
tion time, compression time, and the storage cost.
The compression time depends on the resolution and the NDF

behaviors. For example, there are more tiles with zero-value on the
brushed metal NDF image, and they are discarded directly, resulting
in shorter compression time. Since rank 32 is used for metallic flake
normal map, it has longer precomputation time and more storage
cost. The 8𝐾 × 8𝐾 isotropic noise heightfield requires longer time,
due to its higher resolution and more channels (RGB).

Shading Cost. In Table 3, we analysis the performance cost
(BRDF evaluation and BRDF sampling) of our method during ren-
dering, compared to mircofacet model [Walter et al. 2007]. To better
understand the individual cost of evaluation and sampling, we use
path tracing with evaluation only or with samplings only. By com-
parison, the overhead of evaluation in our method is pretty low
(about 15% ), while the cost of sampling is about 2× of microfact
model, due to the multiple tensor reconstruction operations.

Rendering Cost. In Table 4, we report all the scene settings,
rendering time and memory costs for our method and the reference
methods. The speedup of our method over the reference methods
(Yan et al. [2016] or Yan et al. [2018]) varies from 4× to 400×, depend-
ing on the footprint size, and using BRDF evaluation or sampling.
For the Kettle and Elevator scenes, the high sampling rate leads
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Ours, without Wang tiles, 
14.55 s

Ours, with Wang tiles, 
17.20 s

Kuznetsov et al. [2019], 
29.58 s

Yan et al. [2016], 
1.02 h

Wang et al. [2020], 
1.49 h

Fig. 15. Constant-storage appearance synthesis demonstration. Comparison between our method with / without Wang tiles, Kuznetsov et al. [2019], Yan et
al. [2016] and Wang et al. [2020c], considering geometric optics rendering. Our method with Wang tiles solves the repetitive pattern issue, compared to our
result without Wang tiles and Yan et al. [2016]. Kuznetsov et al. [2019] produces results with lower quality and higher time cost, compared to our method. The
picture is with 920 × 1024 pixels. Normal map: isotropic noise.

Table 4. Scene settings, rendering time and memory costs for our test scenes. #Tri. is the count of triangles in the scene. Spp. represents sample per pixel for
path tracing, and different spp is used for environment map and point light in the Laptop scene. The details of input normal map or heightfield are shown in
Table 2. The reference method is Yan et al. [2016] for geometric optics rendering, and Yan et al. [2018] for wave optics rendering. The tile count means the
repeating count of the input textures during rendering. The storage of the Laptop with Yan et al. [2018] is not shown, since it does not require any extra
structures (flakes or acceleration structure).

Scene #Tri. Spp. (ours) Spp. (ref.) Texture Tile Count Total time (min.) Storage cost (MB)
K Env. Others Env. Others Ours Ref. Ours Ref. Ours Ref.

Car 78.1 64 64 64 64 Metallic flakes 1000 1000 5.15 522.00 106.86 176.00
Kettle 175.3 1024 1024 1024 1024 Brushed metal(1𝐾 ) 16 16 4.66 64.80 7.18 44.00
Elevator 53.5 4096 4096 4096 4096 Brushed metal(2𝐾 ) 1000 1000 64.80 864.00 15.19 176.00
Laptop 18.4 1024 1 1024 64 Isotropic noise(8𝐾 ) 79 79 15.97 71.17 352.50 -

Fig. 16. Comparison between our method (without synthesizing) and Yan et al. [2016] on the Elevator Scene, considering geometric optics rendering. The
results of the two methods are identical, however our method is about 12× faster. R16 means using rank 16 for compression. Normal map: brushed metal.
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Fig. 17. Comparison between our method (without synthesizing) and Yan et al. [2018] on the Laptop Scene, considering wave optics rendering. We provided
rendered results with (top row) and without (bottom row) environment map. With point light only, our method is about 260× faster than the reference.
Including the environment map makes our method less impressive, about 4.5× faster, since we sample the BRDF. The picture is with 2550 × 1426 pixels.
Heightfield: isotropic noise.

to smaller footprint, which resulting in less speedup compared to
the Car scene. However, high sampling rate is required for indi-
rect illumination. For the Laptop scene, since sampling is used for
environment map, it decreases the speedup.

6.2 Comparison with Previous Work.
Car scene. The scene in Figure 1 shows a car with coated metallic
flakes under environment lighting and a point light, with direct light
only. We consider geometric optics rendering without synthesizing.
The car is about 200cm wide. The input normal map with resolution
2𝐾 × 2𝐾 covers 2mm × 2mm. We use compression rank 32 for this
metallic flakes normal map, since it’s discrete and requires more
rank than others. Our method produces similar results to Yan et
al. [2016], while our method is about 100× faster.

Elevator scene. In Figure 16, we show an elevator with brushed
metallic walls under several area lights, including indirect illumina-
tion. We consider geometric optics rendering without synthesizing.
The wall of an elevator is about 200cm wide. The input normal
map with resolution 2𝐾 × 2𝐾 covers 2mm × 2mm. Our method is
about 13× faster than Yan et al. [2016]. Compared to Figure 1, the
performance is less impressive due to the high sampling rate in
the Elevator scene. High sampling rate results in small footprint,

since the footprint of each ray is the pixel’s footprint divided by the
sample count, which decreases the benefit of our method. However,
high sampling rate is required to remove the noise, from the indirect
lighting.

Kettle scene. Figure 10 illustrates a Kettle with brushed metal
on the body under two small area lights and environment lighting,
considering geometric optics rendering. This scene is designed to
show global illumination with glinty appearance. The kettle is about
30cm high. The input brushed metal normal map with 1𝐾 × 1𝐾
resolution covers about 9mm × 9mm. Besides the direct glints, we
consider the indirect glints (the glints reflected by the glossy surface).
The direct glints are computed with Yan et al. [2016] with 2.75
minutes, and the indirect glints are computed with our method
with 0.68 minutes, as the footprints of direct glints are not large
enough to use our method. The footprints are enlarged by the glossy
surface, which yields low performance for Yan et al. [2016]. Our
method produces identical results to Yan et al. [2016], with about
14× speedup. We also provide the results of Wang et al. [2020c],
which is even slower than Yan et al. [2016].

Laptop scene. The scene in Figure 17 shows a laptop with a
roughened aluminum matte finish. It is rendered using a point light
and environment light, considering wave optics rendering. The
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Fig. 18. Impact of compression rank on (a) compression time, (b) compres-
sion ratio, (c) rendering time and (d) rendered results error (MSE) on the
isotropic noise normal map (2𝐾 ). The rendering time and error are measured
on the BentQuad scene with a point light.

laptop is about 30cm wide. We compare our method against Yan et
al. [2018]. In both methods, we use a tileable input texture with size
8𝐾 × 8𝐾 with 79 tiles. We render the results for environment map
and the point light separately, which is the same as [Yan et al. 2018].
With point light only, our method is about 260× faster than the
reference, thanks to our efficient BRDF evaluation. For environment
map, we perform BRDF sampling, yielding similar performance to
Yan et al. [2018], which slows down the speedup overall.

Deer scene. This scene shows a metallic deer statue under an
environment lighting with geometric optics rendering. This scene
is designed to show constant-storage appearance synthesis. In our
method, we use 16Wang tiles with size 512×512 from a 2𝐾×2𝐾 nor-
mal map and the target normal map size is 100𝐾×100𝐾 . Our method
with Wang tiles produces less repetitive artifacts with over little
overhead. We also compare our method with Kuznetsov et al. [2019],
which introduced a Generative Adversarial Networks (GAN) model
to represent NDFs. Their model only learns the NDFs at certain foot-
print size(256), while our method supports multi-scale footprints.
Compared to Kuznetsov et al. [2019], our method produces better
result with about 2× speedup in the Figure 15. Regarding the storage
cost, our method costs 6.87𝑀𝐵, while Kuznetsov et al. [2019] only
costs 1.26𝑀𝐵, as their neural network representation is more com-
pact than ours. We also compare against Yan et al. [2016] and Wang
et al [2020c], where Yan et al. [2016] is 427× slower and suffers from
repetitive patterns and Wang et al [2020c] is slower than Yan et
al. [2016], but is free from the repetitive patterns.
In Figure 11, we compare our results with / without prefiltering

and the reference. With prefiltering, our method produces much
less noise than without prefiltering.
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Fig. 19. Reconstructed NDF images from tensor decomposition with varying
ranks. We set the rank as 16, balancing both the quality and the storage.
Normal map: isotropic noise and metallic flakes.

6.3 Parameter Analysis.
Compression rank 𝑅 is an importance parameter in our algorithm.
We show its impact on the both compression quality and compres-
sion storage. The compression quality is measured with difference
between the image renderedwith compressedNDF and original NDF.
Figure 18 shows the impact of compression rank on compression
time, compression ratio, rendering time and rendered results error
of our algorithm on three normal maps (isotropic noise, brushed
metal and metallic flakes). As shown in the curve, larger rank yields
longer compression time, more storage cost and longer rendering
time but less render error. In our implementation, the rank is set as
16 for most of the test scenes, except for the metallic flake normal
map, which uses 32. Different compression ratios are achieved for
different normal maps, since they have different blank image blocks.
For example, the NDF images of Brushed Metal normal map have
the most blank image blocks thus it has the lowest compression
ratio. We also show the NDF images with varying ranks in Figure 19.
When the rank is smaller than 16, the NDFs suffer from artifacts,
while with 32 or larger rank, the NDFs are almost identical to the
reference (obtained without compression), thus we think 16 is a
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Fig. 20. Rendered images from tensor decomposition with varying ranks on the BentQuad scene with three normal maps. We set the rank as 16 for both
isotropic noise and brushed metal and set the rank as 32 for metallic flakes, balancing both the quality and the storage.

good balance considering both the storage and the quality. In Fig-
ure 20, we also show the rendered results of the BentQuad scene
over varying rank on the three normal maps.

6.4 Discussion and limitation.
We compare our method with Gamboa et al. [2018], which also
proposed to precompute the NDFs to achieve constant performance.
They stored the NDFs with summed area table (SAT) like data struc-
ture, which has the same resolution as the input normal map, and
a 9 × 32 histogram for NDF at each texel. The NDF of an angular
range could be obtained by four queries of table, however, it has very
expensive storage cost, about 1.1GB for a 2𝐾 ×2𝐾 input normal map.
Thus, it’s almost impossible to handle an 8𝐾 × 8𝐾 heightfield for
wave optics rendering with more than 48 GB. Besides the expensive
storage, the resolution of the histogram is too low to preserve the

glinty appearance of some materials (e.g. metallic flakes), as shown
in our video. Thanks to our tensor decomposition to compress NDFs,
our method is able to support much higher resolution (256 × 256)
with much less storage cost (see Table 2).

Our proposed method has several limitations. First, our method
has expensive NDF generation and compression cost, although they
could be reused in other scenes. Second, the compression ratio could
be improved with more compact representation. Third, our method
inherits the issue of Wang tiles method, suffering from visible repet-
itive patterns for spatial correlated normal maps, as shown in Fig-
ure 21. Other synthesizing approach could also be coupled with our
method, to solve this issue. Forth, in our prefiltering approach, we
only use lights’ bandwidth to limit the BRDF’s bandwidth, however,
the BRDF’s bandwidth can also be used to limit lights’ bandwidth,
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Ours (with Wang tiles), 16.89s

Fig. 21. Our method with Wang tiles suffers from the repetitive patterns
for some spatial correlated textures, inheriting the drawback of Wang tiles
method. The picture is with 920 × 1024 pixels. Normal map: scratches.

similar to Gamboa et al. [2018]. For example, they used a blurry en-
vironment map when the BRDF computation uses a large footprint
size.

7 CONCLUSION AND FUTURE WORK
We have presented a method that allows rendering of specular glints
with constant performance and constant storage. By introducing
compressedNDF imageswith angular point query and angular range
query, our method is able to render glints with large footprint with
constant time, and allow elegant importance sampling, prefiltering,
and implicit microstructure synthesis. Eventually, our method is
able to render both geometric-based glints and wave optics-based
glints with constant storage and constant performance.

In the future, it would be interesting to optimize our method for
real-time implementation on GPUs. Combining our method with
other texture synthesis methods could also be worthwhile directions.
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APPENDIX
Proposition: Suppose 𝑫 is a rank-1 2D tensor, i.e., 𝑫 = 𝑿 ⊗ 𝒀 . Then
the average of 𝑫 in range [𝑥1, 𝑥2] × [𝑦1, 𝑦2] equals to the product of

the average of 𝑿 and 𝒀 in ranges [𝑥1, 𝑥2] and [𝑦1, 𝑦2], respectively,
viz.

�̄� ( [𝑥1, 𝑥2], [𝑦1, 𝑦2]) = �̄� ( [𝑥1, 𝑥2]) · �̄� ( [𝑦1, 𝑦2]). (10)

Proof: According to the definition of outer product, for rank-1 tensor
𝐷 , we immediately have

𝑫 (𝑖, 𝑗) = 𝑿 (𝑖) · 𝒀 ( 𝑗) . (11)
Denoting𝑀 = 𝑥2 − 𝑥1 + 1 and 𝑁 = 𝑦2 − 𝑦1 + 1,

�̄� ( [𝑥1, 𝑥2], [𝑦1, 𝑦2])

=

∑𝑥2
𝑖=𝑥1

∑𝑦2
𝑗=𝑦1

𝑫 (𝑖, 𝑗)
𝑀𝑁

=
1
𝑀

𝑥2∑︁
𝑖=𝑥1

©« 1
𝑁

𝑦2∑︁
𝑗=𝑦1

(𝑿 (𝑖) · 𝒀 ( 𝑗))ª®¬
=

1
𝑀

𝑥2∑︁
𝑖=𝑥1

©«𝑿 (𝑖) · 1
𝑁

𝑦2∑︁
𝑗=𝑦1

𝒀 ( 𝑗)ª®¬ = 1
𝑀
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(
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)
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1
𝑀

𝑥2∑︁
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𝑿 (𝑖) = �̄� ( [𝑥1, 𝑥2]) · �̄� ( [𝑦1, 𝑦2]). (12)

Note that the derivation also trivially extends to higher dimen-
sions.

, Vol. 1, No. 1, Article . Publication date: October 2021.


	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries and motivation
	3.1 Preliminaries
	3.2 Motivation

	4 Spatial-Angular Prefiltering: Precomputation, Compression and Decompression
	4.1 Precomputation
	4.2 Compression
	4.3 Decompression for angular point query
	4.4 Decompression for angular range query

	5 Constant-cost glinty appearance rendering
	5.1 BRDF evaluation
	5.2 Accurate NDF importance sampling
	5.3 Global illumination with glinty appearance
	5.4 Environment lighting prefiltering
	5.5 Constant-storage appearance synthesis

	6 Results
	6.1 Performance Analysis.
	6.2 Comparison with Previous Work.
	6.3 Parameter Analysis.
	6.4 Discussion and limitation.

	7 Conclusion and Future Work
	References

