
Zero-Shot Program Representation Learning
Nan Cui, Yuze Jiang, Xiaodong Gu, Beijun Shen∗

School of Software, Shanghai Jiao Tong University
Shanghai, China

{cuinan,jyz-1201,xiaodong.gu,bjshen}@sjtu.edu.cn

ABSTRACT
Learning program representations has been the core prerequisite of
code intelligence tasks (e.g., code search and code clone detection).
The state-of-the-art pre-trained models such as CodeBERT require
the availability of large-scale code corpora. However, gathering
training samples can be costly and infeasible for domain-specific
languages such as Solidity for smart contracts. In this paper, we
propose Zecoler, a zero-shot learning approach for code represen-
tations. Zecoler is built upon a pre-trained programming language
model. In order to elicit knowledge from the pre-trained models
efficiently, Zecoler casts the downstream tasks to the same form of
pre-training tasks by inserting trainable prompts into the original
input. Then, it employs the prompt learning technique to optimize
the pre-trained model by merely adjusting the original input. This
enables the representation model to efficiently fit the scarce task-
specific data while reusing pre-trained knowledge. We evaluate
Zecoler in three code intelligence tasks in two programming lan-
guages that have no training samples, namely, Solidity and Go, with
model trained in corpora of common languages such as Java. Exper-
imental results show that our approach significantly outperforms
baseline models in both zero-shot and few-shot settings.

KEYWORDS
Learning Program Representations, Zero-Shot Learning, Prompt
Learning, Code Intelligence

ACM Reference Format:
Nan Cui, Yuze Jiang, Xiaodong Gu, Beijun Shen. 2022. Zero-Shot Program
Representation Learning . In 30th International Conference on Program Com-
prehension (ICPC ’22), May 16–17, 2022, Virtual Event, USA. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3524610.3527888

1 INTRODUCTION
Learning program representations has achieved great success in
software engineering thanks to recent advances in deep learning [4]
and the availability of large-scale code corpora [6]. Program repre-
sentations, namely, code vectors that reflect their deep semantics,
have been widely used in code intelligence tasks [24] such as clone
detection [12], code summarization [9], and code search [16]. For

∗Beijun Shen is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPC ’22, May 16–17, 2022, Virtual Event, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9298-3/22/05. . . $15.00
https://doi.org/10.1145/3524610.3527888

example, in the clone detection task, program representations can
be used to reflect similar features between two code snippets [43].

Despite showing promising results, the state-of-the-art tech-
niques rely on the availability of large code corpora. However,
labeling data samples of some programming languages is often
expensive and sometimes infeasible. For example, Solidity is a new
language and specifically designed for smart contracts. This lan-
guage is becoming increasingly popular and hence code representa-
tion tools for the Solidity language are highly demanded. However,
obtaining labelled Solidity code is challenging as it requires domain
knowledge on Blockchain and the collected data is significantly
redundant [8]. This restricts the collection of supervised data and
causes deep learning models to learn poor representations [26].

One possible solution towards alleviating this issue is to use
the pre-trained language models (PLMs) such as CodeBERT [13],
PL-BART [1], and CodeT5 [38]. PLMs are pre-trained to learn code
representations of large common languages such as Java and then
are fine-tuned on domain-specific languages such as Solidity. For ex-
ample, Salza et al. [30] proposed cross-language CodeBERT, which
pre-trains CodeBERT on multiple languages and then transfers the
program representations to other languages through fine-tuning.

However, fine-tuning a PLM on a specific task is challenging.
The learning tasks (e.g., masked language model (MLM)) in the pre-
training phase are usually different from the downstream tasks (e.g,
code search). As such, the reusability of prior knowledge learned in
the pre-training phase may be limited in the fine-tuning phase. This
is even more challenging when there is no or insufficient training
data for downstream tasks in domain-specific languages. The large
pre-trained model can easily overfit scarce data, which leads to
poor task fitting.

In this paper, we propose Zecoler (Zero-shot code representa-
tion learning), a novel approach for learning program represen-
tations without labelled data samples of the target language. In
order to learn better representations and bridge the gap between
pre-training and downstream tasks, we adapt prompt learning [20],
a new learning paradigm for PLMs. Prompt learning adapts the
downstream task to the same form as that in pre-training through
accompanying trainable prompt tokens with the PLM input. The
continuous vectors of prompts guide the pre-trained model to elicit
knowledge of programming languages efficiently. For example, the
input of code clone detection can be converted to an MLM task
input based on a template containing prompt tokens. In this way
the model can be adapted to the target language while maximizing
the use of prior knowledge learned during the pre-training phase.
Hence, prompt learning allows few-shot or even zero-shot learning
for pre-trained models in new languages with unlabelled data [31].

To evaluate the proposed approach, we experiment on three code
intelligence tasks, including code clone detection, code search, and
method name prediction. The results show that our approach is

ar
X

iv
:2

20
4.

08
36

0v
1

 [
cs

.S
E

]
 1

8
A

pr
 2

02
2

https://doi.org/10.1145/3524610.3527888
https://doi.org/10.1145/3524610.3527888

ICPC ’22, May 16–17, 2022, Virtual Event, USA Nan Cui, et al.

substantially effective in zero-shot learning of program representa-
tions. The accuracy of the three tasks in Solidity is 79.8%, 67.1%, and
68.1%, respectively, which is around 14.7% greater than the strong
baseline CodeBERT. Zecoler also demonstrates great effectiveness
when a few data samples are given. Moreover, the learned program
representations have good generalizability.

The contributions of this paper can be summarized as:

• To the best of our knowledge, we are the first to propose
zero-shot learning of program representations, which does
not require manual labeling of data for code intelligence
tasks.

• We propose a prompt learning based method for zero-shot
program representation.

• We conduct extensive experiments to evaluate the proposed
approach. Results show that our approach significantly out-
performs the baseline models.

2 BACKGROUND
2.1 Pre-trained Language Models for Code
Pre-trained language models (PLMs) such as BERT [11], GPT [27],
and T5 [28] have achieved a great success in the natural language
processing field. A PLM is usually pre-trained on a large-scale text
corpora through a series of self-supervised learning tasks such as
masked language modeling (MLM) and next sentence prediction
(NSP). The MLM task masks a random portion of tokens in the
input text and tries to predict the masked words, while the NSP task
predicts whether or not two given input segments are coherent. The
PLM can then be fine-tuned on task-specific datasets. A fine-tuning
header on top of the PLM is optimized via supervised learning tasks
in a specific domain.

Due to the great success of PLMs, researchers also seek the
adaptations of PLMs for programming languages [13, 38]. They
customize the pre-training objectives using programming related
tasks on a big code corpus. PLMs have been successfully used to
learn program representations and further be used in a variety of
code intelligence tasks.

For example, CodeBERT is built based on RoBERTa [22] and is
pre-trained with both natural and programming languages. Figure 1
illustrates the main pipeline of CodeBERT. The model is first pre-
trained on two tasks, namely, MLM and replaced token detection
(RTD). In MLM, CodeBERT randomly masks the tokens in natural
language and programming language (NL-PL) pairs and learns to
predict the original words. For RTD, the model is trained to detect
whether tokens are original or not. The pre-trained model is then
fine-tuned on data of downstream tasks such as clone detection
and code search. A header based on multilayer perceptron (MLP) is
added to the PLM and is optimized with downstream tasks.

2.2 Zero-Shot Learning
The standard supervised learning approaches train a model with
large-scale labelled samples. However, in many tasks such as recog-
nizing name of a new brand or translating a new language, obtain-
ing sufficient training samples is laborious and often impracticable.
Zero-shot learning transfers a learned model to a target domain
that has no labelled data, and hence alleviates this “data hungry”

CodeBERT

E[CLS] EME1

C T1 TM

[CLS] Tok1 TokM

Masked Code or Text Sentence

RTD Masked LM

Pre-training

…

…

…

Unlabeled NL-PL Corpora

Fine-tuning

Labeled NL-PL pairs

CodeBERT

E[CLS] E1 EN

C T1 TN

[CLS] Tok1 TokN

NL Text

…

…

…

CodeBERT
E[CLS] E’1

C T’1 T’M

[CLS] Tok’1 Tok’M

Code Snippet

…

…

…

MLP Header Result

E’M

Figure 1: Illustration of the pre-trained code model.

problem. It can be realized through a variety of techniques such as
data augmentation [5], meta-learning [29, 33], and PLMs [6].

Data augmentation. A direct technique of zero-shot learning is
data augmentation, namely, enlarging the data set (e.g., randomly
inserting samples and noise) so that the model can have sufficient
data samples for training [5].

Meta-learning. Another popular strategy for zero-shot learning
is meta-learning. Meta learning is also known as “learning to learn”,
which aims at training a meta learner which learns the update
rules of the target model [14]. This enables a machine learning
model to achieve competitive performance even with scarce data.
However, meta-learning focuses on learning strategies instead of
representations. Hence it will be difficult to be generalized across
different code intelligence tasks.

Pre-trained Language Models. PLMs are pre-trained on large-
scale text corpora to learn common knowledge of the languages,
and can be generalized to specific tasks with only a few training
examples. However, PLMs require a fine-tuning phase to adapt
the pre-trained model to the downstream tasks, which needs the
availability of labelled datasets. Therefore, it’s still quite laborious
to annotate the data manually.

Prompt-based Learning. To alleviate the data hungry problem of
fine-tuning, Brown et al. [6] introduced prompt-based learning, a
lightweight alternative of fine-tuning for PLMs. Unlike fine-tuning,
which adds fine-tuning header and re-optimizes the PLM using
downstream tasks, the prompt-based learning approach converts
downstream tasks (e.g., method name detection) to the same form
as the pre-training tasks (e.g., MLM) by injecting “prompts” and
“[MASK]” to the PLM input. Hence, the PLM generates the target
result after minimal adjustment. This encourages downstream tasks
to reuse the knowledge from the PLM.

3 APPROACH
3.1 Problem Definition
Program Representation Learning: Let 𝑥 = {𝑥1, ..., 𝑥𝑁 } ∈ X
denote a program code snippet with 𝑁 tokens. The goal of program
representation learning is to map 𝑥 into an 𝑑-dimensional vector
which contains program semantics, namely, 𝑓𝜃 : X → 𝑅𝑑 [4], where
𝑓𝜃 is a function parameterized by 𝜃 . 𝑓𝜃 can be implemented using
deep neural networks such as the fully-connected networks [3],
LSTM [25] and Transformers [36].

The learned program vectors can further be taken as input to
machine learning models for code intelligence tasks such as code
clone detection and code search. Given two code snippets 𝑥1 and

Zero-Shot Program Representation Learning ICPC ’22, May 16–17, 2022, Virtual Event, USA

PLM

Final Prediction

90%
10%

clone
not clone

4%
…
36%
…
0%

no
…
yes
…
map

… …

MLP+Softmax

Verbalizer MLM Header
yes not clone
no clone

void func (..){ int func1 (..) { [MASK]

Input 1 Input 2 Prompt

[P1] [P2] [P3] [P4]

Prompt

Embedding

Prompt
Template

Figure 2: Model Architecture.

𝑥2, we can train a classifier which predicts the class label 𝑦 ∈ Y
given their vectors:

𝑝 (𝑦 |𝑥1, 𝑥2) = 𝑔𝜙 (𝑓𝜃 (𝑥1), 𝑓𝜃 (𝑥2)), (1)

where 𝑔𝜙 denotes the neural network model for the classification
task. For example, in the code clone detection task, 𝑥1 and 𝑥2 stand
for two code snippets and 𝑦 stands for whether they contain clones.
In the code search task, 𝑥1 and 𝑥2 stand for a code snippet and a
natural language description, respectively, and𝑦 stands for whether
they are semantically correlated.
Zero-Shot Program Representation Learning: Let (X𝑆 ,Y𝑆)
denote the labelled dataset in the source language, and X𝑇 de-
note the unlabelled dataset in the target language. The goal of
zero-shot program representation learning is to train a machine
learning model which predicts the labels in the target language
given the labelled data in the source language, namely, to estimate
𝑝 , the probability of the label predicted:

𝑝 (𝑦𝑇 |𝑥𝑇1 , 𝑥
𝑇
2 ,X

𝑆 ,Y𝑆), (2)

where 𝑥𝑇1 , 𝑥
𝑇
2 ∈ X𝑇 and 𝑦𝑇 ∈ Y𝑇 . Representations for X𝑆 might

not be useful for X𝑇 since there could be a lexical gap between X𝑆

and X𝑇 . However, both of them can be used in pre-training tasks
such as the MLM [13] for a PLM. Hence, it is feasible to bridge their
representation gap using the common pre-training task. Based on
this idea, we cast the problem in Equation 1 as an MLM task for
a PLM and train the model on (X𝑆 , Y𝑆), so that the PLM can also
predict the class labels for data in X𝑇 seamlessly.

3.2 Model Architecture
Domain-specific languages such as Solidity often have insufficient
data for code intelligence tasks, while popular languages such as
Java and Python have large-scale code corpora. Our goal is to trans-
fer the representations of a popular programming language into a
domain-specific language that has no training samples. As such, we
keep pre-training the PLM on the task of a popular source language
and then transfer the model to tasks in the target language.

Figure 2 illustrates the overall architecture of our Zecoler. The
pipeline is comprised of three steps: First, we cast any downstream
task to the pre-training task (e.g., MLM) by inserting trainable
prompts and a “[MASK]” token into the input of the task (§3.3).
Taking the resulting data as input, a PLM is then re-trained using

the MLM task, that is, infers the program representation of the
input and predicts the word for the “[MASK]” token (§3.4). Finally,
a verbalizer is employed to cast the predicted word to class labels
(§3.5).

3.3 Casting Downstream Tasks into MLM
Our first step is to cast the downstream task (Equation 1) into the
MLM task. Given two input snippets 𝑥1 and 𝑥2 of the downstream
task, we concatenate the two input snippets 𝑥1 and 𝑥2, inspired by
NSP-BERT [34].

Like that in the MLM task, we also insert a “[MASK]” token into
the concatenated input. The “[MASK]” token acts as a placeholder
which steers the pre-trained model to generate the classification
result 𝑦 in the code intelligence task. It is notable that the position
of the “[MASK]” token is a hyperparameter and we append it at
the tail of the input by default. The masked sequence

𝑥 = [𝐶𝐿𝑆];𝑥1;𝑥2; [𝑀𝐴𝑆𝐾] (3)

is taken as input to the PLM, which yields the hidden states

h1, ..., h |�̃� | = 𝑓𝜃 (𝑥) (4)

for all tokens, where 𝑓𝜃 denotes the pre-trained programming lan-
guage model parameterized by 𝜃 .

Then, the hidden state corresponding to themasked token, namely,
h−1, is fed into an MLM header 𝑔𝜙 which predicts a token for the
masked position:

ŷ = softmax(𝑔𝜙 (h−1)) . (5)

The MLM header 𝑔𝜙 is a fully connected neural network parame-
terized by 𝜙 that is optimized to minimize the cross-entropy loss:

𝐿M𝐿𝑀 (𝜙 |y, ŷ) = −
|𝑉 |∑︁
𝑖=1

𝑦𝑖 log(𝑦𝑖), (6)

where y denotes the ground-truth label of the code intelligence
task, and |𝑉 | is the vocabulary size.

3.4 Prompt-based Learning
The conventional fine-tuningmethod for theMLM task optimizes 𝑓𝜃
and 𝑔𝜙 in Equation 1 from scratch. This causes the model to overfit
scarce task-specific data. Inspired by prompt-based learning [21],
we optimize the PLM by merely adjusting its input sequence. More
specifically, we insert a number of pseudo tokens called prompt

ICPC ’22, May 16–17, 2022, Virtual Event, USA Nan Cui, et al.

into the input sequence of the PLM, which coaxes the PLM to
directly generate the predicted label of the downstream task. By
only adjusting the model input, the PLM needs far less optimization
cost to fit for the data in the target task, while keeping the most of
prior knowledge learned during pre-training.

Based on this idea, we design a number of prompt tokens 𝑃 =

[𝑃1, ..., 𝑃𝑚] and inject them into the masked sequence 𝑥 using a
pre-defined template 𝑇 = [𝑃];𝑥1; [𝑃];𝑥2; [𝑃]; [𝑀𝐴𝑆𝐾]. Hence, the
original inputs 𝑥1 and 𝑥2 are transformed into

𝑥 = [𝑃1:𝑖];𝑥1; [𝑃𝑖+1:𝑗];𝑥2; [𝑃 𝑗+1:𝑚]; [𝑀𝐴𝑆𝐾] (7)

through template𝑇 . For example, in the task of code clone detection,
given two code snippets, “code1” and “code2”, the transformed input
is

[𝑃1][𝑃2] code1 [𝑃3] [𝑃4] code2 [𝑃5][𝑃6][MASK], (8)

which contains six trainable prompts in this case.
Like general words, these prompt tokens are embedded into

trainable vectors and are optimized on downstream tasks in the
target domain through gradient descend.

In a zero-shot setting, there is no training sample in a low-
resource programming language. Instead, we train the PLM using
large-scale code corpora in popular languages (e.g., Java) through
the converted MLM task, and then directly apply the trained model
to tasks in the low-resource language. More specifically, we train
the PLM through prompt learning for the converted MLM task in
the source domain. Then, we take as input data samples in the tar-
get domain into the same model without extra training, and obtain
the results of the code intelligence tasks.

3.5 Reverting MLM Outputs to Classification
Labels

The MLM task generates a token that is likely to fill into the masked
position. In order to obtain the classification result, we need to re-
vert the MLM predictions to classification labels of the downstream
task. For this purpose, we employ a verbalizer [31] which realizes
such a reversion. LetV be the vocabulary of the PLM andY be the
labels of the downstream task such as {true, false}. The verbalizer
is defined as a function 𝑣 : C → Y that maps each candidate word
in the vocabulary to a classification label. The choice of candidate
words is arbitrary as long as they are sufficiently different. The
model will be trained to map candidate words to true predictions.
In our approach, we consider two candidate words {𝑦𝑒𝑠, 𝑛𝑜} ∈ V as
a candidate set C and only inspect which word in C is more likely
to fill into the “[MASK]” position through PLM predictions. If the
word “yes” has a higher probability to fill in the masked position,
the verbalizer will map it to the label “true” and hence output a
positive prediction for this task.

Take code clone detection as an example. Given two code snip-
pets, the model constructs an input sequence by injecting a number
of prompt tokens into the snippets, followed by a “[MASK]” token.
The constructed sequence is fed into the PLM to predict the label
𝑌 , where 𝑌 ∈ {“cloned”, “not cloned”}. The MLM header of the
PLM outputs the probability of each candidate word for the masked
position. If the candidate word “yes” has a higher probability, the
verbalizer will map it to the class label “cloned”, yielding the final
prediction as “cloned”.

Zecoler

Prediction

cloned

(i) Training (ii) Usage

Loss

void func1(..){

Code 1

void func2(.){[p1]…[pk]

Code 2
(optional)

Prompt
Template Label

Zecoler

Prediction

void func1(..){

Code 1

void func2(.){[p1]…[pk]

Code 2
(optional)

Prompt
Template

Figure 3: The workflow of Zecoler.

3.6 Training and Usage
Figure 3 shows the workflow of Zecoler. Zecoler follows the gen-
eral paradigm of learning program representations. In the training
phase, Zecoler is given a training set of labeled code snippets. For
each snippet (pair), Zecoler augments it using a prompt template.
The prompt-augmented code (pair) is taken as input to Zecoler
which yields the prediction and calculates the loss function based
on the ground-truth label.

In the usage phase, Zecoler is given a code snippet (pair) only.
Zecoler augments it using the same prompt template as in the
training phase and then gives the prediction for the downstream
task.

4 EXPERIMENTAL SETUP
We implement our approach on top of CodeBERT [13], one of
the most popular pre-trained PLMs, and evaluate it on three code
intelligence tasks.

4.1 Research Questions
The evaluation is designed to answer the following research ques-
tions:

• RQ1: How effective is our approach in zero-shot pro-
gram representation learning?
We evaluate the effectiveness of Zecoler in zero-shot pro-
gram representation learning. We take Java as the source lan-
guage and transfer the learned model to Solidity, a domain-
specific languages, and Go, an up-and-coming language
which are not provided with training samples. The experi-
ments are conducted in three popular code intelligence tasks.

• RQ2: How effective is our approach in few-shot pro-
gram representation learning ?
In some programming languages and tasks, we can obtain
small-scale training datasets. We wonder whether Zecoler is
also effective for tasks with scarce (e.g., 100) data. Therefore,
we provide the PLM models with a few samples of the target
language and conduct the same experiments as in RQ1.

• RQ3: How effective is our approach in monolingual
program representation learning?
RQ1 and RQ2 mainly evaluate the effectiveness of Zecoler in
a cross-language setting. We further explore how effective is
our approach without transfer learning. We train the model
in three languages, and test the model in the same language.
Besides Solidity, we also want to assess our approach in

Zero-Shot Program Representation Learning ICPC ’22, May 16–17, 2022, Virtual Event, USA

other languages such as Java and Go when data labels are
unavailable.

• RQ4: How do different hyperparameters impact the
performance of our approach?
Finally, we evaluate the performance of our approach under
different hyperparameters. Specifically, we conduct ablation
studies on prompt templates (number and position), source
languages, and PLM scales.

4.2 Downstream Tasks
We evaluate our approach on three popular code intelligence tasks:

1) Code Clone Detection: a task that determines whether
two code snippets are cloned [35] or not. A PLM based clone
detectionmodel takes as input two code snippets and outputs
their representations. Then, a classification header is built on
top of the representations and predicts whether the two code
snippets are cloned (=1) or not (=0). There are four types of
clones [39]. Our approach can challenge type-3 and type-4
clones, that is, the two snippets are not textually identical,
but implement the same functionality.

2) Code Search: a task that retrieves a semantically relevant
code snippet for a given natural language query [17]. Follow-
ing CodeBERT [13], we formulate code search as a classifi-
cation problem. Given a natural language description of the
code and a programming language code snippet, this task
aims at determining whether this NL-PL pair is related. The
binary answer is “related” or “not related”. The classification
generates a probability score, which can be used for ranking
results of code search.

3) Method Name Prediction: a task that suggests the func-
tion name for a given code snippet [42]. Similar to code
search, we transform this task to a binary classification
task [10]: given a code snippet, it enumerates all candidate
function names (i.e., the vocabulary of code tokens) and con-
structs a “<snippet, name>" pair. The pair is taken as input
to the PLM which outputs a binary prediction whether the
name in the pair is “suitable” (=1) or “not suitable”(=0) for
the code snippet.

4.3 Datasets
We conduct our experiments on four datasets. Each dataset is used
for one or two tasks. Table 1 shows the statistics of each dataset,
including sizes, languages, and corresponding tasks.
Smart Contract Clone Detection (SCCD): a manually labelled
clone detection dataset for the Solidity language. It contains 10,000
data samples collected from EtherScan, an analytic platform for
smart contracts. We build web scrapers to collect Solidity code
snippets of smart contracts and label the cloned pairs based on
contract information such as contract address and opcode. Each
data sample consists of a pair of code snippets that are cloned. One
notable feature of this dataset is that most samples are type-3 and
type-4 clones.
Smart Contract Summarization (SCS) [41]: a code summary
dataset for the Solidity language. The dataset contains 347,410 code-
comment pairs. It was originally collected for code summarization.

We preprocess SCS to a classification format so as to fit for the code
search and method name prediction tasks. We generate the code
search dataset by filtering long code and removing code comments.
We generate the method name prediction dataset by separating
method name from original code snippets in SCS.
CodeNet [26]: a multilingual codebase built from two online judge
websites, namely, AIZU1 and AtCoder2. CodeNet contains 8,008,527
code submissions in multiple programming languages such as Java,
Go, Ruby, and Python. We use this dataset for the code clone detec-
tion and code search tasks. To adapt the dataset to the code clone
detection task, we label two code submissions as a cloned pair if
they solve the same problem. To adapt the original data to the code
search task, we extract NL-PL pairs from problem descriptions and
their code submissions, respectively.
CodeSearchNet [17]: a widely used code search dataset, which is
used for the method name prediction task in our work. The dataset
involves six languages, namely, Java, Go, Python, Javascript, Ruby
and PHP, with 2,000,000 code snippets and corresponding method
names.

We preprocess these datasets by filtering out comments. Code
snippets with more than 250 tokens are filtered out to fit for the
PLMs. We also exclude code snippets with less than 125 tokens
to accommodate downstream tasks. In order to prevent the model
from being biased to one class, we balance the dataset with the same
number (1:1) of positive and negative samples. The negative pairs
of code snippets (𝑦 = 0) are created using random combinations of
snippets from the positive data samples (𝑦 = 1).

4.4 Implementation Details
We implement our models on top of the popular CodeBERT which
is built based on RoBERTa-base (H=768, A=12, L=12). CodeBERT
learns representations of programming languages (Java, Python,
JavaScript, PHP, Ruby, and Go) in the pre-training phase. We use
the default tokenizer (i.e., Microsoft/codebert-base) of CodeBERT
with a vocabulary size of 50,265. We set the maximum sequence
length to 512. Our experimental implementation is based on the
Huggingface Transformers3 and P-Tuning [21]. The batch size and
the number of epochs are set to 10 and 20 respectively. We insert
prompt tokens to the original input of CodeBERT and place them
uniformly.

All models are optimized using the AdamW [23] algorithm on a
machine with two GeForce RTX 2080 Ti GPUs. The initial learning
rate (lr) is set to 3e-5, which linearly increases from 0 during a warm-
up period. The iteration number of the warm-up period equals to
the number of the training step in first epoch. Then the learning
rate decreases to 0 during the rest training process. We measure the
performance on the validation set during training. The checkpoint
that achieves the best accuracy on the validation set are selected
for testing.

4.5 Baseline Models
We compare our approach with five baseline models:

1https://onlinejudge.u-aizu.ac.jp/introduction
2https://atcoder.jp/
3https://huggingface.co/microsoft/codebert-base

ICPC ’22, May 16–17, 2022, Virtual Event, USA Nan Cui, et al.

Table 1: Overview of datasets.

Datasets Downstream Tasks * Size Programming LanguagesCD CS MNP

SCCD
√

10,000 Solidity
SCS [41]

√ √
347,410 Solidity

CodeNet [26]
√ √

8,008,527 Java, Go, C++, C, Python, Ruby, C#, ...
CodeSearchNet [17]

√
2,000,000 Java, Go, Python, Javascript, Ruby, PHP

* CD = clone detection, CS = code search, MNP = method name prediction.

1) AVG: a baseline approach that directly represents programs
by averaging their token embeddings.We reuse token embed-
dings fromCodeBERT and represent an input code snippet by
the average of all token embeddings. Next, we fine-tune the
classifier of downstream tasks using a 3-layer MLP header.

2) RoBERTa [22]: a popular pre-trained language model that
has also been used for programming languages [13]. The
model is constructed with 12 transformer layers and pre-
trained on a large English corpus with the MLM objective.
We fine-tune it with a 3-layer MLP header over the “[CLS]”
position.

3) RoBERTa-large4: a large version of RoBERTa (H=1024,
A=16, L=24) with around 300 million parameters, which is
almost twice the size of the normal version. We compare
with this model to verify the advantages of Zecoler over
large-scale PLMs.

4) CodeBERTa5: a version of RoBERTa pre-trained with Code-
SearchNet, which was proposed by Huggingface. We use its
default setting in our experiments.

5) CodeBERT [13]: one of the state-of-the-art models for learn-
ing program representations. A more detailed description of
CodeBERT can be found in Section 2.1. We follow the same
experimental setup in its original paper.

We implement these baseline models by referring to the work
of CodeXGlue [24]. We construct 3-layer fully connected neural
networks as the fine-tuning header which maps the hidden vector
of the “[CLS]” token to the class labels of downstream tasks.

5 RESULTS
5.1 RQ1: Effectiveness of Zero-shot Learning
In this experiment, we evaluate the effectiveness of Zecoler in
zero-shot program representations learning. We initially train a
representation model for each task using data samples of Java. Then,
we adapt the trained model to the target languages (i.e., Solidity
and Go) directly without extra training. We train the model with
both 5,000 and 500 data samples of Java to assess the effects under
different data sizes.

Table 2 shows the accuracy of different models in three code
intelligence tasks. We can observe that Zecoler significantly out-
performs baseline models in all three tasks and all target languages.
In the code clone detection task, the accuracy of Zecoler is 5%-14%

4https://huggingface.co/roberta-large
5https://huggingface.co/huggingface/CodeBERTa-small-v1

Table 2: Accuracy of program representation models on
three tasks in the zero-shot setting.

Model CD CS MNP
Solidity Go Solidity Go Solidity Go

AVG 57.5 49.2 49.0 50.3 50.8 50.0
RoBERTa 60.5 49.4 49.6 49.4 50.0 50.3
RoBERTa-L 47.3 51.0 48.7 48.8 51.7 48.5
CodeBERTa 57.9 67.3 53.2 53.1 49.7 49.0
CodeBERT 65.4 91.7 48.9 46.2 52.1 65.2
Zecoler 5000 79.8 96.4 67.1 80.3 59.2 98.8
Zecoler 500 74.9 82.4 53.3 56.9 68.1 90.4
* The target languages (i.e., Solidity and Go) are not provided
with training data. All source languages are trained with 5000
samples except the last one which is trained with only 500
samples.

greater than that of CodeBERT, the strongest baseline. The improve-
ment is much more significant in the code search (30% in average)
and method name prediction (24% in average) tasks. By contrast,
AVG and RoBERTa-large obtain results that are close to random,
indicating that they can hardly learn useful knowledge from few
data samples.

The same trend can be observed when only 500 (1/10) samples of
the source language are provided for training. As the data size de-
creases from 5000 to 500, the accuracy of Zecoler drops in all tasks.
Nevertheless, it still significantly outperforms the baseline mod-
els. This means that Zecoler can learn representations much more
efficiently while requiring smaller data compared with baselines.

It is notable that CodeBERT outperforms RoBERTa and Code-
BERTa in both the code clone detection andmethod name prediction
tasks, except for the code search task.We conjecture that CodeBERT
is pre-trained on programming languages whereas the RoBERTa is
only pre-trained on natural languages. Hence, CodeBERT can be
better adapted to PL related tasks.

Answer to RQ1: Our approach shows greater performance than
baseline models in code intelligence tasks for no-resource program-
ming languages, affirming the strong ability of Zecoler in zero-shot
program representation learning.

5.2 RQ2: Effectiveness of Few-Shot Learning
In this experiment, we evaluate the effectiveness of Zecoler in few-
shot learning of program representations. We continue training the
model in RQ1 using a few data samples of the target languages. We

Zero-Shot Program Representation Learning ICPC ’22, May 16–17, 2022, Virtual Event, USA

(a) Clone Detection (Solidity) (b) Clone Detection (Go)

(c) Code Search (Solidity) (d) Code Search (Go)

(e) Method Name Prediction (Solidity) (f) Method Name Prediction (Go)

Figure 4: Accuracy of program representation models con-
tinuously trained with different-scale datasets in few-shot
setting.

vary the data sizes from 32 to 700 and evaluate the performance in
three code intelligence tasks.

Figure 4 shows the results. Compared to CodeBERT, the strongest
baseline in RQ1, Zecoler shows greater strength in all tasks when
provided with a few data samples of the target language. When
the data size is 700, the accuracy of Zecoler is about 30% greater
than that of CodeBERT. This means that Zecoler can learn code
representations more effectively when a small number of samples
are available in the training dataset. We notice that when the data
size is too small (e.g., 32), the model tends to overfit data. In this
situation, zero-shot learning is preferred.

Answer to RQ2: Zecoler shows effective performance with a few
data samples. As in zero-shot setting, Zecoler still keeps the best
accuracy among all compared models in few-shot setting.

5.3 RQ3: Effectiveness of Monolingual
Few-Shot Learning

Different from RQ2 in a cross-language few-shot setting, in this
experiment we evaluate the effectiveness of our approach in a
monolingual few-shot setting. We train models with a few samples

of Java, Solidity and Go, and evaluate the performance of the tasks
in the same language.

Table 3 shows the accuracy of different approaches in three down-
stream tasks. We can observe that Zecoler outperforms baselines
in the monolingual few-shot setting. Most of the baseline models
just predict random answers, with an accuracy of around 50%. This
indicates that the baseline models cannot learn meaningful program
representations with scarce data. Comparatively, Zecoler achieves
75.7% accuracy in average with only 100 data samples. The results
suggest that Zecoler learns program representations efficiently in
the monolingual few-shot setting.

Figure 5 shows the performance of Zecoler, CodeBERT, and
CodeBERTa with different data sizes in the code clone detection
task. We can see that Zecoler outperforms the other two baselines
under almost all data sizes. Furthermore, as the data size increases,
the accuracy of Zecoler grows faster than that of baseline mod-
els. This indicates that Zecoler is effective in learning program
representations given only 100 or 300 data samples.

We have also observed that monolingual learning outperforms
cross-language learning on small data sizes (e.g., 32 and 100), but
achieves similar performance when the data size becomes larger.
This is because continuously training on scarce data of a different
language can lead to overfitting.

Answer to RQ3: Zecoler is effective in monolingual few-shot
learning, and shows much stronger performance than that in the
cross-language setting.

5.4 RQ4: Ablation Study
In this experiment, we inspect the performance of Zecoler under
different hyperparameters. We vary the prompt templates and num-
bers of prompt tokens to search for the optimal prompt template.
We also explore the impact to the performance by different source
languages and different scales of backbone PLMs.

PromptTemplates:Wefirst explore the effect of prompt templates
on performance. We vary the position of the prompt tokens 𝑃1:𝑘 in
the prompt template, namely, head: [𝑃1:𝑘 , 𝑥1, 𝑥2, MASK], middle:
[𝑥1, 𝑃1:𝑘 , 𝑥2, MASK], uniformly: [𝑃1:𝑚 , 𝑥1,𝑃𝑚+1:𝑛 , 𝑥2,𝑃𝑛+1:𝑘 , MASK]
and tail: [𝑥1, 𝑥2, MASK, 𝑃1:𝑘]. The number of prompt tokens (𝑘) is
fixed to 10. We train the model with 700 Java code snippets and
evaluate the model on the code clone detection task of Solidity.

As shown in Figure 6(a), placing prompt tokens uniformly achieves
the best performance compared to other templates. The reason
could be that prompts have more influence to nearby tokens. By
placing prompts uniformly, every input token can be influenced by
sufficient prompt tokens.

Number of Prompt Tokens: We further assess the impact of
prompt numbers. We insert prompt tokens uniformly into the PLM
input and vary the number of prompt tokens 𝑘 from 1 to 20. We
train the model with 700 Java code snippets and evaluate it on the
code clone detection task of Solidity.

As Figure 6(b) shows, the number of prompt tokens is strongly
correlated to the performance of representation learning. Fewer
prompt tokens can be insufficient to steer the PLM to yield meaning-
ful prediction, while large numbers of prompts can restrict the input
size. The optimal number of prompt tokens is 10 in our experiments.

ICPC ’22, May 16–17, 2022, Virtual Event, USA Nan Cui, et al.

Table 3: Accuracy of various program representation models in a monolingual few-shot setting.

Model CD CS MNP AverageJava Solidity Go Java Solidity Go Java Solidity Go
AVG 300 51.6 64.1 50.1 49.1 50.2 50.1 47.9 48.1 50.1 51.3
RoBERTa 300 46.6 73.5 50.1 52.5 55.2 50.1 50.1 53.7 50.1 53.5
RoBERTa-large 300 53.0 75.9 53.9 50.4 57.4 51.4 47.8 55.6 50.1 55.1
CodeBERTa 300 50.7 68.3 65.3 52.0 58.8 45.0 50.8 61.8 47.4 55.6
CodeBERT 300 51.3 69.4 49.5 50.8 56.5 49.5 49.3 53.9 49.5 53.3
Zecoler 300 85.8 94.3 99.3 51.7 90.1 99.5 98.7 88.8 99.2 89.7
Zecoler 100 63.6 93.9 99.5 52.6 63.0 95.7 72.8 62.8 77.7 75.7

* In this experiment, we train and test the model in the same programming language respectively. The
training data size of source languages is 300 except the last one with only 100 data samples.

(a) Clone Detection (Solidity) (b) Clone Detection (Go)

(c) Code Search (Solidity) (d) Code Search (Go)

(e) Method Name Prediction (Solidity) (f) Method Name Prediction (Go)

Figure 5: Accuracy of program representation models con-
tinuously trained with different-scale datasets in monolin-
gual few-shot setting.

Source Languages: To study the impact of different source lan-
guages, we train the model using 5,000 data samples of Java, Python,
and C++, respectively. We evaluate the performance of zero-shot
program representation on the code clone detection task of nine
target languages in the CodeNet. Figure 7 shows the results. We can
observe that using Java as the source language achieves the best

(a) Ablation on the position of prompts (b) Ablation on the number of prompts

Figure 6: Performance of Zecoler under different prompt po-
sitions and prompt numbers on the Solidity clone detection
dataset (SCCD).

Figure 7: Performance of Zecoler in the code clone detection
task with different source languages.

performance. This can be attributed to two reasons. First, Code-
BERT is pre-trained using Java. Second, as a common language,
Java contains more general features of programming languages
compared to other languages. This facilitates the transfer of model
to other languages with zero- or few-shot samples.

PLM Scales: Lastly, we study the effect of PLM scales. As Table 2
and 3 indicate, larger PLM scale has a negative effect on the per-
formance. For example, RoBERTa-large is almost twice the size of
RoBERTa, but the latter performs even worse than the former. This

Zero-Shot Program Representation Learning ICPC ’22, May 16–17, 2022, Virtual Event, USA

contract SmartPromise {
address owner;
mapping (address => uint256) balances;
mapping (address => uint256) timestamp;
constructor() public { owner = msg.sender;}
function() external payable {

owner.send(msg.value / 10);
if (balances[msg.sender] != 0){

address paymentAddress = msg.sender;
uint256 paymentAmount = balances[msg.sender]
4/100(block.number-timestamp[msg.sender])/5900;
paymentAddress.send(paymentAmount);

}
timestamp[msg.sender] = block.number;
balances[msg.sender] += msg.value;

}
}

contract Wizard {
address owner;
function Wizard() { owner = msg.sender; }
mapping (address => uint256) balances;
mapping (address => uint256) timestamp;
function() external payable {

owner.send(msg.value / 10);
if (balances[msg.sender] != 0){

address kashout = msg.sender;
uint256 getout = balances[msg.sender]
2/100(block.number-timestamp[msg.sender])/5900;
kashout.send(getout);

}
timestamp[msg.sender] = block.number;
balances[msg.sender] += msg.value;

}
}

Figure 8: An example of two cloned snippets in Solidity. Zecoler can successfully identify that the given snippets as cloned
while CodeBERT cannot.

is because large PLMs can easily overfit few data samples in the
zero- or few-shot learning.

Answer to RQ4: The effectiveness of our approach is affected by
prompt templates, source languages and PLM scales. Inserting ten
prompt tokens uniformly to the original PLM input can steer the
PLM to output better representations. Java as the source language
can be better generalized to other languages. PLMs with a moderate
scale can better fit for the zero- or few-shot learning.

5.5 Example
We now provide a concrete example to demonstrate the effective-
ness of Zecoler. Figure 8 shows two cloned code snippets in Solidity.
They are similar in functionality but different in key words and
structures. For example, “paymentAddress” and “kashout” (high-
lighted in red) are two equivalent keywords in the two snippets.
Because the two words are both domain specific, baseline mod-
els such as CodeBERT can hardly detect the clone without prior
knowledge. Comparatively, Zecoler successfully detects the clone
by reusing prior knowledge from PLMs using prompt learning. The
prompts in Zecoler cast the underlying meaning in the PLM to
downstream tasks, which help large PLMs capture word semantics
even without training data.

6 THREATS TO VALIDITY
Internal Validity. Our approach is built upon CodeBERT. Although
CodeBERT is the most popular PLM for learning program rep-
resentations, other PLMs for code such as GPT-2 (unidirectional
Transformers) and CodeT5 (with an encoder-decoder architecture)
may have different results. However, we argue that our approach is
independent on the PLM architecture itself since we merely modify
the format of input and output of the PLM.

External Validity. Zecoler is evaluated on classification tasks such as
code clone detection. Other generative tasks such as code summa-
rization might have different performance. However, prompt-based
learning has also been shown to be effective in generative tasks [19].
We leave the extensions of our approach to generative tasks for our
future work. In our work, the downstream tasks are assumed to
be binary classifications. Hence, we represent the binary answers

using two candidate words. We can use more candidate words for
multi-class classification tasks. The candidate words are manually
selected and can be searched to find the most suitable ones.

7 RELATEDWORK
7.1 Learning Program Representations
As the core prerequisite for many code intelligence tasks, learning
program representations has been extensively explored in software
engineering [24]. Table 4 shows typical approaches in learning
program representations. Broadly, they can be classified into three
categories, including unsupervised for general languages, super-
vised for specific tasks, and few-shot learning.

The most typical category of work lie in the unsupervised ap-
proaches such as code2vec [3], code2seq [2], and InferCode [7].
Code2vec and code2seq aggregate representations of each path in
AST (abstract syntax tree) based on attention. InferCode predicts
subtrees automatically identified from the contexts of an AST in
a self-supervised manner. These methods directly learn program
representation from AST paths. They utilize the word embedding
techniques in natural language processing and incorporate them
with semantic and syntax information in program source code.
The limitation of these methods is the lack of adaptions to down-
stream tasks. The learned code vectors are fixed and cannot be
fine-tuned on downstream tasks. Furthermore, these methods are
purely trained on code, thus are unsuitable for NL-PL tasks such as
code search.

To improve the performance of downstream tasks, researchers
have also resorted to task-oriented supervised learningmethods [26].
For example, for code clone detection task, Fang et al. [12] caught
the similarity of semantics between two code snippets using a su-
pervised deep learning model, which pays attention to caller-callee
relationships and learns the hidden syntactic and semantic features
of source codes. Zhang et al. [43] disentangled the representation
of semantic and syntax with AST and GAN (generative adversarial
network), then used only semantic representation to detect code
clone. For code search task, Gu et al. [15] proposed a code represen-
tation model named CODEnn to learn semantic representations of
code snippets through jointly embedding with comments, Haldar

ICPC ’22, May 16–17, 2022, Virtual Event, USA Nan Cui, et al.

Table 4: Models for Learning Program Representations.

Model Training data Generalization Task adaption
Unsupervised Supervised Few-shot Zero-shot General Task-specific None Task-specific Fine-tuning Prompt

Code2vec [3] ✓ ✓ ✓
Code2seq [2] ✓ ✓ ✓
InferCode [7] ✓ ✓ ✓

CD [12] ✓ ✓ ✓
DCRL [43] ✓ ✓ ✓
CM [9] ✓ ✓ ✓

CS [15, 16, 18] ✓ ✓ ✓
MNP [42] ✓ ✓ ✓
DD [44] ✓ ✓ ✓
CC [37] ✓ ✓ ✓

CodeBERT [13] ✓ ✓ ✓
CodeT5 [38] ✓ ✓ ✓
Zecoler ✓ ✓ ✓

* CD = clone detection, CM = code summarization, CS = code search, MNP = method name prediction, DD = defect detection, CC = code completion.

et al. [16] designed a multi-perspective cross-lingual neural frame-
work, and Li et al. [18] learned code-query interactions. Zhang et al.
[42] proposed a hybrid code representation learning approach to
resolve program dependence and semantics for predicting method
name. Yang et al. [40] learned a unified vector representation of
both methods and bug reports for method-level fault localization.
Zhou et al. [44] constructed a graph neural network to learn se-
mantic representation of code to identify the vulnerable functions.
Wang and Li [37] proposed AST Graph Attention Block to capture
different dependencies in the AST graph for representation learning
in code completion. These models are trained for the specific down-
stream tasks, which achieve good performance but lack generality
to support multiple tasks with one single model.

The aforementioned methods require a large scale corpus to
train the program representation model. To alleviate this problem,
pre-trained programming language models are proposed such as
CodeBERT [13] and CodeT5 [38]. It is a fine-tuning based few-shot
program learning paradigm: PLMs learn a vast amount of knowl-
edge from large scale unlabelled corpora in the pre-training phase,
and achieve state-of-the-art accuracy in the fine-tuning phase with
a small amount of labelled task-specific data. This gives PLMs the
basic generalization ability to handle a wide range of downstream
tasks well. Task adaption through fine-tuning adds extra knowledge
of specific tasks to PLMs and improves the performance. However,
in this paradigm, the gap between the pre-training phase and the
downstream task can be significant: the objectives are different,
and for the downstream tasks, we usually need to introduce new
parameters.

To the best of our knowledge, our Zecoler is the first zero-shot
learning method for program representation. Zecoler follows a
prompt-based learning paradigm for task adaption. Prompt learning
makes it possible for downstream tasks to take the same format
as the pre-training objectives and require no new parameters. By
narrowing the gap between the two phases, deploying the PLMs
on specific tasks becomes much easier with little training data.

7.2 Prompt-based Learning
As a promising method for zero-shot learning, a growing number
of prompt-based learning approaches [20] have been proposed
in recent years. For example, Schick and Schütze [31] proposed
PET which transforms the classification task into an MLM task

and uses prompt to elicit knowledge from PLM. But the prompt is
manually crafted and hard to select the most suitable words for it.
Shin et al. [32] proposed AutoPrompt which automatically searches
prompt words discretely using gradient signals in the target task.
Although discrete searching retains the semantic of prompt, it also
cannot find out the most precise prompts for machine models. For
solving this problem, Li and Liang [19] proposed Prefix-Tuning
which optimizes a continuous task-specific vector prepended to
every layer of the Transformer [36] in PLM and freezes the PLM
for saving computation cost. The performance of Prefix-Tuning is
excellent but it only focuses on natural language generation tasks.

Comparatively, Zecoler optimizes the prompt vectors in continu-
ous space instead of discrete words or human-writing, making the
prompt more suitable for PLMs to understand and more efficient
for extracting knowledge. Moreover, Zecoler is the first prompt
method to solve programming language understanding tasks.

8 CONCLUSION
In this paper, we propose Zecoler, a novel approach for zero-shot
program representation learning via prompt tuning. Zecoler im-
proves traditional pre-trained programming language models by
introducing prompt into program representation learning. Experi-
ments show that Zecoler outperforms baseline models in three code
intelligence tasks, including code clone detection, code search and
method name prediction in both zero-shot and few-shot settings.
Program representations learned by Zecoler also demonstrate good
generalizability for low/zero-resource programming languages. In
the future, we will investigate our approach in more languages and
software engineering tasks.

Source code and datasets to reproduce our work are available at:
https://github.com/ChrisCN97/zecoler.

ACKNOWLEDGMENTS
This research is supported by National Natural Science Foundation
of China (Grant No. 62032004, 62102244).

REFERENCES
[1] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021.

Unified Pre-training for Program Understanding and Generation. In Proceedings
of NAACL-HLT. 2655–2668.

[2] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. 2019. code2seq: Generating
Sequences from Structured Representations of Code. In Proceedings of ICLR.

Zero-Shot Program Representation Learning ICPC ’22, May 16–17, 2022, Virtual Event, USA

[3] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: learning
distributed representations of code. Proc. ACM Program. Lang. 3, POPL (2019),
40:1–40:29.

[4] Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. 2013. Representation
Learning: A Review and New Perspectives. IEEE Trans. Pattern Anal. Mach. Intell.
35, 8 (2013), 1798–1828.

[5] Mihaela A. Bornea, Lin Pan, Sara Rosenthal, Radu Florian, and Avirup Sil. 2021.
Multilingual Transfer Learning for QA using Translation as Data Augmentation.
In Proceedings of AAAI. 12583–12591.

[6] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners. In
Proceedings of NeurIPS. 1877–1901.

[7] Nghi D. Q. Bui, Yijun Yu, and Lingxiao Jiang. 2021. InferCode: Self-Supervised
Learning of Code Representations by Predicting Subtrees. In Proceedings of ICSE.
1186–1197.

[8] Xiangping Chen, Peiyong Liao, Yixin Zhang, Yuan Huang, and Zibin Zheng.
2021. Understanding Code Reuse in Smart Contracts. In Proceedings of (SANER).
470–479.

[9] YunSeok Choi, JinYeong Bak, CheolWon Na, and Jee-Hyong Lee. 2021. Learn-
ing Sequential and Structural Information for Source Code Summarization. In
Proceedings of ACL/IJCNLP. 2842–2851.

[10] Rhys Compton, Eibe Frank, Panos Patros, and Abigail Koay. 2020. Embedding Java
Classes with code2vec: Improvements from Variable Obfuscation. In Proceedings
of MSR. 243–253.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of NAACL-HLT. 4171–4186.

[12] Chunrong Fang, Zixi Liu, Yangyang Shi, Jeff Huang, and Qingkai Shi. 2020.
Functional code clone detection with syntax and semantics fusion learning. In
Proceedings of ISSTA. 516–527.

[13] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT:
A Pre-Trained Model for Programming and Natural Languages. In Proceedings of
EMNLP. 1536–1547.

[14] Jiatao Gu, Yong Wang, Yun Chen, Victor O. K. Li, and Kyunghyun Cho. 2018.
Meta-Learning for Low-Resource Neural Machine Translation. In Proceedings of
EMNLP. 3622–3631.

[15] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code search. In
Proceedings of ICSE. 933–944.

[16] Rajarshi Haldar, Lingfei Wu, Jinjun Xiong, and Julia Hockenmaier. 2020. A
Multi-Perspective Architecture for Semantic Code Search. In Proceedings of ACL.
8563–8568.

[17] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. CodeSearchNet Challenge: Evaluating the State of Semantic
Code Search. CoRR abs/1909.09436 (2019).

[18] Wei Li, Haozhe Qin, Shuhan Yan, Beijun Shen, and Yuting Chen. 2020. Learning
Code-Query Interaction for Enhancing Code Searches. In Proceedings of ICSME.
IEEE, 115–126.

[19] Xiang Lisa Li and Percy Liang. 2021. Prefix-Tuning: Optimizing Continuous
Prompts for Generation. In Proceedings of ACL/IJCNLP. 4582–4597.

[20] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and
Graham Neubig. 2021. Pre-train, Prompt, and Predict: A Systematic Survey
of Prompting Methods in Natural Language Processing. CoRR abs/2107.13586
(2021).

[21] Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and
Jie Tang. 2021. GPT Understands, Too. CoRR abs/2103.10385 (2021).

[22] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
Robustly Optimized BERT Pretraining Approach. CoRR abs/1907.11692 (2019).

[23] Ilya Loshchilov and Frank Hutter. 2017. Fixing Weight Decay Regularization in
Adam. CoRR abs/1711.05101 (2017).

[24] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio
Blanco, Colin B. Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong
Zhou, Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming Zhou, Nan
Duan, Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie Liu. 2021.
CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding
and Generation. CoRR abs/2102.04664 (2021).

[25] Shivangi Mahto, Vy Ai Vo, Javier S. Turek, and Alexander Huth. 2021. Multi-
timescale Representation Learning in LSTM Language Models. In Proceedings of
ICLR.

[26] Ruchir Puri, David S. Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi,
Vladimir Zolotov, Julian Dolby, Jie Chen, Mihir R. Choudhury, Lindsey Decker,
Veronika Thost, Luca Buratti, Saurabh Pujar, and Ulrich Finkler. 2021. Project

CodeNet: A Large-Scale AI for Code Dataset for Learning a Diversity of Coding
Tasks. CoRR abs/2105.12655 (2021).

[27] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Im-
proving language understanding by generative pre-training. (2018).

[28] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer. J. Mach.
Learn. Res. 21 (2020), 140:1–140:67.

[29] Sachin Ravi and Hugo Larochelle. 2017. Optimization as a Model for Few-Shot
Learning. In Proceedings of ICLR.

[30] Pasquale Salza, Christoph Schwizer, Jian Gu, and Harald C Gall. 2021. On the Ef-
fectiveness of Transfer Learning for Code Search. arXiv preprint arXiv:2108.05890
(2021).

[31] Timo Schick and Hinrich Schütze. 2021. Exploiting Cloze-Questions for Few-
Shot Text Classification and Natural Language Inference. In Proceedings of EACL.
255–269.

[32] Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer
Singh. 2020. AutoPrompt: Eliciting Knowledge from Language Models with
Automatically Generated Prompts. In Proceedings of EMNLP. 4222–4235.

[33] Jake Snell, Kevin Swersky, and Richard S. Zemel. 2017. Prototypical Networks
for Few-shot Learning. In Proceedings of NeurIPS. 4077–4087.

[34] Yi Sun, Yu Zheng, Chao Hao, and Hangping Qiu. 2021. NSP-BERT: A Prompt-
based Zero-Shot Learner Through an Original Pre-training Task-Next Sentence
Prediction. CoRR abs/2109.03564 (2021).

[35] Jeffrey Svajlenko, Judith F. Islam, Iman Keivanloo, Chanchal Kumar Roy, and
Mohammad Mamun Mia. 2014. Towards a Big Data Curated Benchmark of
Inter-project Code Clones. In Proceedings of ICSME. 476–480.

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Proceedings of NIPS. 5998–6008.

[37] Yanlin Wang and Hui Li. 2021. Code Completion by Modeling Flattened Abstract
Syntax Trees as Graphs. In Proceedings of AAAI. 14015–14023.

[38] Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven C. H. Hoi. 2021. CodeT5:
Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Under-
standing and Generation. In Proceedings of EMNLP. 8696–8708.

[39] Huihui Wei and Ming Li. 2017. Supervised Deep Features for Software Functional
Clone Detection by Exploiting Lexical and Syntactical Information in Source
Code. In Proceedings of IJCAI. 3034–3040.

[40] Shouliang Yang, Junming Cao, Hushuang Zeng, Beijun Shen, and Hao Zhong.
2021. Locating Faulty Methods with a Mixed RNN and Attention Model. In
Proceedings of ICPC. 207–218.

[41] Zhen Yang, Jacky Keung, Xiao Yu, Xiaodong Gu, Zhengyuan Wei, Xiaoxue Ma,
and Miao Zhang. 2021. A Multi-Modal Transformer-based Code Summarization
Approach for Smart Contracts. In Proceedings of ICPC. 1–12.

[42] Fengyi Zhang, Bihuan Chen, Rongfan Li, and Xin Peng. 2021. A hybrid code
representation learning approach for predicting method names. J. Syst. Softw.
180 (2021), 111011.

[43] Jingfeng Zhang, Haiwen Hong, Yin Zhang, Yao Wan, Ye Liu, and Yulei Sui.
2021. Disentangled Code Representation Learning for Multiple Programming
Languages. In Proceedings of ACL/IJCNLP. 4454–4466.

[44] Yaqin Zhou, Shangqing Liu, Jing Kai Siow, Xiaoning Du, and Yang Liu. 2019. De-
vign: Effective Vulnerability Identification by Learning Comprehensive Program
Semantics via Graph Neural Networks. In Proceedings of NeurIPS. 10197–10207.

REFERENCES
[1] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021.

Unified Pre-training for Program Understanding and Generation. In Proceedings
of NAACL-HLT. 2655–2668.

[2] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. 2019. code2seq: Generating
Sequences from Structured Representations of Code. In Proceedings of ICLR.

[3] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: learning
distributed representations of code. Proc. ACM Program. Lang. 3, POPL (2019),
40:1–40:29.

[4] Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. 2013. Representation
Learning: A Review and New Perspectives. IEEE Trans. Pattern Anal. Mach. Intell.
35, 8 (2013), 1798–1828.

[5] Mihaela A. Bornea, Lin Pan, Sara Rosenthal, Radu Florian, and Avirup Sil. 2021.
Multilingual Transfer Learning for QA using Translation as Data Augmentation.
In Proceedings of AAAI. 12583–12591.

[6] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners. In
Proceedings of NeurIPS. 1877–1901.

ICPC ’22, May 16–17, 2022, Virtual Event, USA Nan Cui, et al.

[7] Nghi D. Q. Bui, Yijun Yu, and Lingxiao Jiang. 2021. InferCode: Self-Supervised
Learning of Code Representations by Predicting Subtrees. In Proceedings of ICSE.
1186–1197.

[8] Xiangping Chen, Peiyong Liao, Yixin Zhang, Yuan Huang, and Zibin Zheng.
2021. Understanding Code Reuse in Smart Contracts. In Proceedings of (SANER).
470–479.

[9] YunSeok Choi, JinYeong Bak, CheolWon Na, and Jee-Hyong Lee. 2021. Learn-
ing Sequential and Structural Information for Source Code Summarization. In
Proceedings of ACL/IJCNLP. 2842–2851.

[10] Rhys Compton, Eibe Frank, Panos Patros, and Abigail Koay. 2020. Embedding Java
Classes with code2vec: Improvements from Variable Obfuscation. In Proceedings
of MSR. 243–253.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of NAACL-HLT. 4171–4186.

[12] Chunrong Fang, Zixi Liu, Yangyang Shi, Jeff Huang, and Qingkai Shi. 2020.
Functional code clone detection with syntax and semantics fusion learning. In
Proceedings of ISSTA. 516–527.

[13] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT:
A Pre-Trained Model for Programming and Natural Languages. In Proceedings of
EMNLP. 1536–1547.

[14] Jiatao Gu, Yong Wang, Yun Chen, Victor O. K. Li, and Kyunghyun Cho. 2018.
Meta-Learning for Low-Resource Neural Machine Translation. In Proceedings of
EMNLP. 3622–3631.

[15] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code search. In
Proceedings of ICSE. 933–944.

[16] Rajarshi Haldar, Lingfei Wu, Jinjun Xiong, and Julia Hockenmaier. 2020. A
Multi-Perspective Architecture for Semantic Code Search. In Proceedings of ACL.
8563–8568.

[17] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. CodeSearchNet Challenge: Evaluating the State of Semantic
Code Search. CoRR abs/1909.09436 (2019).

[18] Wei Li, Haozhe Qin, Shuhan Yan, Beijun Shen, and Yuting Chen. 2020. Learning
Code-Query Interaction for Enhancing Code Searches. In Proceedings of ICSME.
IEEE, 115–126.

[19] Xiang Lisa Li and Percy Liang. 2021. Prefix-Tuning: Optimizing Continuous
Prompts for Generation. In Proceedings of ACL/IJCNLP. 4582–4597.

[20] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and
Graham Neubig. 2021. Pre-train, Prompt, and Predict: A Systematic Survey
of Prompting Methods in Natural Language Processing. CoRR abs/2107.13586
(2021).

[21] Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and
Jie Tang. 2021. GPT Understands, Too. CoRR abs/2103.10385 (2021).

[22] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
Robustly Optimized BERT Pretraining Approach. CoRR abs/1907.11692 (2019).

[23] Ilya Loshchilov and Frank Hutter. 2017. Fixing Weight Decay Regularization in
Adam. CoRR abs/1711.05101 (2017).

[24] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio
Blanco, Colin B. Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong
Zhou, Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming Zhou, Nan
Duan, Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie Liu. 2021.
CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding
and Generation. CoRR abs/2102.04664 (2021).

[25] Shivangi Mahto, Vy Ai Vo, Javier S. Turek, and Alexander Huth. 2021. Multi-
timescale Representation Learning in LSTM Language Models. In Proceedings of

ICLR.
[26] Ruchir Puri, David S. Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi,

Vladimir Zolotov, Julian Dolby, Jie Chen, Mihir R. Choudhury, Lindsey Decker,
Veronika Thost, Luca Buratti, Saurabh Pujar, and Ulrich Finkler. 2021. Project
CodeNet: A Large-Scale AI for Code Dataset for Learning a Diversity of Coding
Tasks. CoRR abs/2105.12655 (2021).

[27] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Im-
proving language understanding by generative pre-training. (2018).

[28] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer. J. Mach.
Learn. Res. 21 (2020), 140:1–140:67.

[29] Sachin Ravi and Hugo Larochelle. 2017. Optimization as a Model for Few-Shot
Learning. In Proceedings of ICLR.

[30] Pasquale Salza, Christoph Schwizer, Jian Gu, and Harald C Gall. 2021. On the Ef-
fectiveness of Transfer Learning for Code Search. arXiv preprint arXiv:2108.05890
(2021).

[31] Timo Schick and Hinrich Schütze. 2021. Exploiting Cloze-Questions for Few-
Shot Text Classification and Natural Language Inference. In Proceedings of EACL.
255–269.

[32] Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer
Singh. 2020. AutoPrompt: Eliciting Knowledge from Language Models with
Automatically Generated Prompts. In Proceedings of EMNLP. 4222–4235.

[33] Jake Snell, Kevin Swersky, and Richard S. Zemel. 2017. Prototypical Networks
for Few-shot Learning. In Proceedings of NeurIPS. 4077–4087.

[34] Yi Sun, Yu Zheng, Chao Hao, and Hangping Qiu. 2021. NSP-BERT: A Prompt-
based Zero-Shot Learner Through an Original Pre-training Task-Next Sentence
Prediction. CoRR abs/2109.03564 (2021).

[35] Jeffrey Svajlenko, Judith F. Islam, Iman Keivanloo, Chanchal Kumar Roy, and
Mohammad Mamun Mia. 2014. Towards a Big Data Curated Benchmark of
Inter-project Code Clones. In Proceedings of ICSME. 476–480.

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Proceedings of NIPS. 5998–6008.

[37] Yanlin Wang and Hui Li. 2021. Code Completion by Modeling Flattened Abstract
Syntax Trees as Graphs. In Proceedings of AAAI. 14015–14023.

[38] Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven C. H. Hoi. 2021. CodeT5:
Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Under-
standing and Generation. In Proceedings of EMNLP. 8696–8708.

[39] Huihui Wei and Ming Li. 2017. Supervised Deep Features for Software Functional
Clone Detection by Exploiting Lexical and Syntactical Information in Source
Code. In Proceedings of IJCAI. 3034–3040.

[40] Shouliang Yang, Junming Cao, Hushuang Zeng, Beijun Shen, and Hao Zhong.
2021. Locating Faulty Methods with a Mixed RNN and Attention Model. In
Proceedings of ICPC. 207–218.

[41] Zhen Yang, Jacky Keung, Xiao Yu, Xiaodong Gu, Zhengyuan Wei, Xiaoxue Ma,
and Miao Zhang. 2021. A Multi-Modal Transformer-based Code Summarization
Approach for Smart Contracts. In Proceedings of ICPC. 1–12.

[42] Fengyi Zhang, Bihuan Chen, Rongfan Li, and Xin Peng. 2021. A hybrid code
representation learning approach for predicting method names. J. Syst. Softw.
180 (2021), 111011.

[43] Jingfeng Zhang, Haiwen Hong, Yin Zhang, Yao Wan, Ye Liu, and Yulei Sui.
2021. Disentangled Code Representation Learning for Multiple Programming
Languages. In Proceedings of ACL/IJCNLP. 4454–4466.

[44] Yaqin Zhou, Shangqing Liu, Jing Kai Siow, Xiaoning Du, and Yang Liu. 2019. De-
vign: Effective Vulnerability Identification by Learning Comprehensive Program
Semantics via Graph Neural Networks. In Proceedings of NeurIPS. 10197–10207.

	Abstract
	1 Introduction
	2 Background
	2.1 Pre-trained Language Models for Code
	2.2 Zero-Shot Learning

	3 Approach
	3.1 Problem Definition
	3.2 Model Architecture
	3.3 Casting Downstream Tasks into MLM
	3.4 Prompt-based Learning
	3.5 Reverting MLM Outputs to Classification Labels
	3.6 Training and Usage

	4 Experimental Setup
	4.1 Research Questions
	4.2 Downstream Tasks
	4.3 Datasets
	4.4 Implementation Details
	4.5 Baseline Models

	5 Results
	5.1 RQ1: Effectiveness of Zero-shot Learning
	5.2 RQ2: Effectiveness of Few-Shot Learning
	5.3 RQ3: Effectiveness of Monolingual Few-Shot Learning
	5.4 RQ4: Ablation Study
	5.5 Example

	6 Threats to Validity
	7 Related Work
	7.1 Learning Program Representations
	7.2 Prompt-based Learning

	8 Conclusion
	Acknowledgments
	References
	References

