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ABSTRACT
The use of approximation is fundamental in computational science.
Almost all computational methods adopt approximations in some
form in order to obtain a favourable cost/accuracy trade-off and
there are usually many approximations that could be used. As a
result, when a researcher wishes to measure a property of a system
with a computational technique, they are faced with an array of
options. Current computational workflow frameworks focus on
helping researchers automate a sequence of steps on a particular
platform. The aim is often to obtain a computational measurement
of a property. However these frameworks are unaware that there
may be a large number of ways to do so. As such, they cannot
support researchers in making these choices during development
or at execution-time.

We argue that computational workflow frameworks should be
designed to be approximation-aware - that is, support the fact that
a given workflow description represents a task that could be per-
formed in different ways. This is key to unlocking the potential of
computational workflows to accelerate discovery tasks, particularly
those involving searches of large entity spaces. It will enable effi-
ciently obtaining measurements of entity properties, given a set of
constraints, by directly leveraging the space of choices available. In
this paper we describe the basic functions that an approximation-
aware workflow framework should provide, how those functions
can be realized in practice, and illustrate some of the powerful
capabilities it would enable, including approximate memoization,
surrogate model support, and automated workflow composition.
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1 INTRODUCTION
Computational workflows are popular research accelerators for
a broad range of scientific domains [13, 43]. They are often de-
scribed as graphs where nodes represent tasks and edges define
data dependencies. Tasks range from lightweight applications to
resource-intensive simulations with long execution times. Compu-
tational workflow frameworks focus on encoding and deploying
these complex graphs of tools and services, tackling topics like
step-automation, automating data-transfer, and automating the
collection of provenance and other metadata for reproducibility
[7, 12, 12, 14, 15, 18, 27, 35, 36, 44].

Computational workflows often comprise initialization, com-
putation, and analysis steps that can process large volumes of
data [5, 16, 25, 29, 41]. Frequently, the purpose of these steps is

to measure characteristics of input systems. Hence such computa-
tional workflows can be thought of as virtual-experiments. In this
mode they are critical for discovery tasks e.g. materials discovery,
that involve searching large spaces of entities for systems with
desired properties.

In our experience, cost drives developments in computational
science to a greater extent than other computing domains, partic-
ularly in those areas related to physical modelling. It drives the
need for approximations both across and within physical time and
length scales, leading to a zoo of often interchangeable methods.
Beyond methodology, cost also drives the development of different
hardware platforms and software frameworks, each offering a re-
duction in time-to-solution for particular methods. Finally, the cost
of simulations, often requiring tens of nodes running for tens of
hours, drives a desire to reuse calculations.

These orthogonal approaches for tackling cost in computational
science leads researchers to face a continuum of choices when
considering how to answer a given problem. This manifests as an
ever growing number of computational workflows providing the
same measurement. To complicate matters, the optimal point in
this continuum shifts depending on the exact question a researcher
is asking and the time or cost constraints they are under.

The goal of a workflow framework for computational workflows,
particularly those that can be thought of as virtual-experiments,
should be to help researchers to obtain measurements of properties
they want, under the constraints they have, by leveraging the large
space of choices available. We suggest that achieving this requires
accounting for the prevalent use of approximation in the computa-
tional science domain as a basic design principle. Current workflow
frameworks, which focus on helping developers to automate a well-
defined task set in particular environments e.g. High Performance
Computing (HPC), Cloud, are not designed with this in mind. In
this article we:

• Identify key operations that an approximation-aware com-
putational workflow framework must support - sub-graph
equivalence and sub-graph substitution - and describe how
supporting these impacts key components of workflow frame-
works, namely the description language, the knowledge-base,
and the run-time.

• Illustrate the potential of an approximation-aware workflow
framework via a selection of initial prototypes and asso-
ciated preliminary results. These include surrogate model
support, automated workflow composition, and approximate
memoization.

• Outline future directions of research and issues that we be-
lieve need to be addressed.
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2 APPROXIMATION IN COMPUTATIONAL
SCIENCE

Approximation is a key method in computational science for ad-
dressing cost pressures. For example in chemistry and physics,
algorithms exist that use quantum mechanics to simulate systems.
These usually deal with systems the size of Angstroms and time-
scales of nanoseconds. At a certain stage the cost of modelling larger
systems or longer times (100Å, 100ns) requires moving to molecular
dynamics (MD) which approximates the contribution of the elec-
trons. When the cost of MD becomes a concern, researchers may
employ methods like dissipative particle dynamics (𝜇m, 𝜇s) that
drastically simplify the entities considered (representing molecules
as single particles) and so on.

Within each scale, cost drives the continual development of new
or improved methods. Quantum chemistry serves as an exemplar.
Density functional theory (DFT) was developed as an approxima-
tion for expensive Hartree-Fock (HF) methods. Then, more complex
DFT methods were developed to account for physical phenomena
that the original DFT approximation had omitted. Even within both
HF and DFT methods multiple levels of theory can be applied, each
presenting a different trade-off between cost and fidelity.

With the emergence of AI techniques, many research groups
have explored creating AI-surrogate models to physical models
adding further to the zoo of methodologies [9, 10]. Such models
promise a magnitude decrease in time-to-solution while matching
physical model accuracy in many cases [42]. This leads to "surro-
gate" versions of physics-based computational workflows, where
viable AI surrogate models are used in place of some (or all) of the
physical ones.

Substituting a physical-model for an AI surrogate is a form of
approximate computing, a domain with a rich history and aca-
demic literature. In approximate computing the aim is to create a
approximate version of a calculation (surrogate) and dynamically
substitute it, where appropriate, in place of the exact or "golden"
calculation. Typically, approximate computing deals with functions
within a single HPC application, replacing them with optimized
variants at the cost of accuracy [28, 30, 32, 39, 46, 48]. In general,
it aims to address three major technical challenges: a) identifying
calculations for which to create surrogates [30, 48]; b) generating
well-performing surrogates [32, 39]; and c) decidingwhen to replace
a calculation with one of its surrogates (adjudication) [28, 46]. The
surrogate methods may be also be supported by, or implemented on,
specialized hardware accelerators. For example, Google’s Tensor
Processing Unit (TPU) [24] uses quantization and reduced precision
tensor operations to accelerate machine learning workloads.

3 RELATEDWORK
There are a large number of workflow frameworks, each providing
features targeting a specific domain (e.g. machine learning, scien-
tific computations, etc) and/or certain platforms e.g. classic HPC
stacks or Cloud environments like Kubernetes [8]. For scientific
workflows, some examples are AiiDA [21] and Pegasus [14] which
are popular options for several scientific fields such as physics, as-
tronomy, and bioinformatics. MaestroWF [15] is another example,
targeted at HPC systems with integration for the Flux batch sched-
uler [2] and support for reproducible workflow executions. There

are many cloud-native frameworks for executing machine learn-
ing frameworks and deploying continuous-integration/continuous-
deployment (CI/CD) pipelines. Two of the most popular options are
Argo [18] and Tekton [44] which differentiate via their deep inte-
gration with Kubernetes. Ray [35, 36] contains features especially
helpful for machine learning workloads and is optimized for com-
pute intensive Python tasks. Kubeflow [27] is another cloud-native
framework that specializes in orchestrating machine learning work-
loads, adopting Argo or Tekton as its underlying run-time system.

The common focus of these frameworks is providing assistance
for automating task-sets on particular platforms and managing
their output. The only approximate computing-like feature that
some of these frameworks support is memoization, which uses
a cache of task executions to eliminate redundant executions of
equivalent tasks. This can involve finding a previously executed
instance of the exact same task (standard memoization [31]). How-
ever, researchers may be also satisfied with the output of a different
method that provides the same, or similar, end result (approximate
memoization [45]). In either case it involves two basic operations:
a) determining equivalence between tasks, and b) substituting the
output of a task with the output of another.

With respect to the equivalence, it is desirable for a memoiza-
tion method to identify as many redundant tasks (true positives) as
possible; without incorrectly reusing cached results (false positives)
or missing optimization opportunities (false negatives). We term
this high-fidelity and note that it is determined by the gap, if any,
between the desired equivalence intent i.e. when the system wants
two tasks to evaluate as the same, and how the system concretely
performs this comparison (the criteria) [47]. Two other desirable
characteristics of a memoization system are that it is fast: memoiz-
ing must be faster than executing the tasks; and transparent: mem-
oization should be leveraged automatically and should not require
the modification of workflows, or adoption of specific languages.
Across the cited workflow frameworks a variety of memoization
methods have been implemented. Some sacrifice transparency to
be fast with high fidelity [3, 4, 6, 17, 18, 20, 33, 38]. Others, are fast
and transparent, but have fidelity issues with workflow nodes that
consume file directories or digital artifacts (e.g. S3 buckets) [7, 27]
resulting in false negatives or worse false positives.

4 APPROXIMATE COMPUTING FOR
SCIENTIFIC WORKFLOWS

Approximate computing is based on three operations: a) determin-
ing calculation equivalence; b) applying substitution policies; and
c) performing substitution. Our hypothesis is that the cost pres-
sures which shape computational science - demanding faster, more
approximate methods, reusing previously calculated results, and
using different platforms - would be best handled by a workflow
framework which is fundamentally designed to support approxi-
mate computing-like features. We term such a workflow framework
approximation-aware.

In [19] the authors examined 260 computational workflows and
discovered that workflows generally evolve organically by wiring
together smaller workflows often termed “blocks" or “motifs". These
smaller workflows are essentially sub-graphs that perform specific
tasks and may appear in multiple larger workflows. Therefore an
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SG-A SG-B SG-C

Virtual experiment Matching alternate sub-graphs

BSG-A C
Substitute sub-graphs B and 
C with alternate sub-graphs

No alternate for A

Figure 1: Illustration of the basic operations of equivalence
testing and substitution in the context of virtual experi-
ments. In this example, an initial virtual-experiment con-
sists of 3 sub-graphs (motifs) and there is a pool of alternates
determined by sub-graph equivalence. The sub-graphs and
the alternates are evaluated with respect to a set of objec-
tives. This result causes the workflow-runtime to perform
two substitutions replacing the original sub-graphs B and
C with alternates. The result is a new virtual-experiment
which performs the same calculation but has different char-
acteristics w.r.t. the objectives.

approximation-aware workflow framework must provide the three
approximation operations in the context of sub-graphs. Concretely,
determining sub-graph equivalence, calculating properties of sub-
graphs for policy application, and sub-graph substitution. Figure
1 presents an example of the basic principles of equivalence and
substitution.

Realising this requires system support at three levels - the work-
flow description language, the workflow knowledge-base, and the
workflow run-time. The workflow description must support sub-
graph equivalence calculations; the workflow knowledge-base must
support calculating, storing & accessing sub-graph properties and
relationships; and the run-time must support substitutions of sub-
graphs in a workflow.

Combined, these features will lead to workflow frameworks that
can handle large sets of computational workflows where each work-
flow could potentially satisfy a given measurement. In this section
we describe these components in more detail. Then in Section 5 we
give concrete examples of how they would be leveraged to provide
various approximate-computing like capabilities.

4.1 Sub-Graph Equivalence
When one method approximates another this means they satisfy
a particular equivalence criteria. Hence determining the equiva-
lence of two sub-graphs is the core mathematical operation that
an approximation-aware workflow framework must support. We
can divide this task into two parts: providing meaningful inputs
to equivalence operations, and storing & accessing the results of
equivalence operations.

4.1.1 Supporting Sub-graph Equivalence Operations. We want to
facilitate deciding if two workflow sub-graphs, 𝐴 and 𝐵, perform
equivalent tasks - they take the same inputs and return the required
outputs. This task is greatly simplified if the sub-graphs are not
contaminated by non-functional and platform specific steps and
details e.g. data-copying. This means that the workflow description
language must promote a high-level, abstractable, description of
the computational process. Here abstractable indicates that the
description itself can include platform and implementation specific

A
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[0, 0, 0]

[0, 0.1, 0.1]

[0.9, 0.8, 0.7]

(a)

A

B

C

1.0

0.9

(b)

Figure 2: Each node represents a sub-graph. On the
left, edges indicate [𝑑𝑜𝑚𝑎𝑖𝑛(𝑑𝑖 ), 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑓𝑖 ), 𝑐𝑜 − 𝑑𝑜𝑚𝑎𝑖𝑛(𝑐𝑖 )]
similarities. On the right, edges indicate known pro-
ducer/consumer relationships (solid line) and hypothesized
relationships (dotted line). For example, on the left we can
see that 𝐵 consumes similar inputs to 𝐶 (𝑑𝑖 = 0.9) but not
with A (𝑑𝑖 = 0.0). On the right, 𝐵 is known to consume 𝐴’s
outputs. Because the co-domain similarity of 𝐵 and 𝐶 is 0.9
then we can hypothesize that𝐶 can consume the outputs of
𝐴. Also, for 𝐵 and 𝐶 the function (𝑓𝑖 = 0.8) and co-domain
(𝑐𝑖 = 0.7) similarity are both high. Therefore, we could po-
tentially substitute 𝐵 for 𝐶 in workflows where 𝐵 consumes
the output of 𝐴.

details. However, a platform and implementation independent view
can be easily generated from it.

One way of realising this is through a combination of language
features/syntax supported by run-time elements - we call this ap-
proach simple specification, smart-run-time. This approach seeks
to offload many non-functional, platform specific, details to the
run-time, which might otherwise appear as nodes in the workflow
graph. This can include restarting, storage provisioning and data-
copying operations among others. By removing them, the workflow
sub-graph becomes simpler and better reflects the task it performs.

On the workflow description side, obtaining an abstract view is
facilitated by cleanly separating the functional aspects of a node
in the sub-graph - its inputs, task description, and steps - from
non-functional details e.g. scheduler options. This allows these de-
tails to be easily omitted when a sub-graph is used for equivalence.
Similarly, they can be easily added to the description to facilitate de-
ployment on different platforms. It not only makes the comparison
simpler, but also makes it straightforward to concretize a sub-graph
for a particular platform once equivalence has been determined.

4.1.2 Sub-Graph Equivalence Operations. There are three equiva-
lence operations to consider - see Figure 2

• Co-domain similarity (𝑐𝑖 ): Do blocks produce the same data
• Domain similarity (𝑑𝑖 ): Do blocks consume the same data
• Function similarity (𝑓𝑖 ): Do blocks do the same thing

Note that for each operation multiple equivalence methods can be
defined.

The above operations also support answering the question “can
blocks 𝐴 and 𝐵 be composed?”. This question reduces to either
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• Does 𝐴 produce the same data as the producers of 𝐵 (is 𝐴
like producers of 𝐵). We call this the “upstream" method.

• Does 𝐵 consume the same data as the consumers of 𝐴 (is 𝐵
like consumers of 𝐴). We call this the “downstream" method.

Composition is important when performing substitution - see Sec-
tion 4.2

Note that depending on the similarity metric, you may not have
to visit the producers directly to apply it. Given two nodes 𝐴 and
𝐵, where 𝐵 is consumer of 𝐴, information on the co-domain of 𝐴
can be built from the references to it in 𝐵. This in turn enables
measuring co-domain similarity to 𝐴 by only accessing 𝐵.

4.1.3 Storing Sub-Graph Equivalence Results. Given a large set of
computational workflows, the number of equivalence relationships
that could be computed will likely be very large. As a result, they
cannot be computed on the fly whenever the workflow framework
needs to decide if a substitution could be performed. A solution
is that a workflow knowledge-base actively performs and stores
relationships and equivalence measurements.

One approach is for the knowledge-base to maintain a graph,
stored in a graph-database or similar, where each node represents a
workflow sub-graph. Theoretically the graphwill be fully-connected
although many edges will have weight 0. The nodes in this graph
can represent a workflow’s sub-graphs in many ways. For example,
a node can be associated with one or more hashes or feature-vectors
(representations) which encode features of the sub-graph they rep-
resent; the node could include the sub-graph explicitly; or the node
can include a reference to the source of the graph.

This graph will likely have at least three types of edges (see
Figure 2). The first type are equivalence edges (Section 4.1.2). These
edges have weights which are the value of one or more similarity
metrics: domain & co-domain similarities (to aid in determining
composability); functional similarities (for sub-graph matching).
The second edge-type is the producer-consumer edge. For a known
producer/consumers pair the edge weight will be 1.0. For hypoth-
esized connection the edge weight(s) are values of metrics which
describe the likelihood that the blocks can be composed. The final
edge would denote “sub-graph of" relationships.

In addition to information on the sub-graph relationships, the
workflow knowledge base should also provide access to computa-
tional workflow metadata and data, such as performance, accuracy,
produced outputs, etc. This functionality is already present to some
extent in existing workflow frameworks e.g. Aiida and Kubeflow.
In essence the knowledge-base should record as much as possible
of information that is non trivial to extract. This is key to enabling
powerful systems that leverage these sources of information to
make intelligent decisions (Section 5). For example, the information
could be used to inform policy decisions (section 4.2.2) as well as
to refine similarity metrics or create new ones.

4.2 Sub-Graph Substitution
4.2.1 Applying Sub-Graph Substitutions. We consider that a sub-
graph consists of one or more workflow nodes that may be con-
nected with zero or more edges. Each workflow node is associated
with configuration metadata (e.g. definition of task, backend con-
figuration, etc) and data (e.g. inputs/outputs, configuration files,
etc). The first is resident in the workflow-description while the

Target Graph (G) Patch Graph (P) Output Graph (O)

Node in target graph

Node in patch graph

Input edge to patch Output edge from patch

Expected input to patch Expected output of patch

Figure 3: An example of patching a Target graph 𝐺 with a
Patch graph 𝑃 to substitute a sub-graph of 𝐺 . 𝑃 expects two
inputs, from splice-points of 𝐺 , and generates one output,
that splice-points of𝐺 can consume. The result is theOutput
graph 𝑂 on the right. Figure 3.c) shows the splice-points at
the top of𝑂 providing inputs to 𝑃 and the splice-point at the
bottom of 𝑂 consuming the output of 𝑃 .

second is external to the description. When making a sub-graph
substitution there are three main steps: a) creating/extracting a
patch; b) identifying the splice points; and c) applying the patch.
A patch contains the sub-graph description, the data files that the
nodes in the sub-graph require, along with other metadata required
for the substitution e.g. schema of the inputs/outputs of the patch
graph, removal/modification instructions for nodes in target graph,
etc.

Before a patch 𝑃 can be applied to a target graph 𝐺 the work-
flow framework must first identify the splice points in 𝐺 . Splice
points are the nodes and edges that either provide input to nodes
in 𝑃 or consume their outputs. Identifying the splice points re-
quires single-node sub-graph equivalence tests between the origi-
nal producers/consumers of 𝑃 and the nodes in 𝐺 . These can use
input/output (domain/co-domain) or functional equivalence tests
or a combination. We note that the interface of 𝑃 is not guaranteed
to be identical to the sub-graph of 𝐺 that will be substituted. For
example, the nodes in 𝑃 may require a different number of inputs.

Applying the patch then becomes a series of sub-graph substitu-
tions on𝐺 . Each sub-graph substitution aims to modify the current
state of𝐺 into a desired state. A sub-graph substitution involves two
kinds of operations a) removing/updating zero or more nodes/edges
in𝐺 , and b) inserting zero or more 𝑃 nodes into𝐺 . Notably, there is
a chance that after applying the sub-graph substitution operations
the state of 𝐺 differs from the desired state. For example, a splice
point in 𝐺 that reads the output of node 𝑁 of 𝑃 may expect 𝑁 to
have a specific command-line argument. If 𝑁 does not fulfill this
expectation, the workflow framework flags this inconsistency as a
“conflict" and attempts to resolve it. The difficulty of this operation
depends strongly on the level of annotation supported by the work-
flow description language e.g. does it allow labelling of optional
command line arguments.
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4.2.2 Determining Sub-Graph Substitutions. Automatically deter-
mining which sub-graphs are substitutable by which other sub-
graph is a challenging problem, particularly as computational work-
flows become large. There are 3 steps for creating a sub-graph substi-
tution policy: a) specifying the parameters/objectives; b) exploring
the space of potential substitutions using one or more agents; c)
crafting the final substitution policy using a superintendent agent.
The first step involves defining a cost-function to evaluate the dif-
ferent substitutions. For example, this may leverage some domain-
specific language, or even process natural language text to extract
the parameters/objectives. The next step potentially involves mul-
tiple agents, each of which suggests a sub-graph substitution plan
for the entire virtual-experiment. For example, each of these agents
can specialize in a particular task (e.g. optimize performance, opti-
mize accuracy, optimize cost, etc). An agent produces a substitution
plan which contains one or more sub-graph substitutions as well as
metadata about the expected benefits (e.g. performance, accuracy,
etc) and costs (e.g. downtime, performance, accuracy, etc) of the
plan. In the final step, a superintendent agent produces the final
sub-graph substitution policy. There are many different ways to im-
plement such a superintendent. The most straightforward solution
is to inspect all the proposed sub-graph substitutions, and pick the
one that has the lowest value of the cost-function. Alternatively, the
superintendent could pick and choose different parts of the many
sub-graph substitutions that the first level agents suggested to see
if a lower cost-function value could be obtained.

5 PROTOTYPES AND INITIAL EVALUATIONS
For a number of years, ourselves and our collaborators have fo-
cused on computational workflows for materials design [1, 11, 22,
23, 26, 29]. This involved designing and running large scale compu-
tational chemistry workflows on machines from BG/QTM, to IBM
POWER8TM through to clusters managed by Kubernetes [8]. The
frequent changing of hardware-architecture, data-architecture, and
schedulers, led us to abstract these details from the workflow de-
scription and handle them instead in the run-time (Section 4.1.1). For
example, we handled scheduling via pluggable backends, abstracted
storage and data-movement from task definitions and introduced a
variable layering scheme to allow easy customization of workflows
for different environments. Automation and robustness was criti-
cal as we were running iterative calculations requiring up to 1600
IBM POWER8TM cores and 1 week of compute time with hundreds
of independent co-processing tasks. This led us to also hand-off
restart details from the workflow description i.e. each task in the
description represents a logical step, rather than a concretized task
execution. These workflow-runtime and description language fea-
tures gave us the basis to support sub-graph equivalence operations
(Section 4.1.1). Subsequently we’ve built, and are building, a num-
ber of prototypes on this foundation to explore different aspects of
an approximation-aware workflow framework, some of which we
describe here.

5.1 Approximate Memoization
When working on searching large discovery spaces for material
candidates, we encountered high reuse of sub-graphs across multi-
ple virtual-experiments. To handle this, we introduced a prototype

approximate memoization scheme (Section 3) for computational
workflows which helped us accelerate the search [34, 37, 47]. We
found this was facilitated by the abstractions we had introduced
which made it straightforward to implement suitable single-node
equivalence criteria. This was based on the node’s interface and
the chain of nodes leading to it, specifically;

(1) Any inputs which are not outputs of other nodes must be
bit-wise identical.

(2) For inputs coming from producer tasks, those tasks have
identical interfaces.

We could use the chain of tasks as we knew it would reflect the
functional task-chain uncontaminated by instance-specific details
like number of restarts. The equivalence criteria also did not use
platform or execution-specific values. This enabled us to support
memoization between tasks that executed on distinct and hetero-
geneous execution environments. We implemented a workflow
knowledge-base for storing metadata on executed tasks (nodes).
This assigned identifiers in the form of hashes to tasks (Section
4.1.3) that could be searched for tasks that executed in the past. The
run-time performed the substitution by skipping the original task
and writing the output of equivalent tasks to its output store.

In our study, we showed the equivalence criteria provided higher-
fidelity compared to existing methods as it avoided classes of false
negative/positives present in prior works. It was also fast, requiring
(on average) O(𝑚𝑠) to generate the hash of a node in our experi-
ments. This means that memoization can be worthwhile even for
tasks which execute in O(𝑠𝑒𝑐). In our experiments, memoization
offered speedup of up to 10.55x without any configuration/hints by
workflow developers or users.

However, we took some shortcuts in the prototype that can be
improved upon. We skipped the true substitution of the node in the
description. This could cause issues when inspecting the executed
workflow description later, particularly if a less strict equivalence
criteria was adopted in future. In addition, the current prototype
is restricted to using equivalence tests at the granularity of single
nodes. Expanding this to leverage full sub-graph equivalence, and
hence a memoization method that acts at a sub-graph level, would
be powerful. For example, it would allow memoizing a N-node sub-
graph using one quantum chemistry code with a M-node sub-graph
that uses another quantum chemistry code, and that produces the
same numerical analysis but has improved performance. Achiev-
ing this would require a more complete implementation of the
approximation-aware knowledge-base functionality, as described
in 4.1.3, along with more advanced sub-graph equivalence methods.

5.2 Surrogate Model Support
In Section 2 we mentioned recent research efforts in creating AI
surrogates of physical models. We are currently building capability
to support the development and use of such AI surrogates in com-
putational workflows. For clarity, in the following we distinguish
between a surrogate model and a surrogate calculation. The first is
the actual model (usually a function with some parameters) that
replaces a physical model (also a function with some parameters).
The second is a sub-graph that uses the surrogate model that can
be used to substitute a sub-graph using a physical model.
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In particular we want to address the adjudication challenge -
when to substitute a surrogate for the physical calculation. Adjudi-
cation is crucial to both the performance of the overall computation
as well as its correctness. It requires specific run-time features of
an approximation-aware workflow framework: identification of
surrogates for physical calculations; effective run-time surrogate
selection policies; and dynamic substitution capabilities.

In addition, adjudication support features like canary testing [28]
are highly desirable to reduce burden on developers. This involves
automatically, and transparently (in background), launching surrogate-
calculations alongside matching physical calculations, to build a
data-set for assessing accuracy (canary testing). This also leverages
the key features of an approximation-aware workflow stack.

For initial versions of this prototype we will adopt explicit indica-
tion of physical/surrogate relationships. This requires manual iden-
tification of equivalent sub-graphs and associated information for
patching e.g. splice points (section 4.2.1). Nevertheless, supporting
it requires a more complex version of the workflow knowledge-base
than what we used in our approximate memoization prototype.

In section 4.2.2 we outline a general protocol for deciding if a
sub-graph should be substituted. We term this a “prior policy" as it
is applied before substitution. AI-surrogates also bring additional
complexity as they can potentially provide information on the
uncertainty of their predictions w.r.t the physical model they were
trained on. This can be a feature provided by the virtual-experiment
before the calculation begins e.g. a model prediction, in which case it
requires additional run-time and workflow-specification support. It
could also be provided as part of the result that the surrogate model
calculates. This opens the possibility of rolling back the application
of an AI-surrogate model i.e. support “posterior policies". This
would require extra complexity in the workflow knowledge-base.

5.3 Automatic Computational Workflow
Composition

As we have discussed, workflow developers may logically partition
their workflow into sub-graphs which perform specific reusable
tasks. However, it is useful to have a method to automatically de-
compose or factor workflows into such independent sub-graphs.

Factoring a graph𝑊 is equivalent to creating a quotient graph
of𝑊 . Creating a quotient graph requires defining an equivalence
relationship which designates if two nodes 𝑢 and 𝑣 are in the same
block. We experimented with a variety of equivalence relationships.
One we found most successful was the following:

𝐸 =
∏
𝑝∈𝑃

(𝑢 ∈ 𝑝 ∧ 𝑣 ∈ 𝑝) (1)

where 𝑃 is all sub-graphs to leaf nodes of𝑊 . Equation 1 states that
given a set of sub-graphs 𝑃 , nodes 𝑢 and 𝑣 are equivalent if they
appear together in all sub-graphs leading to a given leaf-node and
never separately.

We trialed this method on the set of six virtual experiments we
developed in [34]. There were three distinct experiments each with
two alternates (see Figure 2.1). These experiments had organically
evolved from each other and we knew four consisted of two distinct
steps. We found equation 1 successfully partitioned each workflow
into its distinct functional blocks.

A

A’’

A B

A’ B’

A C

A’ C

A A’’ A’ BB’ C

A B’

A’’ B’

A’’ B

A’ B

A’ A’’ C

Experiment Type 1 Experiment  Type 2 Experiment Type 3

1.

2.

3.

A Group B Group C Group

Figure 4: (1) We started with three distinct virtual-
experiments each with two alternates. Two of the virtual-
experiments were composed of two distinct sub-graphs or
blocks. Our factoring algorithm was successfully able to
identify the sub-graphs. (2) Using the Weisfeiler-Lehman
graph isomorphism method we were able to recognize both
the six distinct block types and the three block groups. (3)
In combination with a sub-graph substitution capability
the knowledge of the blocks and groups would allow one
to create ten new virtual-experiments - six following the
three templates shown in 4.1 and four single block virtual-
experiments that were not previously exposed.

Although we knew blocks were similar, we sought to show this
algorithmically. We trialed the Weisfeiler-Lehman graph isomor-
phism method [40], using edges labelled with the data consumed
and nodes labelled with (a) the name of the node, and (b) the nodes
command line. We found using the command-line successfully iden-
tified the six unique blocks and the name successfully grouped the
blocks into the three groups (see Figure 2.2) .

In combination with a sub-graph substitution capability (section
4.2) this opens the possibility to recombine the blocks. In total, these
blocks could be recombined into six new valid alternate virtual-
experiments, following the original three templates (see Figure 2.3) .
In addition, each block itself is a valid computational workflow and
hence the four blocks (𝐴′, 𝐵, 𝐵′,𝐶) could also be extracted. Thus,
from six initial experiments the combination of automatic factoring
and composition can add a further ten.

6 DISCUSSION AND CONCLUSION
The examples in Section 5 give a flavor of the potential capabilities
of an approximation-aware framework. However, these prototypes
have a number of limitations. Resolving these limitations requires
deeper investigation into a variety of systemic and algorithmic
topics. Such a framework fundamentally relies on equivalence oper-
ations at the granularity of workflow graphs. In our prototypes, we
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adopted basic equivalence methods (Section 5.1 and 5.3) or human-
annotated equivalence (Section 5.2). In the future we would like to
investigate different equivalence methods for the three equivalence
operations (Section 4.1.2). We also wish to evaluate how different
method/operation type pairs perform for various tasks.

Related to this, there are questions around sub-graph represen-
tations e.g. how can effective representations be generated?, are
different representations better for different tasks?, and how to
interpret non-binary equivalence measures e.g. what does it mean
that one sub-graph is 90% the same as other? Differences can be
due to inherently different calculations but could also be syntax
induced e.g. due to the way tasks are described there is uncertainty
in how elements, like inputs, map to each other (Section 4.2.1).

This issue illustrates the important role that the workflow spec-
ification plays in determining equivalence. In particular, there is
a trade-off between relaxing the syntax to allow greater potential
matching e.g. by adopting weak-typing, and how certain equiva-
lence methods rely on the information transmitted by the syntax.
We adopted a quite relaxed syntax in our prototypes but we can see
how greater annotations would make equivalence tasks easier. Two
lines of investigation here are using introspection and AI to provide
annotations e.g. identifying types for outputs, and/or to relying on
emergent convention/community driven efforts to remove friction.
For example, an IDE could raise a flag when a specification is caus-
ing equivalence issues. A developer could then add just enough
extra information to resolve these issues.

A critical system component in the framework is the work-
flow knowledge-base. We noted in Section 4.1.3 that a knowledge-
graph that is built to hold sub-graph similarity relationships will
be densely connected. Additionally, we consider that construct-
ing such a component with the goal of it handling a real load is
an open question. Answering this question relies on knowledge
on the frequency and type of queries, along with deciding where
reasoning should occur, how workflow/workflow-instances are
connected, and how supporting data-stores e.g. containing actual
output files, are integrated. Nevertheless, although the size of the
pool of computational workflows will raise technical issues for any
workflow knowledge-base, the overall capability of the system can
only improve as its computational-workflows corpus increases in
size.

An approximation-aware workflow framework is one that un-
derstands that there are multiple ways to realize a given result
(measurement), and that can support researchers in making the
best choice. In particular we see this was having significant im-
pact on problems involving search of large entity spaces where
the usual aim is to find entities (systems) with desired character-
istics under some cost constraint c.f. material discovery. The re-
sulting cost-constrained optimisation often has a large number of
potential methods i.e. computational workflows, to measure these
key-characteristics.

However, from the researcher’s view the exact method adopted
is often a means-to-an-end. Hence the ability to construct the pos-
sible approximations, then learn their characteristics, and finally
select the best approximation is critical for an effective search. For
example, fast methods could be chosen to quickly probe regions,
and occasionally more detailed methods could confirm or calibrate
the predictions of the fast methods. Furthermore, the information

gained on the methods and their relationships can be used to accel-
erate future searches. Hence, a workflow system that can natively
support this task, allowing complex and intelligent capabilities to
emerge out of a small set of basic features and principles, will be
invaluable.
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