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ABSTRACT
Kimelfeld and Sagiv [Kimelfeld and Sagiv, PODS 2006], [Kimelfeld

and Sagiv, Inf. Syst. 2008] pointed out that the problem of enumer-

ating 𝐾-fragments is of great importance in a keyword search on

data graphs. In a graph-theoretic term, the problem corresponds

to enumerating minimal Steiner trees in (directed) graphs. In this

paper, we propose a linear-delay and polynomial-space algorithm

for enumerating all minimal Steiner trees, improving on a previous

result in [Kimelfeld and Sagiv, Inf. Syst. 2008]. Our enumeration

algorithm can be extended to other Steiner problems, such as min-

imal Steiner forests, minimal terminal Steiner trees, and minimal

directed Steiner trees. As another variant of the minimal Steiner

tree enumeration problem, we study the problem of enumerating

minimal induced Steiner subgraphs. We propose a polynomial-

delay and exponential-space enumeration algorithm of minimal

induced Steiner subgraphs on claw-free graphs. Contrary to these

tractable results, we show that the problem of enumerating minimal

group Steiner trees is at least as hard as the minimal transversal

enumeration problem on hypergraphs.
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• Mathematics of computing→ Graph enumeration.
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1 INTRODUCTION
Kimelfeld and Sagiv [26] observed that enumerating 𝐾-fragments

for a set of keywords𝐾 in data graphs is a core component in several

keyword search systems. A data graph is a graph that consists of

two types of nodes: structural nodes and keyword nodes, and each

keyword node corresponds to some keyword in 𝐾 . A 𝐾-fragment

is a subtree in a data graph that contains all keyword nodes for 𝐾

and no proper subtree that contains them. There are several types

of 𝐾-fragments, undirected 𝐾-fragments, strong 𝐾-fragments, and

directed 𝐾-fragments. In a graph-theoretic term, they are equivalent

to Steiner trees, terminal Steiner trees, and directed Steiner trees,

respectively.
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Given an undirected graph 𝐺 = (𝑉 , 𝐸) and a subset of vertices

𝑊 ⊆ 𝑉 , called terminals, the Steiner tree problem asks to find a

Steiner tree of (𝐺,𝑊 ) that has a minimum number of edges. Here,

a Steiner tree of (𝐺,𝑊 ) is a subtree of 𝐺 that contains all terminals.

The Steiner tree problem is a classical combinatorial optimization

problem and has arisen in several areas [4, 15, 25, 26, 28]. This prob-

lem is shown to be NP-hard in Karp’s seminal work [22] and has

been studied from several perspectives, such as approximation al-

gorithms [5, 14], parameterized algorithms [11], and algorithms in

practice [2, 20, 30]. There are also many variants of this problem.

See [17], for a compendium on variants of the Steiner tree problem.

The notion of Steiner trees emerges in investigating the con-

nectivity or reachability of a specified vertex subset in networks.

Steiner trees can be seen as a generalization of some basic combina-

torial structures in graphs, such as 𝑠-𝑡 (shortest) paths and spanning

trees. In some applications, it is preferable to findmultiple solutions

rather than a single solution. E.g., the problem of finding 𝑘 distinct

shortest 𝑠-𝑡 paths has been widely studied [12,18,34] due to various

practical applications.

However, as mentioned before, finding a minimum Steiner sub-

graph is intractable in general. Motivated by these facts, we focus

on enumerating minimal Steiner subgraphs. We say that a Steiner

subgraph 𝐻 of (𝐺,𝑊 ) is minimal if there is no proper subgraph of

𝐻 that is a Steiner subgraph of (𝐺,𝑊 ). It is easy to see that every

minimal Steiner subgraph of (𝐺,𝑊 ) forms a tree, but some Steiner

trees of (𝐺,𝑊 ) may not be minimal Steiner subgraphs of (𝐺,𝑊 ). In
this paper, we address the problem of enumerating minimal Steiner

trees of (𝐺,𝑊 ), which is defined as follows.

Definition 1 (Steiner Tree Enumeration). Given an undi-

rected graph 𝐺 = (𝑉 , 𝐸) and a terminal set𝑊 ⊆ 𝑉 , the task is to

enumerate all the minimal Steiner trees of (𝐺,𝑊 ).

There are several known results on enumeration algorithms

related to Steiner Tree Enumeration and its variants [8,10,24–26].

See Table 1 for details. We say that a Steiner tree 𝑇 of (𝐺,𝑊 ) is a
terminal Steiner tree of (𝐺,𝑊 ) if every terminal in𝑊 is a leaf of 𝑇 .

For a collection of terminal setsW = {𝑊1, . . . ,𝑊𝑠 }, where𝑊𝑖 ⊆ 𝑉 ,
we say that a subgraph of𝐺 is a Steiner forest of (𝐺,W) if for each
1 ≤ 𝑖 ≤ 𝑠 , the subgraph has a component that is a Steiner subgraph

of (𝐺,𝑊𝑖 ). For a directed graph 𝐷 = (𝑉 , 𝐸), a terminal set𝑊 , and

𝑟 ∈ 𝑉 \𝑊 , we say that a subgraph of 𝐷 is a directed Steiner tree

of (𝐷,𝑊 , 𝑟 ) if the subgraph contains directed path from 𝑟 to each

𝑤 ∈𝑊 . Since minimal subgraphs of each variant form trees, forests,

and directed trees, these are called terminal Steiner trees, Steiner

forests, and directed Steiner trees, respectively.

For enumeration problems, enumeration algorithms are required

to generate all the solutions one by one without duplication. Since

enumeration problems generally have an exponential number of

solutions, we measure the complexity of enumeration algorithms
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Enumeration problem Time Preprocessing Space

Steiner Tree [26] 𝑂 (𝑚( |𝑇𝑖 | + |𝑇𝑖−1 |))† 𝑂 (𝑚 |𝑇1 |) 𝑂 (𝑛𝑚)
Steiner Forest [24] inc. poly. poly. exp.

Terminal Steiner Tree [26] 𝑂 (𝑚( |𝑇𝑖 | + |𝑇𝑖−1 |))† 𝑂 (𝑚 |𝑇1 |) 𝑂 (𝑛𝑚)
Directed Steiner Tree [26] 𝑂 (𝑚𝑡 ( |𝑇𝑖 | + |𝑇𝑖−1 |))† 𝑂 (𝑚𝑡 |𝑇1 |) 𝑂 (𝑛𝑚)
Induced Steiner Subgraph with 𝑡 ≤ 3 [8] 𝑂

(
𝑚𝑛3

)
amortized 𝑂

(
𝑚𝑛3

)
poly.

Minimum Steiner Tree [10] 𝑂 (𝑛) delay 𝑂
(
𝑛𝑡−2 + 𝑛2𝑚

)
𝑂
(
𝑛𝑡−2 + 𝑛2𝑚

)
Minimum Induced Steiner Subgraph [8] 𝑂

(
𝑚23𝑡

2
)
amortized 𝑂

(
𝑛𝑡−2 + 𝑛2𝑚

)
𝑂
(
𝑛𝑡−2 + 𝑛2𝑚

)
Steiner Tree [This work] 𝑂 (𝑛 +𝑚) delay 𝑂 (𝑛(𝑛 +𝑚)) 𝑂

(
𝑛2

)
Steiner Forest [This work] 𝑂 (𝑛 +𝑚) delay 𝑂 (𝑛(𝑛 +𝑚)) 𝑂

(
𝑛2

)
Terminal Steiner Tree[This work] 𝑂 (𝑛 +𝑚) delay 𝑂 (𝑛(𝑛 +𝑚)) 𝑂

(
𝑛2

)
Directed Steiner Tree [This work] 𝑂 (𝑛 +𝑚) delay 𝑂 (𝑛(𝑛 +𝑚)) 𝑂

(
𝑛2

)
Induced Steiner Subgraph on claw-free graphs [This work] poly. delay poly. exp.

Table 1: The table summarizes known and our results for Steiner Tree Enumeration and related problems. Let 𝑛,𝑚, and 𝑡 be the
number of vertices, edges, and terminals, respectively. |𝑇𝑖 | the number of edges in the 𝑖-th solution. Note that the algorithms
for Minimum Steiner Tree and Minimum Induced Steiner Subgraph enumerate all minimum Steiner trees, whereas algorithms
for other problems enumerate minimal Steiner trees. The running time marked † indicates the delay between the (𝑖 − 1)-th
and the 𝑖-th solutions.

in terms of the input size 𝑛 and the output size 𝑁 (i.e., the number

of solutions). The delay between two consecutive solutions of an

enumeration algorithm is the running time interval between them.

The delay of an enumeration algorithm is the worst delay between

every pair of consecutive solutions. Note that, unless stated oth-

erwise, the running time before generating the first solution and

after generating the last solution is upper bounded by the delay. If

the delay between (𝑖 − 1)-th solution and 𝑖-th solution is bounded

by 𝑂 (𝑝𝑜𝑙𝑦 (𝑛 + 𝑖)), then we call such an enumeration algorithm an

incremental-polynomial time algorithm. An enumeration algorithm

is called a polynomial-delay enumeration algorithm if the delay is

upper bounded by a polynomial in 𝑛. Finally, an enumeration algo-

rithm that runs in total 𝑂 (𝑁 · 𝑝𝑜𝑙𝑦 (𝑛)) time is called an amortized

polynomial-time algorithm.

Kimelfeld and Sagiv developed three efficient enumeration al-

gorithms for Steiner Tree Enumeration and its variants [26].

Their algorithms for enumerating minimal Steiner trees, minimal

terminal Steiner trees, and minimal directed Steiner trees run in

𝑂 (𝑚( |𝑇𝑖 | + |𝑇𝑖−1 |)), 𝑂 (𝑚( |𝑇𝑖 | + |𝑇𝑖−1 |)), and 𝑂 (𝑚𝑡 ( |𝑇𝑖 | + |𝑇𝑖−1 |))
delay between (𝑖 − 1)-th and 𝑖-th solutions, respectively. Here,𝑚 is

the number of edges in the input graph, |𝑇𝑖 | is the number of edges

in the 𝑖-th solution, and 𝑡 is the number of terminals, respectively.

They also proposed efficient algorithms for enumerating Steiner

trees and their variants in an “approximate” ascending order of

their weights [25]. Khachiyan et al. [24] studied the problem of enu-

merating minimal Steiner forests in graphs as a special case of the

circuit enumeration problem on matroids and gave an incremental-

polynomial time enumeration algorithm for this problem.

Our contribution: Here, we give our main result for Steiner

Tree Enumeration.

Theorem 2. There is an 𝑂 (𝑛 +𝑚) delay and 𝑂
(
𝑛2

)
space

1
enu-

meration algorithm for Steiner Tree Enumeration provided that

1
Whenever we refer to space complexity, we assume the RAM model, that is, a single

word of memory contains𝑂 (log𝑛) bits.

we are allowed to use𝑂 (𝑛(𝑛 +𝑚)) preprocessing time, where 𝑛 and𝑚

are the number of vertices and edges, respectively. Moreover, without

additional preprocessing time, we can implement the algorithm so that

it runs in time 𝑂 (𝑛 +𝑚) amortized time per solution and 𝑂 (𝑛 +𝑚)
space.

This algorithm can be extended to enumerating minimal Steiner

forests, minimal terminal Steiner trees, andminimal directed Steiner

trees. Our algorithms for these problems achieve the same running

time bounds as in Theorem 2. (See Theorems 25, 31 and 36.)

The basic idea of these algorithms is a standard branching tech-

nique. Starting from an arbitrary terminal, we recursively grow a

partial Steiner tree 𝑇 by attaching a path between 𝑇 and a termi-

nal not contained in 𝑇 . Since the paths between 𝑇 and a terminal

𝑤 can be enumerated in polynomial delay, we immediately have

a polynomial-delay and polynomial-space algorithm for Steiner

Tree Enumeration. To improve the running time and space com-

plexity of this simple algorithm, we carefully design the entire

branching strategy and the path enumeration algorithm. To this end,

we employ Read and Tarjan’s path enumeration algorithm [29] and

discuss the delay and space complexity of their algorithm, which

is not discussed explicitly in [29]. As for the delay complexity, we

can easily obtain a linear delay bound by applying a standard tech-

nique [26,33]. However, to obtain a linear space bound for Steiner

Tree Enumeration, we need a nontrivial modification of their

algorithm, which will be discussed in Section 3. We also exploit

the output queue method due to Uno [33] to improve the delay for

Steiner Tree Enumeration.

In contrast to these tractable cases, we also show that two vari-

ants of Steiner Tree Enumeration are “not so easy”: the problem

of enumerating internal Steiner trees is NP-hard, and that of enu-

merating group Steiner trees is at least as hard as the minimal

hypergraph transversal problem (see Sections 2 and 6 for their defi-

nitions). It should bementioned that the polynomial-time solvability

for the minimal hypergraph transversal enumeration problem with

respect to the input size𝑛 and output size 𝑁 (i.e., (𝑛+𝑁 )𝑂 (1) ) is one
2



of the most challenging open problems in the field of enumeration

algorithms and the best known algorithm runs in quasi-polynomial

time (𝑛 + 𝑁 )𝑜 (log(𝑛+𝑁 )) [13].
We also consider the problem of enumerating minimal induced

Steiner subgraphs as another variant of Steiner Tree Enumera-

tion. This problem is known to be at least as hard as the minimal

transversal enumeration problem on hypergraphs even when the

input is restricted to split graphs [8]. They also showed that if the

number of terminals is at most three, one can solve this problem in

𝑂
(
𝑚𝑛3

)
amortized time per solution and polynomial space. In this

paper, we develop a polynomial-delay and exponential-space enu-

meration algorithm on claw-free graphs with an arbitrary number

of terminals. Since the class of claw-free graphs is a superclass of

line graphs [1] and Steiner Tree Enumeration is a special case

of the problem of enumerating minimal induced Steiner subgraphs

on line graphs, our result non-trivially expands the tractability of

Steiner subgraph enumeration.

2 PRELIMINARIES
Let 𝐺 = (𝑉 , 𝐸) be an undirected (or directed) graph with vertex

set 𝑉 and edge set 𝐸. We also denote by 𝑉 (𝐺) and 𝐸 (𝐺) the sets
of vertices and edges in 𝐺 , respectively. Throughout the paper, we

assume that graphs have no self-loops but may have multiedges.

For a vertex 𝑣 , we denote by 𝑁𝐺 (𝑣) the set of neighbors of 𝑣 in

𝐺 and by Γ𝐺 (𝑣) the set of incident edges of 𝑣 . These notations

are extended to sets: For 𝑈 ⊆ 𝑉 , 𝑁𝐺 (𝑈 ) =
⋃
𝑣∈𝑈 𝑁𝐺 (𝑣) \𝑈 and

Γ𝐺 (𝑈 ) =
⋃
𝑣∈𝑈 Γ𝐺 (𝑣) \ {{𝑢, 𝑣} : 𝑢, 𝑣 ∈ 𝑈 }. If there is no confusion,

we drop the subscript 𝐺 from these notations. For an edge 𝑒 =

{𝑢, 𝑣}, the graph obtained from 𝐺 by contracting 𝑒 is denoted by

𝐺/𝑒 , that is, 𝐺/𝑒 = (𝑉 ′, 𝐸 ′), where 𝑉 ′ = (𝑉 \ {𝑢, 𝑣}) ∪ {𝑤} and
𝐸 ′ = (𝐸 \ (Γ𝐺 (𝑢)∪Γ𝐺 (𝑣)))∪{{𝑥,𝑤} : {𝑥,𝑦} ∈ Γ𝐺 (𝑢)∪Γ𝐺 (𝑣)∧ (𝑦 =

𝑢 ∨ 𝑦 = 𝑣)}. In this notation, the set 𝐸 ′ is considered as a multiset

and hence 𝐺/𝑒 may have multiedges. For a set of edges 𝐹 ⊆ 𝐸, the
(multi)graph 𝐺/𝐹 is obtained from 𝐺 by contracting all edges in 𝐹 .

For 𝑈 ⊆ 𝑉 , 𝐺 [𝑈 ] is the subgraph of 𝐺 induced by 𝑈 , that is,

𝐺 [𝑈 ] = (𝑈 , 𝐸 ′) with 𝐸 ′ = {{𝑢, 𝑣} ∈ 𝐸 : 𝑢, 𝑣 ∈ 𝑈 }. For 𝐹 ⊆ 𝐸, we
also use𝐺 [𝐹 ] to denote the subgraph of the form (𝑉 (𝐹 ), 𝐹 ), where
𝑉 (𝐹 ) is the set of end vertices of edges in 𝐹 . Let 𝐻 be a subgraph of

𝐺 . For 𝐹 ⊆ 𝐸 (𝐺) \𝐸 (𝐻 ), we denote by𝐻 +𝐹 the graph𝐺 [𝐸 (𝐻 ) ∪𝐹 ].
Similarly, for 𝐹 ⊆ 𝐸 (𝐻 ), we denote a subgraph𝐺 [𝐸 (𝐻 ) \𝐹 ] as𝐻−𝐹 .
When 𝐹 consists of a single edge 𝑒 , we simply write 𝐻 +𝑒 and 𝐻 −𝑒
to denote 𝐻 + 𝐹 and 𝐻 − 𝐹 , respectively. In this paper, we may

identify a subgraph with its edges.

Let 𝑋 and 𝑌 be disjoint sets of vertices of𝐺 . A path 𝑃 is called an

𝑋 -𝑌 path if an end vertex of 𝑃 belongs to 𝑋 , the other end belongs

to 𝑌 , and every internal vertex of 𝑃 does not belong to 𝑋 ∪ 𝑌 . If 𝑋
and/or 𝑌 are singletons 𝑢 and 𝑣 , respectively, we may write 𝑢-𝑌 ,

𝑋 -𝑣 , 𝑢-𝑣 paths to denote an 𝑋 -𝑌 path.

Let𝑊 ⊆ 𝑉 be a set of terminals. A subgraph 𝐻 of 𝐺 is a Steiner

subgraph of (𝐺,𝑊 ) if there is a path between every pair of vertices

of 𝑊 in 𝐻 . Note that every minimal Steiner subgraph forms a

tree, called a minimal Steiner tree. The following characterization is

straightforward from the observation that every leaf of a minimal

Steiner tree belongs to𝑊 as otherwise, we can delete it.

Proposition 3. A Steiner tree𝑇 of (𝐺,𝑊 ) is minimal if and only

if every leaf of 𝑇 is a terminal.

LetW = {𝑊𝑖 ⊆ 𝑉 : 1 ≤ 𝑖 ≤ 𝑠} be a family of terminal sets.

A subgraph of 𝐺 is called a Steiner forest of (𝐺,W) if it has no
cycles and there is a path between every pair of vertices in𝑊𝑖 for

1 ≤ 𝑖 ≤ 𝑠 in the forest. We say that a Steiner forest is minimal

if it has no any Steiner forest as a subgraph. A subgraph of 𝐺 is

called a group Steiner tree of (𝐺,W) if it is a tree and there is a path
between some 𝑢 ∈𝑊𝑖 and some 𝑣 ∈𝑊𝑗 for 1 ≤ 𝑖, 𝑗 ≤ 𝑠 in the tree.

We say that a group Steiner tree is minimal if it has no any group

Steiner tree as a subgraph.

Next, we define some terminologies for directed graphs. Let

𝐷 = (𝑉 , 𝐸) be a directed graph. If 𝐷 has an edge (𝑢, 𝑣), 𝑣 is called
an out-neighbor of 𝑢 and 𝑢 is called an in-neighbor of 𝑣 . Similarly, 𝑒

is called an incoming edge of 𝑣 and 𝑒 is called an outgoing edge of 𝑢.

We say that a vertex 𝑣 is a source (resp. sink) if 𝑣 has no in-neighbors

(resp. no out-neighbors) in 𝐷 . Let 𝑇 be a subgraph of 𝐷 . We say

that 𝑇 is a directed tree rooted at 𝑟 if 𝑇 has the unique source 𝑟 and

exactly one directed path from 𝑟 to each vertex in 𝑇 . A vertex ℓ

in a directed tree is called a leaf if ℓ has no out-neighbors. Let𝑊

be a set of terminals and let 𝑟 ∈ 𝑉 \𝑊 . We say that a subgraph

𝐻 is a directed Steiner subgraph of (𝐷,𝑊 , 𝑟 ) if 𝐻 has a directed

𝑟 -𝑤 path for any terminal𝑤 ∈𝑊 . In particular, a directed Steiner

subgraph 𝑇 of (𝐷,𝑊 , 𝑟 ) is a directed Steiner tree of (𝐷,𝑊 , 𝑟 ) if 𝑇
forms a directed tree rooted at 𝑟 . A directed Steiner subgraph 𝐻 is

minimal if no proper subgraph of 𝐻 is a directed Steiner subgraph

of (𝐷,𝑊 , 𝑟 ).
In this paper, in addition to Steiner Tree Enumeration, we

address the following problems.

Definition 4 (Steiner Forest Enumeration). Given an undi-

rected graph 𝐺 = (𝑉 , 𝐸) and terminal setsW = {𝑊𝑖 ⊆ 𝑉 : 1 ≤ 𝑖 ≤
𝑠}, the problem asks to enumerate all the minimal Steiner forest of

(𝐺,W).

Definition 5 (Internal Steiner Tree Enumeration). Given

an undirected graph 𝐺 = (𝑉 , 𝐸) and a terminal set𝑊 ⊆ 𝑉 , the

problem asks to enumerate all the Steiner trees 𝑇 of (𝐺,𝑊 ) in which

every vertex in𝑊 belongs to 𝑇 as an internal vertex.
2

Definition 6 (Terminal Steiner Tree Enumeration). Given

an undirected graph 𝐺 = (𝑉 , 𝐸) and a terminal set𝑊 ⊆ 𝑉 , the

problem asks to enumerate all the minimal Steiner trees 𝑇 of (𝐺,𝑊 )
in which every vertex in𝑊 belongs to 𝑇 as a leaf vertex.

Definition 7 (Directed Steiner Tree Enumeration). Given

a directed graph 𝐷 = (𝑉 , 𝐸), a root 𝑟 ∈ 𝑉 , and a terminal set𝑊 ⊆
𝑉 \ {𝑟 }, the problem asks to enumerate all the minimal subgraphs of

𝐷 in which there is a directed path from 𝑟 to 𝑣 ∈𝑊 .

Definition 8 (Group Steiner Tree Enumeration). Given an

undirected graph 𝐺 = (𝑉 , 𝐸) and terminal setsW = {𝑊𝑖 ⊆ 𝑉 : 1 ≤
𝑖 ≤ 𝑠}, the problem asks to enumerate all minimal group Steiner trees

of (𝐺,W).

As the following problem is slightly different from the other

problems, we need further definitions. Let𝑊 ⊆ 𝑉 be a terminal set.

A subgraph of 𝐺 is called an induced Steiner subgraph of (𝐺,𝑊 ) if
it is a Steiner subgraph of (𝐺,𝑊 ) and induced by some subset of

vertices in 𝐺 . An induced Steiner subgraph of (𝐺,𝑊 ) induced by

2
In this definition, solutions are not required to be “minimal”.

3



𝑈 ⊆ 𝑉 is minimal if 𝐺 [𝑈 ′] is not an induced Steiner subgraph of

(𝐺,𝑊 ) for every proper subset𝑈 ′ of𝑈 .

Definition 9 (Induced Steiner Subgraph Enumeration). Given

an undirected graph 𝐺 = (𝑉 , 𝐸) and a terminal set𝑊 , the prob-

lem asks to enumerate all the minimal induced Steiner subgraphs of

(𝐺,𝑊 ).

3 DIRECTED 𝑠-𝑡 PATH ENUMERATION
REVISITED

Enumeration of all 𝑠-𝑡 paths in undirected graphs is one of the

most famous and classical enumeration problems, which is indeed

a special case of Steiner Tree Enumeration. There are several

efficient enumeration algorithms for this problem [3, 21, 29, 35].

Our proposed algorithms use an 𝑠-𝑡 path enumeration algorithm

as a subroutine. Note that Read and Tarjan [29] gave an amortized

𝑂 (𝑛 +𝑚) time and 𝑂 (𝑛 +𝑚) space algorithm for enumerating 𝑠-𝑡

paths in undirected graphs. It is easy to extend this result to directed

graphs and turn into an𝑂 (𝑛 +𝑚) delay bound. However, we cannot
use their algorithm as a black box in Steiner Tree Enumeration

since this may yield the space bound 𝑂 ( |𝑊 | (𝑛 +𝑚)), where |𝑊 |
is the number of terminals. To reduce 𝑂 ( |𝑊 | (𝑛 +𝑚)) space to

𝑂 (𝑛 +𝑚) space, we need to dive into the details of their algorithm

and modify it, which is described below.

Let 𝐷 = (𝑉 , 𝐸) be a directed graph and let P(𝑠, 𝑡, 𝐷) be the set of
all directed 𝑠-𝑡 paths in 𝐷 . The idea of the algorithm is as follows.

We initially compute an arbitrary path 𝑄 = (𝑣1, . . . , 𝑣𝑘 ) with 𝑣1 =

𝑠 and 𝑣𝑘 = 𝑡 in 𝐷 and output it. Then, the entire enumeration

problem P(𝑠, 𝑡, 𝐷) can be partitioned into subproblems P𝑖 for 1 ≤
𝑖 < 𝑘 , each of which requires to enumerate all directed 𝑠-𝑡 paths

that contains (𝑣1, . . . , 𝑣𝑖 ) as a subpath and does not contain edge

(𝑣𝑖 , 𝑣𝑖+1). Since every path in P(𝑠, 𝑡, 𝐷) is either 𝑄 or enumerated

in exactly one of these subproblems P𝑖 , the algorithm correctly

enumerates all the paths in P(𝑠, 𝑡, 𝐷). To solve each subproblem

P𝑖 , it suffices to enumerate all 𝑣𝑖 -𝑡 paths in 𝐷 [𝑉 \ {𝑣1, . . . , 𝑣𝑖−1}] −
(𝑣𝑖 , 𝑣𝑖+1).

The algorithm based on this branching strategy is given in Al-

gorithm 1. We assume that for each vertex 𝑣 , the outgoing edges

incident to 𝑣 are totally ordered. Given this, for two edges 𝑒, 𝑓

incident to 𝑣 , we denote by 𝑒 ≺𝑣 𝑓 if 𝑒 is smaller than 𝑓 in this

order and by 𝑒 ⪯𝑣 𝑓 if either 𝑒 = 𝑓 or 𝑒 ≺𝑣 𝑓 . The algorithm

first enumerates directed paths𝑄0, 𝑄1, . . . , 𝑄𝑝 starting from 𝑠 such

that the edges incident to 𝑠 ′ in these paths are distinct. This can

be done by F-STP with the main loop of E-STP. The subroutine
F-STP(𝐷 ′, 𝑠 ′, 𝑡, 𝑒, 𝑓 ) computes a directed 𝑠 ′-𝑡 path 𝑄 𝑗 in 𝐷 ′ that
avoids 𝑒 and all outgoing edges 𝑓 ′ incident to 𝑠 ′ with 𝑓 ′ ⪯𝑠′ 𝑓 . As
there can be multiple choices of these directed paths, we choose

a path whose edge incident to 𝑠 ′ is “smallest” among all possible

such paths. This implies that if 𝐷 ′ has an 𝑠 ′-𝑡 path containing an

outgoing edge (𝑠 ′, 𝑣), there is also a path 𝑄 𝑗 containing it, which is

enumerated as above. Then, the algorithm enumerates subproblems

for each path 𝑄 𝑗 and makes recursive calls. On each recursive call,

for a directed 𝑠-𝑠 ′ path 𝑃 and a directed 𝑠 ′-𝑡 path 𝑄 𝑗 , we output
𝑃 ◦𝑄 𝑗 as a solution, where 𝑃 ◦𝑄 𝑗 is the directed 𝑠-𝑡 path obtained

by concatenating 𝑃 and 𝑄 𝑗 with connection 𝑠 ′.
To enumerate all directed 𝑠-𝑡 paths, call E-STP((𝑠),⊥, 0, 𝑡). In

what follows, let T be the rooted tree generated by the execution of

Algorithm 1 whose root corresponds to E-STP(((𝑠),⊥, 0, 𝑡)), that
is, this tree structure has a node for each call of E-STP. We call T
the enumeration tree.

Lemma 10. Algorithm 1 enumerates all directed 𝑠-𝑡 paths without

duplication.

Proof. Let P(𝑠, 𝑡, 𝐷) be a collection of directed 𝑠-𝑡 paths in 𝐷 .

Since every path outputted by Algorithm 1 is the concatenation

of an 𝑠-𝑠 ′ path and an 𝑠 ′-𝑡 path, the algorithm only outputs an 𝑠-𝑡

path in 𝐷 . Thus, we show that Algorithm 1 outputs all paths in

P(𝑠, 𝑡, 𝐷) without duplication.
We first prove that the algorithm outputs every path𝑅 ∈ P(𝑠, 𝑡, 𝐷).

Suppose for contradiction that a path 𝑅 = (𝑢1, . . . , 𝑢𝑘 ) is not out-
put by the algorithm. Let 𝑃 = (𝑢1, . . . , 𝑢𝑘′) be the maximal sub-

path of 𝑅 such that E-STP(𝑃, 𝑒, 𝑑, 𝑡) is called during the execution

of the algorithm. Such a path 𝑃 is well-defined since we initially

call E-STP((𝑠),⊥, 0, 𝑡). The edge 𝑒 does not belong to 𝑅 due to the

maximality of 𝑃 . Moreover, as the main loop in E-STP with F-STP
enumerates𝑢𝑘′-𝑡 paths𝑄

0, 𝑄1, . . . , 𝑄𝑝 , exactly one of them, say𝑄 𝑗 ,

uses edge (𝑢𝑘′, 𝑢𝑘′+1) as the outgoing edge incident to𝑢𝑘′ . If 𝑃◦𝑄 𝑗 =
𝑅, we are done. Otherwise, there is an edge (𝑢𝑘′′, 𝑢𝑘′′+1) in 𝑄 𝑗 that
does not belong to 𝑅. We indeed call E-STP(𝑃 ◦𝑄 𝑗

𝑖
, (𝑢𝑘′′, 𝑢𝑘′′+1), 𝑑 +

1, 𝑡) for appropriate 𝑖 , which contradicts the maximality.

We show that the output of the algorithm has no duplication.

Let 𝐿1 and 𝐿2 be a pair of leaf nodes in the enumeration tree T
and 𝑋 be the lowest common ancestor of 𝐿1 and 𝐿2. The algorithm

generates child nodes of 𝑋 by adding distinct edges to the subpath

on 𝑋 . Thus, the solutions on 𝐿1 and 𝐿2 must be distinct and the

algorithm has no duplication. □

We next consider the time complexity of the algorithm. We can

easily confirm that F-STP runs in 𝑂 (𝑛 +𝑚) time. For each path

𝑄 computed by F-STP, we output a solution 𝑃 ◦ 𝑄 . To achieve

𝑂 (𝑛 +𝑚) delay, we need to enumerate all children in 𝑂 (𝑛 +𝑚)
delay at each node 𝑋 in the enumeration tree T . Let 𝑃 be an 𝑠-𝑠 ′

path and 𝑄 = (𝑣1, . . . , 𝑣𝑘 ) be an 𝑠 ′-𝑡 path such that 𝑃 ◦ 𝑄 is an

𝑠-𝑡 path in 𝐷 . For each 2 ≤ 𝑖 ≤ 𝑘 , we let 𝑄𝑖 = (𝑣1, . . . , 𝑣𝑖 ). If we
can enumerate all subpaths 𝑄𝑖 such that 𝐷 [𝑉 \ (𝑉 (𝑃 ◦𝑄𝑖 ) \ {𝑣𝑖 })]
contains a directed 𝑣𝑖 -𝑡 path avoiding (𝑣𝑖 , 𝑣𝑖+1) in 𝑂 (𝑛 +𝑚) delay,
then we can enumerate all children in𝑂 (𝑛 +𝑚) delay as well. Given
this, we say that 𝑄𝑖 is extendible with 𝑃 if there is a directed 𝑣𝑖 -𝑡

path in 𝐷 [𝑉 \ (𝑉 (𝑃 ◦𝑄𝑖 ) \ {𝑣𝑖 })] − (𝑣𝑖 , 𝑣𝑖+1). The following lemma

is crucial for efficiently obtaining such subpaths 𝑄𝑖 .

Lemma 11. Let 𝑄𝑖 be a subpath of 𝑄 that is extendible with 𝑃 .

Then, we can, in 𝑂 (𝑛 +𝑚) time, either find the largest index 𝑖∗ with
𝑖∗ < 𝑖 such that 𝑄𝑖∗ is extendible with 𝑃 or determine no such index

exists.

Proof. Let 2 ≤ 𝑗 ≤ 𝑖 . To compute the reachability from 𝑣 𝑗 to 𝑡

in 𝐷 𝑗 = 𝐷 [𝑉 \ (𝑉 (𝑃 ◦𝑄 𝑗 ) \ {𝑣 𝑗 })] − (𝑣 𝑗 , 𝑣 𝑗+1) efficiently, we use

a boolean value 𝑟 ( 𝑗, 𝑢) for each vertex 𝑢 in 𝐷 𝑗 defined as follows
3
.

We set 𝑟 ( 𝑗, 𝑢) to true if and only if 𝐷 𝑗 has a directed path from 𝑢 to

𝑡 . For 𝑗 = 𝑖 , we can obtain all values 𝑟 ( 𝑗, ·) in 𝑂 (𝑛 +𝑚) time using

a standard graph search algorithm.

3
The role of 𝑟 (𝑖,𝑢) is the same as 𝑑 ( ·) in [29] but we slightly modify the notion for

the expository purpose.
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Algorithm 1: A linear-delay enumeration algorithm for

directed 𝑠-𝑡 path enumeration.

Input: 𝑃 : a directed 𝑠-𝑠 ′ path, 𝑒: an edge cannot be used for

extending 𝑃 , 𝑑 : depth of recursion.

1 Procedure E-STP(𝑃, 𝑒, 𝑑, 𝑡)
2 𝑄0 = (𝑣01, . . . , 𝑣

0
𝑘
) ←

F-STP(𝐷 [𝑉 \ (𝑉 (𝑃) \ {𝑠 ′})], 𝑠 ′, 𝑡, 𝑒,⊥)
3 𝑗 ← 0

4 while 𝑄 𝑗 ≠ ⊥ do
5 if 𝑑 is even then Output 𝑃 ◦𝑄 𝑗
6 for 𝑖 = 𝑘 − 1, . . . , 2 do
7 Let 𝑄

𝑗
𝑖
= (𝑣 𝑗1, . . . , 𝑣

𝑗
𝑖
) be a subpath of 𝑄 𝑗

8 if 𝐷 [𝑉 \ (𝑉 (𝑃 ◦𝑄 𝑗
𝑖
) \ {𝑣 𝑗

𝑖
})] − (𝑣 𝑗

𝑖
, 𝑣
𝑗

𝑖+1) has a
directed 𝑣

𝑗
𝑖
-𝑡 path then

9 E-STP(𝑃 ◦𝑄 𝑗
𝑖
, (𝑣 𝑗

𝑖
, 𝑣
𝑗

𝑖+1), 𝑑 + 1, 𝑡)
10 if 𝑑 is odd then Output 𝑃 ◦𝑄 𝑗

11 𝑄 𝑗+1 = (𝑣 𝑗+11 , . . . , 𝑣
𝑗+1
𝑘
) ←

F-STP(𝐷 [𝑉 \ (𝑉 (𝑃) \ {𝑠 ′})], 𝑠 ′, 𝑡, 𝑒, (𝑣 𝑗1, 𝑣
𝑗

2))
12 𝑗 ← 𝑗 + 1
13 Procedure F-STP(𝐷 ′, 𝑠 ′, 𝑡, 𝑒, 𝑓 )
14 if 𝑒 ≠ ⊥ then Remove 𝑒 from 𝐷 ′

15 if 𝑓 ≠ ⊥ then
16 Remove outgoing edges 𝑓 ′ incident to 𝑠 ′ with

𝑓 ′ ⪯𝑠′ 𝑓 from 𝐷 ′

17 Compute a directed 𝑠 ′-𝑡 path 𝑄 = (𝑢1, . . . , 𝑢𝑘 ) in 𝐷 ′
such that there is no directed 𝑠 ′-𝑡 path
𝑄 ′ = (𝑢 ′1, . . . , 𝑢

′
𝑘′
) with (𝑢 ′1, 𝑢

′
2) ≺𝑠′ (𝑢1, 𝑢2) in 𝐷

18 if no such path 𝑄 exists then return ⊥
19 return 𝑄

We consider how to obtain 𝑟 ( 𝑗, 𝑢) from 𝑟 ( 𝑗+1, 𝑢) for 𝑗 < 𝑖 . Let𝑉𝑗
and 𝐸 𝑗 be the set of vertices and the set of edges in 𝐷 𝑗 , respectively.

Note that𝑉𝑗+1 ⊆ 𝑉𝑗 and 𝐸 𝑗+1 ⊆ 𝐸 𝑗 . This implies that 𝑟 ( 𝑗, 𝑢) is true,
then 𝑟 ( 𝑗 ′, 𝑢) is also true for any 𝑗 ′ < 𝑗 .

We set the value of 𝑟 ( 𝑗, 𝑣) for any vertex 𝑣 in 𝐷 𝑗 as follows. If

𝑣 ∉ 𝑉𝑗+1, then 𝑟 ( 𝑗 +1, 𝑣) is false. Let 𝐹 be the set consisting of edges

(𝑣,𝑤) in 𝐸 𝑗 \𝐸 𝑗+1 such that 𝑟 ( 𝑗 +1, 𝑣) is false and 𝑟 ( 𝑗 +1,𝑤) is true.
In the following, we use 𝐹 as a program variable. For each edge

(𝑣,𝑤) in 𝐹 , we set 𝑟 ( 𝑗, 𝑣) to true, remove (𝑣,𝑤) from 𝐹 , and add all

incoming edges (𝑥, 𝑣) of 𝑣 to 𝐹 if 𝑟 ( 𝑗 + 1, 𝑥) is false. We repeat this

until 𝐹 is empty.

We show the correctness of this update procedure. For any vertex

𝑢 in 𝐷 𝑗 such that 𝑟 ( 𝑗, 𝑢) is true, if 𝑟 ( 𝑗 + 1, 𝑢) is false, then all the

paths from 𝑢 to 𝑡 must contain at least one edge in the initial set of

𝐹 . Let 𝑘 be the shortest distance from 𝑢 to the closest vertex𝑤 in

𝐷 𝑗 such that 𝑟 ( 𝑗 + 1,𝑤) is true. If 𝑘 = 1, by following edges in the

initial set of 𝐹 , we can set the correct value to 𝑟 ( 𝑗, 𝑢). In addition,

if we add an edge to 𝐹 , the tail is reachable to 𝑡 . Thus, for any 𝑘 ,

we can correctly update the values of 𝑟 by the transitivity of the

reachability to 𝑡 .

Each edge in𝐷 is added to 𝐹 at most once. Moreover, wemaintain

the reachability 𝑟 (·, ·) in an array of length 𝑛 since 𝑟 ( 𝑗, 𝑢) is true

only if 𝑟 ( 𝑗 ′, 𝑢) is true for all 𝑗 ′ ≤ 𝑗 . Thus, this procedure finds 𝑖∗ in
linear time and linear space. □

We next consider the space complexity of the algorithm. Let𝑋 be

a node of T and 𝑃𝑋 be a directed 𝑠-𝑡 path outputted in𝑋 . To reduce

the space complexity of our algorithms for Steiner Tree Enumera-

tion and variants, the important observation is that the total space

for storing some information on each node for successive recursive

calls is 𝑂 ( |𝑃𝑋 |), see the appendix for the details. The algorithm

can be applied to undirected graphs by simply replacing each undi-

rected edge with two directed edges with opposite directions. We

should remark that Birmelé et al. proposed an efficient enumeration

algorithm for undirected 𝑠-𝑡 paths running in 𝑂

(∑
𝑃 ∈P(𝑠,𝑡,𝐺) |𝑃 |

)
total time [3].

Theorem 12. Algorithm 1 enumerates all 𝑠-𝑡 paths of a directed

(undirected) graph in 𝑂 (𝑛 +𝑚) delay and 𝑂 (𝑛 +𝑚) space.

Proof. We first consider the space complexity. We traverse

the enumeration tree in a depth-first manner and then need to

store some information on each node for successive recursive calls.

For each node 𝑋 and its child 𝑌 whose associated instances are

(𝑃, 𝑒, 𝑑, 𝑡) and (𝑃 ◦𝑄 𝑗
𝑖
, (𝑣 𝑗

𝑖
, 𝑣
𝑗

𝑖+1), 𝑑 + 1, 𝑡), respectively, we store the
subpath 𝑄

𝑗
𝑖
, the three directed edges 𝑒 , (𝑣 𝑗

𝑖
, 𝑣
𝑗

𝑖+1), and 𝑓 , and the

loop variables 𝑖, 𝑗 . Note that the entire path 𝑃 ◦𝑄 𝑗
𝑖
and the depth 𝑑

are maintained in a global memory. To compute the next sibling

𝑍 of 𝑌 , we need to restore path 𝑃 and 𝑄 𝑗 . Since the entire path

𝑃 ◦𝑄 𝑗
𝑖
is stored in a global memory, we can compute 𝑃 from 𝑄

𝑗
𝑖
in

𝑂 (𝑛 +𝑚) time. From the restored path 𝑃 and two directed edges

𝑒 = (𝑣 𝑗
𝑖
, 𝑣
𝑗

𝑖+1) and 𝑓 ,𝑄
𝑗
can be recomputed in𝑂 (𝑛 +𝑚) time as well

since we use the fixed directed path finding algorithm F-STP. Paths

𝑄
𝑗
𝑖
are edge-disjoint at any nodes having the ancestor-descendant

relation. Thus, the total space for storing information in successive

recursive calls on a node 𝑋 is 𝑂 ( |𝑃𝑋 |) and the space complexity of

the algorithm is 𝑂 (𝑛 +𝑚), where 𝑃𝑋 is a directed 𝑠-𝑠 ′ path on 𝑋 .

We next discuss the delay of the algorithm. We can compute

paths𝑄0, 𝑄1, . . . , 𝑄𝑝 in𝑂 (𝑛 +𝑚) delay. For each path𝑄 𝑗 , by Lemma 11,

we can compute the next sibling in 𝑂 (𝑛 +𝑚) time. Moreover, we

output a solution in a pre-order (resp. post-order) manner if the

depth of the node is even (resp. odd)
4
. Since each node output at

least one solution, we output at least one solution between three

consecutive nodes in the depth-first search traversal of T . Thus,
the delay of the algorithm is 𝑂 (𝑛 +𝑚). □

Algorithm 1 can be extended to the one for enumerating paths

between two disjoint subsets 𝑆 and 𝑇 of 𝑉 . Let 𝐷 be a directed

graph. We remove all edges directed from 𝑣 ∈ 𝑇 and directed to

𝑣 ∈ 𝑆 . We then add a vertex 𝑠 to 𝐷 and an edge (𝑠, 𝑣) for each 𝑣 ∈ 𝑆 .
Similarly, we also add a vertex 𝑡 to 𝐷 and an edge (𝑣, 𝑡) for each
𝑣 ∈ 𝑇 . Then, by enumerating all 𝑠-𝑡 paths and removing 𝑠 and 𝑡

from these paths, we obtain all 𝑆-𝑇 paths in the original graph.

4
This technique is known as the alternating output method [33].
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Algorithm 2: A polynomial-delay algorithm to enumerate

all minimal Steiner trees. Note that the root recursive call is

E-MST(𝐺,𝑊 , ({𝑤0}, ∅)), where𝑤0 is an arbitrary terminal.

Input: 𝐺 : a graph,𝑊 : a set of terminals, 𝑇 : a partial Steiner

tree of (𝐺,𝑊 )
1 Procedure E-MST(𝐺,𝑊 ,𝑇)
2 if 𝑇 is a minimal Steiner tree of (𝐺,𝑊 ) then Output 𝑇

3 else
4 Let𝑤 be an arbitrary terminal with𝑤 ∉ 𝑉 (𝑇 )
5 for each 𝑉 (𝑇 )-𝑤 path 𝑃 in 𝐺 do
6 E-MST(𝐺,𝑊 ,𝑇 + 𝐸 (𝑃))

4 ENUMERATING MINIMAL STEINER TREES
VIA BRANCHING

In this section, we give efficient algorithms for Steiner Tree Enu-

meration by incorporating the path enumeration algorithm de-

scribed in the previous section. To explain our idea clearly, we first

give a simple polynomial-delay and polynomial-space enumeration

algorithm. Then, we give a linear-delay algorithmwith a non-trivial

analysis.

4.1 Polynomial-delay enumeration of minimal
Steiner trees

Let 𝐺 = (𝑉 , 𝐸) be an undirected graph and let𝑊 ⊆ 𝑉 be termi-

nals. Our enumeration algorithm, given a graph 𝐺 ,𝑊 ⊆ 𝑉 , and
a subgraph 𝑇 of 𝐺 , enumerates minimal Steiner trees of (𝐺,𝑊 )
that contain 𝑇 as a subgraph. In this section, we assume that 𝐺

is connected. Moreover, during the execution of our algorithm, 𝑇

always forms a tree whose leaves are all terminal. We call such a

tree 𝑇 a partial Steiner tree of (𝐺,𝑊 ). Note that every leaf of 𝑇 is

terminal but some terminals may not be contained in 𝑇 . Then, we

have the following easy but key lemma for partial Steiner trees.

Lemma 13. If 𝑇 is a partial Steiner tree of (𝐺,𝑊 ), then there is a

minimal Steiner tree of (𝐺,𝑊 ) that contains 𝑇 as a subgraph.

Proof. Let 𝑇 be a partial Steiner tree of (𝐺,𝑊 ). As 𝐺 is con-

nected, there is a spanning tree 𝑇 ′ of (𝐺,𝑊 ) containing 𝑇 as a

subgraph. By greedily removing non-terminal leaves from 𝑇 ′, we
have a Steiner tree of (𝐺,𝑊 ) containing 𝑇 as a subgraph whose

leaves are all terminal, which is a minimal Steiner tree of (𝐺,𝑊 )
by Proposition 3. Moreover, as every leaf of 𝑇 is terminal, 𝑇 is

contained in this minimal Steiner tree. □

Our polynomial-delay enumeration algorithm is shown in Al-

gorithm 2. The algorithm is based on branching and defines a rooted

treewhose root corresponds to the initial call E-MST(𝐺,𝑊 , ({𝑤0}, ∅)),
where𝑤0 is an arbitrary terminal in𝑊 . We call this rooted tree an

enumeration tree. In each recursion step, fix a terminal𝑤 ∈𝑊 \𝑉 (𝑇 )
and generate new partial Steiner tree 𝑇 + 𝐸 (𝑃) for every 𝑉 (𝑇 )-𝑤
path 𝑃 in 𝐺 . By Lemma 13, every partial Steiner tree generated by

Algorithm 2 is a subgraph of some minimal Steiner tree of (𝐺,𝑊 ),
assuming that 𝐺 is connected. This implies that the algorithm out-

puts a minimal Steiner tree of (𝐺,𝑊 ) at every leaf node in the

enumeration tree. The correctness of the algorithm is given in the

following lemma.

Lemma 14. Algorithm 2 enumerates all minimal Steiner trees of

(𝐺,𝑊 ) without duplication.

Proof. Let 𝑋 be a node in the enumeration tree made by the

algorithm with initial call E-MST(𝐺,𝑊 , ({𝑤0}, ∅)) for some𝑤0 ∈
𝑊 . Suppose that the partial Steiner tree associated with 𝑋 is 𝑇 . Let

S(𝑋 ) be the set of minimal Steiner trees 𝑇 ∗ of (𝐺,𝑊 ) associated
with 𝑋 that satisfy 𝐸 (𝑇 ) ⊆ 𝐸 (𝑇 ∗) ⊆ 𝐸 (𝐺). First, we show that the

algorithm outputs all minimal Steiner trees in S(𝑋 ) at a leaf of the
enumeration tree that is a descendant of 𝑋 . Suppose that 𝑋 is an

internal node in the enumeration tree as otherwise, we are done. Let

𝑇 ∗ be an arbitrary minimal Steiner tree inS(𝑋 ). Let𝑤 be a terminal

with𝑤 ∉ 𝑉 (𝑇 ). Since𝑇 ∗ is a Steiner tree of (𝐺,𝑊 ), there is a unique
𝑉 (𝑇 )-𝑤 path 𝑃 in 𝑇 ∗. Clearly, 𝑇 + 𝐸 (𝑃) is a partial Steiner tree of
(𝐺,𝑊 ), there is a child of𝑋 whose associated instance is (𝐺,𝑊 ,𝑇 +
𝐸 (𝑃)) as we branch all possible𝑉 (𝑇 )-𝑤 paths in Algorithm 2. Since

𝑇 + 𝐸 (𝑃) is a subtree of 𝑇 ∗, by inductively applying this argument,

𝑇 ∗ is output at some leaf node in the enumeration tree.

Next, we show that the algorithm does output all minimal Steiner

trees of (𝐺,𝑊 ) without duplication. Suppose for contradiction that

there is a minimal Steiner tree 𝑇 ∗ of (𝐺,𝑊 ) that is output at two
distinct leaf nodes 𝐿1 and 𝐿2 in the enumeration tree. Let 𝑋 be the

lowest common ancestor node of 𝐿1 and 𝐿2 and let 𝑇 be the partial

Steiner tree of (𝐺,𝑊 ) associated to node 𝑋 . Let 𝑋1 and 𝑋2 be the

children of 𝑋 that are ancestor nodes of 𝐿1 and 𝐿2, respectively. As

𝑋1 ≠ 𝑋2, the partial Steiner trees associated to 𝑋1 and 𝑋2 contain

distinct 𝑉 (𝑇 )-𝑤 path for some𝑤 ∈𝑊 \𝑉 (𝑇 ). This contradicts the
uniqueness of the 𝑉 (𝑇 )-𝑤 path in 𝑇 ∗. □

We run the path enumeration algorithm discussed in the previous

section at Line 5 inAlgorithm 2 and immediately call E-MST(𝐺,𝑊 ,𝑇+
𝐸 (𝑃)) for each path 𝑃 when it is output by the path enumeration

algorithm. Thus, we have the next theorem for the complexity of

Algorithm 2.

Theorem 15. Algorithm 2 enumerates all minimal Steiner trees of

(𝐺,𝑊 ) in 𝑂 ( |𝑊 | (𝑛 +𝑚)) delay and 𝑂 ( |𝑊 | (𝑛 +𝑚)) space, where 𝑛
and𝑚 are the number of vertices and edges of 𝐺 , respectively.

Proof. By using an 𝑂 (𝑛 +𝑚) delay algorithm for enumerating

all 𝑠-𝑡 paths in Section 3, we can enumerate in 𝑂 (𝑛 +𝑚) delay all

children of a node in the enumeration tree. Moreover, the depth

of the enumeration tree is at most |𝑊 |. Hence, the delay of our

proposed algorithm is 𝑂 ( |𝑊 | (𝑛 +𝑚)). It is sufficient to store the

information of recursive calls for backtracking with𝑂 (𝑛 +𝑚) space
per node. Therefore, the algorithm runs in𝑂 ( |𝑊 | (𝑛 +𝑚)) space in
total. □

4.2 Improving the delay and space bound
In this subsection, we show that we can enumerate all the min-

imal Steiner trees of (𝐺,𝑊 ) in 𝑂 (𝑛 +𝑚) delay and 𝑂
(
𝑛2

)
space

with 𝑂 (𝑛𝑚) preprocessing time. The main obstacle for achieving

𝑂 (𝑛 +𝑚)-delay enumeration is that some internal node in the enu-

meration tree obtained by Algorithm 2 may have only one child.

Although each child is generated in 𝑂 (𝑛 +𝑚) time, it is hard to

enumerate solutions in linear delay if the number of internal nodes

is much larger than the number of leaves. Hence, we need to modify
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Line 4 in the algorithm so that each internal node in the enumera-

tion tree has at least two children, which implies that the number

of internal nodes is at most the number of leaves.

To improve the running time bound, we first give an algorithm

with amortized 𝑂 (𝑛 +𝑚) time per solution. Suppose that every

internal node has more than one child node in the enumeration

tree defined in the previous section. The total running time of

the algorithm is upper bounded by

∑
𝑋 𝑂 (𝑛 +𝑚) · |𝑐ℎ(𝑋 ) |, where

the summation is taken over all nodes 𝑋 in the enumeration tree

and 𝑐ℎ(𝑋 ) is the set of children of node 𝑋 . Since the number of

internal nodes is at most the number of leaf nodes and the algorithm

outputs exactly one solution at each leaf node, the running time

of the algorithm is amortized 𝑂 (𝑛 +𝑚) time. Moreover, as we will

discuss at the end of this subsection, we can prove that (a modified

version of) this algorithm runs in 𝑂 (𝑛 +𝑚) delay by means of the

output queue method due to Uno [33].

We first “improve” the enumeration tree discussed in the previous

subsection. The following lemma is a key to this improvement.

Lemma 16. Let 𝑇 be a partial Steiner tree of (𝐺,𝑊 ) and let 𝑤 ∈
𝑊 \𝑉 (𝑇 ). Let 𝑃 be a𝑉 (𝑇 )-𝑤 path in𝐺 . Then, 𝑃 is the unique𝑉 (𝑇 )-𝑤
path in 𝐺 if and only if all the edges in 𝑃 are bridges in 𝐺 .

Proof. Suppose that there are at least two 𝑉 (𝑇 )-𝑤 paths, say

𝑃 and 𝑃 ′, in 𝐺 . Then, there is a closed walk passing through 𝑃 , 𝑃 ′,
and some part of 𝑇 , implying that 𝐺 has a cycle containing at least

one edge from 𝑃 , implying that this edge is not a bridge in 𝐺 .

Conversely, suppose there is an edge 𝑒 in 𝑃 that is not a bridge

of 𝐺 . Let 𝑃 ′ be a path between the end vertices of 𝑒 in 𝐺 − 𝑒 . If
𝑉 (𝑃 ′) ∩ 𝑉 (𝑇 ) = ∅, 𝑃 − 𝑒 + 𝐸 (𝑃 ′) is a 𝑉 (𝑇 )-𝑤 path distinct from

𝑃 , which implies that there are at least two 𝑉 (𝑇 )-𝑤 paths in 𝐺 .

Otherwise, we can still find a 𝑉 (𝑇 )-𝑤 path that is a subpath of 𝑃 ′,
and hence the lemma follows. □

By Lemma 16, using a linear-time bridge enumeration algo-

rithm [32], we can either find a terminal𝑤 ∉ 𝑉 (𝑇 ) such that𝐺 has

at least two 𝑉 (𝑇 )-𝑤 paths or conclude that there is no such a ter-

minal in linear time. To do this, we first compute a minimal Steiner

tree 𝑇 ′ of (𝐺,𝑊 ) that contains 𝑇 as a subgraph. By Proposition 3,

this can be done in 𝑂 (𝑛 +𝑚) time by simply finding a spanning

tree that contains 𝑇 and then removing redundant non-terminal

leaves. Then, we can check whether each edge in 𝐸 (𝑇 ′) \ 𝐸 (𝑇 ) is a
bridge in𝐺 . If there is a𝑉 (𝑇 )-𝑤 path in𝑇 ′ for some𝑤 ∈ 𝑉 (𝑇 ) \𝑊
that contains a non-bridge edge in 𝐺 , by Lemma 16, we can con-

clude that there are at least two 𝑉 (𝑇 )-𝑤 paths in 𝐺 . Otherwise,

there is no such a terminal,𝑇 ′ is indeed the unique minimal Steiner

tree of (𝐺,𝑊 ) containing 𝑇 as a subgraph. In this case, the node

associated with (𝐺,𝑊 ,𝑇 ) can be considered as a leaf node by mod-

ifying the enumeration tree and the unique minimal Steiner tree

𝑇 ′ can be computed in 𝑂 (𝑛 +𝑚) time. Based on these two cases,

we can assume that each internal node of the enumeration tree has

at least two children. We call the enumeration tree defined by this

modification the improved enumeration tree.

Theorem 17. There is an algorithm that enumerates all minimal

Steiner trees of (𝐺,𝑊 ) in 𝑂 (𝑛 +𝑚) amortized time per solution with

𝑂 (𝑛 +𝑚) space.

S

Tpre − P
T1

T2 T3 T4

P

Figure 1: The structure of the improved enumeration tree.
The thick line illustrates the path P between the root and
node 𝑆 at which we find the 𝑛-th solution in the preprocess-
ing phase.

Proof. Since we can enumerate all 𝑉 (𝑇 )-𝑤 paths in 𝑂 (𝑛 +𝑚)
delay and each internal node has at least two children, the total

running time of the algorithm is upper bounded by 𝑂 ((𝑛 +𝑚)𝑁 ),
where 𝑁 is the number of minimal Steiner trees of (𝐺,𝑊 ), which
yields the claimed running time bound.

We next consider the space complexity. We should note that

𝐺 ,𝑊 , and 𝑇 are stored as global data structures: We do not make

copies on each recursive call.𝑇 is maintained as edge-disjoint paths

in the data structure. For each node in the enumeration tree, we

store a 𝑉 (𝑇 )-𝑤 path 𝑃 of 𝐺 in the global data structure when call-

ing E-MST(𝐺,𝑊 ,𝑇 + 𝐸 (𝑃)) and overwrite 𝑃 with 𝑃 ′ when calling

E-MST(𝐺,𝑊 ,𝑇 +𝐸 (𝑃 ′)) for the next𝑉 (𝑇 )-𝑤 path 𝑃 ′. Thus, we can
maintain partial Steiner tree 𝑇 in 𝑂 (𝑛 +𝑚) space. To estimate the

entire space consumption, consider a node 𝑋 associated to instance

(𝐺,𝑊 ,𝑇 ) in the enumeration tree T of Steiner Tree Enumera-

tion. For each path 𝑃 output by the 𝑠-𝑡 path enumeration algorithm,

we use 𝑂 ( |𝑃 |) space, see Section 3 for the details. Since the total

length of paths is equal to the size of a minimal Steiner tree, the

algorithm runs in 𝑂 (𝑛 +𝑚) space. □

To obtain a linear-delay bound, we employ the output queue

method by Uno [33]. Roughly speaking, since the algorithm tra-

verses the enumeration tree in a depth-first manner, we can see

this as an Eulerian tour starting and ending at the root node in

the graph obtained by replacing each edge with two parallel edges.

The time elapsed between two adjacent nodes in this tour is upper

bounded by𝑂 (𝑛 +𝑚). However, as the algorithm outputs solutions

at leaf nodes only, the delay can be Ω( |𝑊 | (𝑛 +𝑚)). The idea of this
technique is that we use a buffer of solutions during the traversal.

Since the number of leaf nodes is larger than that of internal nodes,

we can “periodically” output a solution using this buffer.

We slightly modify the original method in [33] to fit our purpose.

Let 𝑋 be a node in the improved enumeration tree T made by our

algorithm. We say that 𝑋 is discovered when it is visited for the

first time and is examined when either the parent of 𝑋 is visited

after visiting 𝑋 for the last time or the algorithm halts. We may

identify these two cases for each leaf node 𝑋 since they must occur

consecutively. Firstly, we find the first 𝑛 solutions and add them

into a queue 𝑄 without outputting these solutions. Let Tpre be

the subtree of T induced by the nodes that are discovered in the

preprocessing phase. Secondly, after this preprocessing phase, we

output solutions conforming to some rules. Let T1, . . . ,Tℓ be the
connected components of T −𝑉 (Tpre), which are indeed subtrees

of T rooted at some undiscovered nodes (See Figure 1). We order
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these subtrees in such a way that for 1 ≤ 𝑖 < 𝑗 ≤ ℓ , the root of T𝑖
is discovered before discovering that of T𝑗 during the execution of

the algorithm.

To bound the delay of the algorithm, we first discuss the strategy

for outputting solutions from 𝑄 in T𝑖 . When we traverse T𝑖 , we
output a solution at 𝑋 from 𝑄 according to the following rules:

R1. output a solution from 𝑄 if 𝑋 is an internal node, the depth

of 𝑋 is odd in T𝑖 , and 𝑋 is examined,

R2. output a solution from 𝑄 if 𝑋 is an internal node, the depth

𝑋 is even in T𝑖 , and 𝑋 is discovered,

R3. output the solution found on 𝑋 if 𝑋 is a leaf of T𝑖 and either

𝑄 contains 3𝑛/2 solutions or 𝑋 is the third or subsequent

leaf child of the parent of 𝑋 (meaning that there are at least

two leaf siblings of 𝑋 that have been already examined).

For a leaf node𝑋 , we add a solution that is found on𝑋 to𝑄 without

outputting it whenever R3 does not hold.

The entire algorithm is described as follows. In the preprocessing

phase, we compute 𝑛 solutions by traversing the improved enu-

meration tree. Recall that Tpre is the subtree induced by the nodes

discovered in this phase. Observe that the number of nodes in Tpre
is 𝑂 (𝑛). To see this, consider the path P between the root and the

leaf node 𝑆 at which we find the 𝑛-th solution in T (see Figure 1).

Clearly, P has at most 𝑛 nodes. Moreover, as each connected com-

ponent in Tpre − P is a rooted tree whose internal nodes have at

least two children, Tpre − P contains 𝑂 (𝑛) nodes. After the pre-
processing phase, we proceed with the traversal from 𝑆 to find the

root of T1 that is the first discovered node after the preprocessing

phase. During the traversal in T𝑖 , for 1 ≤ 𝑖 ≤ ℓ , we output solutions
as above. Finally, during the traversal from 𝑆 to each root of T𝑖 in
P, we output a solution from 𝑄 at each odd depth node when it is

examined.

For the sake of simplicity, we assume that 𝑛 is even. To prove

the correctness of the algorithm, we first show that, for each T𝑖 , the
algorithm successfully outputs solutions from 𝑄 according to the

rules R1, R2, and R3, assuming that 𝑄 contains 𝑟 ≥ 𝑛/2 solutions

when the root of T𝑖 is discovered. Moreover, when the root of T𝑖 is
examined, 𝑄 contains at least 𝑟 solutions, assuming that 𝑛/2 ≤ 𝑟 ≤
𝑛. Fix T𝑖 . Let 𝐼 and 𝐿 be the sets of internal nodes and leaf nodes in

T𝑖 , respectively. We define a function 𝜃 : 𝐼 → 𝐿 that satisfies the

following conditions: 𝜃 is injective, 𝜃 (𝑋 ) is a descendant of 𝑋 for

every 𝑋 ∈ 𝐼 , and for 𝑌 ∈ 𝐿 if 𝑌 is the third or subsequent leaf child

of a node 𝑋 , then 𝜃−1 (𝑌 ) is undefined. We say that a function 𝜃 is

consistent if it satisfies these conditions. In our proof, we will keep

track of solutions in 𝑄 based on a consistent function.

Lemma 18. Let 𝑇 be a rooted tree such that every internal node

has at least two children. Then, there is a consistent function from the

internal nodes to the leaf nodes in 𝑇 .

Proof. Without loss of generality, we assume that each node

in 𝑇 has at most two leaves as its children. We prove the lemma

by giving an algorithm to construct a consistent function 𝜃 . The

algorithm traverses 𝑇 in a depth-first manner. When we reach a

leaf ℓ in 𝑇 , we define 𝜃 (𝑥) = ℓ , where 𝑥 is the nearest ancestor of

ℓ such that 𝜃 (𝑥) has not been defined so far. If there is no such

node 𝑥 , we do nothing at ℓ . Now, we claim that this function 𝜃 is

consistent. It is easy to see that for every internal node 𝑥 , 𝜃 (𝑥) is a

descendant of 𝑥 if 𝜃 (𝑥) is defined. Thus, we prove that 𝜃 (𝑥) is well-
defined for every internal node 𝑥 in 𝑇 . Suppose for contradiction

that there is an internal node 𝑥 such that 𝜃 (𝑥) is not defined in the

above algorithm. Assume that 𝑥 is a deepest node satisfying this

condition. Let 𝑦 be an arbitrary child of 𝑥 and let 𝑇𝑦 be the subtree

of 𝑇 rooted at 𝑦. Since 𝜃 (𝑦) is defined and the number of internal

nodes is strictly smaller than that of leaves in 𝑇𝑦 , there is a leaf

node ℓ that is not assigned to every internal node in 𝑇𝑦 . By the

construction of 𝜃 , 𝜃 (𝑥) = ℓ , contradicting to the assumption. □

By the assumption, 𝑄 contains at least 𝑟 solutions for some

𝑛/2 ≤ 𝑟 ≤ 𝑛. We call arbitrary 𝑛/2 of them the initial solutions and

the remaining 𝑟 −𝑛/2 of them the excess solutions. In the following,

we abuse the queue 𝑄 as follows. Before starting the transversal

of T𝑖 , we replace each initial solution 𝑆 in 𝑄 with a pair (𝑆, 𝑑) for
some integer 𝑑 with 0 ≤ 𝑑 ≤ 𝑛 − 1 in such a way that 𝑄 contains a

pair (𝑆, 𝑑) for every even 𝑑 with 0 ≤ 𝑑 ≤ 𝑛 − 1. The value 𝑑 is used

for proving the correctness of the algorithm. This replacement can

be done as 𝑄 contains at least 𝑛/2 solutions. We also replace each

excess solution 𝑆 with a pair (𝑆, ∗). In fact, we do not output these

excess solutions during the traversal in T𝑖 . For each node 𝑋 in T𝑖 ,
we denote by 𝑑 (𝑋 ) the depth of 𝑋 in T𝑖 . Then, the rules R1, R2,
and R3 can be interpreted as the following modified rules:

R’1. output a solution 𝑆 of the form (𝑆, 𝑑 (𝑋 )) in 𝑄 if 𝑋 is an

internal node, 𝑑 (𝑋 ) is odd, and 𝑋 is examined,

R’2. output a solution 𝑆 of the form (𝑆, 𝑑 (𝑋 )) in 𝑄 if 𝑋 is an

internal node, 𝑑 (𝑋 ) is even, and 𝑋 is discovered,

R’3. output the solution 𝑆 found on 𝑋 if 𝑋 is a leaf of T𝑖 and
𝜃−1 (𝑋 ) is undefined. If 𝑋 is a leaf, 𝜃−1 (𝑋 ) is defined, and 𝑄
contains 3𝑛/2 solutions, we do the following. If 𝑄 contains

a solution 𝑆 ′ of the form (𝑆 ′, 𝑑 (𝜃−1 (𝑋 ))), then output 𝑆 .

Otherwise, as 𝑟 ≤ 𝑛/2, there are two solutions 𝑆 ′ and 𝑆 ′′

such that𝑄 contains both (𝑆 ′, 𝑑) and (𝑆 ′′, 𝑑) for some 𝑑 . We

replace (𝑆 ′′, 𝑑) with (𝑆, 𝑑 (𝜃−1 (𝑋 ))) and output 𝑆 ′′.

For leaf node𝑋 , we add the solution 𝑆 found on𝑋 to (𝑆, 𝑑 (𝜃−1 (𝑋 )))
without outputting it if 𝑄 contains less than 3𝑛/2 solutions. Then,

the following proposition holds.

Proposition 19. Suppose that 𝑋 is a leaf in T𝑖 and 𝜃−1 (𝑋 ) is
defined, that is, 𝑋 is either the first or second leaf child of its parent.

Then,𝑄 contains a pair (𝑆, 𝑑 (𝜃−1 (𝑋 ))), where 𝑆 is the solution found
at 𝑋 , when 𝑋 is examined. Moreover, if 𝑄 contains a pair (𝑆 ′, 𝑑) for
some 0 ≤ 𝑑 ≤ 𝑛 − 1 before discovering 𝑋 , then it also contains a pair

(𝑆 ′′, 𝑑) after examining 𝑋 .

Observe that these modified rules simulate the original rules:

The timing of outputting solutions according to these modified

rules are exactly the same with that for the original rules. Thus,

if we can successfully output solutions according to the modified

rules, we do so according to the original rules.

Now, we show that we can output solutions according to the

modified rules. Let 𝑋 be an internal node in T𝑖 . Suppose R’1 occurs

at 𝑋 . Then, 𝑄 must contain a solution 𝑆 of the form (𝑆, 𝑑 (𝑋 )) since
the leaf 𝜃 (𝑋 ) is already visited before examining 𝑋 due to the

consistency of 𝜃 . Note that although the solution found at 𝜃 (𝑋 )
may be different from 𝑆 , by Proposition 19, 𝑄 contains at least one

pair (𝑆, 𝑑 (𝑋 )). Suppose next that R’2 occurs at 𝑋 . If 𝑋 is the first

depth-𝑑 (𝑋 ) node among all depth-𝑑 (𝑋 ) nodes in T𝑖 , as𝑑 (𝑋 ) is even,
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𝑄 contains an initial solution 𝑆 of the form (𝑆, 𝑑 (𝑋 )). Otherwise, 𝑋
is the second or subsequent depth-𝑑 (𝑋 ) node inT𝑖 . Then,𝑄 contains

a solution 𝑆 of the form (𝑆, 𝑑 (𝑋 )) since 𝜃 (𝑌 ) is already visited at this
point, where𝑌 is the depth-𝑑 (𝑋 ) node that is examined immediately

before 𝑋 . Hence, we can successfully output solutions according to

the modified rules.

Recall that we assume 𝑛/2 ≤ 𝑟 ≤ 𝑛. We claim that after travers-

ing T𝑖 , 𝑄 contains at least 𝑟 solutions.

We observe that after traversing T𝑖 , 𝑄 contains a pair (𝑆, 𝑑) for
every even 𝑑 with 0 ≤ 𝑑 < 𝑛. If 𝑑 is larger than the height of T𝑖 , the
initial solution 𝑆 of the form (𝑆, 𝑑) that is still in 𝑄 . Otherwise, let
𝑋 be the depth-𝑑 node that is discovered for the last time. Then, the

solution obtained at 𝜃 (𝑋 ) is not output in the remaining traversal.

Thus, 𝑄 contains a pair (𝑆, 𝑑) for every even 𝑑 with 0 ≤ 𝑑 < 𝑛.

Moreover, we do not output any excess solutions in T𝑖 . Therefore,
𝑄 contains at least 𝑟 solutions.

Theorem 20. Steiner Tree Enumeration can be solved in𝑂 (𝑛 +𝑚)
delay and 𝑂

(
𝑛2

)
space using 𝑂 (𝑛𝑚) preprocessing time.

Proof of Theorem 20. Since we can generate each child in time

𝑂 (𝑛 +𝑚), we can move to the next node in the Eulerian tour in time

𝑂 (𝑛 +𝑚) as well. Since Tpre contains𝑂 (𝑛) node, the preprocessing
phase is done in 𝑂 (𝑛𝑚) time. Let 𝑆 be the leaf node at which the

𝑛-th solution is found and let P be the path between 𝑆 and the root

of T . From the node 𝑆 to the root of T1, we output a solution at each
odd depth node. This implies that the delay in this time interval is

also𝑂 (𝑛 +𝑚), and also for each time interval between two roots of

T𝑖 and T𝑖+1 for 1 ≤ 𝑖 < ℓ . We output at most 𝑛/2 solutions at nodes

on P. Moreover, if 𝑄 contains 𝑟 (𝑛/2 ≤ 𝑟 ≤ 𝑛) solutions before
traversing T𝑖 , then it contains at least 𝑟 solutions after traversing T𝑖 .
This implies that we can output solutions using the aforementioned

strategy.

To bound the delay in the exploration in T𝑖 , we consider the

sequence of internal nodes obtained from the Eulerian tour in T𝑖 by
removing leaf nodes. Let (𝑋1, . . . , 𝑋10) be an arbitrary consecutive

subsequence of nodes in the sequence. Let us note that as the

sequence is obtained from the Eulerian tour, these nodes may not be

distinct. We show that at least one solution is output at those nodes.

If all nodes between 𝑋 𝑗 to 𝑋 𝑗+3 are identical for some 1 ≤ 𝑗 ≤ 7,
then 𝑋 𝑗 has at least three leaf nodes as its children and we output a

solution at one of these children. Thus, we assume that the sequence

contains at most three consecutive identical nodes. If there are

only two distinct internal nodes in this sequence, these two nodes

appear in an interleaved way, which is impossible in the Eulerian

tour obtained from a rooted tree. Thus, we can assume that the

sequence has at least three internal nodes. Let 𝑋 𝑗1 , 𝑋 𝑗2 , and 𝑋 𝑗3 be

three distinct internal nodes such that there is no other internal

node between them in the sequence and 1 ≤ 𝑗1 < 𝑗2 < 𝑗3 ≤ 10. If
all depths of these nodes are distinct, then we output a solution as

there is either an odd depth node that is examined (R1) or an even

depth node that is discovered (R2). Otherwise, the depth of𝑋 𝑗1 and

𝑋 𝑗3 are identical. Since we examine𝑋 𝑗1 and discover𝑋 𝑗3 , we output

a solution. Finally, we consider a minimal consecutive subsequence

of nodes in the original Eulerian tour that contains (𝑋1, . . . , 𝑋10)
as a subsequence. Since leaf nodes do not appear consecutively in

this sequence, the length of the sequence is at most 20 and we can

Algorithm 3: A general description of enumeration algo-

rithms for Steiner problems.

Input: 𝐺 : a graph,W: a (family of) terminal set(s), 𝐹 : a

partial solution in 𝐺

1 Procedure E-Sol(𝐺,W, 𝐹)
2 if 𝐹 is a solution then Output 𝐹

3 else
4 Let𝑊 be a terminal (set) inW
5 for each valid path 𝑃 for (𝐹,𝑊 ) do
6 E-MST(𝐺,W, 𝐹 + 𝐸 (𝑃))

output at least one solution in this sequence. Therefore, the delay

of this algorithm is 𝑂 (𝑛 +𝑚).
Finally, we consider the space complexity of the algorithm. Since

𝑄 stores the first𝑛 solutions, we use𝑂
(
𝑛2

)
space for𝑄 . The remain-

ing estimation of the space complexity is analogous to Theorem 17.

Thus, the overall space complexity is 𝑂
(
𝑛2

)
. □

We note that this technique can be used when each internal node

in the enumeration tree has at least two children. Thus, we also use

this technique to obtain linear delay bounds for other problems,

which will be discussed in the next section.

5 VARIANTS OF MINIMAL STEINER TREES
A similar branching strategy works for other variants of Steiner

Tree Enumeration, such as Steiner Forest Enumeration, Ter-

minal Steiner Tree Enumeration, and Directed Steiner Tree

Enumeration. In addition, we can obtain linear-delay enumeration

algorithms for these problems.

A general form of our algorithm is described as Algorithm 3.

We are given an instance (𝐺,W, 𝐹 ), where W is a (family of)

terminal set(s), and 𝐹 is a partial solution. Similarly to Algorithm 2,

the execution of the algorithm defines a rooted tree whose nodes

are associated to triple (𝐺,W, 𝐹 ). We again call this rooted tree

an enumeration tree. The algorithm recursively extends 𝐹 into a

larger partial solution 𝐹𝑃 by adding a valid path 𝑃 for 𝐹 and a

selected terminal (set)𝑊 , which can be computed by the 𝑠-𝑡 path

enumeration algorithm. In this section, we focus on Steiner Forest

Enumeration as a concrete example of these problems.

To specify Algorithm 3 for Steiner Forest Enumeration, we

define partial solutions and their valid paths. Recall that for an

undirected graph 𝐺 = (𝑉 , 𝐸) and a family of terminal setsW =

{𝑊1, . . . ,𝑊𝑠 } with𝑊𝑖 ⊆ 𝑉 , a forest 𝐹 is a Steiner forest of (𝐺,W)
if for any set𝑊𝑖 , 𝐹 contains a path between every pair of vertices

in𝑊𝑖 . In particular, 𝐹 is a minimal Steiner forest of (𝐺,W) if there
is no proper subgraph of 𝐹 that is a Steiner forest of (𝐺,W). Note
that when |W| = 1, Steiner Forest Enumeration is equivalent

to Steiner Tree Enumeration. We assume that each terminal set

is contained in a connected component of 𝐺 as otherwise, there is

no minimal Steiner forest of (𝐺,W).
In what follows, without loss of generality, we can assume that

|𝑊𝑖 | = 2 for each𝑊𝑖 . This follows from the observation that if there

is a terminal set𝑊 ∈ W such that𝑊 = {𝑤1, . . . ,𝑤𝑘 } with 𝑘 ≥ 3,
every Steiner forest of (𝐺,W) is a Steiner forest of (𝐺,W ′) with
W ′ = (W \ {𝑊 }) ∪ {{𝑤1,𝑤2}, {𝑤1,𝑤3}, . . . , {𝑤1,𝑤𝑘 }} and vice
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versa. Also, from this observation, we can assume that the number

of sets inW is at most 𝑛 − 1. We note that by this conversion,

terminal sets inW may intersect. For each 1 ≤ 𝑖 ≤ 𝑠 , we let

𝑊𝑖 = {𝑤𝑖 ,𝑤 ′𝑖 }.
The next lemma plays an important role for Steiner Forest

Enumeration, which enables us to enumerate all the solutions by

combining paths, each of which connects a pair of terminals.

Lemma 21. 𝐹 is a minimal Steiner forest of (𝐺,W) if and only

if 𝐹 is a forest consisting of the union of paths 𝑃1, . . . 𝑃𝑠 connecting

{𝑤1,𝑤
′
1}, . . . , {𝑤𝑠 ,𝑤

′
𝑠 }, respectively. Moreover, let P = (𝑃1, . . . , 𝑃𝑠 )

and P ′ = (𝑃 ′1, . . . , 𝑃
′
𝑠 ) be two (ordered) sets of 𝑤𝑖 -𝑤 ′𝑖 paths 𝑃𝑖 and

𝑃 ′
𝑖
whose unions are minimal Steiner forests 𝐹 and 𝐹 ′ of (𝐺,W),

respectively. Then, P ≠ P ′ if and only if 𝐹 ≠ 𝐹 ′.

Proof. Let 𝐹 be a forest such that 𝐹 consists of the union of

paths 𝑃𝑖 between 𝑤𝑖 and 𝑤
′
𝑖
for 1 ≤ 𝑖 ≤ 𝑠 . Clearly, 𝐹 is a Steiner

forest of (𝐺,W). Moreover, for any edge 𝑒 ∈ 𝐸 (𝑃𝑖 ), 𝐹 − 𝑒 has no
𝑤𝑖 -𝑤

′
𝑖
path as otherwise 𝐹 has a cycle. Thus, 𝐹 is a minimal Steiner

forest of (𝐺,W).
Conversely, let 𝐹 be a minimal Steiner forest of (𝐺,W). Then,

there is a unique path 𝑃𝑖 between 𝑤𝑖 and 𝑤
′
𝑖
for each 1 ≤ 𝑖 ≤ 𝑠 .

Thus, 𝐹 contains

⋃
1≤𝑖≤𝑠 𝐸 (𝑃𝑖 ). Moreover, if 𝐹 contains an edge

𝑒 ∈ 𝐹 \⋃1≤𝑖≤𝑠 𝐸 (𝑃𝑖 ), then this contradicts to the minimality of 𝐹 .

Hence, we have 𝐹 =
⋃

1≤𝑖≤𝑠 𝐸 (𝑃𝑖 ).
Clearly, 𝐹 ≠ 𝐹 ′ implies P ≠ P ′ as 𝐹 =

⋃
1≤𝑖≤𝑠 𝐸 (𝑃𝑖 ) and 𝐹 ′ =⋃

1≤𝑖≤𝑠 𝐸 (𝑃 ′𝑖 ). Let P = (𝑃1, . . . , 𝑃𝑠 ) and P ′ = (𝑃 ′1, . . . , 𝑃
′
𝑠 ) be as in

the statement with P ≠ P ′. Then, there is a pair of𝑤𝑖 -𝑤 ′𝑖 paths 𝑃𝑖
and 𝑃 ′

𝑖
with 𝑃𝑖 ≠ 𝑃

′
𝑖
. Suppose that 𝐹 = 𝐹 ′. Since 𝑃𝑖 ≠ 𝑃 ′𝑖 , there are

two paths between𝑤𝑖 and𝑤
′
𝑖
in 𝐹 , which implies that 𝐹 contains a

cycle, a contradiction. □

Now, we define a partial solution and a valid path for Steiner

Forest Enumeration. A forest 𝐹 of𝐺 is called a partial solution or,

more specifically, a partial Steiner forest of (𝐺,W) if 𝐹 is a forest

of the form 𝐹 =
⋃
{𝑤𝑖 ,𝑤

′
𝑖
}∈W′ 𝐸 (𝑃𝑖 ), where 𝑃𝑖 is a𝑤𝑖 -𝑤 ′𝑖 path and

W ′ is a subset ofW. Let 𝐹 be a partial Steiner forest of (𝐺,W)
and let𝑊 = {𝑤,𝑤 ′} ∈ W be a terminal pair such that there is no

path between the pair in 𝐹 . We say that a𝑤-𝑤 ′ path 𝑃 in𝐺 is valid

for (𝐹,𝑊 ) if 𝐹 + 𝐸 (𝑃) has no cycles. Let us note that valid path 𝑃

may contain edges in 𝐹 . Clearly, 𝐹 + 𝐸 (𝑃) is a partial Steiner forest
of (𝐺,W) as well.

Lemma 22. If 𝐹 is a partial Steiner forest of (𝐺,W), then there is

a minimal Steiner forest of (𝐺,W) that contains 𝐹 as a subgraph.

Proof. Let 𝐹 ′ be a maximal forest in 𝐺 that contains 𝐹 as a

subgraph. By the assumption that every terminal set𝑊𝑖 is contained

in a connected component of 𝐺 , 𝐹 ′ is a Steiner forest of (𝐺,W).
From 𝐹 ′, we repeatedly remove 𝑒 ∈ 𝐸 (𝐹 ′) \ 𝐸 (𝐹 ) when 𝐹 ′ − 𝑒 is
a Steiner forest of (𝐺,W). Then, we let 𝐹 ∗ be the Steiner forest
obtained in this way. We show that 𝐹 ∗ is a minimal Steiner forest

of (𝐺,W).
Suppose that 𝐹 ∗ contains an edge 𝑒 satisfying that 𝐹 ∗ − 𝑒 is a

minimal Steiner forest of (𝐺,W). By the definition of 𝐹 ∗, it holds
that 𝑒 ∈ 𝐹 . Since 𝐹 is a partial Steiner forest, 𝑒 belongs to a 𝑤-𝑤 ′

path in 𝐹 for some {𝑤,𝑤 ′} ∈ W. If 𝐹 − 𝑒 has a𝑤-𝑤 ′ path, then 𝐹
has a cycle, which contradicts to the fact that 𝐹 is a forest. □

The complete description of Algorithm 3 for Steiner Forest

Enumeration is as follows.We initially call E-Sol(𝐺,W, ({𝑤}, ∅)),
where𝑤 is an arbitrary terminal in a terminal set. Clearly, ({𝑤}, ∅)
is a partial Steiner forest of (𝐺,W). Let 𝐹 be a partial Steiner forest

that is not a Steiner forest of (𝐺,W) and let𝑊 = {𝑤,𝑤 ′} ∈ W be

a terminal pair that is not connected in 𝐹 . To enumerate all valid

paths between𝑤 and𝑤 ′ for (𝐹,𝑊 ), we enumerate all𝑤-𝑤 ′ paths
𝑃 in 𝐺/𝐸 (𝐹 ). Since there is a one-to-one correspondence between
𝐸 (𝐺) \ 𝐹 and 𝐸 (𝐺/𝐸 (𝐹 )), 𝐹 + 𝐸 (𝑃) can be seen as a subgraph of

𝐺 . It is easy to observe that 𝐹 + 𝐸 (𝑃) has no cycles, and then it is

a partial Steiner forest of (𝐺,W), implying that the unique𝑤-𝑤 ′

path in 𝐹 +𝐸 (𝑃) is a valid path for (𝐹,𝑊 ). The next theorem shows

the correctness and running time analysis of the above algorithm.

Theorem 23. Steiner Forest Enumeration can be solved in

𝑂 (𝑡 (𝑛 +𝑚)) delay and 𝑂 (𝑛 +𝑚) space, where 𝑡 =
��⋃
𝑊 ∈W𝑊

��
.

Proof. We first show that the algorithm enumerates all the

minimal Steiner forests of (𝐺,W). Let 𝐹 ∗ be a minimal Steiner

forest of (𝐺,W) and 𝐹 be a partial Steiner forest that is strictly

contained in 𝐹 ∗. By the minimality of 𝐹 ∗, there is a terminal pair

𝑊 = {𝑤,𝑤 ′} that is not connected in 𝐹 . Let 𝑃 be the unique path

between𝑤 and𝑤 ′ in 𝐹 ∗. Then, 𝐹 +𝐸 (𝑃) has no cycles, which implies

that 𝑃 is a valid path for (𝐹,𝑊 ). By inductively applying the same

argument to 𝐹 + 𝐸 (𝑃), we can eventually compute 𝐹 ∗.
Next, we show that the algorithm outputs minimal Steiner forests

without duplication. Suppose for contradiction that there is a min-

imal Steiner forest 𝐹 ∗ of (𝐺,W) that is output at two leaf nodes

𝐿1 and 𝐿2 in the enumeration tree. Let 𝑋 be the lowest common

ancestor of 𝐿1 and 𝐿2 and let 𝐹 be the partial Steiner forest asso-

ciated with 𝑋 . Similarly to Lemma 14, the two children of 𝑋 that

are ancestors of 𝐿1 and 𝐿2 are associated to distinct partial Steiner

forests 𝐹 +𝐸 (𝑃1) and 𝐹 +𝐸 (𝑃2) for some distinct valid paths 𝑃1 and

𝑃2 for (𝐹,𝑊 ) with some terminal set𝑊 . However, by Lemma 21,

any minimal Steiner forests that respectively contain 𝐹 +𝐸 (𝑃1) and
𝐹 + 𝐸 (𝑃2) must be distinct, contradicting to the assumption.

We finally analyze the delay and the space complexity. Note that

the height of the enumeration tree obtained by our algorithm is at

most 𝑛. Hence, since we use an 𝑂 (𝑛 +𝑚) delay 𝑠-𝑡 path enumera-

tion algorithm, the delay of our algorithm is 𝑂 (𝑡 (𝑛 +𝑚)). At each
internal node, we store exactly one valid path for a partial Steiner

forest 𝐹 and, by an analogous argument in Theorem 17, the space

complexity is 𝑂 (𝑛 +𝑚). □

In the remaining of this section, we improve the delay complexity

of the algorithm in the above theorem with a polynomial-time

preprocessing phase as in Theorem 20. To this end, we need to

ensure that each internal node of the enumeration tree has at least

two children. Let𝑋 be an internal node in the enumeration tree and

let (𝐺,W, 𝐹 ) be the instance associated with 𝑋 . Let𝑊 = {𝑤,𝑤 ′} ∈
W be a terminal set such that there is no path between 𝑤 and

𝑤 ′ in 𝐹 . Then, there are at least two valid paths for (𝐹,𝑊 ) if and
only if 𝑋 has at least two children in the enumeration tree. By the

one-to-one correspondence between 𝐸 \𝐸 (𝐹 ) and 𝐸 (𝐺/𝐸 (𝐹 )), from
every𝑤-𝑤 ′ path 𝑃 in𝐺/𝐸 (𝐹 ), we can obtain a unique valid path for

(𝐹,W). We note that the graph 𝐺/𝐸 (𝐹 ) may contain multiedges

between two vertices, and then they are not considered as bridges
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even if removing these edges increases the number of connected

components of 𝐺 . This correspondence gives the following lemma.

Lemma 24. Let 𝐹 be a partial Steiner forest of (𝐺,W) that has
no𝑤-𝑤 ′ path for some terminal pair𝑊 = {𝑤,𝑤 ′} ∈ W. Let 𝑃 be a

valid path for (𝐹,𝑊 ). Then, 𝑃 is the unique valid path for (𝐹,𝑊 ) in
𝐺 if and only if every edge in 𝐸 (𝑃) \ 𝐸 (𝐹 ) is a bridge in 𝐺/𝐸 (𝐹 ).

Proof. We first show the if direction. To prove the uniqueness,

suppose that there is another valid path 𝑃 ′ ≠ 𝑃 for (𝐹,𝑊 ). As 𝐹 is a

forest, we have 𝐸 (𝑃) \ 𝐸 (𝐹 ) ≠ 𝐸 (𝑃 ′) \ 𝐸 (𝐹 ). This implies that there

are two distinct paths between𝑤 and𝑤 ′ in𝐺/𝐸 (𝐹 ), contradicting
to the fact that every edge on 𝑃∗ is a bridge in 𝐺/𝐸 (𝐹 ).

We next show the other direction. Suppose that 𝑃 is the unique

valid path for (𝐹,𝑊 ) in 𝐺 . Since 𝑃 is valid, 𝐹 + 𝐸 (𝑃) is a forest,

and then 𝑃 ′ = 𝑃/𝐸 (𝐹 ) is a𝑤-𝑤 ′ path in 𝐺/𝐸 (𝐹 ). For contradiction,
suppose that 𝑃 ′ contains a non-bridge edge 𝑒 in 𝐺/𝐸 (𝐹 ). Then,
there is another 𝑤-𝑤 ′ path 𝑃 ′′ in 𝐺/𝐸 (𝐹 ) that does not contain
𝑒 . Since 𝐹 + 𝐸 (𝑃 ′′) is also a partial Steiner forest, the unique path

𝐹 +𝐸 (𝑃 ′′) is a valid path for (𝐹,𝑊 ), contradicting to the uniqueness
of 𝑃 . Hence, the statement holds. □

By Lemma 24, we can determine whether there exists a pair𝑊 ∈
W such that there are at least two valid paths for (𝐹,𝑊 ) in linear

time as follows. We could not directly apply a similar idea used in

Steiner Tree Enumeration to Steiner Forest Enumeration as

it is not obvious to compute a minimal Steiner forest of (𝐺,W)
that contains 𝐹 as a subgraph in linear time. First, we compute

𝐺 ′ = 𝐺/𝐸 (𝐹 ) in linear time. Then, we find the set 𝐵 of bridges in

𝐺 ′ by a linear-time bridge enumeration algorithm [32], and obtain

𝐺 ′′ = 𝐺 ′/𝐵. By Lemma 24, there is a unique valid path for (𝐹,𝑊 )
in 𝐺 if and only if two terminals in𝑊 are identical in 𝐺 ′′. Thus,
such a pair can be found in 𝑂 (𝑛 +𝑚) time if it exists.

Next, we consider the other case, that is, for every terminal set

𝑊 ∈ W there is exactly one valid path 𝑃 for (𝐹,𝑊 ). In this case,

there is a unique minimal Steiner forest 𝐹 ′ of (𝐺,W) that contains
𝐹 as a subgraph. By Lemma 24, 𝐸 (𝑃)\𝐸 (𝐹 ) is composed of bridges in

𝐺 ′ = 𝐺/𝐸 (𝐹 ). Let 𝐵 be the bridges in𝐺 ′. From the assumption, any

terminal pair {𝑤,𝑤 ′} ∈ W is connected in 𝐹 + 𝐵. Moreover, 𝐹 + 𝐵
forms a forest as 𝐵 consists of bridges in𝐺 ′. However, 𝐹 +𝐵 may not

be a minimal Steiner forest of (𝐺,𝑊 ). Thus, to obtain the unique

minimal Steiner forest 𝐹 ′ from 𝐹 +𝐵, we need to remove redundant

bridges in 𝐵. Since we can independently remove redundant bridges

from each connected component in 𝐹 + 𝐵, we assume that 𝐹 + 𝐵
forms a tree and all leaves are terminal.

The naive approach to obtain the unique 𝐹 ′ is that we enumerate

paths between each terminal pair inW and take the union of them.

This approach runs in𝑂 (𝑡𝑛) time, where 𝑡 =
��⋃
𝑊 ∈W𝑊

��
. Thus, we

employ another approach in which we exploit the lowest common

ancestor (LCA, for short) of each terminal pair. Let 𝑇 = 𝐹 + 𝐵. We

assume that𝑇 is a rooted tree by choosing an arbitrary vertex as its

root. For any pair of vertices 𝑢 and 𝑣 in 𝑇 , we denote by 𝑙𝑐𝑎(𝑢, 𝑣)
the LCA of 𝑢 and 𝑣 in𝑇 . The 𝑢-𝑣 path in𝑇 can be decomposed into

𝑃 (𝑢, 𝑙𝑐𝑎(𝑢, 𝑣)) and 𝑃 (𝑙𝑐𝑎(𝑢, 𝑣), 𝑣), where 𝑃 (𝑥,𝑦) be the unique 𝑥-𝑦
path in 𝑇 . To compute the LCA for pairs of terminals efficiently,

we use a data structure due to Harel and Tarjan [16]. This data

structure can be constructed in 𝑂 (𝑛) time using 𝑂 (𝑛) space and
allows us to compute 𝑙𝑐𝑎(𝑢, 𝑣) in𝑂 (1) time for given 𝑢 and 𝑣 . Thus,

for each terminal pair {𝑤,𝑤 ′} in 𝑇 , we can find the𝑤-𝑤 ′ path in

𝑂 ( |𝐸 (𝑃 (𝑤,𝑤 ′)) |) time. However, the running time is still quadratic

to find all paths between terminal pairs.

To compute the set of edges in𝑇 that belong to at least one path

between a pair of terminals, we make pairs (𝑙𝑐𝑎(𝑤,𝑤 ′),𝑤) and
(𝑙𝑐𝑎(𝑤,𝑤 ′),𝑤 ′) for every terminal pair {𝑤,𝑤 ′} and sort them in

the descending order of the height of 𝑙𝑐𝑎(𝑤,𝑤 ′). Since there are
at most 2𝑛 pairs and 𝑙𝑐𝑎(𝑤,𝑤 ′) is an integer between 1 and 𝑛, we

can sort them in 𝑂 (𝑛) time. Then, for each pair (𝑎,𝑤) processed in

this order, we mark all the edges on the path starting from𝑤 to its

ancestor 𝑎 and stop marking when a marked edge is found. Since

we do this in the sorted order, all the edges between 𝑤 and 𝑎 are

already marked. Thus, this marking process is done in total 𝑂 (𝑛)
time for all terminal pairs, and, by removing all unmarked edges,

we can obtain the unique minimal Steiner forest 𝐹 ′ of (𝐺,W) that
contains 𝐹 as a subgraph.

Theorem 25. Steiner Forest Enumeration can be solved in

𝑂 (𝑛 +𝑚) amortized time per solution and 𝑂 (𝑛 +𝑚) space. If we use
𝑂 (𝑛𝑚) preprocessing time, this problem can be solved in 𝑂 (𝑚) delay
with 𝑂

(
𝑛2

)
space.

Proof. The correctness of the algorithm follows from Theo-

rem 23.

Let𝑋 be a node in the enumeration tree. Let 𝐹 be a partial Steiner

forest of (𝐺,W) that is associated with 𝑋 . We can find a terminal

pair𝑊 ∈ W such that there are at least two valid paths for (𝐹,𝑊 ) in
𝑂 (𝑛 +𝑚) time if it exists. In this case, there are at least two children

of𝑋 , each of which can be generated in𝑂 (𝑛 +𝑚) delay with the 𝑠-𝑡

path enumeration algorithm. Otherwise, we can obtain the unique

minimal Steiner forest 𝐹 ′ of (𝐺,W) in 𝐹 + 𝐵 in 𝑂 (𝑛 +𝑚) time.

Since each internal node of this “improved” enumeration tree has

at least two children, the amortized running time of the algorithm

is 𝑂 (𝑛 +𝑚) using 𝑂 (𝑛 +𝑚) space. By applying the output queue

technique as in Theorem 15, we have the 𝑂 (𝑛 +𝑚) delay bound

with 𝑂
(
𝑛2

)
space. □

5.1 Terminal Steiner trees
In this subsection, we give a linear-delay and linear-space enumer-

ation algorithm for Terminal Steiner Tree Enumeration. The

essential difference from Steiner Tree Enumeration is that ev-

ery solution does not contain any terminals as an internal vertex,

which can be easily handled. The analysis is almost the same as the

one for Steiner Tree Enumeration. When |𝑊 | is equal to two,

the problem is identical to the 𝑠-𝑡 path enumeration problem. In

this case, we can enumerate all minimal terminal Steiner tree in

𝑂 (𝑛 +𝑚) delay and𝑂 (𝑛 +𝑚) space as proved in Theorem 12. Thus,

in what follows, assume that |𝑊 | > 2.
Let𝐺 = (𝑉 , 𝐸) be an undirected graph and let𝑊 ⊆ 𝑉 be a set of

terminals. Recall that a Steiner tree 𝑇 of (𝐺,𝑊 ) is called a terminal

Steiner tree if every terminal in𝑊 is a leaf in 𝑇 . A terminal Steiner

tree 𝑇 is called a minimal terminal Steiner tree of (𝐺,𝑊 ) if every
proper subgraph of 𝑇 is not a terminal Steiner tree of (𝐺,𝑊 ). It is
straightforward to verify the following proposition.

Proposition 26. 𝑇 is a minimal terminal Steiner tree of (𝐺,𝑊 ) if
and only if it is a terminal Steiner tree whose leaves are all terminal.

11



We first characterize the condition that there is at least one

terminal Steiner tree of (𝐺,𝑊 ).

Lemma 27. Suppose that𝑊 has at least three terminals. Then, there

is a terminal Steiner tree of (𝐺,𝑊 ) if and only if there is a component

𝐶 in𝐺 [𝑉 \𝑊 ] with𝑊 ⊆ 𝑁𝐺 (𝐶). Moreover, every terminal Steiner tree

of (𝐺,𝑊 ) has no edges between terminals and edges in a component

𝐶 in 𝐺 [𝑉 \𝑊 ] with𝑊 \ 𝑁𝐺 (𝐶) ≠ ∅.

Proof. Clearly, if there is a terminal Steiner tree 𝑇 of (𝐺,𝑊 ),
then 𝐺 [𝑉 \𝑊 ] has a component 𝐶𝑇 such that 𝐶𝑇 contains 𝑇 and

𝑊 ⊆ 𝑁𝐺 (𝐶𝑇 ) holds. For the converse, suppose that there is a

component 𝐶 in the statement. Then, we take a spanning tree 𝑇

in 𝐶 and add a leaf edge between𝑤 and a vertex in 𝑉 (𝑇 ) for each
𝑤 ∈𝑊 . This can be done by the fact that𝑊 ⊆ 𝑁𝐺 (𝐶), and hence

the obtained graph is a terminal Steiner tree.

Suppose that there is a terminal Steiner tree 𝑇 that has an edge

𝑒 between terminals or in a component 𝐶 of 𝐺 [𝑉 \𝑊 ] with𝑊 \
𝑁𝐺 (𝐶) ≠ ∅. Since there is a terminal𝑤 that is neither an end vertex

of 𝑒 nor contained in𝑁𝐺 (𝐶), the path between one of the end vertex
of 𝑒 and𝑤 must pass through some terminal𝑤 ′ ≠ 𝑤 , contradicting

to the fact that 𝑇 is a terminal Steiner tree. □

By Lemma 27, we assume that𝑊 is an independent set of𝐺 and

every component 𝐶 in 𝐺 [𝑉 \𝑊 ] satisfies𝑊 ⊆ 𝑁𝐺 (𝐶).
Now, we define partial solutions and valid paths for Terminal

Steiner Tree Enumeration. We say that a tree 𝑇 in 𝐺 is a partial

solution, or more specifically, a partial terminal Steiner tree of (𝐺,𝑊 )
if either (1) 𝑇 is the empty graph or (2) every leaf of 𝑇 is terminal

and there is a connected component 𝐶𝑇 of 𝐺 [𝑉 \𝑊 ] such that

𝑊 ⊆ 𝑁 (𝐶𝑇 ) and 𝑇 ⊆ 𝐸 (𝐺 [𝐶𝑇 ∪𝑊 ]). Suppose that 𝑇 is a partial

terminal Steiner tree that is not a terminal Steiner tree of (𝐺,𝑊 ).
Let 𝑤 be a terminal in𝑊 \ 𝑉 (𝑇 ). Then, a valid path 𝑃 for (𝑇,𝑤)
is defined as: (1) a 𝑤-𝑤 ′ path in 𝐺 for fixed 𝑤 ′ ∈ 𝑊 \ {𝑤} if 𝑇 is

the empty graph, or (2) a (𝑉 (𝑇 ) \𝑊 )-𝑤 path in𝐺 [𝐶𝑇 ∪𝑊 ]. By the

assumption that𝑊 is an independent set and every component 𝐶

in 𝐺 [𝑉 \𝑊 ] satisfies𝑊 ⊆ 𝑁𝐺 (𝐶), 𝑇 + 𝐸 (𝑃) is a partial terminal

Steiner tree of (𝐺,𝑊 ). The following lemma is essential to show

that Terminal Steiner Tree Enumeration can be solved by our

strategy.

Lemma 28. If 𝑇 is a partial terminal Steiner tree of (𝐺,𝑊 ), then
there is a minimal terminal Steiner tree of (𝐺,𝑊 ) that contains 𝑇 as

a subgraph.

Proof. From the definition of a partial terminal Steiner tree,

either𝑇 is the empty graph or there is a component𝐶𝑇 of𝐺 [𝑉 \𝑊 ]
such that𝑊 ⊆ 𝑁𝐺 (𝐶) and 𝐸 (𝑇 ) ⊆ 𝐸 (𝐺 [𝐶𝑇 ∪𝑊 ]). Since 𝑇 has no

cycles, there is a spanning tree of 𝐶𝑇 that contains all the edges in

𝐸 (𝑇 ) ∩𝐸 (𝐶𝑇 ). As𝑊 ⊆ 𝑁𝐺 (𝐶𝑇 ), this spanning tree can be extended

to a terminal Steiner tree of (𝐺,𝑊 ) by adding an edge {𝑣,𝑤} for
each 𝑤 ∈ 𝑊 \ 𝑉 (𝑇 ) with some leaf 𝑣 ∈ 𝑁 (𝑤) ∩ 𝐶𝑇 and an edge

{𝑣,𝑤} ∈ 𝑇 for𝑤 ∈𝑊 ∩𝑉 (𝑇 ). This terminal Steiner tree may have

a non-terminal leaf. By repeatedly removing such a non-terminal

leaf and, by Proposition 26, we have a minimal terminal Steiner

tree 𝑇 ∗ of (𝐺,𝑊 ). Since every leaf of 𝑇 is terminal, every edge in

𝑇 is not removed in this process. Hence, 𝑇 ∗ is a minimal terminal

Steiner tree containing 𝑇 . □

Now, we briefly describe an enumeration algorithm for terminal

Steiner trees according to Algorithm 3. The main idea is similar to

the algorithm for Steiner Tree Enumeration. We initially call

E-Sol(𝐺,𝑊 ,𝑇∅), where 𝑇∅ is the empty graph. Let 𝑇 be a partial

terminal Steiner tree of (𝐺,𝑊 ). If 𝑇 contains all the terminals in

𝑊 , then 𝑇 is a minimal terminal Steiner tree of (𝐺,𝑊 ) and we

output it. Otherwise, there is a terminal𝑤 not contained in𝑇 . By the

assumption that𝑊 is an independent set of𝐺 and every component

𝐶 in𝐺 [𝑉 \𝑊 ] satisfies𝑊 ⊆ 𝑁𝐺 (𝐶), there is at least one valid path
for (𝑇,𝑤). We extend 𝑇 by adding a valid path 𝑃 for (𝑇,𝑤). To do

this, we need to enumerate all valid paths for (𝑇,𝑤). For case (1)
where 𝑇 is the empty graph, we just enumerate all𝑤-𝑤 ′ paths in
𝐺 . For case (2), we first compute the component 𝐶𝑇 in 𝐺 [𝑉 \𝑊 ]
and select a terminal 𝑤 from𝑊 \ 𝑉 (𝑇 ). Then, we enumerate all

the valid paths for (𝑇,𝑤) by enumerating all (𝑉 (𝑇 ) \𝑊 )-𝑤 paths

in 𝐺 [𝐶𝑇 ∪𝑊 ]. The correctness of the algorithm follows from an

analogous argument in Lemma 14, and its complexity follows from

an analysis almost identical to the one in Theorem 23. Thus, we

have the following.

Theorem 29. Terminal Steiner Tree Enumeration can be solved

in 𝑂 (𝑛𝑚) delay and 𝑂 (𝑛 +𝑚) space.
The remaining of this subsection is devoted to showing a linear-

delay algorithm for Terminal Steiner Tree Enumeration. To

this end, we improve the enumeration tree so that each internal

node has at least two children.

Lemma 30. Let 𝑇 be a non-empty partial Steiner tree of (𝐺,𝑊 ),
let𝑤 be a terminal not contained in 𝑇 , and let 𝑃 be a valid path for

(𝑇,𝑤). Then, 𝑃 is the unique valid path for (𝑇,𝑤) in𝐺 if and only if

every edge in 𝑃 is a bridge in 𝐺 [𝐶𝑡 ∪𝑊 ].

Proof. Suppose that there are at least two valid paths 𝑃 and 𝑃 ′

for (𝑇,𝑤) in 𝐺 . By an analogous argument in Lemma 16, there is a

cycle in𝐺 [𝐶𝑡 ∪𝑊 ] that contains at least one edge from both paths

𝑃 and 𝑃 ′. This implies that every (𝑉 (𝑇 ) \𝑊 )-𝑤 path in𝐺 [𝐶𝑡 ∪𝑊 ]
has a non-bridge edge in 𝐺 [𝐶𝑇 ∪𝑊 ].

Conversely, if 𝑃 has a non-bridge edge 𝑒 in𝐺 [𝐶𝑇 ∪𝑊 ], rerouting
𝑃 along with a cycle passing through 𝑒 yields a valid path distinct

from 𝑃 for (𝑇,𝑤). □

From this lemma, we can find either a terminal 𝑤 such that

𝐺 [𝐶𝑇 ∪𝑊 ] has at least two 𝑉 (𝑇 )-𝑤 paths or a unique minimal

terminal Steiner tree of (𝐺,𝑊 ) that contains 𝑇 as a subgraph in

linear time when𝑇 is a non-empty partial Steiner tree of (𝐺,𝑊 ). To
do this, a similar idea used in Steiner Tree Enumeration works

well. First, we enumerate all the bridges in 𝐺 [𝐶𝑇 ∪𝑊 ] in linear

time using a linear-time bridge enumeration algorithm [32]. Then,

we compute an arbitrary minimal terminal Steiner tree𝑇 ′ of (𝐺,𝑊 )
that contains 𝑇 as a subgraph in linear time. This can be done by

taking an arbitrary spanning tree that contains𝑇 in𝐺 [𝐶𝑡 ∪𝑊 ] and
removing non-terminal leaves. By Proposition 26, 𝑇 ′ is a minimal

terminal Steiner tree of (𝐺,𝑊 ). Using the bridges in 𝐺 [𝐶𝑇 ∪𝑊 ]
and 𝑇 ′, by Lemma 30, we can “improve” the enumeration tree in

the sense that each internal node has at least two children except

for the root node. When 𝑇 is the empty graph, we cannot apply

Lemma 30. However, this exceptional case can be seen as a “linear-

time preprocessing”. Hence, by a similar argument to Theorem 25,

we can obtain the following theorem.
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Theorem 31. Terminal Steiner Tree Enumeration can be solved

in 𝑂 (𝑛 +𝑚) amortized time per solution and 𝑂 (𝑛 +𝑚) space. If we
allow 𝑂

(
𝑛2

)
space and 𝑂 (𝑛𝑚) preprocessing time, this problem can

be solved in 𝑂 (𝑛 +𝑚) delay.

5.2 Directed Steiner trees
In this subsection, we develop a linear-delay enumeration algorithm

for minimal directed Steiner trees. Let 𝐷 = (𝑉 , 𝐸) be a directed

graph with terminal set𝑊 ⊆ 𝑉 and let 𝑟 ∈ 𝑉 \𝑊 . Recall that

a subgraph 𝑇 of 𝐷 is a directed Steiner tree of (𝐷,𝑊 , 𝑟 ) if 𝑇 is a

directed tree rooted at 𝑟 that contains an 𝑟 -𝑤 path for each𝑤 ∈𝑊
and 𝑇 is a minimal directed Steiner tree of (𝐷,𝑊 , 𝑟 ) if no proper

subgraph of 𝑇 is a directed Steiner tree of (𝐷,𝑊 , 𝑟 ).

Proposition 32. 𝑇 is a minimal directed Steiner tree of (𝐷,𝑊 , 𝑟 )
if and only if it is a directed Steiner tree whose leaves are all terminal.

Without loss of generality, for any vertex 𝑣 ∈ 𝑉 , 𝐷 has a 𝑟 -𝑣

directed path. By a similar argument as in the other variants, we say

a directed tree𝑇 rooted at 𝑟 is a partial solution, or more specifically,

a partial directed Steiner tree of (𝐷,𝑊 , 𝑟 ) if all the leaves in 𝑇 are

terminals. Let𝑤 be an arbitrary terminal not in a partial directed

Steiner tree 𝑇 . We say that a directed path 𝑃 is valid for (𝑇,𝑤) if
𝑃 is a directed 𝑉 (𝑇 )-𝑤 path. Then, we observe the following key

lemma.

Lemma 33. If 𝑇 is a partial directed Steiner tree of (𝐷,𝑊 , 𝑟 ), then
there is a minimal directed Steiner tree of (𝐷,𝑊 , 𝑟 ) that contains 𝑇
as a subgraph.

Proof. Let𝑇 be a partial directed Steiner tree of (𝐷,𝑊 , 𝑟 ). Then,
from the assumption that each vertex is reachable from 𝑟 , we can

obtain a spanning tree 𝑇 ′ containing 𝑇 by adding paths to vertices

not in 𝑇 so that each vertex in 𝑇 ′ can be reachable from 𝑟 . Clearly,

𝑇 ′ is a directed Steiner tree of (𝐷,𝑊 , 𝑟 ) with root 𝑟 . Repeatedly

removing non-terminal leaves from 𝑇 ′ yields a minimal directed

Steiner tree of (𝐷,𝑊 , 𝑟 ) by Proposition 32. □

We now describe our enumeration algorithm for minimal di-

rected Steiner trees. We initially call E-Sol(𝐷,𝑊 ,𝑇0 = ({𝑟 }, ∅)).
Let 𝑇 be a partial directed Steiner tree of (𝐷,𝑊 , 𝑟 ). On recursive

call E-Sol(𝐷,𝑊 ,𝑇), if 𝑇 contains all terminals, we output it. Oth-

erwise, we find a terminal 𝑤 ∈ 𝑊 \ 𝑉 (𝑇 ). Then, we compute

all the valid paths for (𝑇,𝑤) by enumerating 𝑉 (𝑇 )-𝑤 paths in 𝐷 .

By the assumption that 𝑤 is reachable from 𝑟 , there is at least

one valid path for (𝑇,𝑤). For each valid path 𝑃 for (𝑇,𝑤), we call
E-Sol(𝐷,𝑊 ,𝑇 + 𝐸 (𝑃)). The next theorem directly follows from an

analogous argument in Theorem 23.

Theorem 34. We can enumerate all minimal directed Steiner trees

in 𝑂 (𝑛𝑚) delay and 𝑂 (𝑛 +𝑚) space.

In the remaining of this subsection, we give a linear-delay enu-

meration algorithm for Directed Steiner Tree Enumeration. To

this end, we “improve” the enumeration tree so that each internal

node has at least two children. Once we can make this improvement

in linear time for each node in the enumeration tree, we can prove,

as in the previous subsections, that the entire algorithm runs in

𝑂 (𝑛 +𝑚) amortized time and 𝑂 (𝑛 +𝑚) space. To find either a ter-

minal𝑤 ∈𝑊 \𝑉 (𝑇 ) such that there are at least two valid paths for

(𝑇,𝑤) or the unique minimal directed Steiner tree of (𝐷,𝑊 , 𝑟 ) that
contains𝑇 as a subgraph, we consider the multigraph𝐷 ′ = 𝐷/𝐸 (𝑇 ),
which is obtained from 𝐷 by contracting all edges in 𝑇 . If 𝐷 ′ has
at least two directed 𝑟𝑇 -𝑤 paths for some terminal𝑤 ∈𝑊 \𝑉 (𝑇 ),
then we can immediately conclude that there are at least two valid

paths for (𝑇,𝑤). To see this, let us consider an arbitrary depth-first

search (DFS) tree 𝑇 ′ in 𝐷 ′ starting at node 𝑟𝑇 corresponding to the

contracted part𝑇 in 𝐷 ′ and a total order ≺ on𝑉 (𝑇 ′) determined by

a post-order transversal in𝑇 ′. Let𝑊 ′ =𝑊 \𝑉 (𝑇 ) and let𝑇 ∗ be the
minimal directed Steiner tree of (𝐷 ′,𝑊 ′, 𝑟𝑇 ) that is a subtree of 𝑇 ′.

Lemma 35. 𝐷 ′ has a minimal directed Steiner tree of (𝐷 ′,𝑊 ′, 𝑟𝑇 )
distinct from 𝑇 ∗ if and only if there exists a pair 𝑢 and 𝑣 of distinct

vertices with 𝑢 ≺ 𝑣 in 𝑇 ∗ such that 𝐷 ′ − 𝐸 (𝑇 ∗) has a directed 𝑣-𝑢

path.

Proof. For a directed path 𝑃 , we denote by 𝑡 (𝑃) the unique sink
of 𝑃 .

Suppose first that 𝐷 − 𝐸 (𝑇 ∗) has a directed 𝑣-𝑢 path 𝑃 such that

𝑢 ≺ 𝑣 . As ≺ is determined by a post-order transversal in 𝑇 ′, either
𝑣 is an ancestor of 𝑢 in𝑇 ′, or they have no the ancestor-descendant

relationship. If 𝑣 is an ancestor of 𝑢 in 𝑇 ′, then 𝑇 ∗ − 𝐸 (𝑃 ′) + 𝐸 (𝑃)
is a minimal directed Steiner tree of (𝐷 ′,𝑊 ′, 𝑟𝑇 ) with distinct from

𝑇 ∗, where 𝑃 ′ is defined to be the maximal subpath in 𝑇 ∗ with
𝑡 (𝑃 ′) = 𝑢 that has neither 𝑣 nor any terminals as an internal vertex.

Otherwise, let 𝑤 be the lowest common ancestor of 𝑢 and 𝑣 in

𝑇 ∗. Then, 𝑇 ∗ − 𝐸 (𝑃 ′) + 𝐸 (𝑃) is a minimal directed Steiner tree of

(𝐷 ′,𝑊 ′, 𝑟𝑇 ) with distinct from 𝑇 ∗, where 𝑃 ′ is defined to be the

maximal subpath in 𝑇 ∗ with 𝑡 (𝑃 ′) = 𝑢 that has neither𝑤 nor any

terminals as an internal vertex.

Conversely, let𝑇 ∗∗ be aminimal directed Steiner tree of (𝐷 ′,𝑊 ′, 𝑟𝑡 )
with 𝑇 ∗∗ ≠ 𝑇 ∗. Then, there exist two distinct 𝑟 -𝑤 paths 𝑃∗ and 𝑃∗∗

in𝑇 ∗ and𝑇 ∗∗ for some𝑤 ∈𝑊 ′, respectively. Let𝑄 be the maximal

subpath of 𝑃∗ with 𝑉 (𝑄) ⊆ 𝑉 (𝑃∗) ∩ 𝑉 (𝑃∗∗) and 𝑢 be the source

vertex of𝑄 . Since𝑤 ∈ 𝑉 (𝑃∗) ∩𝑉 (𝑃∗∗), 𝑢 is well-defined. Let𝑄 ′ be
the maximal subpath of 𝑃∗∗ with 𝑡 (𝑄 ′) = 𝑢 such that every internal

vertex does not belong to 𝑇 ∗ and let 𝑣 be the source vertex of 𝑄 ′.
Since 𝑟 ∈ 𝑉 (𝑇 ∗) ∩𝑉 (𝑃∗∗), 𝑣 is well-defined. As 𝑃∗ ≠ 𝑃∗∗, we have
𝑢 ≠ 𝑣 .

Now we claim that 𝑢 ≺ 𝑣 in𝑇 ∗ and 𝐷 ′−𝐸 (𝑇 ∗) has a directed 𝑣-𝑢
path. If 𝑣 ≺ 𝑢, then either 𝑢 is an ancestor of 𝑣 in 𝑇 ∗ or there is no
directed path from 𝑣 to 𝑢 in 𝐷 ′, which contradicts to the choice of

𝑢 and 𝑣 . Moreover, 𝑄 ′ is indeed a directed 𝑣-𝑢 path in 𝐷 ′ − 𝐸 (𝑇 ∗),
completing the proof of the lemma. □

By Lemma 35, to find a terminal 𝑤 that has at least two valid

paths for (𝑇,𝑤), it is sufficient to check whether there is a directed

path from a larger vertex to a smaller vertex in 𝐷 − 𝐸 (𝑇 ∗) with
respect to ≺. This can be done as follows. From the largest vertex

𝑣 with respect to ≺, we compute the reachability of each vertex

in 𝐷 ′ by a standard graph search algorithm. If there is a vertex 𝑢

that is reachable from 𝑣 , we are done. Otherwise, we remove all the

vertices reachable from 𝑣 and repeat the same procedure until we

find such a path or the graph is empty. Since 𝑢 is reachable from

some 𝑣 ′ with 𝑢 ≺ 𝑣 ′ in the original graph 𝐷 ′ if and only if either 𝑢

is reachable from 𝑣 in 𝐷 ′ or 𝑢 is reachable from 𝑣 ′ in the removed

graph, this algorithm works correctly. Clearly, the algorithm runs

in 𝑂 (𝑛 +𝑚) time. Hence, we have the following conclusion.
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Theorem 36. Directed Steiner Tree Enumeration can be solved

in amortized 𝑂 (𝑛 +𝑚) time and 𝑂 (𝑛 +𝑚) space. If we allow 𝑂 (𝑛𝑚)
preprocessing time, this problem can be solved in𝑂 (𝑛 +𝑚) delay with
𝑂
(
𝑛2

)
space.

6 HARDNESS OF INTERNAL STEINER TREES
AND GROUP STEINER TREES

In this section, we discuss some of the hard variants of Steiner

Tree Enumeration. Recall that a Steiner tree of (𝐺,𝑊 ) is called
an internal Steiner tree if every vertex in𝑊 is an internal vertex of

the tree. Let 𝑠, 𝑡 ∈ 𝑉 be distinct vertices and𝑊 = 𝑉 \ {𝑠, 𝑡}. Then,
there is an internal Steiner tree of (𝐺,𝑊 ) if and only if 𝐺 has an

𝑠-𝑡 Hamiltonian path, which implies the following theorem.

Theorem 37. Unless P = NP, there is no incremental-polynomial

time algorithm for Internal Steiner Tree Enumeration.

We also remark that, as opposed to Steiner Tree Enumeration

and several variants discussed above, we show that Group Steiner

Tree Enumeration is at least as hard as Minimal Transver-

sal Enumeration. Given a hypergraph H = (𝑈 , E), Minimal

Transversal Enumeration is the problem of enumerating inclusion-

wise minimal subsets 𝑋 ⊆ 𝑈 , called a minimal transversal of H ,

such that 𝑋 ∩𝑒 ≠ ∅ for every 𝑒 ∈ E. The problem is one of the most

challenging problems in the field of enumeration algorithms, and

the best-known algorithm is due to Fredman and Khachiyan [13],

which runs in total time ( |𝑈 | + 𝑁 )𝑂 (log( |𝑈 |+𝑁 )) , where 𝑁 is the

number of minimal transversals ofH . The existence of an output-

polynomial time algorithm, that is, it runs in total time (𝑈 +|𝑁 |)𝑂 (1) ,
still remains open. Several papers [19,27] pointed out some relation

between the minimum group Steiner tree problem and the mini-

mum transversal problem to prove the hardness of approximation.

This relation also holds in the context of enumeration.

Theorem 38. If there is an algorithm that solves Group Steiner

Tree Enumeration in output-polynomial time, thenMinimal Transver-

sal Enumeration can be solved in output-polynomial time.

Proof. LetH = (𝑈 , E) be an instance ofMinimal Transversal

Enumeration. Then, we construct a star graph 𝐺 as follows. The

center of𝐺 is denoted by 𝑟 and𝐺 has a leaf vertex ℓ𝑢 for each𝑢 ∈ 𝑈 .

For each 𝑒 ∈ E, we let𝑊𝑒 = {ℓ𝑢 : 𝑢 ∈ 𝑒} be a terminal set for 𝑒 . It

is not hard to see that 𝑋 is a minimal transversal ofH if and only

if𝐺 [𝑋 ∪ {𝑟 }] is a minimal solution of (𝐺, {𝑊𝑒 : 𝑒 ∈ E}) for Group
Steiner Tree Enumeration. This indicates that Group Steiner

Tree Enumeration is at least as hard asMinimal Transversal

Enumeration. □

7 MINIMAL INDUCED STEINER SUBGRAPHS
FOR CLAW-FREE GRAPHS

Another variant of Steiner Tree Enumeration is Induced Steiner

Tree Enumeration, where the goal is to enumerate all inclusion-

wise minimal subsets of vertices that induce Steiner subgraphs of

given (𝐺,𝑊 ). Since every induced subgraph is defined as a subset

of vertices, we may not distinguish them unless confusion arises.

Recall that a graph is claw-free if it has no induced subgraph iso-

morphic to 𝐾1,3, i.e., a star with three leaves. Before describing the

details of our proposed algorithm, we first observe that Induced

Steiner Tree Enumeration on claw-free graphs is a generalization

of Steiner Tree Enumeration.

Let𝐺 = (𝑉 , 𝐸) be a graph and let𝑊 ⊆ 𝑉 be terminals. We begin

with the line graph 𝐿(𝐺) of 𝐺 with 𝑉 (𝐿(𝐺)) = {𝑣𝑒 : 𝑒 ∈ 𝐸} and
two vertices 𝑣𝑒 and 𝑣𝑒 are adjacent in 𝐿(𝐺) if and only if they have

a common end vertex, and then construct a graph 𝐻 by adding

vertices and edges to 𝐿(𝐺) as follows. Starting from 𝐻 = 𝐿(𝐺), we
add a vertex𝑤 ′ to 𝐻 for each𝑤 ∈𝑊 , and add an edge between 𝑣𝑒
and𝑤 ′ for each 𝑒 ∈ Γ𝐺 (𝑤) in 𝐻 . Define𝑊𝐻 = {𝑣 ′ : 𝑣 ∈𝑊 }. Then,
the following theorem holds.

Theorem 39. Let 𝑇 be a connected subgraph of 𝐺 and let 𝑉𝑇 =

{𝑣𝑒 : 𝑒 ∈ 𝐸 (𝑇 )}. Then, 𝑇 is a connected Steiner subgraph of (𝐺,𝑊 )
if and only if 𝐻 [𝑉𝑇 ∪𝑊𝐻 ] is a connected induced Steiner subgraph
of (𝐻,𝑊𝐻 ).

Proof. Suppose that𝐻 [𝑉𝑇 ∪𝑊𝐻 ] is a connected induced Steiner
subgraph of (𝐻,𝑊𝐻 ). Observe that 𝐻 [𝑉𝑇 ] is connected in 𝐻 . To

see this, suppose that 𝐻 [𝑉𝑇 ] is not connected. Since 𝐻 [𝑉𝑇 ∪𝑊𝐻 ]
is connected, there is a terminal 𝑤 ∈𝑊𝐻 and components 𝑋 and

𝑌 in 𝐻 [𝑉𝑇 ] such that both 𝑁𝐻 (𝑤) ∩ 𝑋 and 𝑁𝐻 (𝑤) are nonempty.

However, 𝑁𝐻 (𝑤) induces a clique in 𝐻 for every𝑤 ∈𝑊𝐻 , which
is a contradiction. Thus, 𝐻 [𝑉𝑇 ] is connected. Since 𝑉𝑇 contains at

least one vertex in 𝑁𝐻 (𝑤) for each𝑤 ∈𝑊 and𝐻 [𝑉𝑇 ] is connected,
𝑇 is a connected Steiner subgraph of (𝐺,𝑊 ).

Conversely, suppose that 𝑇 is a connected Steiner subgraph of

(𝐺,𝑊 ). For every pair of terminals 𝑤 and 𝑤 ′ in𝑊 , the edges of

a path between them also induce a path between 𝑤 and 𝑤 ′ in
𝑊𝐻 . This implies that 𝐻 [𝑉𝑇 ∪𝑊𝐻 ] is a connected induced Steiner

subgraph of (𝐻,𝑊𝐻 ). □

Since every line graph is claw-free, we conclude that Induced

Steiner Tree Enumeration on claw-free graphs is a generalization

of Steiner Tree Enumeration.

Our proposed algorithm is based on the supergraph technique [6,

7, 9, 23, 31]. Let us briefly describe the idea of this technique. Let

𝐺 = (𝑉 , 𝐸) be a claw-free graph and𝑊 ⊆ 𝑉 . Let S ⊆ 2𝑉 be the set

of minimal induced Steiner subgraphs of (𝐺,𝑊 ). In this technique,

we consider a directed graph G whose nodes correspond to the

solutions S, and whose arc set is defined so that G is strongly

connected. As G is strongly connected, we can enumerate all the

solutions from an arbitrary one by traversing G. However, since
strong connectivity is a “global” property and we do not know the

entire node set S of G, it would be nontrivial to “locally” define the
set of arcs of G, that is, define the neighborhood of each solution

in G. To this end, we define a “distance” measure 𝜎 : S ×S → Z≥0
between two solutions. If one can prove that

(1) for 𝑋,𝑌 ∈ S, 𝜎 (𝑋,𝑌 ) = 0 if and only if 𝑋 = 𝑌 and

(2) for every pair of distinct solutions𝑋 and𝑌 ,𝑋 has a neighbor

𝑍 in G with 𝜎 (𝑋,𝑌 ) > 𝜎 (𝑍,𝑌 ),
then G has a directed path from 𝑋 to 𝑌 , and hence G is strongly

connected. Specifically, for 𝑋,𝑌 ∈ S, we define 𝜎 (𝑋,𝑌 ) = |𝑋 \
𝑌 |. As we will see later, the supergraph G defined by a simple

construction does not satisfy condition (1). To solve this issue, the

second condition is relaxed to

(2’) for every pair of distinct solutions𝑋 and𝑌 , there is a directed

path from 𝑋 to 𝑍 in G with 𝜎 (𝑋,𝑌 ) > 𝜎 (𝑍,𝑌 ),
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which is sufficient to prove the strong connectivity of G. We can

easily see the following proposition from the definition of 𝜎 and

the minimality of solutions.

Proposition 40. Let 𝑋 and 𝑌 be minimal induced Steiner sub-

graphs of (𝐺,𝑊 ). Then, 𝜎 (𝑋,𝑌 ) = 0 if and only if 𝑋 = 𝑌 .

To complete the description of our enumeration algorithm, we

need to define the neighborhood relation in G. Given a connected

vertex set 𝑋 ⊆ 𝑉 with𝑊 ⊆ 𝑋 , 𝜇 is a procedure that computes

an arbitrary minimal induced Steiner subgraph 𝜇 (𝑋,𝑊 ) of (𝐺,𝑊 )
that is contained in 𝑋 . Such a procedure is defined by a simple

greedy algorithm that repeatedly removes a vertex 𝑣 from 𝑋 \𝑊 as

long as 𝐺 [𝑋 \ {𝑣}] is an induced Steiner subgraph of (𝐺,𝑊 ). To
define a neighbor of 𝑋 in G, we need some observations. For each

𝑣 ∈ 𝑋 \𝑊 , 𝐺 [𝑋 \ {𝑣}] has two or more connected components

as otherwise 𝐺 [𝑋 \ {𝑣}] is an induced Steiner subgraph of (𝐺,𝑊 ),
which contradicts the minimality of 𝑋 . Since 𝐺 is claw-free, there

are exactly two connected components 𝐶1 and 𝐶2 in 𝐺 [𝑋 \ {𝑣}].
This follows from the fact that if𝐺 [𝑋 \ {𝑣}] has three components,

𝑣 and three neighbors from these three components induce a claw

𝐾1,3. As 𝑋 is a minimal induced Steiner subgraph of (𝐺,𝑊 ), both
components contain at least one terminal.

For each 𝑤 ∈ 𝑁 (𝐶1) \ {𝑣}, we let 𝐶𝑤1 = 𝜇 (𝐶1 ∪ {𝑤}, (𝑊 ∩
𝐶1) ∪ {𝑤}) and𝐶𝑤2 = 𝜇 (𝐶2,𝑊 ∩𝐶2). Note that𝐶𝑤1 is well-defined

as 𝐺 [𝐶1 ∪ {𝑤}] is connected. Let 𝑃 be an arbitrary shortest path

between𝑤 and𝐶𝑤2 that avoids 𝑁 (𝐶𝑤1 ) \ {𝑤}. If such 𝑃 exists,𝐶𝑤1 ∪
𝐶𝑤2 ∪𝑉 (𝑃) is an induced Steiner subgraph of (𝐺,𝑊 ) since𝐶𝑤1 ∪𝐶

𝑤
2

contains all the terminals and 𝑃 is an 𝑁 (𝐶𝑤1 )-𝑁 (𝐶
𝑤
2 ) path. Now,

a neighbor 𝑍 of 𝑋 is defined to be 𝜇 (𝐶𝑤1 ∪𝐶
𝑤
2 ∪𝑉 (𝑃),𝑊 ). As all

the vertices in 𝑉 (𝑃) are cut vertices in 𝐺 [𝐶𝑤1 ∪ 𝐶
𝑤
2 ∪ 𝑉 (𝑃)], we

have 𝑉 (𝑃) ⊆ 𝑍 . By the construction, 𝑍 does not contain 𝑣 but

does contain𝑤 . Given this, we say that 𝑍 is the neighbor of 𝑋 with

respect to (𝑣,𝑤) and define the arc set of G with this neighborhood

relation. We only define such a neighbor 𝑍 when it is well-defined.

Clearly, every minimal induced Steiner subgraph of (𝐺,𝑊 ) has
𝑂 (𝑛2) neighbors, which can be enumerated in 𝑂

(
𝑛2 (𝑛 +𝑚)

)
time.

Next, we show that for every pair of solutions 𝑋 and 𝑌 , there

is a solution 𝑍 reachable from 𝑋 that is “closer to 𝑌 ” than 𝑋 . The

following lemma directly implies the strong connectivity of G.

Lemma 41. Let 𝑋 and 𝑌 be distinct minimal induced Steiner sub-

graphs of (𝐺,𝑊 ). Then, G has a directed path from 𝑋 to a minimal

induced Steiner subgraph 𝑍 of (𝐺,𝑊 ) with 𝜎 (𝑋,𝑌 ) > 𝜎 (𝑍,𝑌 ).

Proof. Let 𝑣 be a non-terminal vertex in𝑋 \𝑌 , and𝐶1 and𝐶2 be

the connected components in 𝐺 [𝑋 \ {𝑣}]. Since both components

contain at least one terminal each, there is a path 𝑃 = (𝑤1, . . . ,𝑤𝑘 )
between 𝑁 (𝐶1) and 𝑁 (𝐶2) such that 𝑉 (𝑃) ⊆ 𝑌 . We can assume

that𝑤1 ∈ 𝑁 (𝐶1) \ {𝑣},𝑤𝑘 ∈ 𝑁 (𝐶2) \ {𝑣}, and all the other vertices
are not in 𝑁 (𝐶1) by appropriately choosing 𝑃 . Let 𝐶1

1 = 𝜇 (𝐶1 ∪
{𝑤1}, (𝑊 ∩𝐶1) ∪ {𝑤1}) and 𝐶1

2 = 𝜇 (𝐶2,𝑊 ∩𝐶2). Since subpath
(𝑤2, . . . ,𝑤𝑘 ) has no vertices in 𝑁 (𝐶1

1) \ {𝑤1}, there is at least one
shortest path 𝑃1 between𝑤1 and 𝑁 (𝐶1

2) that avoids 𝑁 (𝐶
1
1) \ {𝑤1}.

Define 𝑋1 = 𝜇 (𝐶1
1 ∪ 𝐶

1
2 ∪ 𝑉 (𝑃1),𝑊 ) is the neighbor of 𝑋 with

respect to (𝑣,𝑤1). If 𝑃1 = 𝑃 , then

𝜎 (𝑋1, 𝑌 ) = |𝑋1 \ 𝑌 |
≤ |(𝐶1

1 ∪𝐶
1
2 ∪𝑉 (𝑃1)) \ 𝑌 |

≤ |(𝐶1 ∪𝐶2) \ 𝑌 |
< |𝑋 \ 𝑌 |,

and hence we are done.

Suppose otherwise, that is, 𝑃1 ≠ 𝑃 . Recall that 𝑉 (𝑃1) ⊆ 𝑋1. 𝑃1
contains {𝑤1, . . . ,𝑤𝑖−1} and does not contain𝑤𝑖 for some 1 < 𝑖 ≤ 𝑘 .
Let 𝑣 ′ be the vertex adjacent to 𝑤𝑖−1 with 𝑣 ≠ 𝑤𝑖−2 in 𝑃 . Let

𝐶 ′1 and 𝐶 ′2 be the connected components in 𝐺 [𝑋1 \ {𝑣 ′}]. Define
𝐶2
1 = 𝜇 (𝐶 ′1 ∪ {𝑤𝑖 }, (𝑊 ∩𝐶

′
1) ∪ {𝑤𝑖 }) and𝐶

2
2 = 𝜇 (𝐶 ′2,𝑊 ∩𝐶

′
2). We

show that the following claim.

Claim: 𝐶2
2 ⊆ 𝐶2.

Proof of Claim: Let 𝑃1 = (𝑤1, . . . ,𝑤𝑖−1, 𝑢1, . . . , 𝑢𝑡 ) with 𝑢1 = 𝑣 ′

and 𝑢𝑡 ∈ 𝑁 (𝐶1
2). Observe that 𝐶

′
2 = 𝐶1

2 ∪ {𝑢2, . . . 𝑢𝑡 }. In the fol-

lowing, we prove that the vertices 𝑢2, . . . , 𝑢𝑡 vanish using the func-

tion 𝜇 regardless of its implementation, which proves the claim as

𝐶1
2 ⊆ 𝐶2.

Since 𝑃1 is a shortest path between𝑤1 and 𝑁 (𝐶1
2), every vertex

in {𝑢2, . . . , 𝑢𝑡−1} is not adjacent to a vertex in𝐶1
2 . This implies that

those vertices are not contained in 𝐶2
2 = 𝜇 (𝐶 ′2,𝑊 ∩𝐶

′
2). Suppose

that there is a minimal Steiner subgraph 𝐶2
2 of (𝐺 [𝐶 ′2],𝑊 ∩ 𝐶

′
2)

containing𝑢𝑡 . We assume that𝐶 ′2 contains at least two terminals as

otherwise𝐶2
2 consists of exactly one vertex, which is terminal. Since

𝑢𝑡 is in 𝐶
2
2 , 𝐶

2
2 contains an induced path between two terminals

in 𝐶2
2 passing through 𝑢𝑡 . Then, the two adjacent vertices of 𝑢𝑡 in

this path together with 𝑢𝑡 and 𝑢𝑡−1 form an induced claw, which

contradicts the fact that 𝐺 is claw-free. □
By the same argument as above, the neighbor 𝑋2 of 𝑋1 with

respect to (𝑣 ′,𝑤𝑖 ) is well-defined. We inductively compute the

neighbor𝑋𝑖 of𝑋𝑖−1 unless 𝑃𝑖 contains a vertex that does not belong
to 𝑉 (𝑃). Eventually, we have 𝑋𝑖 that consists of 𝐶𝑖1 ∪𝐶

𝑖
2 ∪𝑉 (𝑃𝑖 ),

where 𝐶𝑖1 ⊆ 𝐶1 ∪ 𝑉 (𝑃), 𝐶𝑖2 ⊆ 𝐶2, and 𝑉 (𝑃𝑖 ) ⊆ 𝑉 (𝑃). Then, we
have

𝜎 (𝑋𝑖 , 𝑌 ) = |𝑋𝑖 \ 𝑌 |
≤ |(𝐶1 ∪𝐶2 ∪𝑉 (𝑃)) \ 𝑌 |
≤ |(𝐶1 ∪𝐶2) \ 𝑌 |
< |𝑋 \ 𝑌 |,

which completes the proof of lemma. □

By Lemma 41, G is strongly connected. Thus, by using a standard

graph search algorithm on G, we can enumerate all the minimal

induced Steiner subgraphs of (𝐺,𝑊 ) in 𝑂
(
𝑛2 (𝑛 +𝑚)

)
delay.

Theorem 42. Induced Steiner Subgraph Enumeration can be

solved in 𝑂
(
𝑛2 (𝑛 +𝑚)

)
delay using exponential space on claw-free

graphs.
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