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We introduce annotated grammars, an extension of context-free grammars
which allows annotations on terminals. Our model extends the standard no-
tion of regular spanners, and is more expressive than the extraction grammars
recently introduced by Peterfreund. We study the enumeration problem for
annotated grammars: fixing a grammar, and given a string as input, enumer-
ate all annotations of the string that form a word derivable from the gram-
mar. Our first result is an algorithm for unambiguous annotated grammars,
which preprocesses the input string in cubic time and enumerates all anno-
tations with output-linear delay. This improves over Peterfreund’s result,
which needs quintic time preprocessing to achieve this delay bound. We then
study how we can reduce the preprocessing time while keeping the same de-
lay bound, by making additional assumptions on the grammar. Specifically,
we present a class of grammars which only have one derivation shape for
all outputs, for which we can enumerate with quadratic time preprocessing.
We also give classes that generalize regular spanners for which linear time
preprocessing suffices.
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1. Introduction

Arguably the most fundamental problem in database research is query evaluation: given
as input a query and data, we must find the results of the query over the data. Database
theory research has studied the complexity of such problems for decades. However, in
some contexts, for instance over large datasets, the usual complexity measures are not
well-suited to this study. Indeed, the number of query results might be so large that it
is unreasonable in practice to produce all of them. Further, in theoretical terms, the
complexity of an algorithm may be dominated by the cost of writing the full output,
hiding the actual complexity of the computation. For this reason, a significant line
of research on query evaluation has adopted the perspective of enumeration algorithms.
Instead of explicitly producing all results, the task is to enumerate them, in any order and
without repetition. The cost of the algorithm is then measured across two dimensions:
the preprocessing time, which is the time needed to read the input and prepare an
enumeration data structure; and the delay, the worst-case time elapsed between any two
solutions while enumerating using the data structure.

This study of enumeration algorithms has managed in some cases to achieve a constant-
delay guarantee. In this case, once the algorithm has preprocessed its input, the delay
between any two outputs is constant, i.e., it is independent from the input. Of course,
the challenge is to achieve this strong guarantee after a preprocessing phase that runs
in a limited amount of time – in particular, one that does not explicitly materialize
all solutions. Starting with the work of Durand and Grandjean [16], researchers have
designed constant-delay algorithms for several query evaluation problems, e.g., the eval-
uation of some queries over relational databases [10, 23], query evaluation over dynamic
data [11, 22], query evaluation over graph data [21, 24], among others [33].

One area where enumeration algorithms have been especially successful is the problem
of information extraction, studied through the lens of document spanners [17]. In this
data management task, the data is a textual document (i.e., a string), and the query is a
declarative specification of information to extract from the text, formalized as a spanner.
The spanner describes mappings, which are possible choices of how to map variables
to substrings of the document (called spans). The enumeration problem is then to
enumerate all mappings of a spanner on an input document, i.e., to enumerate efficiently
all possible results for the information extraction task. The work by Florenzano et
al. [18] showed that the task could be solved with preprocessing linear in the document
and polynomial in a finite deterministic automaton describing the spanner, improving
on a theoretical result by Bagan [9]; and this was extended in [5] to spanners described
using nondeterministic automata or regular expressions.

However, while regular spanners are natural, they do not capture all possible informa-
tion extraction tasks. More expressiveness is needed for extraction over structured data
(e.g., XML, or JSON documents), over the source code of programs, or possibly over
natural language texts. We believe that a natural way to address such tasks is to move
from finite automata to context-free grammars (CFGs). Context-free grammars are a
well-known formalism: they extend regular expressions and are commonly used, e.g., in
programming language design. Common verification tasks on textual representations of
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tree documents can be expressed using CFGs, and so can parsing tasks, e.g., to extract
subexpressions from source code data. However, CFGs do not describe captures, i.e.,
they do not specify how to extract the parts of interest of an input document, and thus
cannot be used directly for information extraction.

This question of information extraction with grammars was studied by Peterfreund
in very recent work [30]. This paper proposed a formalism of extraction grammars,
which are CFGs extended via special terminals that describe the endpoints of spans.
Further, it presents an algorithm to enumerate the mappings captured by unambiguous
extraction grammars on an input document. However, while the algorithm achieves
constant-delay, the preprocessing bound is significantly worse than in the case of regular
spanners: it is quintic in the document, and exponential in the number of variables of
the grammar. This complexity is also worse than CFG parsing, e.g., the standard CYK
parsing algorithm runs in cubic time in the input string.

Our goal in this paper is to study the enumeration problem for CFGs while achieving
better complexities. Our algorithms ensure a constant-delay guarantee when outputs
have constant size, and more generally ensure output-linear delay when this is not the
case: the delay is linear in the size of each produced solution. Within this delay bound,
the preprocessing time has lower complexity: it is at worse cubic in the input document,
and improves to quadratic or even linear time for restricted classes. We achieve these
results by proposing a new formalism to extend CFGs, called annotated grammars, on
which we impose an unambiguity restriction similar to that of [30]. Let us present our
specific contributions.

Contributions. Our first contribution is to introduce annotated grammars (Section 2).
They are a natural extension of CFGs, where terminals are optionally annotated by the
information that we wish to extract. We then study the problem, given an annotated
grammar G and document s, of enumerating all annotations of s that are derived by G.
This captures the enumeration problems for regular spanners [18, 7], nested words [27],
and even the extraction grammars of [30] (we explain this in Section 6). As we explain,
we aim for output-linear delay, which is the best possible delay in our setting where the
solutions to output may have non-constant size.

Our second contribution is to study the enumeration problem for unambiguous anno-
tated grammars (Section 3), that do not produce multiple times the same annotation
of an input string. This is a natural restriction to avoid duplicate results, which is also
made in [30]. For such grammars, we present an algorithm to enumerate the annotations
produced by a grammar G on a string s with output-linear delay (independent from G
or s), after a preprocessing time of O(∣G∣ ⋅ ∣s∣3), i.e., cubic time in s, and linear time in G.
This improves over the result of [30] whose preprocessing is quintic. Our algorithm has
a modular design: it follows a standard design of a CFG parsing algorithm, but uses the
abstract data structure of [27] to represent the sets of annotations and combine them
with operators in a way that allows for output-linear enumeration. We further show a
conditional lower bound on the best preprocessing time that can achieve output-linear
delay, by reducing from the standard task of checking membership to a CFG, and using
the lower bound of [1]. We show that the preprocessing time must be Ω(∣s∣ω−c) for every
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c > 0, where ω is the Boolean matrix multiplication exponent.
Our third contribution is to improve the preprocessing time by imposing a different

requirement on grammars. Thus, we introduce rigid annotated grammars (Section 4)
where, for every input string, all annotations on the string are intuitively produced by
parse trees that have the same shape. In contrast with general annotated grammars,
we show that rigid annotated grammars can always be made unambiguous, so that our
algorithm applies to them. But we also show that, under this restriction, the data com-
plexity of our algorithm goes down from cubic to quadratic time. Further, achieving
sub-quadratic preprocessing time would imply a sub-quadratic algorithm to test mem-
bership to an unambiguous CFG, which is an open problem.

Our last contribution shows how we can, in certain cases, achieve linear-time pre-
processing complexity and output-linear delay (Section 5). This is the complexity of
enumeration for regular spanners, and is by definition the best possible. We show that
the same complexity can be achieved, beyond regular spanners, for a subclass of rigid
grammars, intuitively defined by a determinism requirement. We define it via the for-
malism of pushdown annotators (PDAnn for short), which are the analogue of pushdown
automata for CFGs, or the extraction pushdown automata of [30]. We show that PDAnn
are equally expressive to annotated grammars, and that rigid CFGs correspond to a nat-
ural class of PDAnns where all runs have the same sequence of stack heights. Moreover,
we show that we can enumerate with linear-time preprocessing and output-linear de-
lay in the case of profiled-deterministic PDAnn, where the sequence of stack heights
can be computed deterministically over the run: this generalizes regular spanners and
visibly-pushdown automata.

This paper is the extended version of the work published at PODS’22 [8]. It includes
complete proofs of all results in the appendix.

Related work. We have explained how our work is set in the context of document
spanners [17], and in particular of enumeration results for regular spanners [18, 5]. A
recent survey of much of this literature can be found in Peterfreund’s PhD thesis [29].
The most related work to ours is the more recent introduction of extraction grammars
by Peterfreund [30], which we already discussed. Another related work is [27], by some
authors of the present paper. This paper studies enumeration for spanners over nested
documents, defined as visibly pushdown transducers. In the present paper, we re-use
the enumeration data structure of [27], and we consider a transducer model in Section 5
that recaptures some of the results of that work. However, in our problem, we do not
require visibility guarantees. This poses new technical challenges: the underlying tree
structure (i.e., the parse tree) is not known in advance and generally not unique.

There are also some other extensions of regular spanners that are reminiscent of CFGs,
e.g., core spanners (featuring equality) or generalized core spanners (with difference)
already introduced in [17], or Datalog evaluated over regular spanners as in [31]. However,
to our knowledge, there are no known constant-delay enumeration algorithms in these
contexts.

Our study of enumeration for annotated grammars is also reminiscent of enumeration
results for queries over trees expressed as tree automata. An algorithm for this was given
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by Bagan [9] with linear-time preprocessing and constant-delay in data complexity, for
deterministic tree automata, and this was extended in [6] to nondeterministic automata.
However, this is again more restricted: evaluating a tree automaton on a tree amounts to
evaluating a visibly pushdown automaton over a string representation of the tree, which
is again more restrictive than general context-free grammars.

2. Grammars and Annotators

Strings and annotations. Let Σ be a finite alphabet. We write Σ∗ for the set of
strings over Σ. The length of a string w = w1⋯wn ∈ Σ

∗ is ∣w∣ ∶= n. The string of length 0
is written ε. We write u ⋅ v or uv for the concatenation of u, v ∈ Σ∗.

Let Ω be a finite set of annotations. An annotated string is a string ŵ ∈ (Σ∪Σ×Ω)∗. We
denote strings by w and annotated strings by ŵ when this avoids confusion. Intuitively, if
ŵ = ŵ1⋯ŵn, then ŵi = (a, o⌣) ∈ Σ×Ωmeans that the letter a at position i is annotated with
o⌣ (called an annotated letter) and ŵi ∈ Σ means that there is no annotation at position i.
Given an annotated string ŵ = ŵ1⋯ŵn, we denote by str(ŵ) = str(ŵ1) ⋅ ⋯ ⋅ str(ŵn)
the unannotated string of ŵ, i.e., str((a, o⌣)) ∶= a and str(a) ∶= a, and we denote by
ann(ŵ) = ann(ŵ1,1) ⋅ ⋯ ⋅ ann(ŵn, n) the annotations of ŵ, i.e., ann((a, o⌣), i) ∶= (o⌣, i) and
ann(a, i) ∶= ε. Note that ∣str(ŵ)∣ = ∣w∣, but the length ∣ann(ŵ)∣ of ann(ŵ) can be much
less than ∣w∣.

Annotated grammars. A context-free grammar (CFG) over Σ is a tupleG = (V,Σ, P,S),
where V is a set of nonterminals, Σ is the alphabet (whose letters are called terminals),
S ∈ V is the start symbol, and P is a finite set of rules of the form X → α where X ∈ V

and α ∈ (V ∪Σ)∗. We assume that V and Σ are disjoint. In this paper, we extend this
definition to an annotated (context-free) grammar G = (V,Σ,Ω, P,S), which is simply
the CFG (V,Σ∪Σ×Ω, P,S). We use G to denote a CFG and G to denote an annotated
grammar. The terminals of G are letters a ∈ Σ and annotated letters (a, o⌣) ∈ Σ ×Ω.

We recall the semantics of a CFG G = (V,Σ, P,S). Given a string u ∈ Σ∗, two strings
γ, δ ∈ (V ∪Σ)∗, and X ∈ V , we say that uXδ produces uγδ, denoted by uXδ ⇒G uγδ, if
P contains the rule X → γ. We then say that α ∈ (V ∪Σ)∗ derives β ∈ (V ∪Σ)∗, denoted
by α⇒∗G β or just α⇒∗ β, if there is a sequence of strings α1, . . . , αm with m ≥ 1 such
that α = α1 ⇒ α2 ⇒ . . . ⇒ αm = β. We say that G derives α ∈ (V ∪ Σ)∗ if S ⇒∗ α,
and define the language L(G) of G as the set of strings {w ∈ Σ∗ ∣ S ⇒∗ w}. Note that
our derivations are leftmost derivations, which is standard for the unambiguity notions
that we introduce afterwards. The language of an annotated grammar G is that of the
underlying CFG on the alphabet of terminals Σ ∪Σ ×Ω. In particular, L(G) is a set of
annotated strings.

The purpose of annotated grammars is to consider all possible annotations of an input
unannotated string w ∈ Σ∗. Specifically, the semantics of an annotated grammar G is
the function ⟦G⟧ mapping each string w ∈ Σ∗ to the following (possibly empty) set of
annotations: ⟦G⟧(w) ∶= {ann(ŵ) ∣ ŵ ∈ L(G) ∧ str(ŵ) = w}.

An output of evaluating G over w is just an element µ ∈ ⟦G⟧(w). Note that, in the
case when Ω = ∅, for all w ∈ Σ∗ we have ⟦G⟧(w) = ∅ if w ∉ L(G) and ⟦G⟧(w) = {ε} if
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w ∈ L(G). So, annotated grammars subsume CFGs. In Section 6, we show that they
also subsume the extraction grammars of [30], which implies that annotated grammars
are more expressive than regular spanners [18, 7], or even visibly pushdown transducers
from [27].

Towards ensuring tractability, we call a CFG G unambiguous if for every w ∈ L(G)
there is a unique derivation of w by G. We call an annotated grammar G unambiguous
if the underlying CFG over Σ ∪Σ×Ω is unambiguous. Intuitively, this means that each
output µ ∈ ⟦G⟧(w) can be produced in only one way. Remember that there are CFGs
G with no unambiguous CFG G′ equivalent to G (i.e., such that L(G′) = L(G)), and
it is undecidable to check whether an input CFG is unambiguous, or has an equivalent
unambiguous CFG. The same is immediately true for annotated grammars.

Problem statement. The goal of this paper is to study how to efficiently enumerate
the annotations of an annotated grammar:

Input: An annotated grammar G and a string s ∈ Σ∗

Output: Enumerate the outputs of ⟦G⟧(s)

We work in the standard computational model of Random Access Machines (RAM)
with logarithmic word size and uniform cost measure, having addition and subtraction
as basic operations [2]. The size of G is measured as the sum of rule lengths.

As the set of outputs ⟦G⟧(w) can be large, we work in the framework of enumeration
algorithms. Such algorithms consist of two phases. First, in the preprocessing phase,
the algorithm receives the input annotated grammar G and string w, and produces
some index structure D. The preprocessing time is the worst-case running time of this
preprocessing phase, measured as a function of the input, i.e., in terms of w and G when
studying combined complexity, and in terms of w only when studying data complexity.

Second, in the enumeration phase, the algorithm can use G, w, and D, and must
produce all outputs of ⟦G⟧(w) one after the other and without repetitions. The delay of
this phase is the worst-case time to produce any of the outputs, i.e., for N the number
of outputs, if we call time0 the moment the preprocessing ends, timei the moment the
algorithm finishes producing the i-th output with 1 ≤ i ≤ N , and timeN+1 the moment
when the algorithm terminates, then the delay is the maximum of the values (timei −
timei−1) for any 0 < i ≤ N + 1. We aim for output-linear delay [19] (also called linear
delay [14], or constant delay [33] for constant-sized outputs), where the delay is linear
in the size of each produced output, and is independent from the input (i.e., from w

and G). The memory usage of the algorithm is the maximum memory used across both
phases, including the size of D.

The ultimate goal of this paper is to find enumeration algorithms to enumerate the
outputs of annotated grammars with linear preprocessing and output-linear delay. How-
ever, as we will see, this goal is not always realistic, so we will initially settle for a higher
processing time, i.e., quadratic or cubic, before presenting classes with linear prepro-
cessing in data complexity. We present our first results towards this goal in this next
section.
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3. Unambiguous Grammars

In this section we start presenting our results and show a first algorithm to enumerate
the outputs of an annotated grammar on an input string. The algorithm applies to any
unambiguous annotated grammar, and ensures cubic-time preprocessing and output-
linear delay in data complexity; in terms of combined complexity, the preprocessing is
linear on the grammar. This improves the result by Peterfreund [30], which had quintic-
time preprocessing in data complexity.

The section is structured as follows. We present a general-purpose enumeration data
structure called enumerable sets, which is the basis of our enumeration algorithms. We
then introduce the arity-two normal form for annotated grammars, designed to ensure
efficient enumeration, and which can be enforced in linear time. After this, we present
our algorithm and state our main result (Theorem 3). Last, we state a conditional data
complexity lower bound.

Enumerable sets. The preprocessing phase of our enumeration algorithm builds data
structures representing the set of outputs to enumerate. For this, we essentially re-use
the ε-ECS data structure of [27], but for convenience we present them in a self-contained
way for our context, and name them enumerable sets. We now define them and state that
we can enumerate their contents with output-linear delay (Theorem 1). The enumeration
phase of our algorithm simply enumerates the outputs of an enumerable set using this
delay guarantee.

An enumerable set is a representation of a set of strings over some alphabet O. For
our case, we want strings of O∗ to describe outputs, so O consists of pairs of annotations
with positions of the input string w, i.e., O ∶= Ω × {1, . . . , ∣w∣}.

The basic enumerable sets are:

• empty, the empty set;

• singleton(ε), the singleton set containing the empty string;

• singleton(x) for x ∈ O, the singleton set with the single-character string x.

Enumerable sets can be combined using operators to form more complex enumerable
sets. The operators that we consider all take constant-time and are fully-persistent [15].
Specifically, given enumerable sets D1 and D2, combining them creates an enumerable set
without modifying D1 and D2 (i.e., they can still be used in other operator applications).
To make this possible, enumerable sets can share some components, e.g., some parts of
the arguments D1 and D2 can be shared in memory, and the result can also have some
parts that are shared with D1 and D2. This is similar, e.g., to persistent lists, where
we can only extend a list by adding an element to its head: this does not modify the
original list, and returns a new list sharing some memory with the original list.

The two operators to combine enumerable sets are:

• The union operator union(D1,D2) can be applied if the sets represented by D1

and D2 are disjoint, intuitively to avoid duplicates. It returns an enumerable set
representing the union of these sets,
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• The product operator prod(D1,D2) can be applied if there are no common let-
ters in the strings of the sets represented by D1 and D2, i.e., if D1 (resp. D2)
represents S1 (resp. S2) then the sets {x1 ∈ O ∣ x1 occurs in some w1 ∈ S1} and
{x2 ∈ O ∣ x2 occurs in some w2 ∈ S2} are disjoint. Then, the operation returns an
enumerable set D which represents the concatenations of the strings in D1 and
in D2: formally, it represents S1 ⋅ S2 = {w1 ⋅w2 ∣ w1 ∈ S1,w2 ∈ S2}.

It is known that enumerable sets can be enumerated efficiently:

Theorem 1 ([4, 27]). We can implement enumerable sets such that:

• The enumerable sets empty, singleton(ε), and singleton(x) for x ∈ O can be built
in constant time;

• The union and product operations can be implemented in constant time and in a
fully persistent way;

• Given an enumerable set, we can enumerate the strings it represents with output-
linear delay and memory usage linear in the number of instructions used to build
it.

This was shown in [27, Theorem 9] with the data structure of Enumerable Compact
Sets (ε-ECS). It also follows from the work in [4] on zero-suppressed d-DNNF circuits.
For the reader’s convenience, and to derive the bound on memory usage, we give a
self-contained proof in Appendix A.1.

Arity-two normal form. Having presented enumerable sets, we now present the nor-
mal form to enforce on annotated grammars. Our results could be shown using the
commonly known Chomsky normal form (CNF), but we cannot always obtain an equiv-
alent CNF of linear size from a grammar. For this reason, we use a variant of CNF, the
arity-two normal form (2NF) [25], which is intuitively like CNF but without disallow-
ing rules of the form X → Y or X → ε. Formally, we say that an annotated grammar
(V,Σ,Ω, P,S) is in arity-two normal form (2NF) if the following hold:

• Every nonterminal X can derive some string, i.e., there exists ŵ ∈ (Σ ∪ Σ × Ω)∗

such that X ⇒∗G ŵ.

• Every nonterminal X can be reached from the start symbol S, i.e., there exists
α,β ∈ (V ∪Σ ∪Σ ×Ω)∗ such that S ⇒∗G αXβ.

• For every rule X → α in P , we have ∣α∣ ≤ 2, and if α = 2 then it consists of two
nonterminals.

We can easily translate annotated grammars to 2NF, as in [25]:

Proposition 2 ([25]). Given any annotated grammar G, we can compute in linear time
an annotated grammar G′ in 2NF such that G and G′ are equivalent. Furthermore, if G
is unambiguous then G′ is unambiguous as well.
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The proof is straightforward and shown in Appendix A.2. By Proposition 2, we assume
that the input grammar G is in 2NF.

We also compute in linear time some more information about G. First, we precompute
which nonterminals are nullable, i.e., are such that X ⇒∗G ε: if we have a rule X → ε then
X is nullable, and if we have a rule X → Y where Y is nullable or X → Y Z where Y

and Z are nullable then X is also nullable. From this information, we further compute
for each nonterminal Y a set D[Y ] of all nonterminals X such that one of the following
rules exist: a rule X → Y , a rule X → Y Z where Z is nullable, or a rule X → ZY where
Z is nullable. We can clearly compute all of this in linear time (note that each rule
contributes at most two entries to D).

Second, as the grammar is assumed to be unambiguous, it also contains no cycles, i.e.,
there are no sequence of nonterminals X1 . . .Xn such that for 1 ≤ i < n, Xi ∈ D[Xi+1]
and X1 ∈ D[Xn]. Indeed, otherwise there would be infinitely many possible derivations
of some string starting at X1, contradicting the unambiguity of G. Thus, we can sort
the nonterminals of G in topological order, by which we mean that when Y ∈ D[X] then
Y is enumerated after X. Intuitively, when we consider a nonterminal X, we want to
be done with processing the nonterminals Y such that X → Y or X → Y Z or X → ZY

with Z nullable. This order can also be computed in linear time.

Enumeration algorithm. We now present the preprocessing phase of the enumeration
algorithm, formalized as Algorithm 1 where the input string w = a1 . . . an is assumed
nonempty.

The principle of the algorithm is the following:

Principle 1. For every triple of the form (i, j,X) with 1 ≤ i < j ≤ n + 1 and X ∈N , the
table cell I[i][j][X] will contain an enumerable set representing the annotations of the
string ai⋯aj−1 that can be derived from symbol X in the grammar.

These sets are initialized to be empty. In lines 5–11 of the algorithm, the cells
I[i][j][X] with j − i = 1 are initialized to consider derivations via “simple rules” of
the form X → a or X → (a, o⌣). (For now, ignore the role of the endIn table.) Note that
the rules of the form X → ε are considered when defining D and not further examined
by the algorithm. At the end, line 24 returns the enumerable set for the annotations of
the entire string derivable from the start symbol, i.e., the outputs of G on w.

The main part of the algorithm consists in satisfying Principle 1 by adding the an-
notations corresponding to “complex” rules (i.e., of the form X → Y Z or X → Y ). At
the beginning of the algorithm the cells of the table I might lack some annotations cor-
responding to complex rules, but each cell will be considered complete at some point
during the execution, at which point it will satisfy Principle 1 and will not be modified
anymore. We define the order in which the cells are considered complete as follows:
(i, j,X) < (i′, j′,X ′) when j < j′ or (j = j′ ∧ i > i′) or (j = j′ ∧ i = i′ ∧X < X ′) where we
order nonterminals X and X ′ following the topological order from D.

Consider the complex derivations starting from X of the string ai⋯aj−1, i.e., those
that begin with a complex rule. We will see here how to reflect them in I[i][j][X].
There are two kinds of complex derivations. The first kind is the derivations where we
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first rewrite X to another nonterminal Z with a rule X → Z, or by rewriting X to Y Z

or ZY but where Y is nullable and will be rewritten to ε. In these three cases, we have
X ∈ D[Z]. Thus, we fill the index I[i][j][X] with the contents of I[i][j][Z], which is
already complete, for X ∈ D[Z] (lines 15-16).

The second kind of complex derivation begins with a complex rule X → Y Z where
neither Y nor Z will be rewritten to ε. In this case, the set of annotations to add into
I[i][j][X] using this rule is the union of products of all the I[i][k][Y ] and I[k][j][Z]
where i < k < j. We have (i, k, Y ) < (k, j,Z) < (i, j,X), so we can fill I[i][j][X] with the
product of the contents of I[i][k][Y ] and I[k][j][Z], at the moment where I[k][j][Z]
is considered complete.

To summarize, from line 12 onwards, the algorithm considers the positions j in as-
cending order, and populates all cells I[i][j][X] so that they are complete. To do so, we
consider the triples (k, j,Z) by increasing order in our sorting criterion, i.e., by decreas-
ing k, then increasing Z in the order of the topological sort. Whenever we consider a
cell, it is complete, and we consider its contributions to cells of the form I[i][j][X] with
i = k using complex rules of the first kind (lines 15-16), and if it is non-empty we consider
how to combine it with a neighboring cell (which is also complete and non-empty) as we
explained previously, adding the results to a cell I[i][j][X] with i < k which is not yet
complete (lines 17–23).

We now explain the optimization involving the set endIn. It is not necessary to achieve
the cubic running time of this section, but is required for the quadratic bound in Section 4.
The optimization is that, when processing the triple (k, j,Z) and the rule X → Y Z, we
do not test all the possible cells I[i][k][Y ], but only those that are non-empty. Indeed, if
I[i][k][Y ] is empty, then the concatenation of I[i][k][Y ] with I[k][j][Z] is also empty.
Thus, we maintain the list endIn[k][Y ] of all the i’s to consider with i < k, i.e., those such
that I[i][k][Y ] is non-empty. We initialize this list to be empty, add i to endIn[k][Y ]
whenever I[i][k][Y ] becomes non-empty (at line 11 in the base case, or at line 21 before
adding to an empty cell for the first time). Then, we only consider the indices i of this
list to combine I[i][k][Y ] with another cell.

We now argue that our algorithm is correct, and in particular that (i) we satisfy
Principle 1; that (ii) all the unions are disjoint, and that (iii) all the products involve
enumerable sets on disjoint alphabets. One can establish (i) by showing by induction
over cells that the invariant is correct when each cell is considered complete by our
algorithm (and the cell is not changed afterwards). Knowing (i), the first violation of
(ii) would witness that the same annotation of some factor ai⋯aj−1 can be derived in
two different ways from a nonterminal X, contradicting unambiguity, so there are no
violations of (ii). For (iii), we simply observe that, by (i), I[i][j][X] only contains
pairs of the form (o⌣, k) for some i ≤ k < j, so we can indeed perform the product of
I[i][k][Y ] and I[k][j][Z].

This establishes that the algorithm is correct. Now, the running time of the prepro-
cessing phase of the algorithm is clearly in O(n3∣G∣), because (1) the endIn lists are of
size O(n) at most, and (2) the consideration of all Z ∈ N and X ∈ D[Z] is in O(∣G∣):
every X ∈ D[Z] corresponds to a rule, so the consideration of all Z ∈ N and rules in
CRule[Z] is in O(∣G∣). The enumeration phase is then simply that of Theorem 1. Hence,
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Algorithm 1 Preprocessing phase: given a 2NF unambiguous annotated grammar
G = (N,Σ,Ω, P,S) and a non-empty string w = a1⋯an, compute an enumerable set
representing ⟦A⟧(w).
1: I ← an array (n + 1) × (n + 1) ×N initialized with empty

2: endIn ← an array (n + 1) ×N initialized with empty lists
3: CRule ← an array such that CRule[Z] = {X → Y Z ∈ P}
4: D← an array as described in the presentation of 2NF
5: for 1 ≤ i ≤ n do
6: if rule (X → ai) in P then
7: I[i][i + 1][X] ← union(I[i][i + 1][X], singleton(ε))
8: for rule (X → (ai, o⌣)) in P do
9: I[i][i + 1][X] ← union(I[i][i + 1][X], singleton((o⌣, i)))

10: if I[i][i + 1][X] ≠ empty then
11: endIn[i + 1][X].append(i)
12: for j = 1 to n + 1 do
13: for k = j − 1 downto 1 do
14: for nonterminal Z ∈N in topological order do
15: for nonterminal X ∈ D[Z] do
16: I[k][j][X] ← union(I[k][j][X], I[k][j][Z])
17: if I[k][j][Z] ≠ empty then
18: for rule (X → Y Z) in CRule[Z] do
19: for i ∈ endIn[k][Y ] do
20: if I[i][j][X] = empty then
21: endIn[j][X].append(i)
22: I[i][j][X] ← union(I[i][j][X],
23: prod(I[i][k][Y ], I[k][j][Z]))
24: return I[1][n + 1][S]

we have shown that enumeration for unambiguous annotated grammars can be achieved
with cubic time preprocessing and output-linear delay:

Theorem 3. Given an unambiguous annotated grammar G and an input string w, we
can enumerate ⟦G⟧(w) with preprocessing in O(∣w∣3 ⋅∣G∣) (hence cubic in data complexity),
and output-linear delay (independent from w or G). The memory usage is in O(∣w∣3 ⋅ ∣G∣).

Lower bounds. We cannot show a lower bound that matches the complexity of our
algorithm, but we can prove that we cannot achieve a preprocessing time better than the
time to test whether a string is accepted by a CFG, which is essentially the complexity
of Boolean matrix multiplication [1]:

Proposition 4. Let ω be the smallest value such that we can multiply two Boolean n×n
matrices in time O(nω+o(1)). Then for any c > 0 there is an unambiguous annotated
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grammar G such that, given an input string w, enumerating ⟦G⟧(w) with output-linear
delay requires a preprocessing time of Ω(∣w∣ω−c).

4. Rigid Grammars

In the previous section, we have shown how to enumerate the output of unambiguous
annotated grammars on strings, with output-linear delay and cubic preprocessing in
the input string. This algorithm has two drawbacks: it requires us to impose that the
grammar is unambiguous, and the cubic preprocessing may be expensive.

In this section, we introduce a new class of annotated grammars, called rigid grammars.
Rigid grammars do not need to be unambiguous, but as we will show a rigid grammar can
always be converted to additionally impose unambiguity. The point of rigid grammars
is that we can show a quadratic bound on Algorithm 1 for them.

We first define rigid grammars in this section. We then state that we can impose
unambiguity for rigid grammars, and derive some consequences about their expressive-
ness and the complexity of recognizing them. Last, we show a quadratic bound on the
preprocessing time for output-linear enumeration for such grammars, and explain why
a better bound would be challenging to achieve.

Rigid grammars. We first define the restricted notion of grammars that we study.
Consider an annotated grammar G = (N,Σ,Ω, P,S), and a string γ ∈ (Σ∪ (Σ×Ω)∪N)∗

of nonterminals and of terminals which may carry an annotation in Ω. We will be
interested in the shape of γ, written shape(γ): it is the string over {0,1} obtained by
replacing every nonterminal of N in γ by 1 and replacing all terminals (annotated or
not) by 0: note that ∣shape(γ)∣ = ∣γ∣.

We then say that an annotated grammar G is rigid if for every string w ∈ Σ∗, all
derivations from the start symbol S of G to an annotated string ŵ of w have the same se-
quence of shapes (remember that we only consider leftmost derivations). Formally, there
exists a sequence s1, . . . , sk ∈ {0,1}∗ depending only on w such that for any derivation
S = α1 ⇒G α2 ⇒G . . .⇒G αm = ŵ with str(ŵ) = w, we have m = k and shape(αi) = si for
all 1 ≤ i ≤ k.

Intuitively, the sequence of shapes of a derivation describes the skeleton of the cor-
responding derivation tree. Thus, a rigid annotated grammar is one where, for each
unannotated string, all derivation trees for all annotations of the string are isomorphic
(ignoring the labels of nonterminals and the annotation of terminals).

Rigidity vs unambiguity. Unambiguity and rigidity for annotated grammars seem
incomparable: unambiguity imposes that every annotation is produced by only one
derivation, whereas rigidity imposes that all derivations across all annotations have the
same shape (but the same annotation may be obtained multiple times).

However, it turns out that, on rigid grammars, we can impose unambiguity without
loss of generality: all rigid grammars can be converted to equivalent rigid and unam-
biguous grammars.
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Theorem 5. For any rigid grammar G we can build an equivalent rigid and unambiguous
grammar G′. The transformation runs in exponential time, i.e., time O(2∣G∣

c

) for some
c > 0.

The transformation to impose unambiguity goes via a notion of annotated pushdown
automata (introduced in the next section), and is inspired by the determinization pro-
cedure for visibly pushdown automata [3], even though rigid grammars generally do
not define visibly pushdown languages. The transformation comes at a cost, as it will
generally blow up the size of the grammar exponentially.

Expressiveness of rigid grammars. Armed with Theorem 5, we study what is the
expressive power of rigid grammars. For this, let us first go back to the setting without
annotations. Theorem 5 tells us that for (unannotated) CFGs the rigidity requirement
is equivalent to the usual unambiguity requirement: each accepted word has a unique
derivation. Now, for the case of an annotated grammar G, rigidity additionally imposes
the requirement that all annotations of an input string have the same parse tree. In
particular, the language of the strings where G accepts some annotation must be rec-
ognizable by a rigid (unannotated) CFG, hence an unambiguous CFG (by Theorem 5).
Formally:

Proposition 6. For a rigid grammar G, let L′ be the set of strings with nonempty
output, i.e., L′ = {w ∣ ⟦G⟧(w) /= ∅}. Then L′ is recognized by an unambiguous CFG.

This yields concrete examples of languages (on the empty annotation alphabet) that
cannot be recognized by a rigid annotated grammar, e.g., inherently ambiguous context-
free languages such as La = {aibjck ∣ i, j, k ≥ 1 ∧ (i = j ∨ j = k)} on {a, b, c}∗ [26].
Proposition 6 also implies that we cannot decide if the language of an annotated grammar
can be expressed instead by a rigid grammar, or if an annotated grammar is rigid:

Proposition 7. Given an unannotated grammar G, it is undecidable to determine
whether G is rigid, and it is undecidable to determine whether there is some equivalent
rigid grammar G′.

These undecidability results make rigid grammars less appealing, but note that our
enumeration algorithm for such grammars applies in particular to decidable grammar
classes which are designed to ensure rigidity. For instance, this would be the case of
grammars arising from visibly pushdown automata, which we discuss in more detail in
the next section.

Enumeration algorithm. We now give our algorithm with quadratic preprocessing
time for rigid grammars. Given a rigid grammar, we first make it unambiguous if
necessary, using Theorem 5, in exponential time in the input grammar. The result is
a rigid and unambiguous annotated grammar. Now, we transform it in 2NF like in
Section 4: this takes linear time, preserves unambiguity, and one can check that it also
preserves rigidity.

Armed with our rigid and unambiguous grammar G in 2NF, we can simply use Algo-
rithm 1 to construct a data structure allowing us to enumerate the outputs with output-
linear delay. But we now claim that Algorithm 1 runs in time O(∣G∣ ⋅ ∣w∣2) because G
is rigid.
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For this, we study for every nonterminal X and pair 1 ≤ i ≤ j ≤ n + 1 how many
times we can consider the cell I[i][j][X] in lines 20–23. Whenever we consider it, we
witness the existence of a complex rule X → Y Z and a value k such that I[i][k][Y ]
and I[k][j][Z] are nonempty (the first is because i ∈ endIn[k][Z]). Thus, we witness
a derivation from X of some annotation of the string ai⋯aj−1 that starts with a rule
X → Y Z where Y derives some annotation of the string ai⋯ak−1 and Z derives some
annotation of the string ak⋯aj−1. We now claim that, for (i, j,X), the rigidity of the
grammar ensures that there is only one such value k. Indeed, assume by contradiction
that we have two rules X → Y Z and X → Y ′Z ′ and two values i ≤ k < k′ ≤ j such
that Y and Y ′ respectively derive some annotation of the strings ai⋯ak−1 and ai⋯ak′−1,
and Z and Z ′ respectively derive some annotation of the strings ak⋯aj−1 and ak′⋯aj−1.
Then once we are done rewriting Y and all the nonterminals that it generates in the first
derivation, we obtain a different shape from what we obtain after rewriting Y ′ and all
the nonterminals it generates in the second derivation, contradicting the rigidity of the
grammar.

Thus, whenever we consider the cell I[i][j][X] in lines 21–23, it is for one value of k
which is unique for (i, j,X), and we thus consider the cell once at most for every complex
rule of the grammar with X as left-hand-side. Thus, we consider the cells of I[i][j] at
most ∣G∣ times in total. As there are O(n2) pairs (i, j), this ensures that the total
running time of the innermost for loop (lines 19–23), and that of the entire algorithm,
is indeed in O(∣G∣ ⋅ ∣w∣2):

Theorem 8. Given a rigid annotated grammar G and an input string w, we can enu-
merate ⟦G⟧(w) with preprocessing in O(∣w∣2) data complexity and output-linear delay
(independent from w or G). The combined complexity of the preprocessing is O(2∣G∣

c

⋅∣w∣2)
for some c > 0, or O(∣G∣ ⋅ ∣w∣2) if G is additionally assumed to be unambiguous.

Optimality. We now turn to the question of whether the quadratic preprocessing time
for rigid grammars is optimal. For this, we notice that the parsing of (unannotated)
unambiguous grammars can be performed in quadratic time, but the question of finding
a better algorithm was open as of 2012 [32]. Now, this is a special case of our problem,
because an unannotated unambiguous grammar is in particular a rigid and unambiguous
annotated grammar, and enumerating the outputs of an unannotated grammar just
means deciding in constant time after the preprocessing whether the input unannotated
string is accepted or not. Thus:

Proposition 9. Any algorithm to enumerate the accepted outputs of a rigid annotated
grammar can be used to test if an input string is accepted by an unambiguous unannotated
grammar, with same complexity as that of the preprocessing phase.

For this reason, we leave open the question of whether a better than quadratic pre-
processing time can be achieved in this case.
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5. Pushdown Annotators

We have presented an enumeration algorithm for annotated grammars that achieves
quadratic-time preprocessing and output linear delay on rigid annotated grammars. We
now study whether the bound can be improved even further to achieve linear-time pre-
processing and output-linear delay, which is the best possible data complexity bound in
our model.

To achieve this, it is natural to look for a class of grammars having some “deterministic”
behavior. Unfortunately, grammars are not convenient for this purpose, and so we move
to the equivalent model of pushdown automata. We thus introduce pushdown annotators
and show that they are equally expressive to annotated grammars. We present syntactic
restrictions on pushdown annotators that ensure quadratic-time preprocessing, similarly
to rigid grammars. Then, we propose additional deterministic conditions on pushdown
annotators that allow for linear-time preprocessing.

Pushdown annotators. A pushdown annotator (PDAnn) is a tuple P = (Q,Σ,Ω,Γ,∆,

q0, F ) where Q is a finite set of states, Σ is the alphabet, Ω is a finite set of annotations,
Γ is a finite set of stack symbols, q0 ∈ Q is the initial state, and F ⊆Q are the final states.
We assume that the set Γ of stack symbols is disjoint from (Σ ∪Σ ×Ω). Finally, ∆ is a
finite set of transitions that are of the following kinds:

• Read-write transitions of the form (p, (a, o⌣), q) ∈ Q × (Σ ×Ω) ×Q, meaning that, if
the next letter of the string is a, the annotator can go from states p to q while
reading that letter and writing the annotation o⌣;

• Read-only transitions of the form (p, a, q) ∈ Q×Σ×Q, meaning that the annotator
can go from p to q while reading a;

• Push transitions of the form (p, q, γ) ∈ Q × (Q × Γ), meaning that the annotator
can go from p to q while pushing the symbol γ on the stack;

• Pop transitions of the form (p, γ, q) ∈ (Q × Γ) ×Q, meaning that, if the topmost
symbol of the stack is γ, the annotator can go from p to q while removing this
topmost symbol γ.

We now give the semantics of PDAnns. Fix a string w = w1⋯wn ∈ Σ
∗. A configuration

of P over w is a pair C = (q, i) ∈ Q × [0, n] of the current state and position in w. An
instantaneous description of P is a pair (C,α) where C is a configuration and α ∈ Γ∗

describes the stack. A run of P over w is a sequence:

ρ ∶= (C0, α0) t1ÐÐ→(C1, α1) t2ÐÐ→ . . . tmÐÐ→(Cm, αm) ( †)

such that C0 = (q0,0) and α0 = ε, each tk is a transition in ∆, and for each k ∈ [1,m] the
following hold:

• if tk is a read-write transition (p, (a, o⌣), q) or a read-only transition (p, a, q), then
αk = αk−1, Ck−1 = (p, i − 1), Ck = (q, i) and a = ai for some i ∈ [1, n];
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• if tk is a push transition (p, q, γ), then αk = αk−1γ and for some i ∈ [1, n], Ck−1 =

(p, i), Ck = (q, i); and

• if tk is a pop transition (p, γ, q), then αk−1 = αkγ and for some i ∈ [1, n], Ck−1 =

(p, i), Ck = (q, i).

We say that ρ is accepting if (Cm, αm) = ((qf , n), ε) for some qf ∈ F . We define the
annotation of ρ as ann(ρ) = ann(t1,C1) ⋅ ⋯ ⋅ ann(tm,Cm) such that ann(t,C) = ε if t is
a push, pop, or a read-only transition (p, a, q), and ann(t,C) = (i, o⌣) if t is a read-write
transition (p, (a, o⌣), q) and C = (q, i). Finally, we define the function ⟦P⟧ that maps any
w ∈ Σ∗ to its set of outputs:

⟦P⟧(w) = {ann(ρ) ∣ ρ is an accepting run of P over w}.

Similarly to annotated grammars, we say that P is unambiguous if for every w ∈ Σ∗ and
output µ, there exists at most one accepting run ρ of P over w such that ann(ρ) = µ.

One can alternatively see a PDAnn as a pushdown transducer [12], which is the stan-
dard way to extend automata to have an output. However, an important difference is
that a PDAnn concisely represents outputs by only writing the annotations and their
positions: this can be much smaller than the input string, and cannot easily be encoded
as a transducer on a finite alphabet. For instance, where a PDAnn can produce an
output such as (2, o⌣), (5, o⌣′), a transducer would either write o⌣o⌣′ (losing the position
information) or o⌣ o⌣′ (whose length is always linear in the input) for a special
symbol .

Profiled PDAnns and annotated grammars. To define the analogue of rigid anno-
tated grammars on PDAnn, we will study the stack profile (or simply profile) of PDAnn
runs, which is informally the sequence of all stack heights. Formally, let P be a PDAnn,
w be a string, and consider a run ρ of T over w like in (†). The profile π of ρ is the
sequence π ∶= ∣α0∣ , . . . , ∣αm∣. We then introduce profiled PDAnns by requiring that all
accepting runs of the PDAnn on an input string have the same profile (no matter their
output). Formally, we say that a PDAnn P is profiled if, for every string w, all accepting
runs of T over w have the same profile.

As usual for context-free grammars and pushdown automata, the formalisms of anno-
tated grammars and PDAnn have the same expressive power. We call two annotated
grammars G and G′ equivalent if they define the same functions, i.e., ⟦G⟧ = ⟦G′⟧, and
extend this notion to PDAnn in the expected way. We then have:

Proposition 10. Annotated grammars and PDAnn are equally expressive. Specifically,
for any annotated grammar G, we can build an equivalent PDAnn P in polynomial time,
and vice versa. Further, G is unambiguous (resp., rigid) iff P is unambiguous (resp.,
profiled).

Let us now study the enumeration for PDAnns. We know that the problem for un-
ambiguous PDAnns can be solved via Proposition 10 with cubic-time preprocessing in
data complexity and output-linear delay (with Theorem 3). We know that profiled
PDAnns can be made unambiguous (via Proposition 10 and Theorem 5) and so that we
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can solve enumeration for them in quadratic-time preprocessing in data complexity and
output-linear delay (using Theorem 8). We now show that, if we are given a profile of
an unambiguous PDAnn P on an input string w, we can use it as a guide to enumerate
with linear preprocessing and output-linear delay the set ⟦P⟧π(w) of annotations for
that profile, i.e., all ann(ρ) such that ρ is an accepting run with profile π of P over w.
Formally:

Lemma 1. Given an unambiguous PDAnn P, there exists an enumeration algorithm
that receives as input a string w and a profile π of P over w, and enumerates ⟦P⟧π(w)
with output-linear delay after linear-time preprocessing in data complexity.

This result implies that we could achieve linear-time enumeration over profiled PDAnn
if we could easily discover their (unique) profile. We achieve this with profiled-deterministic
PDAnns.

Profiled-deterministic PDAnn. Let P = (Q,Σ,Ω,Γ,∆, q0, F ) be a PDAnn. We say
that a PDAnn P is profiled-deterministic if, for any string w ∈ Σ∗, for any two partial
runs ρ and ρ′ of P over w with the same length, ρ and ρ′ have the same profile.

The relationship between profiled-deterministic PDAnns and deterministic pushdown
automata (formally defined in Appendix C) is similar to the relationship between profiled
PDAnns and unambiguous pushdown automata (the latter relationship was stated as
Proposition 6 in the context of grammars). Specifically:

Proposition 11. For a profiled-deterministic PDAnn P, let L′ be the set of strings with
nonempty output, i.e., L′ = {w ∣ ⟦P⟧(w) /= ∅}. Then L′ is recognized by a deterministic
pushdown automaton.

This result gives a concrete picture of the expressive power of profiled-deterministic
PDAnn A, i.e., as acceptors they are more powerful than the class of visibly pushdown au-
tomata [3], where each alphabet letter must have a specific effect on the profile. Profiled-
deterministic PDAnn are also reminiscent of the height-determinism notion introduced
for pushdown automata [28], but extend this with the support of annotations.

Profiled-deterministic PDAnn are designed to ensure that they have only one profile
(i.e., they are profiled), and further that their unique profile can be constructed in linear
time:

Proposition 12. A profiled-deterministic PDAnn P is always profiled, and given a
string w, the unique profile of accepting runs of P over w can be computed in linear time
in w.

Together with Lemma 1, this yields:

Corollary 1. Let P be a profiled-deterministic PDAnn. Then for every string w the
set ⟦P⟧(w) can be enumerated with output-linear delay after linear-time preprocessing in
data complexity.
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6. Application: Document Spanners

We have presented our enumeration results for annotated grammars and pushdown an-
notators. We conclude the paper by applying them to the standard context of document
spanners [17] and to the extraction grammars recently introduced in [30].

Mappings, spanners, extraction grammars. Our paper studies strings s ∈ Σ∗

with letters annotated by an annotation from a finite set, but document spanners work
with mappings selecting so-called spans of s. Formally, a span of s is a pair [i, j⟩ with
1 ≤ i ≤ j ≤ ∣s∣+1 describing a possibly empty factor of s. For a finite set of variables X , a
document spanner (or just spanner) is a function that maps every string s ∈ Σ∗ to a set
of mappings, where a mapping (intuitively denoting an extraction result) assigns each
variable of X to a span of s.

Peterfreund [30] specifies spanners via extraction grammars. An extraction grammar
H is simply a CFG over the alphabet Σ extended with variable operations of the form
⊢x and ⊣x for x ∈ X , intuitively denoting the beginning and end of a span for x. Any
such grammar H denotes a language L(H) of words with variable operations, called ref-
words, and gives a function ⟦H⟧ associating every string w ∈ Σ∗ to the set of mappings
⟦H⟧(w) defined as follows. We consider every ref-word ŵ of L(H) whose restriction to Σ
is w and which is valid, i.e., for every x ∈ X there is one occurrence of ⊢x followed by
one occurrence of ⊣x in ŵ. Every valid ref-word ŵ defines a mapping that intuitively
associates each variable x ∈ X to the span of the characters of w between ⊢x and ⊣x
in ŵ.

Thus, extraction grammars are like annotated grammars but with variable operations
that describe span endpoints (whereas our annotations are arbitrary), and that are
expressed as separate variable operation characters (not annotations of existing letters).

Comparing both formalisms. Given an extraction grammar H on alphabet Σ and
with variables X , an annotated grammar G is equivalent to H if it is over the alphabet
Σ ∪ {#} (with a special end-of-word character # to account for indexing differences), if
its annotation set Ω is the powerset of the set ⋃x∈X{⊢x,⊣x} of markers symbols, and
if the following holds: for any w ∈ Σ∗, the outputs ⟦G⟧(w#) are in one-to-one corre-
spondence with the mappings of ⟦H⟧(w) in the expected way (the formal definition is in
Appendix D.1). We show that every extraction grammar has an equivalent annotation
grammar in this sense, and the translation further preserves unambiguity:

Proposition 13. Given any extraction grammar H with k variables, we can build an
equivalent annotated grammar G in time O(93k ⋅ ∣H∣2). Moreover, if H is unambiguous
then so is G.

Hence, our formalism of annotated grammars captures that of extraction grammars.
Unfortunately, the translation is exponential, intuitively because Ω must cover all pos-
sible sets of variable operations: we explain in Appendix D.3 why we believe this to be
unavoidable. We note that, in exchange for this, annotated grammars are strictly more
expressive: each output can annotate an arbitrary number of positions in the string (e.g.,
every other character), unlike extraction grammars whose mappings have a fixed number
of variables.
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Enumeration for extraction grammars. As extraction grammars can be rewritten
to annotated grammars in an unambiguity-preserving way (Proposition 13), we can
derive from Theorem 3 an enumeration result for unambiguous extraction grammars
with cubic preprocessing time in data complexity.

Theorem 14. Given an unambiguous extraction grammar H with k variables and a
string s, we can enumerate the mappings of ⟦H⟧(s) with preprocessing time O(93k ⋅ ∣H∣2 ⋅
∣s∣3) (hence, cubic in ∣s∣), and with output-linear delay (independent from s, k, or H).

In data complexity, this improves over the result of [30] for unambiguous extraction
grammars, whose preprocessing time is O(92k ⋅ ∣H∣2 ⋅ ∣s∣5), i.e., our data complexity is
cubic instead of quintic. We leave to future work a study of enumeration results for
restricted classes of extraction grammars via Theorems 3 and 8.

7. Conclusions and Future Work

We have presented our formalism of annotated grammars and our results on the efficient
enumeration of all annotations of an input string. Our results achieve output-linear
delay, and cubic-time preprocessing if the grammar is unambiguous, quadratic-time if it
is rigid, and linear-time for profiled-deterministic PDAnns.

The main question left open by our work is that of the precise complexity of this
task, depending on the grammar formalism. For instance, can we improve the O(n3)
algorithm to match the complexity of Valiant’s parser? For which grammar classes can
we extend the linear-time preprocessing approach? We believe, however, that a complete
classification is out of reach, given that classifying the fine-grained complexity of parsing
is still open to a large extent even in the case of unannotated CFGs.
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search Foundation) – 431183758. Muñoz and Riveros were funded by ANID - Millennium
Science Initiative Program - Code ICN17_002.

References

[1] A. Abboud, A. Backurs, and V. V. Williams. If the current clique algorithms are
optimal, so is Valiant’s parser. SIAM J. Comput., 47(6), 2018.

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The design and analysis of computer
algorithms. Addison-Wesley, 1974.

[3] R. Alur and P. Madhusudan. Visibly pushdown languages. In STOC, 2004.

[4] A. Amarilli, P. Bourhis, L. Jachiet, and S. Mengel. A circuit-based approach to
efficient enumeration. In ICALP, 2017.

[5] A. Amarilli, P. Bourhis, S. Mengel, and M. Niewerth. Constant-delay enumeration
for nondeterministic document spanners. In ICDT, 2019.

19

https://arxiv.org/abs/1504.01431
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1174&context=cis_papers
https://arxiv.org/abs/1702.05589
http://icalp17.mimuw.edu.pl/
https://arxiv.org/abs/1807.09320
http://edbticdt2019.inesc-id.pt/


[6] A. Amarilli, P. Bourhis, S. Mengel, and M. Niewerth. Enumeration on trees with
tractable combined complexity and efficient updates. In PODS, 2019.

[7] A. Amarilli, P. Bourhis, S. Mengel, and M. Niewerth. Constant-delay enumeration
for nondeterministic document spanners. TODS, 2020.
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A. Proofs of Section 3

A.1. Proof of Theorem 1

We give here a self-contained argument for the proof of Theorem 1. A more detailed
presentation can be found in [4] or [27].

We will first show how to build a structure that only represents sets that are non-
empty and that cannot contain the empty string (singleton(ε)). Then we will explain
how we can extend this structure to support the empty set, and to support singleton(ε).
The DAG structure of enumerable sets. As enumerable sets are a fully-persistent
structure, we can represent our data structure as a global directed acyclic graph storing
all enumerable sets constructed so far, to which we can only add new nodes pointing
to existing nodes. In particular, for any node that is built, its set of descendants is
immutable. Each node n will be associated to a set S(n). In the global DAG, there are
three kinds of nodes:

• Singleton nodes, a singleton node n carries a value x ∈ O and as its name suggests,
S(n) = {x}, i.e. n represents the set containing a single value which is the single-
character string x.

• Product nodes, a product node has two outgoing edges. Intuitively, a product node
n is such that S(n) = S(n1) ⊗ S(n2), where ⊗ denotes the product operation on
sets defined on the main text, and n1 and n2 are the two inputs.

• Union nodes, a union node has two or three outgoing edges. The first outgoing
edge necessarily points to a node which is a singleton or product node. Intuitively,
a union node n is such that S(n) is ∪cS(c) where c ranges over the nodes to which
n has an outgoing edge. In our construction we will make sure that union nodes
with three children are never used directly to represent an enumerable sets but
only used internally, in particular we never start the enumeration on such nodes.

Implementing the various construction operations. We now present how to im-
plement the various operations for enumerable sets. For singleton and prod the operation
is easy: for singleton(x), we create a leaf node carrying the value singleton(x) and return
it; for prod(n1, n2) we create a product node with n1 and n2 as outgoing edges and
return it.

The union operation is the most complicated operation by far. Let n1 and n2 be the
arguments Remember that n1 and n2 cannot be union nodes that have three outgoing
edges, because n1 and n2 are nodes that represent enumerable sets. We implement the
union operator on n1 and n2 in the following way

• If one of the arguments is a singleton or product node, then the result is a union
node with two children, having the singleton or product node as first child and the
other argument as second child.

22



• If both arguments are union nodes n and n′, let n1 and n2 be the children of n with
n1 a singleton or product node, and define likewise n′1 and n′2. The result is a union
node n′′ having as children n1 and a fresh union node n′′′ having as children n′1,
n2, and n′2. Notice the returned node, n′′ has only two outgoing edges satisfying
the condition that union nodes with three children are never used directly.

One can verify that the construction satisfies the invariants, i.e., that S(n) is as
prescribed. This is clear for the product operator, and for the union operator the only
difficult case is the union of two union nodes. Then, given that we had S(n) = S(n1) ∪
S(n2), and S(n′) = S(n′1)∪S(n

′
2), the result is such that S(n′′) = S(n1)∪S(n′1)∪S(n2)∪

S(n′2) which is correct. Furthermore, it is clear that we never return a union node with
three children as the result of an operator, and that the unions that we create have the
right number of children and that their first child is always a singleton or product node.

What is more, all operators are indeed in constant-time.

Reduction to the enumeration of enumerable sets starting with a product
node. For the sake of simplicity, we will suppose in the rest of this section that the
node to be enumerated is always a product node. If it is not we can easily create the
product with a singleton node $, enumerate the strings represented by this new node
and remove from each string produced the last character (which will be the $).

Auxiliary procedure: enumerating the exits of union nodes. Given a node n,
we say that an exit of n is a product or a singleton node reachable from n going only
through union nodes. For our enumeration scheme, we will need a structure capable of
enumerating the exits of a node with constant-delay between the any two exits, such
that the structure can be initialized in constant time.

The set of exits for a node n can be expressed recursively: it is either n when n itself is
a singleton or product node or it is the union of exits of the children of n otherwise. Our
enumeration thus performs a depth first search but with a constant delay guarantee.

To do this, we will rely (as in a normal depth first search) on a stack S of nodes “to
be enumerated”. At the beginning of the enumeration, S contains the node n, and the
enumeration ends whenever S becomes empty. When looking for the next exit, we pop
one node v from S. If v is a singleton or product node, the next exit is v. If v is a union
node, we push back the children of v on the stack while making sure that the first child
of v is on top. Then, we reiterate the procedure to find the next exit.

It is clear that this scheme enumerates all the exits and only once. To show that this
procedure is indeed constant-delay, notice that, by design, the first child of a union node
is never a union node itself. Therefore if we pop a union node, the next pop cannot be
a union node again. Therefore once every two pops we produce at least one exit and
therefore the procedure outputs the exits with constant delay.

Enumeration state. In the design of our enumeration algorithm, we must explain
what is the state stored by the enumeration between any two outputs. This state is an
enumeration tree. In an enumeration tree, the nodes are of one of the following two types:
concatenation nodes (similar to the product nodes in our DAG) and pointer nodes, point-
ing to either a product or a singleton node in the DAG. For each concatenation node n

we will store multiple pieces of information: two children, two auxiliary data structures
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for exit enumeration, and as a pointer to the product node that n corresponds to. For a
pointer node we will simply keep a pointer to the node in the DAG of enumerable sets,
which is either a product node or a union node.

An enumeration-tree is said to be output-ready when no pointer nodes are pointing to
product nodes. This means that the children of concatenation nodes are either concate-
nation nodes themselves or pointer nodes pointing to singleton nodes.

Overall structure of the enumeration. Each step of the enumeration is decom-
posed into three sub-phases: (1.) an unfolding sub-phase where we “unfold” the pointer
nodes pointing to product nodes into concatenation nodes (resulting in an output-ready
enumeration tree), then (2.) an output sub-phase where we compute the output, and
finally (3.) a pruning sub-phase where we change the tree to point to the next solution
by removing nodes where there are no more outputs. Each sub-phase will take a time
proportional to the output currently being produced. After the pruning sub-phase we
return the computed output. Thus, we ensure output-linear delay.

At the beginning of the enumeration for a enumerable set, remembering our assump-
tion that the enumerable set corresponds to a product node n, the state of the enumer-
ation is a pointer node pointing to n. The enumeration ends whenever n has no next
solution (we explain below how this can be computed).

Note that we need to separate the pruning sub-phase of the current output from the
next unfolding sub-phase, because the running time of the pruning sub-phase depends on
the size of the current output, while the running time of the unfolding sub-phase of the
next output depends on the size of the next output. Thus, without running the pruning
sub-phase with the current output, we could violate the output-linear delay guarantee,
because two successive outputs may have very different sizes.

Unfolding sub-phase. During the unfolding sub-phase, we explore the enumeration
tree to look for a pointer node. Each time we find a pointer node p pointing to a product
node n with children n1 and n2, we replace p by a new concatenation node c. The two
exit-enumeration structures S1 and S2 of the new concatenation node c enumerate the
exits of the inputs n1 and n2 to the product node n. We use these structures to retrieve
the first exits e1 and e2 of n1 and n2, and the children c1 and c2 of c are pointer nodes
pointing to these e1 and e2. We recursively call the unfolding sub-phase into the two
newly created nodes c1 and c2. Clearly this unfolding sub-phase overall takes a time
proportional to the size of the final tree. Further, at the end of this sub-phase, the
enumeration tree is output-ready.

Output sub-phase. For the output sub-phase, we have a output buffer and we simply
traverse our enumeration tree. Each time we encounter a pointer node, it points to
a singleton node carrying the value x, and we append x to our buffer. This sub-phase
clearly takes a time proportional to the size of the tree. Notice that the output produced
in the buffer is also of size proportional to the tree: this is because the number of
concatenation node corresponds to the number of pointer nodes (all of which point to
singletons), minus one.

Pruning sub-phase. For the pruning sub-phase, we want to prepare for the next
output. For this we will require to compute the Boolean information of whether a
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node has a next solution. This can computed from the output-ready tree recursively:
for a pointer node, there is no next solution (because it points to a singleton), for a
concatenation node there exists a next solution if either one of its children has a next
solution or if one the two exit-enumeration structures contain an exit to be enumerated.

To understand how we compute the next solution, note that for a product node n of
n1 and n2 we will compute the elements of S(n) by computing first the concatenation of
all strings of S(n1) with the first string of S(n2), then with the second string of S(n2),
etc., until we have covered all strings in S(n2).

Now, we can explain our recursive computation of the enumeration tree corresponding
to the next solution: given a concatenation node c with children c1 and c2 and exit-
enumeration structure S1 and S2 pointing to a product node n with children n1 and n2

there are several cases:

• When c1 has a next solution, we simply recurse into c1 to find the next solution.

• When c1 has no next solution but S1 has a next exit e1 to enumerate, we replace
c1 with a pointer node to e1.

• In the other cases, it means that we are done doing the enumeration of n1 for the
current solution of n2. We thus need to restart the enumeration of solutions to
n1 which is done by resetting S1 to enumerate the exits of n1 and replacing c1 by
the pointer node corresponding to the first exit enumerated by S1. We also need
to move the enumeration of n2 to its next solution. If c2 has a next solution we
compute it recursively otherwise we replace c2 with the next exit in S2.

• If c2 has no next solution and S2 has no next exit, then there is no next solution.

Memory usage of the enumeration phase. In Theorem 1, we claimed that our
enumeration scheme uses a memory linear in the size of the input string. As we already
explained, the number of nodes that we keep in an enumeration tree is at most linear
in the size of the current output, but we also need to prove that the memory used
by the auxiliary structures for exit enumeration stays linear in the size of the DAG of
enumerable sets. For this, notice that any node n of the DAG cannot be stored twice.
It cannot be stored within the same exit enumeration data structure as it would mean
that the same solution will be enumerated twice, which is impossible by our assumption
that unions are disjoint. Further, it cannot be stored in two different exit enumeration
schemes, as otherwise there would be a product node where both inputs contain the
letters of some element in S(n), which is again forbidden.

Adding the ∅ operation. To extend the data structure to support the ∅ operator,
we add a new node type to have a node representing the empty set. There will be only
one node of this type. The ∅ basic operation is simply to create the ∅ node if it does
not exist and return it, otherwise return the one that exists. We change the definition
of the product operator to do the following on arguments n1 and n2: if one of n1 and n2

is the ∅ node, then return the ∅ node; otherwise do as before. We change the definition
of the union operator to do the following on arguments n1 and n2: if one of n1 and n2
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is the ∅ node, then return the other argument; otherwise do as before. It is clear that
these alternative definitions do not alter the semantics of nodes, and they guarantee that
whenever we apply the definitions from before then the arguments are not ∅ nodes.

For the enumeration phase, we add a new base case: if the node to enumerate is ∅,
we immediately halt. Otherwise, it is clear that the ∅ node can never be visited in the
enumeration, because in our construction the ∅ node never has an incoming edge.

Adding the singleton(ε) operation. Making a data structure that supports singleton(ε)
operator is done by storing, for each enumerable set, a pair of an enumerable set without
support for empty string solutions (as defined above), and a Boolean indicating whether
the empty string ε is captured. We now present the new operations on enumerable sets.
We distinguish between the original functions and the new functions described here by
adding an epsilon index to the new functions, e.g., emptyε.

For emptyε, we return (∅, false).
For singletonε(x) we return the pair (singleton(x), false) if x ≠ ε and (∅, true) other-

wise.
For unionε((e1, b1), (e2, b2)) we return (union(e1, e2), b1 ∨ b2).
For prodε((e1, b1), (e2, b2)), the Boolean that we return is b1 ∧ b2, and the enumer-

able set that we return depends on the value of b1 and b2 we return prod(e1, e2) when
¬b1 ∧¬b2, union(prod(e1, e2), e1) when b1 ∧¬b2, union(prod(e1, e2), e2) when b2 ∧¬b1 and
union(prod(e1, e2),union(e1, e2)) when b1 ∧ b2.

To run the enumeration phase on a pair (e, b), we start by outputting ε if b is set, and
then we enumerate e as explained previously.

A.2. Proof of Proposition 2

We show Proposition 2. The result is shown as in [25], though we give the proof in a self-
contained fashion for convenience. We additionally show here that the transformation
preserves rigidity (defined in Section 4) as this property is used in that section.

Conditions 1 and 2: removing useless nonterminals. We first perform a linear-
time exploration from the terminals to mark the nonterminals X that can derive some
string of terminals. The base case is if a nonterminal X has a rule X → α where α

only consists of terminals (in particular α = ε), then we mark it. The induction is that
whenever a nonterminal X has a rule X → α where α only consists of terminals and of
marked nonterminals, then we mark X. At the end of this process, it is clear that any
nonterminal that is not known to derive a string of terminals indeed does not derive
any string, because any derivation of a string of terminals from a nonterminal X would
witness that all nonterminals in this derivation, including X, should have been marked,
which is impossible. Hence, we can remove the nonterminals that are not marked without
changing the language or successful derivations of the grammar, and satisfy condition 1
in linear time.

Second, we perform a linear-time exploration from the start symbol S to mark the
nonterminals X that can be reached in a derivation from S. The base case is that S is
marked. The induction is that whenever a nonterminal Y occurs in the right-hand side
of a rule having X as its left-hand side, and X is marked, then we mark Y . At the end
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of the process, if a nonterminal X is not marked, then indeed there is no derivation from
S that produces a string featuring X, as otherwise it would witness that X is marked,
which is impossible. Hence, we can again remove the nonterminals that are not marked,
the grammar and successful derivations are again unchanged, and we satisfy condition
2 in linear time.

As the transformations here only remove nonterminals and rules that cannot appear
in a derivation, they clearly preserve unambiguity as well as rigidity.

Condition 3: shape of rules. We first ensure that every right-hand side of a rule is
of size ≤ 2. Given the annotated grammar G, for every rule X → α where ∣α∣ > 2, letting
α = α1⋯αn, we introduce n− 2 fresh nonterminals Xα,1, . . . ,Xα,n−2, and replace the rule
by the following: X → α1Xα,1, Xα,1 → α2Xα,2, ..., Xα,n−2 → αn−1αn.

We make sure that the right-hand side of rules of size 2 consist only of nonterminals
by introducing fresh intermediate nonterminals whenever necessary, which rewrite to the
requisite terminal.

It is then clear that the result satisfies condition 3, and that there is a one-to-one corre-
spondence between derivations in the original grammar and derivations in the rewritten
grammar. To see this, note that there is an obvious one-to-one function which maps
derivations from the original grammar into derivations in the new grammar, and that
there is a slightly more involved function which receives a derivation in the new grammar,
and builds a derivation in the original grammar by following the steps detailed above
(and using the fact that each fresh nonterminal is associated to exactly one rule), which
is also one-to-one. We conclude that the original grammar is unambiguous if and only
if the new grammar is unambiguous.

The last point to check is that the arity-2 transformation preserves rigidity, i.e., if the
original annotated grammar is rigid then so is the image of the transformation. Let X
be some symbol of the original grammar G, and w ∈ Σ∗ be a string. Let us show that all
derivations from the corresponding symbol X ′ of the rewritten grammar G′ have same
shape. We do so by induction on the length of w and then on the topological order
on nonterminals. The base case of w of length 0 is clear: the possible derivations are
sequences of applications of rules of the form Y → Z in a sequence of some fixed length,
followed by a rule of the form Y → ε, and what can happen in the rewritten grammar is
the same.

For the inductive case, as G is rigid, we know that there must be one fixed profile
π ∈ {0,1}k such that all derivations of w from X start by the application of a rule
X → α where α corresponds to profile π, i.e., it has length k and its i-th character
is a nonterminal or terminal according to the value of the i-th bit of π. Otherwise the
existence of two different right-hand-side profiles would contradict rigidity. Furthermore,
by considering the possible sub-derivations from α1 (including the empty derivation if α1

is a terminal), we know that α1 derives some fixed prefix of w and that all such derivations
have the same sequence of profiles; otherwise we would witness a contradiction to rigidity.
By applying the same argument successively to α2, . . . , αk, we deduce that there must be
a partition of w = w1⋯wk such that, in all derivations of w from X, the derivation applies
a rule with right-hand having profile π to produce some string α1⋯αk, and then each
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αi derives an annotation of wi and for each i all possible derivations of some annotation
of wi by some i-th element in the right-hand size of such a rule has the same sequence
of profiles.

As the string is nonempty we know that k > 0. Further, if k = 1 then X and the
productions involving X were not rewritten so we immediately conclude either with the
case of a rule X → τ for a terminal τ or by induction hypothesis on the nonterminals in
the topological order for the case of a rule of the form X → Y . Hence, we assume that
k ≥ 2.

We know by induction that, in the rewritten grammar, the derivation fromX will start
by rewriting X to Y1Xα,1, the Xα,1 being itself rewritten to Y2Xα,2, and so on, for some
right-hand size α of a rule X → α having profile π. Clearly each Yi will have to derive
an annotation of the wi in the partitioning of w, as a derivation following a different
partitioning would witness a derivation in the original grammar that contradicts rigidity.
Now, the profile π indicates if each Yi is a nonterminal of the initial grammar or a fresh
nonterminal introduced to rewrite to a terminal. In the latter case, there is no possible
deviation in profiles. In the former case, we conclude by induction hypothesis that each
Yi derives annotations of its wi that all have the same profile, and we conclude that all
derivations in the rewritten grammar indeed have the same profile, concluding the proof.

A.3. Proof of Proposition 4

We know from [1] that for any c > 0, there exists a fixed grammar G such that determining
whether a string w is derived by G, cannot be solved in time O(∣w∣ω−c), unless the
conjecture in graph algorithms mentioned in [1] is false.

We will see that this conditional lower bound translates to unambiguous annotated
grammars. Indeed, we will show that for each grammar G there exists an unambiguous
annotated grammar G′ such that w is derived by G if and only if ⟦G′⟧(w) is non-empty.
Therefore after the preprocessing of w for G′, we know in constant time whether w is
derived by G which proves that the preprocessing of G′ on w requires O(∣w∣ω−c) time,
assuming the conjecture is true.

Now let us show how to translate a grammar G into an unambiguous annotated gram-
mar G′. This can be challenging, because G is not necessarily unambiguous: for this
reason we need to define G′ intuitively by adding annotations that disambiguate the
various possible derivations of G, to guarantee that the result is unambiguous. As this
is cumbersome to do on grammars, we use the correspondence between annotated gram-
mars and pushdown annotators (Proposition 10), shown later in the article.

In this proof, we will use the notion of pushdown automata (PDA); see Definition 18 for
the formal definition. Let us consider a PDA P which is equivalent to G. As is standard
with PDAs, we can change the given definition to suppose without loss of generality that
no transition in P is an ε-transition. Specifically, we consider PDAs in a slightly different
model where transitions are of the form (q1, a, s1, q2, s2) ∈ Q × Σ × Γ+ ×Q × Γ+: such a
transition means that in state q1, when the top stack symbols are s1 and the next letter
to read is a, the automaton can read the letter, move to state q2 and replace s1 by s2 on
the stack. We create our unambiguous PDAnn P ′ from P by replacing each transition
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t = (q1, a, s1, q2, s2) to a set of transitions that first pop the symbols of s1 from the
stack, then reads a, then pushes the symbols of s2 onto the stack. The first state of this
transition is q1, the last state is q2 but we make sure that each of the intermediate states
are unique to t. Furthermore, the transition that reads the letter a outputs a symbol
unique to the transition t. Therefore, by construction there is a bijection between runs
of P and runs of P ′ and the PDAnn P ′ is unambiguous because the run used for each
output can be retrieved from that output.

We conclude by using Proposition 10 to obtain an equivalent annotated grammar G′,
which is also unambiguous. Thus, we know that on any unannotated string w, the set
⟦G′⟧(w) is empty if G does not derive w, and non-empty if it does. Thus, we know that,
if we assume the conjecture is true, we cannot determine in O(∣w∣ω−c) whether ⟦G′⟧(w)
is empty or not. But if we have an algorithm to enumerate ⟦G′⟧(w) with output-linear
delay, as any output has size O(∣w∣) in ∣w∣, we can do this with a complexity linear in ∣w∣
which is that of the preprocessing of the enumeration algorithm. Thus, we conclude that
the preprocessing conditionally requires Ω(∣w∣ω−c) time.

B. Proofs of Section 4

B.1. Proof of Theorem 5

In this appendix, we will use the notion of PDAnn introduced in Section 5, and we will
use Proposition 10, which is also stated in Section 5 and proved in Appendix C.1.

To prove Theorem 5, we introduce a general-purpose normal form on PDAnn, where,
intuitively, the only choices that can be made during a run are between the types of
transition to apply. This is similar to Lemma 1 in [27].

Definition 15. A PDAnn P is deterministic-modulo-profile if it satisfies the following
conditions:

1. for each state p there is at most one push transition that starts on p, formally
∣{q, γ ∈ Q × Γ ∣ (p, q, γ) ∈∆}∣ ≤ 1

2. for each state p and stack symbol γ there is at most one pop transition that starts
on p, γ, formally ∣{q ∈ Q ∣ (p, γ, q) ∈∆}∣ ≤ 1

3. for each state p, letter a, and output o⌣ ∈ Ω, there is at most one read-write transition
that starts on p, a, o⌣, formally, we have ∣{q ∈ Q ∣ (p, (a, o⌣), q) ∈∆}∣ ≤ 1.

4. for each state p and letter a, there is at most one read transition that starts on
p, a, formally ∣{q ∈ Q ∣ (p, a, q) ∈∆}∣ ≤ 1.

Lemma 2. Let P be a PDAnn. We can build an equivalent PDAnn P ′ which is
deterministic-modulo-profile. The transformation takes exponential time, i.e., time O(2∣P∣

c

)
for some c > 0.

Further, on any string w, there is an accepting run of P on w with profile π iff there
is an accepting run of P ′ on w with the same profile.
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Proof. The proof is similar to the determinization of visibly pushdown automata [27,
Lemma 1].

Given P = (Q,Σ,Ω,Γ,∆, q0, F ), we build P ′ = (Q′,Σ,Ω,Γ′,∆′, SI , F
′) as follows. We

build Q′ = 2Q×Q, intuitively denoting a set of pairs of states (p, q) of P such that P
can be at state q at this point if it was at state p when the topmost stack symbol was
pushed. We build Γ′ = 2Q×Γ×Q, intuitively specifying the sets of possible stack symbols
and remembering the state just after the previous stack symbol was pushed and the
state just after that symbol was pushed. We build SI = {(q0, q0)}, meaning that initially
we are at the initial state q0 and were here when the stack was initialized. We build
F ′ = {S ∣ (q0, q) ∈ S for some q ∈ F}, meaning that we accept when P reaches a final
state and we were at the initial state when the stack was initialized. Let ∆′ be defined
as follows:

• The (unique) push transition from a state S ∈ Q′ makes P ′ push a stack symbol
S′ and move to a state T , intuitively defined as follows. For every pair (p, p′) of S
and push transition (p′, q, γ) ∈ ∆ in the original PDAnn, we can move to state
(q, q) and push on the stack the symbol (p, γ, q). The stack symbol S′ is the set
of all possible stack symbols that can be pushed in this way, and T is the set of all
possible states that can be reached in this way.

Formally, for every S ∈ Q′ we include (S,S′, T ) in ∆′, where:

T = {(p, γ, q) ∣ (p, p′) ∈ S and (p′, q, γ) ∈∆ for some p, p′, q ∈ Q,γ ∈ Γ},
S′ = {(q, q) ∣ (p, p′) ∈ S and (p′, q, γ) ∈∆ for some p, p′, q ∈ Q,γ ∈ Γ}

• The (unique) pop transition from a state S ∈ Q′ and topmost stack symbol T ∈ Γ′

makes P ′ move to a state T ′ intuitively defined as follows. For every pair (p′, q′)
of S, we consider all triples (p, γ, p′) of the topmost stack symbol T , and if the
original PDAnn had a pop transition (q′, γ, q) ∈ ∆, then we can pop the topmost
stack symbol and go to the state (p, q). The new state T ′ is the set of all pairs
(p, q) that can be reached in this way.

Formally, for every (S,T ) ∈ Q′ × Γ′ we include (S,T,S′) in ∆′, where:

S′ = {(p, q) ∣ (p, γ, p′) ∈ T and (p′, q′) ∈ S and (q′, γ, q) ∈∆ for some p, p′, q, q′ ∈ Q,γ ∈ Γ},

• The (unique) read-write transition from a state S ∈ Q′ on a letter a ∈ Σ and output
o⌣ ∈ Ω makes P ′ move to a state S′ intuitively defined as follows: we consider all
pairs (p, p′) in S and all transitions from p′ with a and o⌣ in P to some state q, and
move to all possible pairs (p′, q).

Formally, for every (S,a, o⌣) ∈ Q′ ×Σ ×Ω we include (S, (a, o⌣), S′) in ∆′, where:

S′ = {(p, q) ∣ (p, p′) ∈ S and (p′, (a, o⌣), q) ∈∆ for some p, p′, q ∈ Q}.
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• The (unique) read transition from a state S ∈ Q′ on a letter a ∈ Σ makes P ′ move
to a state S′ intuitively defined as follows: we consider all pairs (p, p′) in S and
all transitions from p′ with a in P to some state q, and move to all possible pairs
(p′, q).

Formally, for every (S,a) ∈ Q′ ×Σ we include (S,a,S′) in ∆′, where:

S′ = {(p, q) ∣ (p, p′) ∈ S and (p′, a, q) ∈∆ for some p, p′, q ∈ Q}.

It is clear by definition that P ′ is deterministic-modulo-profile, and it is clear that the
running time of the construction satisfies the claimed time bound.

We now show that P and P ′ are equivalent.
Now, for the forward direction, let us first assume without loss of generality that

whenever P makes a push transition then the stack symbol that it pushes is annotated
with the state reached just after the push. Then we will show that every instantaneous
description that can be reached by P can be reached by P ′ by induction on the run.
Specifically, we show by induction on the length of the run ρ the following claim: if P
has a run ρ on a string w that produces µ from an initial state q0 ∈ T to an instantaneous
description (q, i), α, with α = γ0p0, . . . , γmpm being the sequence of the stack symbols
and states annotating them, then P ′ has a run ρ′ on w from SI to an instantaneous
description (S, i), α′ with α′ = T0 . . . Tm such that T0 contains (q0, γ0, p0), T1 contains
(p0, γ1, p1), ..., Tm contains (pm−1, γm, pm) and S contains (pm, q); further ρ and ρ′ have
the same profile.

The base case of an empty run on a string is immediate: if P has an empty run from
an initial state q0, then it reaches the instantaneous description with (q0,0) and the
empty stack, and then P ′ then has an empty run reaching the instantaneous description
(S,0) with the empty stack and S indeed contains (q0, q0).

For the induction case, assume that P has a non-empty run ρ+ on a string w that
produces µ. First, write ρ+ as a run ρ followed by one single transition of P. We know P
has a run ρ on w which produces µ from an initial state q0 to an instantaneous description
(q, i), α, with α = γ0p0, . . . , γmpm. By the induction hypothesis, we know that P ′ has a
run ρ′ on w from (q0, q0) to an instantaneous description (S, i), α′ with α′ = T0 . . . Tm

such that T0 contains (q0, γ0, p0), T1 contains (p0, γ1, p1), ..., Tm contains (pm−1, γ, pm)
and S contains (pm, q); and ρ′ and ρ have the same profile. We now distinguish on the
type of the transition used to extend ρ to ρ+.

If that transition is a read-write transition (q, (a, o⌣), q′), we consider the read-write
transition of P ′ labeled with (a, o⌣) from T , and call S′ the state that P ′ reaches. As
(pm, q) ∈ S and (q, (a, o⌣), q′) ∈ ∆, we know that (pm, q′) ∈ S′. Thus, P ′ can read (a, o⌣)
and reach a suitable state S′ and position i+1 and the stacks are unchanged so the claim
is proven.

If that transition is a read transition (q, a, q′), we follow an analogous reasoning.
If that transition is a push transition (q, q′, γ), the position of P is unchanged and

the new stack is extended by γ annotated with state q′. Consider the push transition of
P ′ from q, and call S′ the state reached and T = Tm+1 the stack symbol that is pushed.
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As (pm, q) ∈ S and (q, q′, γ) ∈ ∆, we know that T contains (pm, γ, q′), and S′ contains
(q′, q′), which is what we needed to show.

If that transition is a pop transition, (q, γm, q′), the position of P is unchanged and
the topmost stack symbol is removed. Consider the topmost stack symbol Tm and the
transition of P ′ that pops it from S, and call S′ the state that we reach. We know that
S contains (pm, q) and Tm contains (pm−1, γm, pm) and (q, γm, q′) ∈ ∆, so S′ contains
(pm−1, q′), which is what we needed to show.

Note that, in all four cases, the profile of ρ+ and ρ′+ is the same, because this was true
of ρ and ρ′, and the type of transition done to extend ρ′ to ρ′+ is the same as the type
of transition done to extend ρ to ρ+.

The inductive claim is therefore shown, and thus if P has a run ρ on some string w

that produces µ starting at some initial state q0 and ending at state q, then P ′ has a
run ρ′ on w which produces µ and ending at a state of the form (q0, q) for q0 and having
same profile. Thus, if ρ is accepting then q is final for P and (q0, q) is final for P ′ so ρ′

is accepting. This concludes the forward implication.
We now show the backward implication, and show it again by induction, again assum-

ing that P annotates the symbols of its stack with the state reached just after pushing
them. We show by induction on the length of a run ρ′ the following claim: if P ′ has a
run ρ′ on a string w that produces µfrom its initial state to an instantaneous descrip-
tion (S, i), α′ with α′ = T0, . . . , Tm being the sequence of the stack symbols, then for
any choice of elements (q0, γ0, p0) ∈ T0, (p0, γ1, p1) ∈ T1, ..., (pm−1, γm, pm) ∈ Tm and
(pm, q) ∈ S it holds that P has a run ρ on w producing µ from some initial state q0
to the instantaneous description (q, i), α with α = γ0q0, . . . , γmqm (writing next to each
stack symbol the state that annotates it), and ρ′ and ρ have the same profile.

The base case of an empty run on a string is again immediate: if P ′ has an empty
run from its initial state, then it reaches the instantaneous description with (SI ,0) and
empty stack, and then P has an empty run from any initial state q0 to q0 so that indeed
SI contains (q0, q0).

For the induction case, assume that P ′ has a non-empty run ρ′+ on w which produces
µ, We write again ρ′+ as a run ρ′ followed by one single transition of P ′. We know P ′ has
a run ρ′ on w which produces µ from the initial state SI to an instantaneous description
(S, i), α′, with α = T0 . . . Tm. By the induction hypothesis, we know that for any choice of
elements (q0, γ0, p0) ∈ T0, (p0, γ1, p1) ∈ T1, ..., (pm−1, γm, pm) ∈ Tm and (pm, q) ∈ S, then
P has a run ρ on w which produces µ from some initial state q0 to the instantaneous
description (q, i), α with α = γ0q0, . . . , γmqm, and ρ and ρ′ have the same profile. We
now distinguish on the type of transition used to extend ρ′ to ρ′+.

If the last transition is a read-write transition (S, (a, o⌣), S′) with S′ defined as in the
construction, consider any choice of (q0, γ0, p0) ∈ T0, (p0, γ1, p1) ∈ T1, ..., (pm−1, γm, pm) ∈
Tm and (pm, q′) ∈ S′, and then there must be some state p′′ such that (p′′, (a, o⌣), q) ∈ ∆
and (pm, p′′) ∈ S. Using the induction hypothesis but picking (pm, p′′) ∈ S, we obtain a
run ρ of P on w which produces µ, with the correct stack and ending at position i on
state p′′, which we can extend by the read transition (p′′, (a, o⌣), q) to reach state q at
position i + 1 without touching the stack, proving the result.

If the last transition is a read transition (S,a,S′) with S′ defined as in the construction,
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we follow an analogous reasoning.
If the last transition is a push transition (S,S′, T ) with T defined as in the construc-

tion, consider any choice of (q0, γ0, p0) ∈ T0, (p0, γ1, p1) ∈ T1, ..., (pm−1, γm, pm) ∈ Tm,
(pm, γm+1, pm+1) ∈ Tm+1 and (pm+1, q′) ∈ S′. We know that we must have q′ = pm+1, and
that there must be some state p′′ and push transition (p′′, pm+1, γm+1) and pair (pm, p′′)
in S. Using the induction hypothesis but picking (pm, p′′) ∈ S, we obtain a run ρ of P
on w which produces µ with topmost stack symbol γm, ending at state p′′, which we can
extend with the push transition (p′′, pm+1, γm+1) to obtain the desired stack and reach
state pm+1 = q

′, proving the result.
If the last transition is a pop transition (S,T,S′) with S′ defined as in the construction,

consider any choice of (q0, γ0, p0) ∈ T0, (p0, γ1, p1) ∈ T1, ..., (pm−2, γm−1, pm−1) ∈ Tm−1, and
(pm−1, q) ∈ S′. We know that there is a pair (p′, q′) ∈ S and a triple (pm−1, γm, p′) in Tm

and a pop transition (q′, γm, q) in ∆. Applying the induction hypothesis, we get a run
ρ of P on w which produces µ and with topmost stack symbol γm annotated with state
p′ and ending at state q′. The pop transition (q′, γm, q) allows us to extend this run to
reach state q and remove the topmost stack symbol, while the rest of the stack is correct,
proving the result.

Again, we have ensured that ρ is extended to ρ+ with the same transition as the
transition used to extend ρ′ to ρ′+, ensuring that ρ+ and ρ′+ have same profile. This
concludes the proof of the backward induction, ensuring that if P ′ has a run from SI to
some final state S reading a string w and producing µ, and having (q0, qf) with qf ∈ F

in S, then P has a run reading w which produces µ going from q0 to the final state qf .
This concludes the backward implication and completes the proof.

We can now show Theorem 5 via Proposition 10, using also the notion of profiled
PDAnn defined in Section 5:

Proof of Theorem 5. Let G be a rigid annotated grammar. Using Proposition 10, we
transform it in polynomial time to a profiled PDAnn P. Using Lemma 2, we build in
exponential time an equivalent PDAnn P ′ satisfying the conditions of the lemma.

We know that P ′ is still profiled. Indeed, if we assume by contradiction that there is
a string w on which P ′ has two accepting runs with different profiles, then by the last
condition of Lemma 2, the same is true of P, contradicting the fact that P is profiled.

Now, we claim that P ′ is necessarily also unambiguous. To see why, consider two
accepting runs ρ and ρ′ of P ′ on some string w. Since P ′ is profiled, ρ and ρ′ must
have the same profile. But now, the conditions of Lemma 2 ensure that, knowing the
input string w and profile, the runs ρ and ρ′ are completely determined. Specifically,
this is an immediate induction on the run. The base case is that there is only one initial
state, so both ρ and ρ′ must have the same initial state. Now, assuming by induction
that the runs so far are identical and have the same stack, there are three cases. First,
if the profile tells us that both runs make a push transition, the symbol pushed and
state reached are determined by the last states of the runs so far, which are identical
by inductive hypothesis. Second, if the profile tells us that both runs make a read-write
transition (or read transition), the state reached is determined by the input and output
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symbols (or just the input symbol), and by the last states of the run so far, which are
identical by inductive hypothesis. Third, if the profile tells us that both runs make a
pop transition, the state reaches is determined by the last state of the run so far, and the
topmost symbol of the stack, which are identical by inductive hypothesis. This concludes
the inductive proof.

Thus, for any two accepting runs ρ and ρ′ on the string w which produce the same
output, they must identical. Thus, P ′ is unambiguous. We use Theorem 10 to transform
P ′ back into an annotated grammar, which is still rigid and unambiguous, and equivalent
to the original rigid annotated grammar G. The overall complexity of the transformation

is in O((2(∣G∣
c)c
′

)c
′′

) for some c, c′, c′′ > 0, so it is in O(2∣G∣
d

) for some d > 0 overall, and
the time complexity is as stated.

B.2. Proof of Proposition 6

This proof is based on extending the definitions of unambiguity and rigidness of an-
notated grammars over unannotated context-free grammars. Indeed, an unambiguous
annotated grammar with an empty output set is just an unambiguous CFG, and a rigid
annotated grammar with an empty output set is a CFG for which every derivation of a
given string w ∈ Σ∗ has the same shape.

Consider the (unannotated) grammar G′ obtained from G by removing all annotations
on terminals, and making Ω = ∅. It can be seen that L(G′) = L′ since for each string w,
if w ∈ L(G′), then there is at least one ŵ ∈ L(G) with str(ŵ) = w and vice versa. Now,
we claim that G′ is rigid, by extending the notion onto CFGs in the obvious way. To see
this, consider a string w ∈ L(G′); all derivations of w by G′ correspond to derivations by
G of some ŵ such that str(ŵ) = w. Because G is rigid, all these derivations have the same
shape. Now, using Theorem 5, we can compute a rigid and unambiguous grammar G′′

recognizing the same language over Σ∗ as G′, i.e., L′. But as L′ is a language without
output, the unambiguity of G′′ actually means that G′′ is an unambiguous CFG. Hence,
L′ is recognized by an unambiguous grammar, concluding the proof.

B.3. Proof of Proposition 7: Undecidability results on rigid grammars

We first show the undecidability of checking if an annotated grammar has an equivalent
rigid annotated grammar:

Proposition 16. Consider the problem, given an annotated grammar G, of determining
whether there exists some equivalent rigid annotated grammar equivalent to G. This
problem is undecidable.

Proof. We reduce from the problem of deciding whether the language L2 of an input
(unannotated) context-free grammar G2 can be recognized by an unambiguous context-
free grammar: this task is known to be undecidable [20]. Consider G2 as an annotated
grammar (with empty annotations). Let us show that L2 can be recognized by a rigid
annotated grammar iff it can be recognized by an unambiguous context-free grammar,
which concludes. For the forward direction, if L2 can be recognized by an unambiguous
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context-free grammar, then that grammar is in particular rigid. For the backward di-
rection, if L2 can be recognized by a rigid grammar, then Proposition 6 implies that L2

can also be recognized by an unambiguous context-free grammar. Thus, we have showed
that the (trivial) reduction is correct.

We next show that it is undecidable to check if an input annotated grammar is rigid:

Proposition 17. Consider the problem, given an annotated grammar G, of determining
whether it is rigid. This problem is undecidable.

Proof. We adapt the standard proof of undecidability [13, Ambiguity Theorem 2] for the
problem of deciding, given an input unannotated grammar G, if it is unambiguous. The
reduction is from the Post Correspondence Problem (PCP), which is undecidable: we are
given as input sequences α1, . . . , αn and β1, . . . , βn of strings over some alphabet Σ, and
we ask whether there is a non-empty sequence of indices i1, . . . , im of integers in [1, n]
such that αi1 . . . αim = βi1 . . . βim . Given the input sequences α1, . . . , αn and β1, . . . , βn to
the PCP, we consider the alphabet Σ′ = Σ∪ {1, . . . , n}, and we consider the CFG having
nonterminals S, S1, and S2, start symbol S, and rules S → S1, S → S2, S1 → ε, S2 → ε,
and for each 1 ≤ i ≤ n the productions S1 → αiS1i and S2 → βiS2i.

We claim that this grammar is ambiguous iff there is a solution to the Post corre-
spondence problem. Indeed, given any solution αi1⋯αim = βi1 . . . βim , considering the
string αi1⋯αimim⋯i1 = βi1 . . . βimim⋯i1, we can parse it with one derivation featuring
S1 and one derivation featuring S2. Conversely, if we can parse a string w ∈ Σ∗ with two
different derivations, we know that there cannot be two different derivations featuring
S1. Indeed, reading the string from right to left uniquely identifies the possible deriva-
tions from S1. The same argument applies to derivations featuring S2. Hence, if the
grammar is ambiguous, then there is exactly one derivation featuring S1 and exactly one
derivation featuring S2. These two derivations can be used to find a solution to the Post
correspondence problem.

We now adapt this proof to show the undecidability of rigidity. We say that an input
to the PCP is trivial if there is i such that αi = βi. We can clearly decide in linear
time, given the input to the PCP, if it is trivial. Hence, the PCP is also undecidable
in the case where the PCP is non-trivial. Now, when doing the reduction above on a
PCP instance that is not trivial, we observe that two derivations of the same string can
never have the same sequences of shapes. Indeed, if we have two derivations of the same
string, then as we explained one must feature S1 and the other must feature S2, and
they give a solution αi1⋯αim = βi1 . . . βim to the PCP. Assume by contradiction that both
derivations have the same sequences of shapes. Then, it means that we have ∣αij ∣ = ∣βij ∣
for every 1 ≤ j ≤m. In particular we have ∣αi1 ∣ = ∣βi1 ∣, and so we know that αi1 = βi1 and
the PCP instance was trivial, a contradiction.

Hence, let us reduce from the PCP on non-trivial instances to the problem of deciding
whether an input annotated grammar is not rigid. Given a non-trivial PCP instance,
we construct G as above, but seeing it as an annotated grammar with no outputs. Then
G is not rigid iff there is a string w such that the empty annotation of w has two
derivations that do not have the same sequence of shapes. But this is equivalent to G
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being unambiguous when seen as a CFG. Indeed, for the forward direction, if G has two
such derivations on a string w then clearly w witnesses that G is ambiguous when seen
as a CFG. Conversely, if G is ambiguous when seen as a CFG, we have explained in
the previous paragraph that the two derivations must have different sequences of shapes,
so G is not rigid. Hence, we conclude that there is a solution to the input non-trivial
PCP instance iff G is not rigid. This establishes that the problem is undecidable and
concludes the proof.

B.4. Proof of Proposition 9

Assume we have such an algorithm A. Consider a procedure which receives an unambigu-
ous unannotated CFG G and an input string w, converts G into an annotated grammar
G′ with empty output set. Since G′ is unambiguous and rigid, we can run A over G′ and
w. If w ∈ L(G), then ⟦G′⟧(w) = {ε}, and if w /∈ L(G), then ⟦G′⟧(w) = ∅. Thus, after
the preprocessing phase of A we need only to wait a constant amount of time to see if
the string ε is given as output, or none is. We conclude that this procedure solves the
problem with the same complexity as the preprocessing phase of A.

C. Proofs of Section 5

In this appendix, we will need to use the standard notion of a pushdown automaton
(PDA), whose definition was omitted from the main text of the paper. We give it here:

Definition 18. A pushdown automaton (PDA) is a tuple A = (Q,Σ,Γ,∆, q0, F ), where
Q is a finite set of states, Σ is the alphabet, Γ is a finite alphabet of stack symbols,
q0 ∈ Q is the initial state, F ⊆ Q are the final states. We assume that Γ is disjoint
from Σ. Further, ∆ is a finite set of transitions of the following kind:

• Read transitions of the form (p, a, q) ∈ Q×Σ×Q, meaning that the automaton can
go from state p to state q while reading the letter a;

• Push transitions of the form (p, q, γ) ∈ Q×Q×Γ, meaning that the automaton can
go from state p to state q while pushing the symbol γ on the stack;

• Pop transitions of the form (p, γ, q) ∈ Q×Γ×Q, meaning that, if the topmost symbol
of the stack is γ, the automaton can go from p to q while removing this topmost
symbol γ.

We omit the definition of the semantics of PDAs, which are standard, and allow us
to define the language L(A) accepted by a PDA. It is also well-known that CFGs and
PDAs have the same expressive power, i.e., given a CFG G, we can build in polynomial
time a PDA A which is equivalent in the sense that L(G) = L(A), and vice-versa.

We will also need to use the standard notion of a deterministic PDA (with acceptance
by final state). Formally:
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Definition 19. Let A = (Q,Σ,Γ,∆, q0, F ) be a PDA. For p ∈ Q, we define the next-
transitions of p as the set ∆(p) of all transitions in ∆ that start on p, i.e., ∆(p) =
{(p,x, y) ∣ (p,x, y) ∈∆}. We say that a PDA A is deterministic if for every state q ∈ Q,
one of the following conditions hold:

(a) ∆(q) ⊆ Q × Σ × Q and ∣{q′ ∣ (q, a, q′) ∈ ∆}∣ ≤ 1 for each a ∈ Σ. Informally, all
applicable transitions are read transitions, and there is at most one such applicable
transition for each letter.

(b) ∆(q) ⊆ Q × (Q × Γ), and ∣∆(q)∣ ≤ 1. Informally, all applicable transitions are push
transitions, and there is at most one such transition from q.

(c) ∆(q) ⊆ (Q × Γ) × Q and ∣{q′ ∣ (q, γ, q′)}∣ ≤ 1 for each γ ∈ Γ. Informally, all
applicable transitions from q are pop transitions, and there is at most one such
applicable transition for each stack symbol.

It is clear that the definition ensures that, on every input string w, a deterministic
PDA A has at most one run accepting w, so that we can check in linear time in A and
w if w ∈ L(A). Further, it is known that deterministic PDAs are strictly less expressive
than general PDAs.

C.1. Proof of Proposition 10

Let us first give the formal definitions needed for the statement of the result. We say that
two annotated grammars G and G′ are equivalent if they define the same functions, i.e.,
⟦G⟧ = ⟦G′⟧. We define equivalence in the same way for two PDAnns, or for an annotated
grammar and a PDAnn.

We first show one direction:

Proposition 20. For any annotated grammar G, we can build an equivalent PDAnn P
in polynomial time. Further, if G is unambiguous then so is P. Moreover, if G is rigid,
then P is profiled.

Proof. This is a standard transformation. Let G = (V,Σ,Ω, P,S). We build a PDAnn
P = (Q,Σ,Ω,Γ,∆, q0, F ) as follows: For every rule X → α of G and position 0 ≤ i ≤ ∣α∣,
the PDAnn P has a state (X,α, i) in Q, plus a special state q0 which is the only initial
and only final state. Also, Γ = Q. The set ∆ has the following transitions:

• A push transition (q0, (S,α,0), q0) and a pop transition ((S,α, ∣α∣), q0, q0), for every
rule S → α.

• For each state (X,α, ∣α∣) for a production X → α, a pop transition reading a state
from the stack and moving to that state.

• For each state (X,α, i) where the (i + 1)-th element of α (numbered from 1) is a
nonterminal Y , for every rule Y → β, a pop transition pushing (X,α, i + 1), and
moving to (Y,β,0).
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• For each state (X,α, i) where the (i + 1)-th element of α (numbered from 1) is a
terminal τ , a read transition moving to (X,α, i + 1) reading the symbol of τ and
outputting the annotation of τ (if any).

We will show a function that maps a given leftmost derivation S ⇒G γ1 ⇒G . . . ⇒G
γm = ŵ into a run in P. To do this, we convert is sequence of productions into a sequence
of strings which has the same size as the run (minus one). These strings serve as an
intermediate representation of both the derivation and the run. The process is essentially
to simulate the run in P.

• First, we reduce the derivation into a sequence of productions X1 ⇒ γ1,X2 ⇒
γ2, . . . ,Xm ⇒ γm which uniquely defines the derivation.

• The alphabet in which we represent strings that produce other strings include two
special markers ↓ and ↑.

• We start on the string ↓ S ↑.

• If the current string is û ↓ Xβ, and it is the i-th one that has reached a string of
this form, then it must hold that X =Xi. We follow it by û ↓ γi ↑ β.

• If the current string is û ↓ τβ, for some terminal τ , we follow it by ûτ ↓ β.

• If the current string is û ↓↑ β, then we follow it by û ↓ β.

• If the current string is û ↓, there is no follow up.

Interestingly, this function is completely reversible, since to obtain a sequence of pro-
ductions from a sequence of strings in this model, all we need to do is to remove the
markers ↓ and ↑ and eliminate the duplicate strings that appear. We will borrow the
name plain to talk about the function which receives a string and returns one which
deletes all markers. It is obvious that the resulting derivation is the original one.

Furthermore, and more interestingly, we can extend the function shape to receive one
of these strings and return a string in the alphabet {0,1, ↓, ↑}. For two derivations that
have the same shape, the resulting sequences have the same shape as well.

This sequence of strings represents a run in P almost verbatim, and we only need to
adapt it into a sequence of pushes, pops and reads: We make a run ρ which starts on
q0, pushes (X,γ1,0) to the stack, and moves to the state (X,γ1,0). This pairs exactly
to the strings ↓ S and ↓ γ1 ↑, which are the first two in the sequence. Then, we read
the sequence of strings in order. If the current string is û ↓ Xβ, and this is the i-th
time a string of this form is seen, then the current state must be (Y,α1Xiα2, k), where
∣α1∣ = k; we push (Y,α1Xiα2, k + 1) onto the stack, and move to the state (Xi, γi,0). If
the current string is û ↓ aβ for some a ∈ Σ, and the current state is (X,γ, k), we read
τ , and move to the state (X,γ, k). If the current string is û ↓ (a, o⌣)β for some a ∈ Σ,
and the current state is (X,γ, k), we read a, output o⌣, and move to the state (X,γ, k).
If the current string is û ↓↑ β, we pop the topmost state from the stack and we move
into that state. It is straightforward to see that this run represents exactly the leftmost
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derivation S ⇒∗G ŵ, and that for each annotated string ŵ ∈ L(G) if and only if there is a
run of P over w that produces µ = ann(ŵ) as output.

This function is also reversible. Consider a run of P over a string w which produces µ
as output. This run must start on q0, and then push q0 and move onto a state (S,α,0)
for some rule S → α. Thus, our first two strings in the sequence are ↓ S ↑ and ↓ α ↑↑.
If the current state is (X,α,k) and the next transition is to push (X,α,k + 1) onto the
stack to move into the state (Y,γ,0), then the current string is of the form û ↓ Xβ, so we
follow it by the string û ↓ γ ↑ β. If the next transition is a pop, then the current string is
û ↓↑ β, so we follow it by û ↓ β. If the current transition is a read, then the current string
is û ↓ aβ for a ∈ Σ, so we follow it by ûτ ↓ β. If the current transition is a read-write,
then the current string is û ↓ (a, o⌣)β for (a, o⌣) ∈ Σ × Ω, so we follow it by û(a, o⌣) ↓ β.
It can easily be seen that using the original function over this resulting sequence would
give the original sequence back. We point that these two reversible functions mean that
there is a one to one correspondence between derivations of S ⇒∗G ŵ and accepting runs
of P over w with output µ = ann(ŵ).

Similarly to the observation we made before, we notice that if we start on a sequence
in the intermediate model, the profile of the resulting run ρ is fully given by the shape of
the sequence (at each step, the size of the stack will be equal to the number of markers
↑ present in the string).

Now assume that G is unambiguous. Seeing that P is unambiguous as well comes
straightforwardly from the fact that the functions presented above are bijective.

Assume now that G is rigid. Let w be an unannotated string and consider two runs
ρ1 and ρ2 of P over w which output µ1 and µ2 respectively. Convert these two runs
into sequences S1 and S2 in the intermediate model. Note that if we convert these two
sequences into derivations S ⇒∗G µi(w), they will have the same shape. We can apply
the functions above to obtain the two runs ρ1 and ρ2 back, and note that they have the
same profile. We conclude that if G is rigid, then P is profiled.

We then show another direction:

Proposition 21. For any PDAnn P, we can build an equivalent annotated grammar
G in polynomial time. Further, if P is unambiguous then so is G. Moreover, if P is
profiled, then G is rigid.

Proof. This is again a standard transformation. We first transform the input PDAnn
P = (Q,Σ,Ω,Γ,∆, q0, F ) to accept by empty stack, i.e., to accept iff the stack is empty.
To do this, we build an equivalent PDAnn P ′ = (Q′,Σ,Ω,Γ′,∆′, q′0, F

′) where Q′ =

Q ∪ {q′0, qe, qf}, Γ
′ = Γ ∪ {γ0}, F = {qf}, and we add the following transitions to ∆ to

obtain ∆′: A push transition (q′0, q0, γ0), a pop transition (q, γ0, qf) for every q ∈ F (for
runs that accept at a point where the stack is already empty), plus a pop transition
(q, γ, qe) for any other γ ∈ Γ, and a pop transition (qe, q0, qf).

This clearly ensures that there is a bijection between the accepting runs of P and
those of P ′: given an accepting run ρ of P, the bijection maps it to an accepting run of
P ′ by extending it with a push transition at the beginning, and pop transitions at the
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end. Further, all accepting runs in P ′ now finish with an empty stack, more specifically
a run is accepting iff it finishes with an empty stack.

Now, we can perform the transformation. The nonterminals of the grammar are triples
of the form (q, γ, q′) for states q and q′ and a stack symbol γ. Intuitively, (p, γ, q′) will
derive the strings that can be read by the PDAnn starting from state p, reaching some
other state q with the same stack, not seeing the stack at all in the process, and then
popping γ to reach q′.

The production rules are the following:

• A rule S → (q0, γ0, qf).

• A rule (p, γ, q′)→ (q, γ′, r)(r, γ, q′) for every nonterminal (p, γ, q′), push transition
(p, q, γ′) ∈∆ and state r.

• A rule (p, γ, q) → ε for each pop transition (p, γ, q) ∈∆.

• A rule (p, γ, q′) → (a, o⌣)(q, γ, q′) for each read-write transition (p, (a, o⌣), q), and a
rule (p, γ, q′) → a(q, γ, q′) for each read transition (p, a, q), for each nonterminal
(p, γ, q′).

As we did in Proposition 20, we will show a function which receives an accepting
run ρ over w in P with output µ and outputs a leftmost derivation S = α1 ⇒G α2 ⇒G
. . . ⇒G αm = µ(w). The way we do this is quite straightforward: There is a one-to-one
correspondence between snapshots in the run to each αi. Indeed, it can be seen that
αi = û(q1, γ1, q2)(q2, γ2, q3) . . . (qk, γk, qf) for some string û ∈ (Σ ∪ (Σ ×Ω))∗, some states
q1, . . . , qk and stack symbols γ1, . . . , γk. Moreover, the i-th stack in the run is equal
to γ1γ2 . . . γk, whereas each state qj is the first state that is reached after popping the
respective γj−1. We see that this function is fully reversible, as each production corre-
sponds unequivocally to a transition in particular. This implies that P is unambiguous
if, and only if G is unambiguous.

For the next part of the proof, we bring attention to the fact that there are exactly
four possible shapes on the right sides of the rules in G. Each of these directly map
to some type of transition, be it the initial push transition (q′0, q0, γ0), a different push
transition, a pop transition, or a read (or read-write) transition. To be precise, these
shapes are the strings 1, 11, ε and 01 respectively. From here it can be easily seen
that, while comparing a run ρ to is respective derivation S ⇒∗G ŵ, each production in
the run immediately tells which type of transition was taken, and each transition in
the run immediately tells which rule (and therefore, rule shape) was used. Therefore,
each derivation shape maps to exactly one stack profile and vice versa, from which we
conclude that P is profiled if, and only if, G is rigid.

C.2. Proof of Lemma 1

We will show a linear-time reduction to enumeration for an I/O-deterministic VPT [27].
We will state the necessary preliminaries to use the result presented there. We will also
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adapt the models slightly to fit our results better while also keeping the results trivially
equivalent.

A structured alphabet is a triple (Σ<,Σ>,Σ|) consisting of three disjoint sets Σ<, Σ>,
and Σ| that contain open, close, and neutral symbols respectively. The set of well-
nested strings over Σ, denoted as Σ<*>, is defined as the closure of the following rules:
Σ| ∪ {ε} ⊆ Σ<*>, if w1,w2 ∈ Σ

<*> ∖ {ε} then w1 ⋅w2 ∈ Σ
<*>, and if w ∈ Σ<*> and a ∈ Σ< and

b ∈ Σ> then a ⋅w ⋅ b ∈ Σ<*>.
A Visibly Pushdown Transducer (VPT) is a tuple T = (Q, Σ̂,Γ,Ω,∆, I,F ) where

Q is a state set, Σ̂ is a structured alphabet, Γ is set of a stack symbols, Ω is the
output alphabet, I is the set of initial states, F is the set of final states, and ∆ ⊆
(Q× (Σ< ∪Σ< ×Ω)×Q×Γ)∪ (Q× (Σ> ∪Σ> ×Ω)×Γ×Q)∪ (Q× (Σ| ∪Σ| ×Ω)×Q) is the
transition relation. A run ρ of T over a well-nested string w = a1a2⋯an ∈ (Σ ∪Σ×Ω)<*>

is a sequence of the form ρ = (q1, σ1)
s1
Ð→ . . .

sn
Ð→ (qn+1, σn+1) where qi ∈ Q, σi ∈ Γ

∗, q1 ∈ I,
σ1 = ε, each si is either equal to ai, or to ai/o⌣i for some o⌣i ∈ Ω, and for every i ∈ [1, n]
the following holds:

1. If si = a ∈ Σ
<, then (qi, a, qi+1, γ) ∈∆, and if si = a/o⌣, for a ∈ Σ<, then (qi, (a, o⌣), qi+1, γ) ∈

∆, for some γ ∈ Γ with σi+1 = γσi,

2. If si = a ∈ Σ
>, then (qi, a, γ, qi+1) ∈∆, and if si = a/o⌣, for a ∈ Σ>, then (qi, (a, o⌣), γ, qi+1) ∈

∆, for some γ ∈ Γ with σi = γσi+1, and

3. If si = a ∈ Σ
|, then (pi, a, qi+1) ∈∆, and if si = a/o⌣ for a ∈ Σ|, then (pi, (a, o⌣), qi+1) ∈

∆ with σi = σi+1. We say that the run is accepting if qn+1 ∈ F .

Given a VPT T and a w ∈ Σ<*>, we define the set ⟦T ⟧(w) of all outputs of T over w as:
⟦T ⟧(w) = {ann(ρ) ∣ ρ is an accepting run of T over w}. where ann for runs in VPT

is defined analogously to PDAnn. That is, if ρ = (q1, σ1)
s1
Ð→ . . .

sn
Ð→ (qn+1, σn+1), then

ann(ρ) = ω1 . . . ωn where ωi = (o⌣, i) if si = a/o⌣ and ωi = ε otherwise.
We say that T is unambiguous if for every w and µ there is at most one accepting run

ρ of T which produces µ. In [27] these VPT are called input-output unambiguous.
The theorem we use can be stated as follows:

Theorem 22. ([27], Theorem 3) There is an algorithm that receives an unambiguous
VPT T = (Q, Σ̂,Γ,Ω,∆, q0, F ) and an input string w, and enumerates the set ⟦T ⟧(w)
with output-linear delay after a preprocessing phase that takes O(∣Q∣2 ⋅ ∣∆∣ ⋅ ∣w∣) time.

The rest of the proof will consist on showing a linear-time reduction from the problem
of enumerating the set ⟦P⟧π(w) for an unambiguous PDAnn P and input string w to the
problem of enumerating the set ⟦T ⟧(w′) for an unambiguous VPT T , and input string
w′.

Let P = (Q,Σ,Ω,Γ,∆, q0, F ) and let w ∈ Σ∗ be an input string. Consider the struc-
tured alphabet Σ̂ = ({<},{>},Σ) for some <,> /∈ Σ. Assume π = π1, . . . , πm. We construct
a well-nested string w′ = b1⋯bm−1 where bi = < if πi > πi+1, bi = < if πi < πi+1, and
bi = wj otherwise, where i is the j-th index in which πi = πi+1. We also build a ta-
ble Ind such that Ind(i) = j for each of the indices in the third case. We build a VPT
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T = (Q, Σ̂,Γ,Ω,∆′, I,F ) where I = {q0} and we get ∆′ by replacing every push transition
(p, q, γ) ∈∆ by (p,<, q, γ) and every pop transition (p, γ, q) ∈∆ by (p,>, q, γ). Note that
read and read-write transitions are untouched.

Let w be an input string, and let µ be an output. Consider the output µ′ which is
obtained by shifting the indices in µ to those that correspond in w′. We argue that
for each run ρ of P over w with profile π which produces µ, there is exactly one run
ρ′ of T over w′ which produces µ′, and vice versa. We see this by a straightforward
induction argument on the size of the run. This immediately implies that for each
output µ ∈ ⟦T ⟧(w) there exists exactly one output µ′ ∈ ⟦P⟧π(w), which has its indices
shifted as we mentioned. The algorithm then consists on simulating the procedure from
Theorem 22 over T and w′, and before producing an output µ, we replace the indices
to the correct ones following the table Ind. The time bounds are unchanged since the
table Ind has linear size in m, and replacing the index on some output µ can be done
linearly on ∣µ∣. We conclude that there is algorithm that enumerates the set ⟦P⟧π(w)
with output-linear delay after a preprocessing that takes O(∣Q∣2 ⋅ ∣∆∣ ⋅ ∣π∣) time.

C.3. Proof of Proposition 11

For this result, we use the notion of PDA (Definition 18) and deterministic PDA (Defi-
nition 19) that were omitted from the main text.

As we have done in previous proofs, the strategy consists on starting with a profiled-
deterministic PDAnn P, and building a PDAnn P ′ by eliminating the output symbols
from each transition. This PDAnn behaves almost identically to a pushdown automaton
A in the sense that if w ∈ L(A), then ⟦P⟧(w) = {ε}, and that if w /∈ L(A) then ⟦P⟧(w) =
∅. Whenever this holds, we say that the PDAnn and the pushdown automaton are
equivalent. It is simple to see that for this A it holds that L(A) = L′. To conclude the
proof, we must show that A can be made deterministic. Without loss of generality, we
remove from A all inaccessible states, i.e., all states for which there is no run that goes
to the state.

First, we will prove that the PDAnn P ′ is profiled-deterministic. Let w be a string in
Σ∗ and let ρ′1 and ρ′2 be two partial runs of P ′ over w with the same profile, and with
last configurations (q, i) and (q′, i). There clearly exist partial runs ρ1 and ρ2 of P over
w with the same profile, which can be obtained by replacing each transition by one of
the transitions in P it was replaced by. Since P is profile-deterministic, then one of the
following must hold in P: (1) ∆(q) ∪∆(q′) ⊆ Q × (Σ ∪ Σ × Ω) ×Q, i.e., all transitions
from q and q′ are read or read-write transitions; (2) ∆(q) ∪∆(q′) ⊆ Q × (Q ×Γ), i.e., all
transitions from q and q′ are push transitions; or (3) ∆(q)∪∆(q′) ⊆ (Q×Γ)×Q, i.e., all
transitions from q and q′ are pop transitions. Note that if (2) or (3) hold, then in the
new PDAnn P the condition holds again in P ′ trivially since none of the transitions in
∆(q) and ∆(q′) was changed. Moreover, if (1) holds, then it can be seen that all of the
transitions that belonged in Q× (Σ×Ω) ×Q now belong in Q ×Σ×Q, which also leaves
the condition unchanged in P ′. We conclude that P ′ is profiled-deterministic.

The next step is to use Lemma 2 from P ′ to obtain an equivalent PDAnn P ′′ which is
deterministic-modulo-profile. We will argue that if we start with P ′, which was profiled-
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deterministic, then the resulting P ′′ is equivalent to a pushdown automaton A′ which is
also deterministic. Let w be an input string in Σ∗ and let ρ′′ be a partial run of A over
w with last configuration (S, i) and with topmost symbol on the stack T . Let us recall
what P ′′ being deterministic-modulo-profile entails that the following conditions hold:

1. There is at most one push transition that starts on S; formally, we have:

∣{S′, T ∈ Q′′ × Γ′′ ∣ (S,S′, T ) ∈∆}∣ ≤ 1.

2. There is at most one pop transition that starts on S,T ; formally, for each γ, we
have:

∣{S′ ∈ Q ∣ (S,γ,S′) ∈∆}∣ ≤ 1.

3. For each letter a, and output o⌣ ∈ Ω, there is at most one read-write transition that
starts on S,a, o⌣; formally, we have

∣{S′ ∈ Q′′ ∣ (S, (a, o⌣), S′) ∈∆′′}∣ ≤ 1.

4. For each letter a, there is at most one read transition that starts on S,a; formally,
we have:

∣{q ∈ Q′′ ∣ (S,a,S′) ∈∆′′}∣ ≤ 1.

We will show that at most one of these conditions holds. Recall that in the transforma-
tion, the states of P ′′ are sets which contain pairs of states (p, q) ∈ Q′×Q′, and the stack
symbols are triples (p, γ, q) ∈ Q′ × Γ′ ×Q′. Now, recall the claim that was proven in the
lemma, on the backwards direction:

If P ′′ has a run ρ′′ on a string w, producing output µ, from its initial state to an instan-
taneous description (S, i), α′ with α′ = T0, . . . , Tm being the sequence of the stack symbols,
then for any choice of elements (q0, γ0, p0) ∈ T0, (p0, γ1, p1) ∈ T1, ..., (pm−1, γm, pm) ∈ Tm

and (pm, q) ∈ S it holds that P ′ has a run ρ′ on w producing output µ from some initial
state q0 to the instantaneous description (q, i), α with α = γ0q0, . . . , γmqm (writing next
to each stack symbol the state that annotates it), and ρ′′ and ρ′ have the same profile.

Since P ′ is profiled-deterministic, then each run ρ′+ which continues ρ′ by one step
must have the same shape. This implies that exactly one of the following conditions
must hold:

• The last transition in ρ′+ is a read or read-write transition. Therefore, all transi-
tions from q are either read or read-write transitions.

• The last transition in ρ′+ is a push transition. Therefore, all transitions from q are
pop transitions.

• The last transition in ρ′+ is a pop transition. Therefore, all transitions from q are
pop transitions.
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Assume bullet point 1 holds. Note that there are no read-write transitions in P ′ so there
are only read transitions. From here, we prove that only (4) is true simply by inspecting
the transformation in the lemma; if (1) held, then there would be a push transition from
q in P ′, if (2) held then there would be a pop transition from q and γ in P ′, and (3)
never holds. Now, assume bullet point 2 holds. From here, we prove that only (1) can
be true; if (2) held, then there would be a pop transition from q and γ in P ′, if (4) held,
then there would be a read transition from q in P ′, and again, (3) is never true. Lastly,
assume bullet point 3 holds. From here, we prove that only (2) can be true; if (1) held,
then there would be a push transition from q in P ′, if (4) held, then there would be a
read transition from q in P ′, and yet again, (3) is never true. We conclude that from
the 4 points, at most one of these can be true at the same time.

Now we prove that the equivalent PDA A is deterministic. Let q be a state of A. As
all states of A are accessible, pick ρ′′ to be a run that reaches state q. We have argued
that at most one of the points in the list above is true of P ′, and it cannot be point
(3). Now, we see that (a) is equivalent to (4), that (b) is equivalent to (1) and (c) is
equivalent to (2). Since only one of the conditions among (1), (2) or (4) can be true, the
same holds for (a), (b) and (c), from which we conclude that A is deterministic. This
completes the proof.

C.4. Proof of Proposition 12

Consider a profiled-deterministic PDAnn P. To prove that it is profiled, consider an
input string w ∈ Σ∗. We will prove by a simple induction argument that any two runs of
P over w have the same profile. The base case is trivial since the run is of length 0, and
the profile up to now is composed simply of the stack size 0. Assume now that for each
pair of runs ρ and ρ′ of P over w of size k, that they have the same profile. We will show
that for every pair of runs ρ1 and ρ2 over w of size k + 1, they have the same profile as
well. Note that the runs ρ−1 and ρ−2 that are obtained by removing the last step have the
same profile, by the hypothesis. From the definition of profiled-deterministic it can be
directly seen that if (1) the last transition in ρ1 is a read or read-write transition, then
for the runs ρ−1 and ρ−2 , the only choices are read or read-write transitions, from which
we deduce that the last transition in ρ2 is a read or read-write transition as well, if (2)
the last transition in ρ1 is a push transition, then for the run ρ−

1
and ρ−

2
the only choice

are push transitions, and therefore the last transition in ρ2 has to be a push transition
as well, and if (3) the last transition in ρ1 is a pop transition, then for ρ−

1
and ρ−

2
the

only choices are pop transitions, so the last transition in ρ2 must be a pop transition as
well. We obtain that ρ1 and ρ2 have the same profile, and from the induction argument,
we conclude that P is profiled.

Now, consider a profiled-deterministic PDAnn P and an input string w. We will prove
that the unique profile of accepting runs of P over w can be computed in linear time in
∣w∣. The way we do this is by using the pushdown automaton A that was constructed in
Proposition 11. By inspecting the proof, it can be seen that the unique profile of P over w
is maintained throughout the construction. Indeed, the first construction simply removes
the output symbols, which does not affect the profile, and the second construction has
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an invariant that keeps the profile intact as well. Therefore, by running the automaton
A over w, and storing the stack sizes at each step, we obtain a profile π which is exactly
the same profile of the accepting runs of P over w. To finish the proof, we only need
to argue that this profile has linear size on ∣w∣ (from a data complexity perspective).
This follows from the fact that any run of a deterministic pushdown automaton A over
a string w has O(f(A)× ∣w∣) length, for some computable function f . This can be seen
from a counting argument: (1) There is a maximum stack size k that can be reached
in an accepting run of P over w from an empty stack through ε-transitions, which is
given by the number of states in A. Otherwise, there are two configurations which are
reachable from one another in a way such the stack, as it was at the first configuration,
is not seen. This implies that there is a loop, and since A is deterministic, A does not
accept w. (2) From a given stack, the maximum numbers of steps that can be taken
without reading from w, and without seeing the topmost symbol on the stack is given
by the number of possible stacks of size k. (3) Between a read (or read-write) transition
and the next one, the maximum height difference is k, and if we move out of a read (or
read-write) transition with a certain stack, from (2) we can see that we can only do a
fixed number of steps before consuming some symbol from this stack, and therefore, the
number of steps is bounded by a factor depending on A multiplied by the size of the
stack up until this point, which is linear on the number of symbols in w read so far. We
conclude that w′ has size linear on w, from a data complexity point of view.

D. Proofs of Section 6

D.1. Formal definitions on extraction grammars

We first give formal definitions that were omitted from the main text of the paper for
lack of space. We first formally define ref-words, i.e., strings with the special variable
operations

Definition 23 (Ref-words). For the set of variables X we define the variable operations
of X by CX = ⋃x∈X{⊢x,⊣x}. A ref-word is a string over Σ ∪ CX , and we let plain ∶
(Σ ∪CX )∗ → Σ∗ be the morphism over ref-words that removes variable operations A ref-
word is valid if each variable in X is opened exactly once and then closed exactly once.
A valid ref-word r then defines a mapping ηr over plain(r) in the following way: for
each variable x ∈ X , there is a unique factorization r = r

p
x⋅ ⊢x ⋅ rx ⋅ ⊣x ⋅r

s
x, and we set

ηr(x) ∶= [i, j⟩ for i ∶= ∣plain(rpx)∣ + 1 and j ∶= i + ∣plain(rx)∣.

We then define extraction grammars from [30]: they are simply CFGs over ref-words:

Definition 24 (Extraction grammar). An extraction grammar is a tuple H = (V,Σ,X , P,
S) where V is a finite set of nonterminals, Σ is the alphabet, X is a set of variables, P
is a finite set of production rules of the form A → α with A ∈ V and α ∈ (V ∪Σ ∪ CX )∗,
and S ∈ V is the start symbol. We assume that V , Σ, and X are pairwise disjoint. Note
the difference with annotated grammars: the annotations must correspond to variable
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operations (in order to capture spans), and they are represented as separate terminals in-
stead of annotating existing terminals, which we believe makes the design of enumeration
algorithms less convenient.

The semantics of extraction grammars is similar to that for annotated grammars. It is
defined through derivations. Specifically, the rules P define the (left) derivation relation
⇒H ⊆ (V ∪Σ ∪ CX )∗ × (V ∪Σ ∪ CX )∗ such that uAβ ⇒H uαβ iff u ∈ (Σ ∪ CX )∗, A ∈ V ,
α,β ∈ (V ∪ Σ ∪ CX )∗, and A → α ∈ P . We denote by ⇒∗H the reflexive and transitive
closure of ⇒H. Then the language defined by H is the set of ref-words L(H) = {w ∈
(Σ ∪ CX )∗ ∣ S ⇒∗H w}. This language defines a spanner ⟦H⟧ as follows: for every
document d ∈ Σ∗,

⟦H⟧(d) = {ηr ∣ r ∈ L(H), r is valid, and plain(r) = d}.

Note that ref-words that are not valid are ignored. An extraction grammar H is called
functional if every r ∈ L(H) is valid, and it is called unambiguous if for every r ∈ L(H)
there exists exactly one derivation of r from S.

We can now formally define the equivalence between an extraction grammar and an
annotated grammar. To do so, we first explain how we can translate mappings to
annotations:

Definition 25 (Output associated to a mapping). Given a set X of variables, the
corresponding set of annotations ΩX will be the powerset of CX . Now, given a mapping η

on a document d and variables X to an annotation, we let I = ⋃x∈X{i, j ∣ η(x) = [i, j⟩}
be the set of indices which appear in some span of η. Further, for each k ∈ I, let
Sk = {⊢x∣ ∃j. η(x) = [k, j⟩} ∪ {⊣x ∣ ∃i. η(x) = [i, k⟩}. We now define the output out(η) =
(i1, Si1) . . . (im, Sim) where I = {i1, . . . , im} and i1 < ⋯ < im, namely, we group the
captures for each position as a set and use this set as the annotation. Note that the
largest index that appears in the annotation can be ∣d∣ + 1 because of the range of spans.

We can now define equivalence between extraction grammars and annotation gram-
mars:

Definition 26 (Equivalent annotated grammar). We say that an extraction grammar
H over variables X has an equivalent annotated grammar G if G is over the set of
annotations ΩX and over the alphabet Σ ∪ {#} for # a fresh symbol, and if for every
document d ∈ Σ∗ and every mapping η of d over X , we have η ∈ ⟦H⟧(d) iff out(η) ∈
⟦G⟧(d ⋅#). The #-symbol at the end is used because of the difference in the indexing of
spans (from 1 to ∣d∣ + 1) and annotations (from 1 to d).

D.2. Proof of Proposition 13

Recall that, in the statement of this result, the formal notion of an equivalent annotated
grammar is the one defined above (Definition 26). Recall also the formal definition of
ref-words (Definition 23).

Let r be a ref-word in Σ ∪ CX and let ŵ be an annotated string in Σ ∪ (Σ × ΩX ).
We say that r and ŵ are equivalent if plain(r ⋅#) = str(ŵ) and out(ηr) = ann(ŵ). For
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example, the ref-word r1 = ⊢xaa⊣x⊢y bb⊣y b is equivalent to ŵ1 = (a,{⊢x})a (b,{⊣x,⊢y
})b b (b,{⊣y})#.

The overall strategy of this proof is going to be to construct an annotated grammar
G in a way such that for every ref-word r ∈ L(H) there exists an equivalent annotated
string ŵ ∈ L(G), and vice versa. It is clear that this implies that G and H are equivalent.

The way we build G will look like we are “pushing” the variable operations to the next
terminal to the right. We will do this process one variable operation at a time.

First, we need to define an intermediate model between those of extraction gram-
mars and annotated grammars. We define extraction grammars with annotations as a
straightforward extension of extraction grammars which allow annotations on terminals
that are not variable operations. For the set of variables X , recall from Definition 23
that we define the variable operations of X by CX = {⊢x,⊣x ∣ x ∈ X}, and recall from
Definition 25 that we define ΩX = 2CX . An extraction grammar with annotations is a
tuple F = (V,Σ,X , P,S) where V is a finite set of nonterminal symbols, Σ is an alphabet
and X is a set of variables, such that V , Σ, Σ×ΩX , and CX are pairwise disjoint, P is a
finite set of rules of the form A → α with A ∈ V and α ∈ (V ∪Σ ∪ (Σ ×ΩX ) ∪ CX )∗, and
S ∈ V is the start symbol. As in the other models, the semantic of extraction grammars
is defined through derivations. Specifically, the set P defines the (left) derivation relation
⇒F ⊆ (V ∪Σ ∪ (Σ ×ΩX ) ∪CX )∗ × (V ∪Σ ∪ (Σ ×ΩX ) ∪CX )∗ such that ûAβ ⇒F ûαβ iff
û ∈ (Σ ∪ (Σ ×ΩX ) ∪ CX )∗, A ∈ V , α,β ∈ (V ∪Σ ∪ (Σ ×ΩX ) ∪ CX )∗, and A → α ∈ P . We
denote by ⇒∗F the reflexive and transitive closure of ⇒F . Then the language defined by
F is L(F) = {ŵ ∈ (Σ ∪ (Σ × ΩX ) ∪ CX )∗ ∣ S ⇒∗F ŵ}. In addition, we assume that no
string ŵ in L(F) has a variable operation as its last symbol.

An extraction grammar with annotations generates strings over Σ ∪ (Σ × ΩX ) ∪ CX ,
which we now refer to as annotated ref-words, and each annotated ref-word defines an
output. We will define the semantics of extraction grammars with annotations recursively
by using the semantics of annotated grammars as a starting point, that is, by extending
the function ann to receive strings over Σ∪(Σ×ΩX )∪CX . In particular, for an annotated
ref-word r̂ ∈ (Σ∪ (Σ×ΩX))∗ the result of ann(r̂) stays the same. For a string r̂ = ûκav̂ ∈

(Σ ∪ (Σ ×ΩX ) ∪ CX )∗ where κ ∈ CX and a ∈ Σ, we define ann(r̂) = ann(û(a,{κ})v̂), and
for a string r̂ = ûκ(a, o⌣)v̂ ∈ (Σ ∪ (Σ × ΩX ) ∪ CX )∗ where o⌣ ∈ ΩX , we define ann(r̂) =
ann(û(a, o⌣∪{κ})v̂).

Further, we extend the function str to receive strings over Σ ∪ (Σ × ΩX ) ∪ CX as
str(r̂) = str(plain(r̂)). Therefore, for an extraction grammar with annotations F and
a string w ∈ Σ∗ we define the function ⟦F⟧ as: ⟦F⟧(w) ∶= {ann(r̂) ∣ r̂ ∈ L(F) ∧
str(r̂) = w}. We maintain the notions of equivalency between annotated grammars,
extraction grammars, and extraction grammars with annotations. Likewise, we define
equality between annotated strings, ref-words and annotated ref-words in the obvious
way. Further, we note that any extraction grammar H = (V,Σ,X , P,S) is equivalent to
the extraction grammar with annotations F = (V ′,Σ∪{#},X , P ′, S′) where V ′ = V ∪{S′}
for some S′ /∈ V , and P ′ = P ∪ {S′ → S#}. It is obvious that F is unambiguous if and
only if H is unambiguous.

We proceed as follows. First we convert H into a functional extraction grammar (see
Definition 24). As detailed in Peterfreund’s work [30, Propositions 10 and 12], this
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takes running time O(32k ∣H∣2), and if the initial grammar is unambiguous then so is
the resulting grammar. Note that this implies that every ref-word r which is derivable
from S contains each variable operation at most once. Hence we can build an equivalent
extraction grammar with annotations F = (V,Σ,X , P,S) using the technique above. We
then convert F into a version of CNF which is slightly more restrictive than arity-two
normal form: We allow rules of the form X → Y Z, X → ε and X → τ , for nonterminals
X,Y and Z and a terminal τ , but rules of the formX → Y are not permitted. Converting
to this formalism can be done in linear time in ∣F ∣ while preserving unambiguity, e.g.,
by transforming rules of the form X → Y to X → EY for some fresh nonterminal E with
a rule E → ε, and otherwise applying our result on arity-2 normal form (Proposition 2).
We pick an order over the variable operations in CX and for each κ ∈ CX we do the
following:

Define a function procκ that receives an annotated ref-word r̂ ∈ (Σ∪ (Σ× 2CX )∪CX )∗

and:

1. if r̂ ∈ (Σ ∪ (Σ × 2CX ) ∪ (CX ∖ {κ}))∗, then procκ(r̂) = r̂,

2. if r̂ = ûκβav̂ for some û, v̂ ∈ (Σ ∪ (Σ × 2CX ) ∪ (CX ∖ {κ}))∗, β ∈ (CX ∖ {κ})∗ and
a ∈ Σ, then procκ(r̂) = ûκβ(a,{κ})v̂,

3. if r̂ = ûκβ(a,T )v̂, with T ⊆ CX ∖ {κ}, then procκ(r̂) = ûκβ(a,T ∪ {κ})v̂, and

4. procκ is undefined in any other case.

It is straightforward to see that the annotated ref-words r̂ and t̂ = procκ(r̂) are equivalent
whenever procκ(r̂) is defined.

We build an extraction grammar with annotations F ′ = (V ′,Σ,X , P ′, S′) where V ′ =

Vout∪Vin∪Vleft∪Vmid∪Vright∪{S′}, and Vscr = {Ascr ∣ A ∈ P} for scr ∈ {out, in, left,mid, right},
and P ′ is defined by the following rules:

• For each rule S → AB in P , we add the rules S′ → AoutBout, S′ → AinBout and
S′ → AleftBright to P ′.

• For each rule A → BC, we add the rules Aout → BoutCout, Ain → B inCout, Ain →
BoutC in, Ain → B leftCright, Aleft → BoutC left, Aleft → B leftCmid, Amid → BmidCmid,
Aright → BrightCout and Aright → BmidCright to P ′.

• For each rule A → a, a ∈ Σ, we add Aout → a and Aright → (a,{κ}).

• For each rule A → (a,T ), a ∈ Σ and T ⊆ CX ∖ {κ}, we add Aout → (a,T ) and
Aright → (a,T ∪ {κ}).

• For each rule A → κ′, κ′ ∈ CX ∖ {κ}, we add the rules Aout → κ′ and Amid → κ′.

• For each rule A → κ, we add the rule Aleft → ε.

• For each rule A → ε, we add the rules Aout → ε and Amid → ε.
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Let Σ̂κ = Σ ∪ (Σ × 2CX ) ∪ CX ∖ {κ}. For each nonterminal A ∈ V these hold:

L(Aout) = {ŵ ∣ A⇒∗F ŵ, where ŵ ∈ Σ̂∗κ}

L(Ain) = {procκ(ŵ) ∣ A⇒
∗
F ŵ, where ŵ = ûκβav̂ or ŵ = ûκβ(a,T )v̂,

û, v̂ ∈ Σ̂∗κ, β ∈ (CX ∖ {κ})
∗, a ∈ Σ, T ⊆ CX ∖ {κ}}

L(Aleft) = {ŵβ ∣ A⇒∗F ŵκβ, where ŵ ∈ Σ̂∗κ, β ∈ (CX ∖ {κ})
∗}

L(Aright) = {β(a,{κ})ŵ ∣ A⇒∗F βaŵ, where ŵ ∈ Σ̂∗κ, β ∈ (CX ∖ {κ})
∗} ∪

{β(a,T ∪ {κ})ŵ ∣ A⇒∗F β(a,T )ŵ, where ŵ ∈ Σ̂∗κ, β ∈ (CX ∖ {κ})
∗, T ⊆ CX ∖ {κ}}

L(Amid) = {β ∣ A⇒∗F β, where β ∈ (CX ∖ {κ})∗}

These equalities are given without proof since they are not used, and are just for
illustrating the idea behind the proof.

For the rest of our proof we will represent derivations X ⇒∗ δ as the sequence of
productionsX1 ⇒ γ1,X2 ⇒ γ2, . . . ,Xm ⇒ γm, where X1 =X and γm = δ, which uniquely
determines the derivation by doing it in the leftmost way. We use this representation to
state exactly how derivations in F are translated to derivations in F ′ and vice versa.

Another notion we need to address is how, in a given derivation X ⇒∗ δ, instances of
nonterminals are located with respect to each other. By an instance of a nonterminal
(or just instance), we mean an Xi along with some specific derivation Xi ⇒ γi in the
sequence. For some instances Xi and Xj , we say that Xi is a descendant of Xj if Xi =Xj ,
or if Y ⇒ XiZ, or Y ⇒ ZXi for some Y which is a descendant of Xj. We say that Xi

is to the left of Xj (or Xj is to the right of Xi) if there is a derivation X ⇒ Y Z in the
sequence such that Xi is a descendant of Y and Xj is a descendant of Z.

We note a few things in our construction: (1) Each X ∈ Vout only produces terminals
(which do not include κ) and nonterminals in Vout; furthermore, every rule X → Y Z in
P is copied into P ′ as Xout → Y outZout. (2) Nonterminals in Vin do not produce any
terminals or ε directly, so they need to derive into some X ∈ Vin and some Y ∈ Vright

to derive some string. (3) As with Vout, each X ∈ Vmid only produces terminals in
CX ∖{κ} and nonterminals in Vmid. (4) Each X ∈ Vleft (resp. Vright) produces exactly one
nonterminal X ′ ∈ Vleft (resp. Vright), or ε (resp. (a,T ) for some a ∈ Σ and T ⊆ CX such
that κ ∈ T ); this, as a consequence, means that on each derivation from F ′ where the
first production is not S′ ⇒ XoutY out there is exactly one derivation X ⇒ ε such that
X ∈ Vleft (resp., exactly one derivation X ⇒ (a,T ), such that X ∈ Vright).

From point (1) we see that each annotated ref-word r̂ ∈ L(F) such that r̂ ∈ Σ̂∗κ (this
is, which does not mention κ at all) can be derived by S′ starting by S′ ⇒ AoutBout,
S′⇒ a, S′⇒ ε or S′⇒ κ′.

On the other hand, each annotated ref-word r̂ ∈ L(F ′) which does not have κ on any
annotation set was necessarily derived through rules of the form Xout → Y outZout which
correspond to the rule X → Y Z in P , so we deduce that r̂ ∈ L(F).

We shall now prove that for any string r̂ = ûκβav̂, or r̂ = ûκβ(a,T )v̂, where û, v̂ ∈ Σ̂∗κ,
β ∈ CX ∖ {κ}, a ∈ Σ and T ⊆ CX ∖ {κ} such that r̂ ∈ L(F), it holds that proc(r̂) ∈ L(F ′).
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W.l.o.g., let r̂ = ûκβav̂ and consider some leftmost derivation of r̂ from F :

S ⇒∗F û1Aδ

⇒F û1BCδ

⇒∗F û1û2κβ1Cδ

⇒∗F û1û2κβ1β2av̂1δ

⇒∗F û1û2κβ1β2av̂1v̂2 = r̂,

where we have that β = β1β2, û = û1û2 and v̂ = v̂1v̂2. Note that this is an arbitrary
derivation, and we are merely identifying these nonterminals A, B and C. We also
identify the nonterminals D, which produces κ, and E, which produces a. For the rest
of the current part of the proof, we only refer to the instances of these nonterminals.
Using this, we build a derivation from F ′ step by step:

1. We have S′⇒∗F ′ û1A
inδ′, where δ′ is obtained by replacing each nonterminal X in

δ by Xout. We get this by starting with the derivation S ⇒∗F û1Aδ, and replacing
X ⇒F Y Z by X in ⇒F ′ Y

inZout if A is a descendant of Y , by X in ⇒F ′ Y
outZ in

if Z is, or by Xout ⇒F ′ Y
outZout if none is. We also replace each X ⇒F τ , for

τ ∈ Σ∪ (Σ× 2CX )∪CX ∖ {κ} ∪ {ε}, by Xout ⇒F ′ τ . If A = S, we replace A it by S′.

2. We have the rule Ain → B leftCright which was added to P ′.

3. We have B left⇒∗F ′ û2β1. We get this by starting from B ⇒∗F û2κβ1, and we replace
X ⇒F Y Z by X left ⇒F ′ Y

leftZmid if E is a descendant of D, by X left ⇒F ′ Y
outZ left

if Z is, by Xout ⇒F ′ Y
outZout if X is to the left of D, and by Xmid ⇒F ′ Y

midZmid

if it is to the right. We also replace X ⇒F τ by Xout ⇒F ′ τ if X is to the left of D,
and by Xmid ⇒F ′ τ if it is to the right. Lastly, we replace D⇒F κ by Dleft⇒F ′ ε.

4. We have Cright ⇒∗F ′ β2(a,{κ})v̂1. We get this by starting from C ⇒∗F β2av̂1, and
we replace X ⇒F Y Z by Xright ⇒F ′ Y

midZright if E is descendant of Z, or by
Xright ⇒F ′ Y

rightZout if Y is, by Xmid ⇒F ′ Y
midZmid if X is to the left of E, and by

Xright ⇒F ′ Y
rightZright if it is to the right. We also replace X ⇒F τ by Xmid ⇒F ′ τ

if X is to the left of E, and by Xout ⇒F ′ τ if it is to the right. Lastly, we replace
E ⇒F a by Eright ⇒F ′ (a,{κ}).

5. We have δ′ ⇒∗F ′ v̂2, which we obtain from δ ⇒∗F v̂2 by replacing each X ⇒F Y Z

by Xout ⇒F ′ Y
outZout, and each X ⇒F τ by Xout ⇒F ′ τ .

In the end, we get the following leftmost derivation from F ′:

S ⇒∗F ′ û1A
inδ′ (or û1S′δ′)

⇒F ′ û1B
leftCrightδ′

⇒∗F ′ û1û2β1C
rightδ′

⇒∗F ′ û1û2β1β2(a,{κ})v̂1δ
′

⇒∗F ′ û1û2β1β2(a,{κ})v̂1 v̂2 = procκ(r̂),
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which proves that proc(r̂) ∈ L(F ′).
We will prove that for every ŝ = û(a,T )v̂ ∈ L(F ′) where κ ∈ T there is r̂ such that

procκ(r̂) = ŝ in a similar way. We argue that any leftmost derivation that produces ŝ

has the following form:

S′ ⇒∗F ′ û1A
inδ1 (or û1S′δ1)

⇒F ′ û1B
leftCrightδ1

⇒∗F ′ û1û2D
leftδ2C

rightδ1

⇒F ′ û1û2δ2C
rightδ1

⇒∗F ′ û1û2β1C
rightδ1

⇒∗F ′ û1û2β1β2(a,T )v̂1δ1
⇒∗F ′ û1û2β1β2(a,T )v̂1v̂2 = ŝ,

where δ ∈ V ∗out, δ
′ ∈ V ∗mid, β1, β2 ∈ (CX ∖ {κ})

∗, û = û1û2 and v̂ = v̂1v̂2. The reasoning goes
as follows:

• We know that S′ ⇒∗F ′ ûβ(a,T )v̂ ∈ L(F ′). If X ⇒F ′ (a,T ) and κ ∈ T , then
X ∈ Vright.

• From the way F ′ was built, there must be a production X ⇒F ′ Y Z in S′ ⇒∗F ′ ŝ
such that X ∈ Vin (or X = S′), Y ∈ Vleft and Z ∈ Vright, as it is the only way to
derive a nonterminal in Vright. Let A

in (or S′), B left and Cright be these X, Y and
Z respectively.

• Seeing the rules in P ′ we note that every string of terminals that is derivable from
B left is of the form ŵβ, where ŵ ∈ Σ̂κ and β ∈ (CX ∖{κ})∗. Furthermore, this string
satisfies that there is a production X ⇒F ′ ε for some X ∈ Vleft such that this ε is
exactly at the left of where β begins. Let û2 be this ŵ, let Dleft be this X, and let
β1 be this β.

• Likewise, we note that Cright always derives a string of terminals of the form
β(a′, T ′)ŵ for some β ∈ (CX ∖ {κ})∗ and ŵ ∈ Σ̂κ. Let β2 be this β and let v̂1
be this ŵ.

• Lastly, let S′⇒∗F ′ û1A
inδ1 (or û1S

′δ1) be the one that derives ŝ. From the rules in
P ′, we note that δ1 is composed solely of nonterminals in Vout.

An important point that can be seen from this reasoning is that for each instance
X ≠ S′ that appears in the derivation S′ ⇒∗F ′ ŝ, we can deduce the set Vscr for which
X ∈ Vscr, among the options scr ∈ {out, in, left,mid, right}, by seeing its position in the
derivation. To be precise, this is given from how X relates to the instances Dleft ⇒ ε,
and to Eright ⇒ (a,T ), for the nonterminal Eright ∈ Vright that satisfies this. (1) If X is
to the left of Dleft, then X ∈ Vout, (2) if D

left is a descendant of X, but Eright is not, then
X ∈ Vleft, (3) if X is to the right of Dleft, and is to the left of Eright, then X ∈ Vmid, (4) if
Eright is a descendant of X, but Dleft is not, then X ∈ Xright, (5) if X is to the right of
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Eright, then X ∈ Vout, and (6) if both Dleft and Eright are descendants of X, then X ∈ Vin.
We bring attention to the fact that in this paragraph we referred only to the instances
of Dleft and Eright on the derivations mentioned above.

Another, more important point, is this reasoning gives us the derivation presented
above. This derivation is translated into the following derivation in F :

S ⇒∗F û1Aδ
′
1 (or û1Sδ

′
1)

⇒F û1BCδ′1

⇒∗F û1û2Dδ′2Cδ′1

⇒F û1û2κδ
′
2Cδ′1

⇒∗F û1û2κβ1Cδ′1

⇒F û1û2κβ1β2(a,T ∖ {κ})v̂1δ′1, or

û1û2κβ1β2av̂1δ
′
1,

⇒∗F û1û2κβ1β2(a,T ∖ {κ})v̂1v̂2 = r̂, or

û1û2κβ1β2av̂1v̂2 = r̂,

Where δ′
1
and δ′

2
are obtained by replacing each Xmid by X in δ1 and δ2, respectively. It

is direct to see that this is a valid derivation since for every production Xx ⇒F ′ Y
yZz

there exists a valid production X ⇒F Y Z, for any x, y, z ∈ {in,out, left,mid, right}. Fur-
thermore, for the production Dleft⇒F ′ ε there exists D⇒F κ, and for Cright ⇒F ′ (a,T )
there exists C ⇒F (a,T ∖ {κ}) if T ≠ {κ}, and C ⇒F a if T = {κ}. Further, note that
procκ(r̂) = ŝ. We conclude that r̂ ∈ L(F) for some r̂ such that procκ(r̂) = ŝ.

From the arguments above, we obtain that for each annotated ref-word r̂ ∈ L(F) there
exists an equivalent annotated ref-word t̂ ∈ L(F), given by t̂ = procκ(r̂). Furthermore, we
showed that for each annotated ref-word t̂ ∈ L(F ′) there exists an equivalent r̂ ∈ L(F).
This implies that F and F ′ are equivalent.

Now, assume that F is unambiguous. We will prove that F ′ is unambiguous as well.
Consider an annotated ref-word t̂ ∈ L(F ′) and consider two sequences S1 and S2 which
define the derivation S′ ⇒∗F ′ t̂. We showed above how to translate these sequences
into sequences S ′1 and S ′2 which define the derivation S ⇒∗F r̂, for some r̂ such that
t̂ = procκ(r̂). Since F is unambiguous, these sequences are equal. Assume now that S1
and S2 are not equal, but since their translations into F are the same, then it must
be that for some production X ⇒F Y Z or X ⇒F τ , there must be two productions
Xx1 ⇒F ′ Y

y1Zz1 and Xx2 ⇒F ′ Y
y2Zz2, or Xx1 ⇒F ′ τ and Xx2 ⇒F ′ τ at the same

position, for some (x1, y1, z1) ≠ (x2, y2, z2). We note that this is not possible since we
argued that for a given derivation S′⇒∗F ′ r̂, the set in which each nonterminal instance
belongs, among Vout, Vin, Vleft, Vmid, Vright, is fixed by its relation to certain instances of
Dleft and Eright. We conclude that F ′ is unambiguous.

Assume F ′ is unambiguous. We will prove that F is unambiguous as well. Likewise,
consider an annotated ref-word r̂ ∈ L(F), and consider two sequences S1 and S2 which
define the derivation S ⇒∗F t̂. We showed above how to convert these sequences into S ′1
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and S ′2 which define the derivation S′ ⇒∗F ′ procκ(r̂). Since F ′ is unambiguous, then it
must hold that S ′1 = S

′
2. Note that the translation we showed consisted in replacing pro-

ductions of the form X ⇒F Y Z by Xx ⇒F ′ Y
yZz, X ⇒F κ by X left ⇒F ′ ε, X ⇒F a by

Xright ⇒F (a,{κ}) (or X ⇒F (a,T ) by Xright ⇒F ′ (a,T ∪{κ})) for a single fixed produc-
tion, andX ⇒F τ byXx ⇒F ′ τ in any other case, for some x, y, z ∈ {out, in, left,mid, right}.
Therefore, the sequence S1 from which S′

1
was obtained is uniquely defined, from which

we deduce that S1 = S2, and we conclude that F is unambiguous.

At the end of the procedure, we obtain an extraction grammar with annotations
F† = (V †,Σ,X , P †, S†) such that there are no rules of the form X → κ in P †, for any
κ ∈ CX . From this, we obtain the annotated grammar G = (V †,Σ,ΩX , P

†, S†) which is
equivalent to H. Furthermore, G is unambiguous if and only if H is unambiguous.

With respect to the running time of building G, note that in each iteration of the
algorithm, by starting on an extraction grammar with annotations F with a set of rules
P , the resulting F ′ has a set of rules P ′ with a size of 9∣P ∣. Since this step is repeated
twice for each variable x ∈ X (once for each variable operation), the total running time
is O(92∣X ∣(32∣X ∣∣H∣2)) = O(93∣X ∣∣H∣2).

D.3. Expressiveness examples

We complete Proposition 13 to give more intuition about the conciseness of extraction
grammars vs annotated grammars, and the difference in expressiveness.

We first give a simple example to show that, with our notion of equivalence (Defini-
tion 26), we may indeed need an exponential number of symbols in the annotation set,
implying that extraction grammars are in some cases exponentially more concise:

Example 27. Consider the following functional extraction grammar H with n variables
x1, . . . , xn and alphabet {a}:

H ∶ A1 → ⊢x1
⊣x1

A2 ∣ ⊢x1
A2 ⊣x1

A2 → ⊢x2
⊣x2

A3 ∣ ⊢x2
A3 ⊣x2

⋮
An → ⊢xn⊣xn a ∣ ⊢xn a ⊣xn

For the document a, this extraction grammar will output all possible combinations de-
pending on whether ⊣xi

is at the beginning or end of a for each i ≤ n. Thus, an equivalent
annotated grammar will need to consider all possible subsets of {⊣x ∣ x ∈ X} as possible
annotations of the character a, which will require an exponential number of rules.

We then illustrate why annotated grammars are in fact strictly more expressive: in
addition to capturing all extraction grammars (Proposition 13), annotated grammars
can express functions that do not correspond to an annotation grammar.

Example 28. Consider a singleton annotation set Ω = {o⌣}, a singleton alphabet Σ = {a},
and the annotated grammar with start symbol S and production S → a(a, o⌣)S∣a∣ε. For
each string of Σ∗, it produces one output where every other character is annotated. This
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cannot be expressed by an extraction grammar, as such a grammar fixes a finite set X
of variables independently from the input document, and each variable is mapped to only
one span.

54


	1 Introduction
	2 Grammars and Annotators
	3 Unambiguous Grammars
	4 Rigid Grammars
	5 Pushdown Annotators
	6 Application: Document Spanners
	7 Conclusions and Future Work
	A Proofs of Section 3
	A.1 Proof of Theorem 1
	A.2 Proof of Proposition 2
	A.3 Proof of Proposition 4

	B Proofs of Section 4
	B.1 Proof of Theorem 5
	B.2 Proof of Proposition 6
	B.3 Proof of Proposition 7: Undecidability results on rigid grammars
	B.4 Proof of Proposition 9

	C Proofs of Section 5
	C.1 Proof of Proposition 10
	C.2 Proof of Lemma 1
	C.3 Proof of Proposition 11
	C.4 Proof of Proposition 12

	D Proofs of Section 6
	D.1 Formal definitions on extraction grammars
	D.2 Proof of Proposition 13
	D.3 Expressiveness examples


