
LaundroGraph: Self-Supervised Graph Representation Learning
for Anti-Money Laundering

Mário Cardoso

mario.cardoso@feedzai.com

Feedzai

Pedro Saleiro

pedro.saleiro@feedzai.com

Feedzai

Pedro Bizarro

pedro.bizarro@feedzai.com

Feedzai

ABSTRACT
Anti-money laundering (AML) regulations mandate financial insti-

tutions to deploy AML systems based on a set of rules that, when

triggered, form the basis of a suspicious alert to be assessed by hu-

man analysts. Reviewing these cases is a cumbersome and complex

task that requires analysts to navigate a large network of financial

interactions to validate suspicious movements. Furthermore, these

systems have very high false positive rates (estimated to be over

95%). The scarcity of labels hinders the use of alternative systems

based on supervised learning, reducing their applicability in real-

world applications. In this work we present LaundroGraph, a novel

self-supervised graph representation learning approach to encode

banking customers and financial transactions into meaningful rep-

resentations. These representations are used to provide insights

to assist the AML reviewing process, such as identifying anoma-

lous movements for a given customer. LaundroGraph represents

the underlying network of financial interactions as a customer-

transaction bipartite graph and trains a graph neural network on a

fully self-supervised link prediction task. We empirically demon-

strate that our approach outperforms other strong baselines on

self-supervised link prediction using a real-world dataset, improv-

ing the best non-graph baseline by 12 p.p. of AUC. The goal is to

increase the efficiency of the reviewing process by supplying these

AI-powered insights to the analysts upon review. To the best of our

knowledge, this is the first fully self-supervised system within the

context of AML detection.

CCS CONCEPTS
• Computing methodologies → Anomaly detection; Neural
networks; Learning latent representations.

KEYWORDS
anti-money laundering, self-supervision, graph neural networks

ACM Reference Format:
Mário Cardoso, Pedro Saleiro, and Pedro Bizarro. 2022. LaundroGraph: Self-

Supervised Graph Representation Learning for Anti-Money Laundering. In

3rd ACM International Conference on AI in Finance (ICAIF ’22), November
2–4, 2022, New York, NY, USA. ACM, New York, NY, USA, 9 pages. https:

//doi.org/10.1145/3533271.3561727

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICAIF ’22, November 2–4, 2022, New York, NY, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9376-8/22/10. . . $15.00

https://doi.org/10.1145/3533271.3561727

1 INTRODUCTION
Money laundering is a criminal activity concerned with concealing

the origin of funds obtained through illegal means such as terrorism

financing, drug trafficking or corruption, appearing legitimate until

a thorough analysis is performed. An estimated €1.7 to €4 trillions

(2% - 5% of global GDP) are estimated to be laundered annually [13].

To adhere to the AML regulations, financial institutions employ

compliance experts that investigate suspicious activities alerted,

usually, through a rule-based system. These triggered rules are the

starting point of a process that can take several days to complete,

culminating in a decision of flagging as suspicious activity or not.

When the former is identified, a suspicious activity report must be

filed and delivered to a regulatory institution that proceeds with

due action. Non-compliance in reporting money laundering can

lead financial institutions and their employees to face civil and

criminal penalties, such as heavy fines or prison time.

In Anti-Money Laundering (AML) reviewing, analysts investi-

gate alerts centered on an entity (e.g., bank accounts or customers),

comprised of a bulk of transactions that triggered one or more

rules in order to understand if any suspicious activity was involved.

Navigating the network of interactions sprawling from a complex

alert and keeping track of the flows of money, often times through

entities not directly connected to the one being investigated, is

a challenging and cumbersome task. To facilitate this procedure,

analysts resort to understanding the data through aggregations

of meaningful categories, such as grouping by entities interacted

with (known as counterparts) or amounts, as well as relying on

their past experience and prior knowledge of the customer under

review. Throughout the review process, there is a continuous effort

to filter the large bulk of transactions into a smaller set of abnormal

interactions that can be used to justify suspicious activity. There

are some challenges with the current reviewing process, namely:

1) New analysts lack the context more experienced analysts might

have, requiring an additional effort to familiarize themselves with

re-occurring customers. Similarly, additional effort is required to

contextualize new customers entering the system; 2) It is challeng-

ing to navigate the bulk of transactions and decide which move-

ments are particularly suspicious, and resorting to a macro-view of

the interactions can lead to missing the fine-grained details of each

transaction.

To mitigate the aforementioned challenges, in this work we

present LaundroGraph, a novel fully self-supervised approach

leveraging Graph Neural Networks (GNNs) to encode represen-

tations of customers and transactions within the context of AML

reviewing. We propose to represent the network of financial in-

teractions as a directed bipartite customer-transaction graph
1
,

1
Other networks were considered but this was simultaneously the best performing

and most flexible approach

ar
X

iv
:2

21
0.

14
36

0v
1

 [
cs

.L
G

]
 2

5
O

ct
 2

02
2

https://doi.org/10.1145/3533271.3561727
https://doi.org/10.1145/3533271.3561727
https://doi.org/10.1145/3533271.3561727

ICAIF ’22, November 2–4, 2022, New York, NY, USA Mário Cardoso, Pedro Saleiro, and Pedro Bizarro

Figure 1: Proposed system training overview. Outgoing transactions are represented with filled arrows, and incoming transac-
tions with dashed arrows. First, the bipartite graph is built from a dataset comprised of raw transactions. Then, positive pairs
(green) and negative pairs (red) together with their 𝐾-hop subgraphs (𝐾 = 2 in the figure) are extracted and their embeddings
obtained through the encoder. Finally, the decoder uses the aforementioned embeddings to generate the prediction for each
sampled edge.

with the GNN trained through a link prediction task between pairs

of customer and transaction nodes, essentially corresponding to

an anomaly prediction task. As a result, anomalous movements

within the context of each customer can be automatically identi-

fied and shown to the analyst upon review, providing a starting

point of potentially suspicious movements and alleviating the ef-

fort required to filter the bulk of transactions. Furthermore, the

derived representations can be used as building blocks for addi-

tional insights to support the reviewing process, such as clustering

the per-customer transactions, and comparing how the behavior of

a customer evolves over time. The former can be a useful approach

to group the information shown to the analyst beyond simple ag-

gregations, and the latter can quickly provide context surrounding

a customer under review. Unlike most existing works in the graph

self-supervised literature landscape, in this work self-supervision

is both the starting point and the end goal, as there are no anomaly

labels or supervised downstream tasks. The objective is for this

system to be integrated within a broader system for AML review-

ing that handles the necessary workload of assessment creation.

Within this system, these insights will be digested and provided in

an easy-to-understand manner through tailor-made visualizations

for AML as soon as the investigation starts. These visualizations

are beyond the scope of this work and they will not be described.

In summary, this work’s main contributions are:

• A novel fully self-supervised approach to derive represen-

tations of customers and financial transactions useful for a

variety of insights to support the AML reviewing process.

• A newway to represent the network of financial interactions

as a customer-transaction bipartite graph.

• Validation of our method on a real-world banking dataset

in the self-supervised task of link prediction, achieving an

improvement of 12 p.p. of AUC compared to using only the

raw features.

2 RELATEDWORK
Most of the approaches to detect AML used by financial institutions

are based on a set of rules aligned with regulations. Machine learn-

ing methods for AML are becoming more popular, and can broadly

be separated into supervised and unsupervised approaches, with the

latter being more common due to the lack of available labels. When

labels are available, several works have compared the performance

of different classifiers and training strategies in predicting money

laundering. Examples include benchmarking several popular clas-

sifiers and sampling schemes [28], comparing the performance of

an XGBoost classifier when trained exclusively with alerted events

or with all events [8], and comparing the performance of an SVM

classifier under different hyperparameter configurations [9].

Unsupervised approaches typically apply an anomaly detection

algorithm by comparing events with the expected behavior through

deviation metrics. Definitions of expected behaviour include clus-

ters of transactions by the same customer [14], the nearest large

cluster [3], or the k-nearest neighbors [16]. To handle the lack of

real-world data, several approaches have proposed to generate syn-

thetic data, either generating entire datasets [16, 17, 25], or just

patterns of suspicious behavior [3, 24].

The majority of works using machine learning for AML rely en-

tirely on feature sets that characterize individual events or entities.

This naturally disregards the underlying contextual information

LaundroGraph: Self-Supervised Graph Representation Learning for Anti-Money Laundering ICAIF ’22, November 2–4, 2022, New York, NY, USA

that is crucial in identifying suspicious behavior. Recent approaches

have sought to incorporate such information to improve perfor-

mance by leveraging the underlying graph of interactions. This is

typically done either by explicitly calculating additional features

based on the graph [19, 2], or implicitly through node embedding

approaches [25, 26, 15, 6]. Oliveira et al. [19] derive a set of new fea-

tures based on the structure of the graph by collecting a variety of

metrics based on random walks. This work is afterwards extended

[2] through a triage model that sits downstream of the triggered

rules to reduce the number of false positives. This triage model is

comprised of a classifier that operates on an extended feature set

to predict the risk of an alert.

Instead of explicitly calculating metrics based on graph neigh-

borhoods, an alternative approach is to automatically derive repre-

sentations that exploit the underlying structure according to some

objective. Both approaches are compared by Hu et al. [6], and rep-

resentations derived implicitly through node2vec [4] and deepwalk

[20] achieved better downstream classification results than using

curated features. Similarly, Weber at al. [26] compare a variety of

supervised machine learning models, including the popular graph

convolutional network (GCN) [11], in predicting if a transaction

is illicit. Interestingly, the authors found that the GCN performs

worse than a random forest, which they justify by concluding that

the input features are quite informative, as they already contain a

plethora of curated features that characterize a node’s neighbor-

hood. Regardless, they note that extending the feature set with

the embeddings derived by the GCN model improves upon all the

results, further supporting that argument that implicitly derived

representations contain additional, meaningful information. Fol-

lowing this work, Lo et al. [15] further improve upon the results

by leveraging the popular Deep Graph Infomax (DGI) [23] self-

supervised objective to extract additional input features. Contrary

to our work, in this study self-supervision is used as a stepping

stone to improve the supervised task results, as opposed to being

the focal point. Regardless, to the best of our knowledge, this is

the first and only work combining self-supervised GNNs and AML

detection.

3 METHOD
In this section, we start by describing the proposed graph and the

construction procedure from the raw dataset. Then, the model archi-

tecture is detailed, followed by an overview of the self-supervised

objective and training setup.

3.1 Customer-Transaction bipartite graph
Translating the information about financial interactions into a

graph is a crucial design choice. Motivated by the challenges listed

in Section 1, the chosen graph representation should: 1) Maintain

the fine-grained nature of the interactions and flow of money; 2) In-

corporate new transactions as they enter the system; and 3) Support

information at both the customer and transaction level. Given these

requirements, we propose a directed bipartite graph comprised

of customer and transaction nodes, created through raw data of

past transactions performed within a fixed snapshot of time. This

graph dictates the representation of behaviour of customers that

will be learned, which is used as a reference point to score new

transactions entering the system. After enough new data is accumu-

lated, the model can be re-trained on a new graph to capture new

behavioural patterns. The choice of a bipartite graph as opposed

to a homogeneous multigraph is motivated by two main factors:

1) It trivially allows for the learning of separate latent embedding

spaces specific to each node type, which can be used directly or

as building blocks to downstream tasks at the level of each node

type; and 2) It provides the flexibility to include additional node

types that may be relevant in the future, such as merchant nodes

or card transaction nodes, with specific properties and features. To

further illustrate the first point, in Sections 4.3 and 4.4 we study

the obtained representations at the transaction and customer level,

respectively, and showcase different insights that can be extracted

from them.

More formally, we consider a directed bipartite graph𝐺 = (𝑉 , 𝐸),
with 𝑉 = 𝐶 ∪𝑇 denoting the set of customer (𝐶) and transaction

(𝑇) nodes, and 𝐸 = 𝐼 ∪𝑂 denoting the set of edges between them,

where 𝑂 represents outgoing transactions of the form 𝐶 → 𝑇 ,

and 𝐼 represents incoming transactions of the form 𝑇 → 𝐶 . Each

node type is associated with a feature vector 𝑓𝑐 ∈ 𝑅𝑑𝑐 and 𝑓𝑡 ∈
𝑅𝑑𝑡 , respectively representing the customer and transaction node

feature vectors. Customer features, which we refer to as profiles,

characterize the customers’ transactional behaviour within time-

windows of different granularities, plus other relevant attributes

about the customer, while transaction features contain information

about the transaction itself. Customer nodes are connected to all

transactions in which they are involved, and transaction nodes are

connected to their source and destination customer. As such, each

customer has as many edges as transactions performed in that time

period and each transactions has, at most, two edges: one incoming

and one outgoing. A simplified illustration of this graph can be

visualized in Figure 1.

3.2 Self-Supervised anomaly detection
3.2.1 Preliminaries. The objective is to jointly learn an encoder

E(X,A) → R𝑁𝑐×𝑑′𝑐 × R𝑁𝑡×𝑑′𝑡 and a decoder D(z𝑐 , z𝑡) → R1. The
encoder receives a node feature matrix X : R𝑁𝑐×𝑑𝑐 × R𝑁𝑡×𝑑𝑡

and

an adjacency matrix A : R𝑁𝑐×𝑁𝑡 × R𝑁𝑡×𝑁𝑐
and produces a set of

embeddings Z = [z𝑖𝑐 , z
𝑗
𝑡],∀𝑖 ∈ {0, ..., 𝑁𝑐 }, 𝑗 ∈ {0, ..., 𝑁𝑡 }, with each

embedding z𝑖𝑐 ∈ R𝑑
′
𝑐 and z

𝑗
𝑡 ∈ R𝑑

′
𝑡 denoting the representations

for each customer node 𝑖 and transaction node 𝑗 , respectively. The

decoder receives a pair of customer-transaction embeddings (zc, zt),
and outputs the likelihood of that transaction existing for that

customer.

3.2.2 Model overview. We use an encoder comprised of several

layers of graph convolutional operators. These operators compute

representations by repeatedly sending messages along the edges of

a node’s local neighbourhood, which are afterwards aggregated and

combinedwith the source node’s information. A consequence of this

message passing system is that the representations calculated for

each node take into account the context surrounding it, a property

that is crucial in AML scenarios. The receptive field of each node

is defined by the number of layers of the GNN. In other words,

the more layers there are, the farther away the neighbours that

affect the central node can be. In our experiments, we use the graph

ICAIF ’22, November 2–4, 2022, New York, NY, USA Mário Cardoso, Pedro Saleiro, and Pedro Bizarro

attention convolution operator (GAT) [22], defined as follows:

z′𝑖 =

𝐾
𝑘=1

ReLU
©­«𝛼𝑘𝑖,𝑖W𝑘z𝑖 +

∑︁
𝑗 ∈𝑁 (𝑖)

𝛼𝑘𝑖,𝑗W
𝑘z𝑗

ª®¬ (1)

𝛼𝑖, 𝑗 =
𝑒𝑥𝑝 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (a𝑇 [Wz𝑖 ∥Wz𝑗])∑

𝑘∈𝑁 (𝑖) 𝑒𝑥𝑝 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (a𝑇 [Wz𝑖 ∥Wz𝑘])
(2)

In the previous equations, 𝑁 (𝑖) denotes neighbors of node 𝑖 , ∥
denotes concatenation, with ∥𝐾

𝑘=1
denoting concatenation over 𝐾

attention heads, 𝛼𝑖, 𝑗 denotes an attention coefficient between nodes

𝑖 and 𝑗 , and W and a denote learnable parameters. Note that since

we have a bipartite graph, nodes 𝑖 and 𝑗 will be of different types

(i.e., if node 𝑖 is a customer node, then node 𝑗 will be a transaction

node, and vice-versa), with a different set of learnable parameters

per each node and edge type. We hypothesize that the additional

expressiveness provided by the attention mechanisms is beneficial

in this scenario, particularly in situations where the transaction to

classify is similar to an existing interaction, allowing the model to

assign a higher attention coefficient to that interaction.

Let ⊙ denote the Hadamard product and 𝜎 the sigmoid non-

linearity. The decoder is comprised of a simple feed-forward, and

the prediction for an edge with customer node 𝑐 and transaction

node 𝑡 is defined as follows:

𝑦𝑐,𝑡 = 𝜎 (W[z𝑐 ⊙ z𝑡]) (3)

Given this prediction, the anomaly score is defined as 1 − 𝑦𝑐,𝑡 .
Note that we consider a single decoder that predicts both incoming

and outgoing transactions. The entire forward propagation proce-

dure is detailed in Algorithm 1, considering a mini-batch scenario.

3.2.3 Training objective. As previously mentioned, the objective

is to identify anomalous transactions within the context of a cus-

tomer’s usual behavior. This usual behaviour is dictated by the input

graph𝐺 , and is leveraged by the decoder to classify new transac-

tions entering the system. Since labels are not available, we resort

to self-supervision. Typical self-supervised approaches with graphs

use the graph structure itself as a means of deriving labels. This

commonly translates to sampling positive and negative examples,

together with a loss function that promotes the representations

of positive/negative samples to be similar/dissimilar, respectively.

Concrete examples of this framework are the popular graph auto-

encoders (GAE) [12] that seek to reconstruct the adjacency matrix

and the subsequent extension to objectives based on random walks

[4, 5]. Here we follow a similar approach to the GAE, where the

network is tasked with predicting the likelihood of an edge existing

between the entities sent as input. Positive examples are defined

as customer-transaction edges that exist in the graph and negative

examples are obtained through the sampling function 𝑆 in Algo-

rithm 1, which randomly samples customer and transaction nodes

to create non-edges
2
. In either case, the edges corresponding to

the direction being predicted are severed. Given a positive exam-

ple (𝑐, 𝑡), and𝑀 sampled negative examples (𝑐, 𝑡) from a negative

sampling distribution, the encoder and decoder are jointly trained

through a standard binary cross-entropy (BCE), defined as follows:

2
An important direction of future work would be exploring alternatives to uniform

negative sampling

L(𝑐, 𝑡) = −𝑙𝑜𝑔(𝑦𝑐,𝑡) −𝑀 · 𝑙𝑜𝑔(1 − 𝑦𝑐,𝑡) (4)

Negative examples are only used for training the model. During

production, all transactions entering the system are positive exam-

ples for which we already know the entities involved. To obtain the

corresponding anomaly scores, we follow the same procedure de-

tailed above: the directed edge being predicted is severed, followed

by using the encoder to obtain the transaction embedding. This

embedding is then used by the decoder together with the previ-

ously obtained customer embedding (i.e., the customer’s "expected"

behavior) to calculate the anomaly score, as described in Section

3.2.

Algorithm 1 LaundroGraph forward propagation algorithm

Input: Graph 𝐺 ; number of layers 𝐿; neighborhood sampler N ;

mini-batch size 𝐵; edge sampling function S; edge direction 𝐷
𝐸𝑝 : (𝑐1, 𝑡1), ..., (𝑐𝐵, 𝑡𝐵) ← select 𝐵 edges from 𝐺 in direction 𝐷

𝐸𝑛 : (𝑐1, 𝑡1), ..., (𝑐𝐵, 𝑡𝐵) ← S(𝐺) ⊲ Sample random 𝑐 and 𝑡 as

non-edges

𝐸 ← 𝐸𝑝 ∪ 𝐸𝑛
if 𝐷 == outgoing then

𝐺 ← 𝐺 \ (𝑐 → 𝑡),∀𝑡 ∈ 𝐸 ⊲ Delete real outgoing edges

else
𝐺 ← 𝐺 \ (𝑡 → 𝑐),∀𝑡 ∈ 𝐸 ⊲ Delete real incoming edges

end if
z0ci , z

0
𝑡𝑖
← f𝑐𝑖 , f𝑡𝑖 ,∀(𝑐𝑖 , 𝑡𝑖) ∈ (𝑁 (𝑐) ∪ 𝑐, 𝑁 (𝑡) ∪ 𝑡),∀(𝑐, 𝑡) ∈ 𝐸 ⊲

Input to the first layer is the raw features of all required nodes

for 𝑙 ∈ 1, ...𝐿 do
for (𝑐, 𝑡) ∈ 𝐸 do

z𝑙𝑐 ← Convolve({z𝑙−1𝑐𝑖
,∀𝑐𝑖 ∈ N(𝑐) ∪ 𝑐}) ⊲ Encode nodes

z𝑙𝑡 ← Convolve({z𝑙−1𝑡𝑖
,∀𝑡𝑖 ∈ N(𝑡) ∪ 𝑡}) ⊲ Encode nodes

end for
end for
𝑦𝑐,𝑡 ← 𝜎

(
W[z𝐿𝑐 ⊙ z𝐿𝑡]

)
,∀(𝑐, 𝑡) ∈ 𝐸 ⊲ Decoder edge prediction

4 EXPERIMENTS
In this section, we start by describing the real-world dataset used in

our evaluation together with the baselines considered (Section 4.1).

Then, we report the classification results on the fully self-supervised

task of link prediction (Section 4.2), followed by a visualization of

the transaction embeddings (Section 4.3) and customer embeddings

over different time-windows (Section 4.4).

4.1 Experimental setup
4.1.1 Dataset. We use a real-world banking dataset in our experi-

ments whose identity we cannot disclose for privacy reasons. The

dataset consists of approximately one year of bank transfers, and

we use 6 months of data to create the graph. The customer profiles

are calculated based on all the transactions prior to the start of

the snapshot used for training, whereas the transaction features

contain information about the transaction itself. The features reflect

information that is used in a typical rule-based system deployed

by financial institutions. In total, there are 66 customer features,

LaundroGraph: Self-Supervised Graph Representation Learning for Anti-Money Laundering ICAIF ’22, November 2–4, 2022, New York, NY, USA

including daily, weekly and monthly aggregates of past behavior,

plus other relevant attributes (e.g., country, risk rating and max/min

amounts). The transaction nodes contain 12 features reflecting the

properties of that interaction, such as the amount, countries of

the banks involved, information regarding the time-stamp, among

others. The resulting graph contains 3.2M customer nodes and

17.7M transaction nodes, with an average in/out node degree of

5.23/4.94 for customer nodes, and a total of 17.1M incoming edges

and 16.2M outgoing edges. During training, we reserve 30% of the

edges for supervision and 20% for validation, with the remaining

edges used for message passing. The following month of transac-

tions is used as test data, and we report the results on a subset of

100𝐾 customers with a total of around 514𝐾 transactions. For each

edge, we randomly sample one non-edge as a negative example

(i.e.,𝑀 = 1 in Equation 4). To fit the graph in GPU memory, we use

a neighborhood sampling procedure [5], sampling 32 neighbors

in each direction at each layer. The validation set is used to tune

model hyperparameters with the early stopping procedure.

4.1.2 Baselines. Regarding baselines, we experiment with popular

baselines of an MLP and LightGBM that rely on the same feature

information as the graph, but disregard the added structural infor-

mation. In other words, these baselines are tasked with predicting

the existence of an edge, given only the raw features of the source

customer, destination customer and transaction. Note that the Light-

GBM is consistently the best algorithm in this use case (i.e., fraud or

money-laundering detection with tabular data). For these baselines,

we create a dataset with the same number of positive and negative

samples by appending the negative samples to the dataset contain-

ing all the positive transactions. Negative examples are created by

randomly sampling a source customer, destination customer and

transaction.

Besides the raw features baselines, we experiment with another

popular self-supervised GNN objective, namely the Deep Graph In-

fomax (DGI) [23] objective. In this scenario, the encoder is trained to

generate node embeddings that summarize meaningful information

from the graph and that are agnostic to the downstream supervised

task. This is done by maximizing the mutual information between

nodes and the graph they belong to, such that a discriminator can

distinguish between the real graph and a corrupted one. Similar to

the original paper, we define the corrupted graph through a ran-

dom node re-shuffling. Given that the original DGI was proposed

for homogeneous graph, we naively extend it to our scenario by

independently applying the DGI objective for each node type. For

each type, the real and corrupted graphs are defined considering

only nodes of the same type. After the encoder has been trained,

the produced embeddings are used to train the decoder on the link

prediction downstream task, using an architecture identical to the

one described in Section 3.2. During inference, as is done with

the remaining variants, the customer embeddings received by the

decoder are the ones derived during the training period. While it

is also reasonable to update customer embeddings after each new

transaction, we leave this as future work.

Finally, we also consider different variants of the proposed ar-

chitecture, namely by replacing the GAT [22] operator with two

other popular convolutional operators: the GraphSAGE operator

[5] and the GIN operator [27].

Method AUC AP

MLP 77.26 82.45
LightGBM 82.58 89.02

DGI 85.87 84.06

LaundroGraph𝑆𝐴𝐺𝐸 89.97 93.17
LaundroGraph𝐺𝐼𝑁 90.24 93.82
LaundroGraph𝐺𝐴𝑇 94.83 95.22

Table 1: ROC AUC and average precision (AP) results on the
test data for all methods under consideration. Best values
represented in bold.

Figure 2: ROC curves and corresponding AUCs for all mod-
els considered.

4.2 Classification results
4.2.1 Hyperparameters. Hyperparameters are selected through the

Tree-structured Parzen Estimator (TPE) [1] algorithm using the

validation loss as the metric of success. For each model, 20 different
hyperparameter configurations are trained. The hyperparameters

were finally set as 5 layers with dimensions [128, 64, 32, 16, 1] and
a dropout [21] of 0.1 for theMLP baseline, and 400maximum leaves

with 150 minimum samples per leaf for the LightGBM baseline.

Regarding the graph-based models, the𝐺𝐴𝑇 variant has 3 layers
with a hidden size of 32 and 4 attention heads. For the SAGE variant,
we use the mean aggregator variant [5] with 3 layers with dimen-

sion of 256, together with a skip connection on the source node.

For the GIN variant, we use the GIN-0 variant [27] comprised of a

simple 2-layer MLP per GNN layer. For the DGI baseline, we use the

GAT variant described above as the encoder. In all aforementioned

neural network baselines, the ReLU activation function together

with batch normalization [7] is applied in every hidden layer. For

training, we use the Adam optimizer [10] with a learning rate of

ICAIF ’22, November 2–4, 2022, New York, NY, USA Mário Cardoso, Pedro Saleiro, and Pedro Bizarro

Figure 3: UMAP visualization of the transaction embeddings produced by LaundroGraph𝐺𝐴𝑇 for 5 randomly sampled cus-
tomers. On the left plot, outgoing transactions are represented with a circle marker, and incoming transactions are repre-
sented with an X marker. Colors represent the different customers. On the right plot, transactions are colored according to
their anomaly score, with darker colors denoting a higher anomaly score.

0.001 for the GNN-based models and 0.01 for the MLP baseline.

The learning rate for the LightGBM baseline is also set as 0.01.
In all aforementioned baselines, early stopping is applied with a

patience threshold of 6, i.e., we stop training if the validation loss

does not improve after 6 epochs.

Table 1 reports the ROC area under the curve (AUC) and average

precision (AP) results on the test data. We note that the raw features

are already quite informative, as can be seen by the competitive

results achieved with the MLP and LightGBM baselines. Regardless,

all graph-based baselines achieved superior performance, show-

casing the importance of leveraging the structural information

provided by the underlying graph. We further observe that jointly

training the encoder and decoder directly on the link prediction task

consistently yields better results than training the encoder with

the DGI objective, resulting in a difference of 8.95 and 11.86 p.p.

of AUC and AP, respectively, compared with LaundroGraph𝐺𝐴𝑇 .
Nevertheless, the strong results achieved by the DGI objective show-

case the method’s ability to create informative node representations

decoupled of any specific task. The GAT variant of the proposed

model (LaundroGraph𝐺𝐴𝑇) achieves the overall best results, as
the additional expressiveness provided by the attentionmechanisms

seems to be beneficial in this scenario. The GraphSAGE variant

(LaundroGraph𝑆𝐴𝐺𝐸) achieves the worst results of all three con-
volutional operator variants, which we hypothesize to be due to the

lack of expressiveness compared to the remaining three variants,

and the dependence on the underlying homophilous nature of the

graph.

Figure 2 shows the ROC curves of all the methods reported in

Table 1. The ROC curves show the trade-off between recall and

specificity. Moreover, the area under the curve (AUC) can be seen

as a measure of separability, representing how much a model is

capable of distinguishing between classes. From observing Figure 2,

we verify that all graph-based models consistently outperform the

baselines relying exclusively on raw features. In particular, for very

low false positive rates (FPRs), all graph-based variants trained di-

rectly on the link prediction task already achieve a recall of > 80%,

whereas the MLP and DGI baselines achieve a recall of 40% or

below, with the LightGBM baseline being a middle-ground between

them at ∼ 60% recall. As the FPR increases, the DGI baseline ap-

proaches the performance of the remaining graph-based baselines,

while the MLP and LightGBM baselines continue to achieve consis-

tently inferior results.

4.3 Transaction visualization
Figure 3 shows a plot of the UMAP [18] embeddings for the trans-

actions of 5 different and randomly sampled customers with more

than 10 transactions. The marker represents the direction of each

transaction, with "o" representing outgoing transactions, and "x"

representing incoming transactions. On the left side of the figure

transactions are colored according to their customer, and on the

right side transactions are colored according to their anomaly score.

From the left side we can observe transactions are naturally

clustered according to their customer, and that there are multiple

clusters of activity for each customer. We can also observe some

level of separability between customers. It is expected for a cus-

tomer to have several clusters of activity representing the different

types of counterparts interacted with, as well as some intraclus-

ter variability representing the properties of each transaction. To

illustrate this point, we note that during the test period, for the

green customer, all outgoing transactions except one were received

LaundroGraph: Self-Supervised Graph Representation Learning for Anti-Money Laundering ICAIF ’22, November 2–4, 2022, New York, NY, USA

Figure 4: UMAP visualization of the customer embeddings produced by LaundroGraph𝐺𝐴𝑇 (left), together with corresponding
cosine similarity heatmaps (right), for 6 sampled customers across 3 snapshots of data. Colors represent the different cus-
tomers. On the left plot, the UMAP embeddings are shown, with each customer providing 3 points, one for each snapshot (18
points in total), connected through a dashed line of the same color. On the right plot, the cosine similarities on the original
embedding space are shown, for each customer and snapshot.

by the same counterpart, resulting in the left-most green cluster.

The remaining outgoing transaction can be seen farther away, near

the right-most cluster. At first glance, we may expect this trans-

action to be anomalous, however, we reiterate the importance of

the history observed during the training period, as similar inter-

actions between those two entities occurred frequently. Another

interesting scenario is the purple customer. In this case, the cluster

represents interactions with several different counterparts whose

behaviour is very similar. More specifically, almost all counterparts

only received transactions from the purple customer during the

training period. From the right side of the figure we can observe

that, generally, transactions farther away from their respective

non-anomalous clusters (i.e., the "expected" behavior) usually have

a higher anomaly score. This can be observed, for example, with

the anomalous cluster at the top, and with the scattered incoming

transactions from the orange customer.

As detailed in Section 1, aggregating the transactions for a cus-

tomer under review according to meaningful categories is a key

component of the AML investigation process. Aggregating, on-

demand, the transactions shown to the analyst according to these

clusters manifesting in the latent embedding space goes beyond

simple aggregation schemes, grouping the different transactions ac-

cording to their contextual information and potentially highlighting

clusters of normal/anomalous activity.

4.4 Customer visualization
Figure 4 shows a plot of the UMAP embeddings for 6 different cus-

tomers, across 3 snapshots using a rolling time window, together

with corresponding pairwise cosine similarity heatmaps calculated

on the original latent embedding space. Each snapshot describes

a graph comprised of 6 months worth of transactions, with each

subsequent snapshot sliding the window 1 month into the future.

Comparing the embeddings produced for the same customer across

the different windows of time can be seen as a measure of behav-

ior divergence. For the sake of visualization for this example, we

consider only customers that have new activity in the differing

time periods. Furthermore, since the vast majority of customers

retain similar embeddings, we sample half of the customers from

the pool of customers with one value of cosine similarity below 0.8,
and the other half from the remaining customers, corresponding,

respectively, to the top and bottom half of the heatmaps shown in

the right side of the figure.

From the figure we can observe instances of stable and diverging

behavior, with divergences observed through shifts in the embed-

ding space, visualized through the associated dashed lines on the

left side of the figure, and through darker cells on the right side of

the figure. For the customers with stable behavior (i.e., customers

with very high cosine similarity values), we note that, in general, the

corresponding subgraphs sprawling from the interactions remains

largely similar across snapshots. In other words, the new transac-

tion nodes introduced connect to either existing customer nodes,

or introduce a new customer node with a neighborhood similar to

existing nodes at the corresponding depth. For customers display-

ing a divergence in behavior, the opposite is observed. Specifically,

we note that a common reason for divergence of representations is

due to a new type (i.e., incoming or outgoing) of transaction being

performed for the first time. This is the case for orange customer,

for example. Another observed reason for divergence, exemplified

through the blue and green customer, is associated with the coun-

terparts interacted with and the structure of their neighborhoods.

As previously detailed, a consequence of the message passing mech-

anism is that each message contains information about the sender’s

neighborhood. As such, even if the number and type of transac-

tions performed remains the same across snapshots, a customer can

ICAIF ’22, November 2–4, 2022, New York, NY, USA Mário Cardoso, Pedro Saleiro, and Pedro Bizarro

obtain different representations if the received messages describe

very different neighborhoods (e.g., due to interacting with new

counterparts or if the existing counterparts shift in behavior). This

is alleviated for high centrality nodes, as the contribution of each

message on the final representation is diminished. In other words,

the more we know about a customer’s transactional behavior, the

more stable their representations will be.

Note that, for this example, the representations used are the ones

derived by the last layer of the LaundroGraph𝐺𝐴𝑇 model (i.e., the

third layer). By using the representations at different depths of

the network, different information can be prioritized, highlighting

different types of behavior at the cost of potentially more volatile

representations. For example, using the representations of the first

layer would provide behavior divergence measures that reflect

exclusively the source customer’s transactions. Using the repre-

sentations provided by the second layer additionally considers the

counterparts interacted with. In this example, using three layers

means that the counterpart’s transactions also have an impact on

the source representation. Doing so results in more stable repre-

sentations, where interacting with new entities can lead to similar

embeddings if these entities are similar to ones already interacted

with in the past. Conversely, if the counterpart’s transactional be-

havior changes drastically between periods of time, then the source

embedding will also reflect that, giving an illusion of behavior

divergence, as exemplified through the blue customer.

This divergence information can be shown to the analyst to accel-

erate the contextualization of the customer, providing a continuous

macro-view of their behavior that can be used to compare with past

decisions. For example, if a customer has had several false positives

in the past, and their representation for the current assessment does

not diverge drastically from those periods, then it is expected that

the current assessment will also be a false positive, introducing a

prior on the analyst before any transaction is investigated.

5 CONCLUSION
In this work, we introduced LaundroGraph, a fully self-supervised

approach to support the AML reviewing process through meaning-

ful insights. By leveraging a novel customer-transaction bipartite

graph through GNNs, we are able to obtain representations that

characterize each entity given its surrounding context, and that can

be used as a reference point of expected behavior used to score the

anomaly of new transactions entering the system. We’ve shown

that these representations also provide a unified entry point to build

upon for other useful insights for the reviewing process, such as

clustering the transactions of each customer, or identifying periods

of abnormal activity of a customer under review. The goal is to in-

corporate this proposal within a broader system for AML reviewing

with tailor-made visualizations that digest the provided insights

and display them in an easy-to-understand manner, decreasing the

burden and increasing the efficiency of AML analysts.

We evaluate our approach on a real-world banking dataset along-

side several popular baselines, namely an MLP and LightGBM that

inform their predictions exclusively through the raw feature in-

formation, and several graph-based variants that also exploit the

structural information in the graph. We show that leveraging the

information present in the underlying graph consistently improves

performance, with the best method achieving an AUC of ∼ 95%
and AP of ∼ 96%, an improvement of 12.2 and 6.2 p.p. over the best
non-graph baseline, respectively. We also show that, for the self-

supervised objective of edge prediction, jointly training the encoder

and decoder achieves superior results compared to pre-training

the encoder on a separate self-supervised objective. Nevertheless,

there is still room for exploration on how different self-supervised

objectives can be combined to derive maximally informative repre-

sentations.

A number of directions can be considered for future work, such

as incorporating additional information in the form of different

types of nodes e.g., merchants and card transactions. A particu-

larly interesting direction of research would be to further exploit

the temporal component present in the data through a sequential

model that connects different graph snapshots in time. This would

allow the representations of customers to capture the intrinsically

evolving nature of a customer’s transactional behavior, deriving

representations aware of the past behavior not explicit in the input

graph.

ACKNOWLEDGMENTS
The project CAMELOT (reference POCI-01-0247-FEDER-045915)

leading to this work is co-financed by the ERDF - European Re-

gional Development Fund through the Operational Program for

Competitiveness and Internationalisation - COMPETE 2020, the

North Portugal Regional Operational Program - NORTE 2020 and

by the Portuguese Foundation for Science and Technology - FCT

under the CMU Portugal international partnership.

REFERENCES
[1] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. 2011. Algo-

rithms for hyper-parameter optimization. In Advances in Neural Information
Processing Systems. Vol. 24.

[2] Ahmad Naser Eddin, Jacopo Bono, David Aparício, David Polido, João Tiago

Ascensão, Pedro Bizarro, and Pedro Ribeiro. 2021. Anti-money laundering alert

optimization using machine learning with graphs. (2021).

[3] Zengan Gao. 2009. Application of cluster-based local outlier factor algorithm

in anti-money laundering. In 2009 International Conference on Management and
Service Science, 1–4.

[4] Aditya Grover and Jure Leskovec. 2016. Node2vec: scalable feature learning

for networks. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining.

[5] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In Advances in Neural Information Processing Systems.
Vol. 30.

[6] Yining Hu, Suranga Seneviratne, Kanchana Thilakarathna, Kensuke Fukuda,

and Aruna Seneviratne. 2019. Characterizing and detecting money laundering

activities on the bitcoin network. (2019).

[7] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: accelerating

deep network training by reducing internal covariate shift. (2015).

[8] Martin Jullum, Anders Løland, Ragnar Huseby, Geir Ånonsen, and Johannes

Lorentzen. 2020. Detecting money laundering transactions with machine learn-

ing. Journal of Money Laundering Control, (Jan. 2020).
[9] Liu Keyan and Yu Tingting. 2011. An improved support-vector network model

for anti-money laundering. In 2011 Fifth International Conference on Manage-
ment of e-Commerce and e-Government, 193–196.

[10] Diederik P. Kingma and Jimmy Ba. 2014. Adam: a method for stochastic opti-

mization. (2014).

[11] Thomas N. Kipf and Max Welling. 2016. Semi-supervised classification with

graph convolutional networks. (2016).

[12] Thomas N. Kipf andMaxWelling. 2016. Variational graph auto-encoders. (2016).

[13] Karel Lannoo and Richard Parlour. 2021. Anti-money laundering in the eu:

time to get serious. ceps task force report 28 jan 2021. (Jan. 2021).

[14] Asma S. Larik and Sajjad Haider. 2011. Clustering based anomalous transaction

reporting. Procedia Computer Science, 3, 606–610.

LaundroGraph: Self-Supervised Graph Representation Learning for Anti-Money Laundering ICAIF ’22, November 2–4, 2022, New York, NY, USA

[15] Wai Weng Lo, Mohanad Sarhan, Siamak Layeghy, and Marius Portmann. 2022.

Inspection-L: a self-supervised gnn-based money laundering detection system

for bitcoin. (2022).

[16] Devendra Kumar Luna, Girish Keshav Palshikar, Manoj Apte, and Arnab Bhat-

tacharya. 2018. Finding shell company accounts using anomaly detection. In

Association for Computing Machinery, 167–174. isbn: 9781450363419.

[17] Xingrong Luo. 2014. Suspicious transaction detection for anti-money laun-

dering. International Journal of Security and Its Applications, 8, (Mar. 2014),

157–166.

[18] Leland McInnes, John Healy, and James Melville. 2018. UMAP: uniform mani-

fold approximation and projection for dimension reduction. (2018).

[19] Catarina Oliveira, João Torres, Maria Inês Silva, David Aparício, João Tiago

Ascensão, and Pedro Bizarro. 2021. GuiltyWalker: distance to illicit nodes in

the bitcoin network. (2021).

[20] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: online

learning of social representations. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining. (Aug. 2014).

[21] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from

overfitting. Journal of Machine Learning Research, 15, 56, 1929–1958.

[22] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2018. Graph attention networks. In International Con-
ference on Learning Representations.

[23] Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Ben-

gio, and R Devon Hjelm. 2018. Deep graph infomax. (2018).

[24] Xingqi Wang and Guang Dong. 2009. Research on money laundering detection

based on improved minimum spanning tree clustering and its application. In

2009 Second International Symposium on Knowledge Acquisition and Modeling.
Vol. 2, 62–64.

[25] Mark Weber, Jie Chen, Toyotaro Suzumura, Aldo Pareja, Tengfei Ma, Hiroki

Kanezashi, Tim Kaler, Charles E. Leiserson, and Tao B. Schardl. 2018. Scalable

graph learning for anti-money laundering: a first look. (2018).

[26] Mark Weber, Giacomo Domeniconi, Jie Chen, Daniel Karl I. Weidele, Claudio

Bellei, Tom Robinson, and Charles E. Leiserson. 2019. Anti-money laundering

in bitcoin: experimenting with graph convolutional networks for financial

forensics. (2019).

[27] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How power-

ful are graph neural networks? (2018).

[28] Yan Zhang and Peter Trubey. 2019. Machine learning and sampling scheme: an

empirical study of money laundering detection. 54, 3, (Oct. 2019), 1043–1063.

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Customer-Transaction bipartite graph
	3.2 Self-Supervised anomaly detection

	4 Experiments
	4.1 Experimental setup
	4.2 Classification results
	4.3 Transaction visualization
	4.4 Customer visualization

	5 Conclusion
	Acknowledgments

