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ABSTRACT
Traceability approves trace links among software artifacts based

on whether two artifacts are related by system functionalities. The
traces are valuable for software development, but are difficult to
obtain manually. To cope with the costly and fallible manual recov-
ery, automated approaches are proposed to recover traces through
textual similarities among software artifacts, such as those based
on Information Retrieval (IR). However, the low quality & quantity
of artifact texts negatively impact the calculated IR values, thus
greatly hindering the performance of IR-based approaches. In this
study, we propose to extract co-occurred word pairs from the text
structures of both requirements and code (i.e., consensual biterms)
to improve IR-based traceability recovery. We first collect a set of
biterms based on the part-of-speech of requirement texts, and then
filter them through the code texts. We then use these consensual
biterms to both enrich the input corpus for IR techniques and en-
hance the calculations of IR values. A nine-system-based evaluation
shows that in general, when solely used to enhance IR techniques,
our approach can outperform pure IR-based approaches and an-
other baseline by 21.9% & 21.8% in AP, and 9.3% & 7.2% in MAP,
respectively. Moreover, when used to collaborate with another en-
hancing strategy from different perspectives, it can outperform this
baseline by 5.9% in AP and 4.8% in MAP.
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1 INTRODUCTION AND MOTIVATION
Software traceability is “the ability to interrelate any uniquely

identifiable software engineering artifact to any other, maintain
required links over time, and use the resulting network to answer
questions of both the software product and its development pro-
cess”1. For example, these traces can reveal how stakeholders’ ex-
pectations of system functionalities (i.e., requirements [14]) are
actually implemented and executed during the running of the sys-
tem (i.e., code [9]). Recent work has shown that, when correctly
recovered, requirements-to-code traces can help developers to per-
form software maintenance tasks faster and more correctly[39],
and the software quality is also highly relevant to the completeness
of these traces[61]. In practice, traceability is not only mandated in
certain regulations to demonstrate that a system is safely running
[40, 48], but also increasingly used to help ensure the security of a

1http://www.CoEST.org
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system [47, 50]. Unfortunately, the manual recovery of traceability
is labor-intensive and error-prone [22, 58] due to the semantic gap
between artifacts of different concept levels [8] (such as require-
ments and code), and a large number of traces to recover.

To both improve the overall accuracy of traceability and reduce
manual efforts, a growing body of automated approaches is pro-
posed to recover or maintain traces based on mainly information
retrieval (IR) and machine learning (ML) techniques. To bridge the
semantic gap between different artifacts, these approaches typically
use the calculated textual similarities of artifacts to represent the
likelihood of the actual traces. Particularly, when recovering traces
from scratch, i.e., no prior identified traces are available to form
the training set of ML techniques, the semi-automated, IR-based
approaches become the mainstream in research [15]. Instead of
verifying all possible traces between any two artifacts, users of
these approaches can verify candidate trace links along the auto-
matically generated candidate lists sorted by textual similarities (in
descending order) that are calculated through IR models, such as
Vector Space Model (VSM) [6], Latent Semantic Indexing (LSI) [43],
and the probabilistic Jensen and Shannon model (JS) [1].

Unfortunately, different software artifacts (such as requirements
and code) often use different terms to denote the same concept be-
cause they are at different concept levels [8]. This situation, which
is known as the vocabulary mismatch problem, greatly hinders the
performance of IR techniques on traceability recovery. Naturally,
researchers proposed to use advanced lexical analyses to either
enhance the similarity calculation through IR models [24, 51], or
enrich the artifact texts as the input of IR models [16, 20]. How-
ever, the improvement brought by these approaches is limited to
the unsatisfying quantity and quality of artifact texts, especially
for real-world software projects. Therefore, researchers further
proposed enhancing strategies that are built upon other unique per-
spectives of IR-based traceability recovery, such as incorporating
with execution tracing [21, 57] by running the systems, combining
with the analyses on code structural information (e.g., call and data
dependencies between code elements) [35, 44], and utilizing user’s
verification on candidate links [18, 23, 28, 52, 53] due to the semi-
automated nature of IR-based traceability recovery. But yet the
performance of these enhancing strategies are still highly relevant
to the quality of initially calculated IR similarities.

Meanwhile, a different body of work aims to reduce the “noise”
from the texts of different artifact texts by focusing on the writing
of software documents and code. De Lucia et al. [19] proposed a
smoothing filter to remove the duplicate information in the same
kind of artifacts (e.g., requirements or code) that does not carry the
semantics of the artifact. Furthermore, Capobianco et al. [12] pro-
posed that software artifacts are typically written by a “technical
language” because the users of this language, i.e., the developers
from the same software project, work in a particular area and have
a common interest [30, 32]. In this case, the nouns contained in
the artifact texts are more likely to carry the semantics of the arti-
fact and thus are more valuable to improve IR-based traceability
recovery. Recently, Ali et al. [2] reported that not only nouns, but
also the other major Part-of-Speech (POS) categories (including
verbs, adjectives, adverbs, and pronouns) are important for IR-based
traceability recovery. They further prune generated IR candidate
links by finding whether the requirement and code from each given

candidate link share at least one verb, to improve IR-based traceabil-
ity recovery. Although these approaches alleviate the vocabulary
mismatch problem by reducing the “noise” in artifact texts, they
do not enhance, or even weaken the underlying artifact semantics
(e.g., only consider nouns for IR techniques), thus preventing them
from bringing in more improvement.

Unlike these approaches, in this paper, we propose to use consen-
sual biterms that are extracted from both the requirements and the
code, to first enrich the artifact texts as the input for IR-based trace-
ability recovery, and then use these extracted biterms to further
improve the ranking of generated IR candidate lists. In particular,
a biterm is an unordered term-pair co-occurring over a term se-
quence within a text. It is first proposed to address the sparse data
problem for retrieving documents through IR techniques [62], and
then used in topic modeling over short texts [13] to address the
same problem. Specifically, we first extract an initial set of biterms
from the requirement texts based on the grammatical relationships
between two terms in each sentence by conducting the Stanford
typed dependencies parsing [42]. We then extract another set of
biterms from code identifiers and comments by using a sliding win-
dow. Finally, we keep the biterms from the intersection of these
two sets and name them as consensual biterms because we argue
that these biterms indicate at least part of the same system func-
tionalities that are characterized in different software artifacts at
different concept level, like requirements and code elements reach
a “consensus” over these biterms. We then argue that extracting
consensual biterms from common software projects is viable be-
cause as we discussed, requirements are written through a technical
language that is though less formal than programming language,
but still more rigorous than common natural language, and code is
implemented through a well-defined programming language and
the naming of its identifiers usually follows suggested conventions.
For example, the Java Language Specification 2 recommends that
class names should be nouns or noun phrases, and method names
should be verbs or verb phrases (C Language also has the similar
naming conventions 3). Therefore, we propose that the consensual
biterms extracted from the texts of both requirements and code can
help to bridge the semantic gap between requirements and code, and
thus they are very important to improve IR-based traceability recov-
ery.We will use the following example (adapted from the widely
researched iTrust system 4) for further demonstration.

iTrust is a medicare system and one of its requirements (UC35)
is to report adverse events on prescription drugs or immunization
reactions through emails (though the email is never sent because
iTrust is designed for lecturing testing courses only). Accordingly,
the class EmailUtil is implemented to send those emails and thus
it is traced to UC35. However, as depicted in Figure 1, UC35 only
has one sub-flow S1 to describe the use of email. Thus, the textual
similarity between UC35 and EmailUtil is inevitably small when
calculated through IR models. Furthermore, the term “send” and
its past participle “sent” are often filtered by the stop word list of
IR-based approaches for traceability recovery because they appear
too frequently in typical software artifacts and is considered as part
of the “noise” in artifact texts. Unfortunately, without this term, the
2Java language and virtual machine Spec. : https://docs.oracle.com/javase/specs/
3C Coding Standard: https://users.ece.cmu.edu/~eno/coding/CCodingStandard.html
4https://agile.csc.ncsu.edu/iTrust/wiki/doku.php
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/**
* Sends email to users. Since we don't want to train spammers in 
* 326, this just inserts into a database.  
...
*/
public class EmailUtil {

private DAOFactory factory;
public EmailUtil ( DAOFactory factory ) {

this.factory = factory;
}
public void sendEmail ( Email email ) throws DBException {

factory.getFakeEmailDAO().sendEmailRecord ( email );
}

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

UC35 Report Adverse Event Use Case
35.1 Preconditions:

The iTrust user (patient) has been authenticated in the iTrust Medical 
Records system (UC3).

35.2 Main Flow:
A patient selects to report an event related to a prescription drug [S1] or 
immunization [S2] reaction.

35.3 Sub-flows:
[S1] 

A fake email is sent to the LHCP who prescribed the medication 
indicating the patient name and MID, drug, and symptoms.
...

[S2] …
35.4 Alternative Flows:

None

Figure 1: Motivating example adapted from the iTrust system

system functionality “send email” is also omitted by IR models as
well, making the rank of EmailUtil very low in the IR candidate
list for UC35. In contrary, we use the Stanford typed dependencies
parsing to extract two biterms from the sub-flow S1, i.e., (send,
email) and (fake, email), based on two grammatical relationships:
noun subject and adjectival modifier, respectively. These two biterms
can also be extracted from the method identifiers and the class
comment of EmailUtil, and they become the consensual biterms.
We argue that these two consensual biterms can narrow down the
semantic gap between UC35 and EmailUtil by carrying the shared
system functionality: “send fake email to report adverse event”,
thus helping to improve IR-based traceability recovery.

Based on the consensual biterm, we further propose an enhanc-
ing strategy for IR-based, requirements-to-code traceability recov-
ery. We first extracts consensual biterms from the texts of require-
ments and code, and then use them to enrich the corpus with other
extracted terms for the following similarity calculations through IR
models. Because consensual biterms carry the shared system func-
tionalities between requirements and code, we further use them to
adjust the generated IR value for a give candidate link by count-
ing the occurrence of a consensual biterm globally (i.e., between
a requirement and a code file) and locally (i.e., among different
sections of a requirement, e.g., “title” and “sub-flow” for use cases,
while “summary” and “description” for issues). Eventually, all IR
candidate lists are re-ranked based on both the enriched corpus
with consensual biterms and the adjustments of IR candidate links
based on the occurrences of consensual biterms in code and the
text structures of requirements. The evaluation of our proposed
approach is based on nine real-world systems, and also involves the
three mainstream IR models (i.e., VSM, LSI, and JS). Our evaluation
first showed that our approach can statistically outperform the
pure IR-based approach and the state-of-the-art IR-based approach
that utilizes the POS tags for enhancement [2]. Our evaluation then
showed that our approach, which is proposed by analyzing the writ-
ing of artifact texts, can also collaborate with another enhancing
strategy [23] based on two different perspectives (i.e., combining
user feedback with code dependency analysis), to further improve
IR-based traceability recovery.

The contribution of this paper is extracting consensual biterms
from the texts of requirements and code to both enrich the input
corpora for IR models and improve the rankings of IR candidate

lists. This work mainly targets functional requirements and focuses
on tracing the requirements to code classes particularly. We name
our approach as TAROT (TraceAbility Recovery by cOsensual
biTerms). This work contains two novel features: (1) we extract
consensual biterms from requirements and code based on gram-
matical relationships (by using the Stanford CoreNLP toolkit) and
naming conventions, respectively; (2) we improve the overall accu-
racy of IR-based traceability recovery through extracted consensual
biterms to both enrich the input corpora for IR techniques and re-
rank the IR candidate lists.

2 BACKGROUND AND RELATEDWORK
This section discusses the background and related work on typi-

cal approaches for traceability recovery, enhancing strategies for
IR-based approaches, and the use of biterms in lexical analyses.

IR-based traceability recovery: Information-Retrieval (IR) -
based approaches are perhaps now the most representative ones
in automated traceability recovery [15]. These approaches use IR
techniques to compute the textual similarities between two differ-
ent software artifacts (e.g., requirements and code), and suggest
the IR values as the probability of whether a pair of source-target
artifacts is a relevant trace. IR techniques compute the textual simi-
larity based on the occurrence of terms in the text of artifacts. If
two artifacts share a larger number of terms, they will be more
textually similar, and thus are more likely to be linked by a rele-
vant trace. In general, typical IR-based approaches use three steps
to compute textual similarities [17]: (1) they build a corpus with
terms extracted from different software artifacts (the terms from
code are usually extracted from identifiers and comments only)
after pre-processing such as stemming and stop words removal;
(2) these approaches use the term-by-document matrix to repre-
sent the corpus where each artifact are organized as a document in
the matrix where its cell values are usually weighted by the tf-idf
weighting scheme [7] to distinguish the importance for each term
in the document based on its the occurring frequency; (3) these
approaches compute the similarity among artifacts (represented
as entries in the term-by-document matrix) through different IR
models. The Vector Space Model (VSM) [6] treats each document
as a vector of terms. In this model, the similarity of two artifacts
is typically calculated as the cosine of the angle between the two
vectors in the space of terms occurred in all artifacts. The Latent
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Semantic Indexing (LSI) [43] is a VSM that applies Singular Value
Decomposition (SVD) [7] to the term-by-document matrix to con-
struct an LSI subspace. The size of the subspace is a manually tuned
threshold called the k value. Because the LSI subspace captures the
most significant factors through SVD, LSI is expected to implicitly
handle the most frequently co-occurring terms and thus to alleviate
the vocabulary mismatch problem for IR-based traceability recov-
ery. Meanwhile, the Jenson-Shannon model (JS) [1] treats each
document as a probability distribution containing the probability
of a term occurring in each document. JS calculates the similarity
among documents through the Jenson-Shannon divergence, i.e., the
“distance” between two given probability distributions. To evaluate
whether TAROT is generally beneficial to IR-based approaches, our
evaluation involves all three discussed IR models.

ML-based traceability recovery: A growing body of work
proposes to take advantage of Machine Learning techniques for
traceability recovery. These ML-based approaches can work well
especially when part of the trace links have been previous iden-
tified, such as completing the missing links between issues and
code commits in software repository [36, 60, 63], or maintaining
recovered traces through machine learning classification [46]. It
is worth-while noting that due to the data imbalance problem be-
tween known traces and no-traces, re-balancing steps (e.g., under-
sampling no-traces or oversampling traces) are necessary for these
ML-based approaches. These approaches often use calculated IR
values as the features of their classification, while our approach
is expected to improve the quality of IR values, thus being likely
to improve these approaches as well. Researchers also proposed
deep-learning-based approaches, such as the one proposed by Guo
et al. [25] that uses the RNN network to generate links between sub-
system requirements and design definitions, and T-BERT [37] that
uses different BERT architectures to recover missing links between
issues and commits. The deep learning (DL) network can capture
the implicit connections from term sequences in artifact texts, while
our approach extracts biterms explicitly from term sequences in
software texts, and code identifiers and comments. However, the
DL-based approaches still requires correctly-labeled training and
development sets to work. To address this issue, Mills et al. [45]
introduce active learning to substantially reduce the amount of re-
quired training data for classification approaches while maintaining
similar performance. Moran et al. [47] use a tailored hierarchical
Bayesian Network to infer candidate traces through transitive re-
lationships among different groups of software artifacts, and their
approach Comet only needs a small amount of user feedback for
better inference. Although we extract consensual biterms from the
texts of both requirements and code, the extraction itself does not
need any trace links to be previously identified. Thus, our approach,
which is an enhancement for IR-based approaches, can still work
when the user has to recover trace links from scratch.

Enhancement for IR-based approaches: To address the vo-
cabulary mismatch problem that greatly hinders the performance
of IR-based traceability recovery, researchers have proposed many
enhancing strategies from different perspectives, such as introduc-
ing enhanced lexical analyses on the text of artifacts [16, 19, 24],
incorporating with execution tracing [21, 57], or combining with
the analyses on different kinds of code dependencies [35, 44]. Mean-
while, because the semi-automatic nature of IR-based traceability

Reqs

Codes

TAROT

1.Extract consensual biterms

Artifacts

• stop words
• stemming
...

3.Generating candidate IR list

2.Extend texts with
consensual biterms

Enhance Strategies

• VSM
• LSI
• JSD

Biterms:
adverse event: amod
sent email: dobj
fake email: amod
...

4.Adjust IR score

• λ: global weight

• θ: local weight

Figure 2: Overview of the TAROT framework.

recovery requires user verifications on the generated candidate
links, a different body of work [18, 28, 52] uses user feedback (can-
didate links verified as either relevant links or false positives) to
adjust the calculation of IR values. Panichella et al. [53] further com-
bined the user feedback with code dependency analysis, and Gao et
al. [23] proposed CLUSTER’ that uses the closeness analysis on code
dependencies [35] to improve IR-based approaches by propagat-
ing only a small amount of user feedback. Although the discussed
approaches can improve the performance of IR-based traceability
recovery, their provided benefits are still highly relevant to the
quantity and quality of artifact texts, or the initially calculated IR
values. Researchers tried to improve the quality of artifact texts
by reducing the “noise” (discussed in Section 1), but the remaining
texts are not enough to further improve IR-based approaches. In
contrary, we use extracted consensual biterms to first enrich the
corpus for IR techniques, and then adjust the ranking of candidate
lists without considering code dependencies or user feedback. We
then combined TAROT with CLUSTER’ in our evaluation, and the
experiment results showed that TAROT can collaborate with other
enhancing strategies for further improvement.

Using biterms in lexical analyses: Biterms are first proposed
for document retrieval [62] to address the data sparsity problem.
For the same reason, Cheng et al. [13] use biterms to better estab-
lish topic models over short texts. Although the use of biterms in
software engineering (SE) research is not many, researchers seem
to agree that biterms are useful in analyzing short SE texts. For
example, Hadi et al. [27] proposed an adaptive online biterm topic
model to analyze version sensitive short texts. Instead of directly
using the biterm topic modeling, we use biterms as the vital role of
our approach to capture the same system functionalities that are
described in different artifacts at different concept levels.

3 PROPOSED APPROACH
In this section, we introduce the proposed four-step approach

TAROT. Figure 2 illustrates the overview of TAROT. First, we extract
consensual biterms from both requirements and code. Second, we
enrich artifact texts with consensual biterms (Section 3.2). Third,
we generate candidate trace lists (Section 3.3). Fourth, we further
adjust IR values with global and local weight, i.e., 𝜆 and 𝜃 (Section
3.4). The updated candidate trace lists can also be the input for
other enhancing strategies, e.g., our baseline CLUSTER’ [23].
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A    

nsubj

amod

fake  email  is  sent  to 

 the   LHCP.

A    fake  email  is 
 sent  to 

 the  

 LHCP.

DT JJ NN VBZ VBN IN DT NN

amod

nsubj

obl

det

Figure 3: Stanford typed dependencies parsing in a sentence

3.1 Extracting Consensual Biterms
3.1.1 Extracting Candidate Biterms from Requirements. Two typi-
cal kinds of structured texts are often used to describe requirements
in recent software development, i.e., use cases and repository is-
sues. The use case usually consists of five parts, including title,
precondition, main-flow, sub-flow, and alternative-flow, while the
issue only has two parts: summary and description. We first split
each requirement into several parts according to its text structure.
Because requirements are written with natural language, we lever-
age Standford CoreNLP [42] to process each splitted part of text
as follows: (1) we split text into independent sentences; (2) we tag
each term’s Part-of-speech (POS, e.g, nouns, verbs, adjectives, ad-
verbs, and pronouns) in the sentence; (3) we conduct a Stanford
typed dependencies parsing for each sentence that we can get the
grammatical relationship between two terms in the sentence. For
example, given a sentence as shown in Figure 3, each term’s POS tag
is labeled under itself. Stanford CoreNLP provides many types of
tag, e.g., DT (determiner), JJ (adjective), NN (noun), VBZ (verb, third
person singular present), VBN (verb, past tense), and IN (preposition
or subordinating conjunction), etc. The grammatical relationship
between two different terms is connected with arrowed lines, and re-
lationships are labeled on the lines. For example, “fake” and “email”
have an amod (adjectival modifier) relationship, “email” and “sent”
have a nsubj (noun subject) relationship, and “sent” and “LHCP”
(i.e., Licensed Health Care Professional) have a obl (oblique nomi-
nal) realtionship. Each two terms with grammatical relationship is
recognized as a biterm (i.e., “aEmail”, “fakeEmail”, “emailSent”,
and “sentLHCP”). However, biterms are likely to carry different
information values that depend on composed terms’ POSs. On the
one hand, previous studies [31, 41] have shown that verbs, nouns,
and adjectives play important roles in expressing semantics. On the
other hand, names of code entities (e.g., class name, method name,
and variable name and type, etc.) are also generally composed of
terms with the three POSs [49, 55]. Therefore, each term of a biterm
should only be verb, noun, or adjective. Otherwise, the biterm will
be ignored (e.g., “aEmail”).

3.1.2 Extracting Candidate Biterms from Code. We extract biterms
from both code identifier names (i.e., class name, method name,
invoked method name, field name and its type, and parameter name
and its type) and comments (i.e., comments for class or method).
Unfortunately, existing POS taggers cannot achieved an accuracy
of 100% in tagging code identifiers [3, 26, 49]. This is because code
identifiers are not written in a natural language like requirements,
so they do not contain the contexts of proper English sentences
and grammatical structures. Nevertheless, to help developers better
comprehend code, identifier names are usually composed of two

or more terms (usually no more than five terms [11, 49]) by fol-
lowing typical naming conventions, such as the CamelCase or the
snake_case. Furthermore, identifier names tend to follow certain
POS-based patterns among its splitted terms in general [10, 49, 55],
such as VB + JJ + NN (e.g., getFakeEmail) and VB + NN (e.g.,
sendEmail) in EmailUtil shown in Figure 1. Therefore, we extract
candidate biterms from identifier names by combining any two
splitted terms sequentially. Take the identifier name getFakeEmail
for example, we will extract three biterms including “getFake”,
“getEmail”, and “fakeEmail”. Although some unmeaning biterms
may be extracted, i.e., “getFake”, we consider them still tolerable be-
cause they are not many in one given identifier name. Furthermore,
they are likely to be discarded when we further extract consensual
biterms between requirements and code (discussed in Section 3.1.3).
Meanwhile for code comments, we conduct the same candidate
biterm extractions on them as those on requirements because they
are both written in natural languages.

3.1.3 Extracting Consensual Biterms. We now use a quite straight-
forward crosscheck to extract the final consensual biterms from
the two sets of candidate biterms from requirements and code, re-
spectively. First, to address the unmeaning biterm problem from
code candidate biterms (mentioned in Section 3.1.2), we only retain
biterms that also appear in the set of requirement candidate biterms.
The reason why we favor requirement candidate biterms is that
we extract these biterms based on both the grammatical dependen-
cies and the selected types of POSs (discussed in Section 3.1.1), so
that the quality of requirement candidate biterms is likely to be
much higher, let alone the typically better quality and quantity of
requirement texts to guarantee the quality of Stanford CoreNLP
output. Then we filtered out biterms that only appear in the set of
requirement candidate biterms, to get the final set of consensual
biterms between requirement and code. It is worth-while noting
that each term in a given candidate biterm is restored to its original
format, and the sequence of two terms is also omitted, except the
domain abbreviations such as "LHCP" (which will be treated as a
special noun). For example in our iTrust Sample, the "emailSent"
mentioned in Section 3.1.1 and the "sendEmail" mentioned in
Section 3.1.2 will both be saved as (send, email), and this biterm
becomes a consensual biterm after the crosscheck.

3.2 Enriching Texts with Consensual Biterms
3.2.1 Enriching Requirements with Consensual Biterms. To validly
enrich requirement texts with extracted consensual biterms, we
need to not only just "add them in the text", but also assign reason-
able occurrence numbers for each added biterm so that our approach
can effectively index these "artificial terms" later in calculating IR
values between requirements and code classes. Specifically, we first
record numbers of the occurrences of each consensual biterm re-
spectively in different parts of a requirement. Then we accumulate
the numbers in each part as the total number that the consensual
biterms should be added into the requirement.

3.2.2 Enriching Code with Consensual Biterms. Similarly but dif-
ferently, we design different count strategies according to the kind
of identifier name in which the consensual biterm occurred. First,
if a biterm appears in class names or method names, its count
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pluses two. This is because the names of classes and methods are
particularly important. Høst et al. [29] considered that “Methods
are the smallest named units of aggregated behavior in most con-
ventional programming languages and hence the cornerstone of
abstraction”. In addition, a class name is a high-level abstraction
and summarization of a class, and a method name is a direct de-
scription of functionality. Then for a biterm appears in comments
(i.e., comments of class and methods), its count pluses one for each
occurrence. For invoked method name, field type and name, and
parameter type and name, we take a conservative strategy. If the
biterm only appears in these parts, its count will be assigned to one
and not change no matter how many times it appears. Otherwise,
we skip this biterm. Finally, we accumulate all counts of a biterm
as the total number that should be added to each code class.

3.3 Generating Candidate Trace Links
Creating Corpus. Each class in code is extracted into one docu-

ment containing its comments and identifiers including class names,
method names, and field names. Then we use the CamelCase con-
vention to split identifiers into terms. For each requirement, we
extract a document that includes its title and content (e.g., precon-
ditions, main-flow, sub-flows, and alternative-flows for structured
use cases or title and description for commit issues).

Normalizing Corpus. We normalize the documents of require-
ments and classes by standard pre-processing techniques for IR
including: (1) removing special tokens (e.g., punctuations); (2) con-
verting all upper case letters into the lower case; (3) removing stop
words; (4) performing the Porter stemming algorithm [56].

Indexing Corpus and Computing Textual Similarities. We
use tf-idf for corpus indexing (for both terms and biterms) and
three mainstream IR models to compute textual similarity: Vector
Space Model (VSM) [6], Latent Semantic Indexing (LSI) [43], and
the probabilistic Jensen and Shannon (JS) model [1].

Generating Candidate Links. We rank IR candidate lists in
descending order based on the IR values of candidate links.

3.4 Adjusting IR Values through the Biterms
In addition to enriching artifact texts with biterms, we further

leverage consensual biterms’ global (i.e, for both a requirement and
a code file) and local (i.e., for done part of a requirement) weights to
adjust IR values to improve the ranking of generated IR candidate
lists. Given a requirement req and a code cls, we denote the set of
biterms in req and cls as BT𝑟𝑒𝑞 and BT𝑐𝑙𝑠 respectively. Then we can
get the set of biterms that they shared denoted as

𝐵𝑇𝑐𝑜𝑛𝑠 = 𝐵𝑇𝑟𝑒𝑞 ∩ 𝐵𝑇𝑐𝑙𝑠 , 𝑟𝑒𝑞 ∈ 𝑈𝐶 ∪ 𝐼𝑆𝑆𝑈𝐸, 𝑐𝑙𝑠 ∈ 𝑆𝐶 (1)

where UC and ISSUE represent two different types of requirements,
i.e., use cases and commit issues, respectively. SC represents all
source code. Note that we adopt each biterm’s inverse document
frequency (IDF) as its weight due to it can provide a good measure
of biterms’ uniqueness. For example, if a biterm occurred in almost
all artifacts that are considered as a common biterm, then its IDF
will be assigned a small value.

3.4.1 Global Weight 𝜆. For a given requirement req and code cls,
we consider more biterms they shared, req and cls are more likely to
be an actual trace link. In addition to the size of 𝐵𝑇𝑐𝑜𝑛𝑠 , we also take

into account the proportion of 𝐵𝑇𝑐𝑜𝑛𝑠 . We calculate proportions
of 𝐵𝑇𝑐𝑜𝑛𝑠 in both 𝐵𝑇𝑟𝑒𝑞 and 𝐵𝑇𝑐𝑙𝑠 respectively. Then, we combine
these two proportions together and take half of the value as the
global weight of 𝐵𝑇𝑐𝑜𝑛𝑠 denoted as 𝜆:

𝜆(𝑟𝑒𝑞, 𝑐𝑙𝑠) = (
∑ |𝐵𝑇𝑐𝑜𝑛𝑠 |
𝑘=1

𝐼𝐷𝐹𝑏𝑡𝑘∑ |𝐵𝑇𝑟𝑒𝑞 |
𝑖=1 𝐼𝐷𝐹𝑏𝑡𝑖

+
∑ |𝐵𝑇𝑐𝑜𝑛𝑠 |
𝑘=1

𝐼𝐷𝐹𝑏𝑡𝑘∑ |𝐵𝑇𝑐𝑙𝑠 |
𝑗=1 𝐼𝐷𝐹𝑏𝑡 𝑗

) × 1

2
(2)

where |𝐵𝑇𝑟𝑒𝑞 |, |𝐵𝑇𝑐𝑙𝑠 |, and |𝐵𝑇𝑐𝑜𝑛𝑠 | represent the number of biterms
in 𝑟𝑒𝑞, 𝑐𝑙𝑠 , and their shared biterms, respectively. 𝐼𝐷𝐹𝑏𝑡𝑖 , 𝐼𝐷𝐹𝑏𝑡 𝑗 ,
and 𝐼𝐷𝐹𝑏𝑡𝑘 are the IDFs of the 𝑖𝑡ℎ , 𝑗𝑡ℎ , and 𝑘𝑡ℎ biterm in 𝐵𝑇𝑟𝑒𝑞 ,
𝐵𝑇𝑐𝑙𝑠 , and 𝐵𝑇𝑐𝑜𝑛𝑠 , respectively.

3.4.2 Local Weight 𝜃 . We further consider that each part of a re-
quirement can differently contribute to the described system func-
tionalities. We mainly consider two kinds of requirement artifacts:
use cases and issues in software repositories. For use case, title
and main-flow are summarized descriptions of the requirement.
Therefore, they hold more information values and biterms in these
two parts should be assigned higher weights, especially for title
since it is more condensed. Sub-flows describe the main scenario
involving detailed functionalities step-by-step. Alternative-flows
describe alternate ways that the system behaves according to spe-
cific inputs. Precondition explains the state that the system must
be in for the use case to be able to start which is not involved in
functional description, so we do not consider this part. We then
refer to previous study [4] and assign the following weights 0.4,
0.3, 0.2, and 0.1 to title, main-flow, sub-flow, and alternative-flow,
respectively. Similarly, we assign weights 0.6 and 0.4 to summary
and description, respectively for repository issues. Given a require-
ment 𝑟𝑒𝑞 and code 𝑐𝑙𝑠 , we compute the proportion of biterms they
shared in all biterms that each part owns as follow:

𝜔 (𝑟𝑒𝑞_𝑝𝑎𝑟𝑡, 𝑐𝑙𝑠) =
∑ |𝐵𝑇𝑐𝑜𝑛𝑠_𝑝𝑎𝑟𝑡 |
𝑘=1

𝐼𝐷𝐹𝑏𝑡𝑘∑ |𝐵𝑇𝑟𝑒𝑞_𝑝𝑎𝑟𝑡 |
𝑖=1 𝐼𝐷𝐹𝑏𝑡𝑖

(3)

where 𝑟𝑒𝑞_𝑝𝑎𝑟𝑡 is one part of 𝑟𝑒𝑞, |𝐵𝑇𝑐𝑜𝑛𝑠_𝑝𝑎𝑟𝑡 | is the number of
shared biterms for 𝑟𝑒𝑞𝑝𝑎𝑟𝑡 and 𝑐𝑙𝑠 . I𝐷𝐹𝑏𝑡𝑘 , and 𝐼𝐷𝐹𝑏𝑡𝑖 are the IDFs
of the 𝑘𝑡ℎ , 𝑖𝑡ℎ in 𝐵𝑇𝑟𝑒𝑞𝑝𝑎𝑟𝑡 and 𝐵𝑇𝑐𝑙𝑠 respectively. We then compute
local weight (denoted as 𝜃 ) by combining weights from different
part of requirement texts as follows:

𝜃 (𝑟𝑒𝑞, 𝑐𝑙𝑠) =


0.4 × 𝜔 (𝑡𝑖𝑡𝑙𝑒, 𝑐𝑙𝑠) + 0.3 × 𝜔 (𝑚𝑓 , 𝑐𝑙𝑠)+
0.2 × 𝜔 (𝑠 𝑓 , 𝑐𝑙𝑠) + 0.1 × 𝜔 (𝑎𝑓 , 𝑐𝑙𝑠), 𝑟𝑒𝑞 ∈ 𝑈𝐶

0.6 × 𝜔 (𝑠𝑢𝑚𝑚) + 0.4 × 𝜔 (𝑑𝑒𝑠𝑐), 𝑟𝑒𝑞 ∈ 𝐼𝑠𝑠𝑢𝑒

(4)

where 𝑡𝑖𝑡𝑙𝑒 refers to "title",𝑚𝑓 refers to "main-flow", 𝑠 𝑓 refers to
"sub-flow", and 𝑎𝑓 refers to "alternative-flow" in use cases, while
𝑠𝑢𝑚𝑚 is "summary" and 𝑑𝑒𝑠𝑐 is "description" in issues.

Finally, we can leverage 𝜆 and 𝜃 to adjust IR values if a require-
ment and code shared consensual biterms, i.e., 𝐵𝑇𝑐𝑜𝑛𝑠 ≠ ∅. Other-
wise, we will penalize the IR values through multiplying origin IR
value by 0.9 as follows:

𝐼𝑅𝑛𝑒𝑤 =

{
𝐼𝑅𝑖𝑛𝑖𝑡𝑖𝑎𝑙 × (1 + 𝜆 + 𝜃 ), 𝐵𝑇𝑐𝑜𝑛𝑠 ≠ ∅
𝐼𝑅𝑖𝑛𝑖𝑡𝑖𝑎𝑙 × 0.9, 𝐵𝑇𝑐𝑜𝑛𝑠 = ∅ (5)

where 𝐼𝑅𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is the initial IR value and 𝐼𝑅𝑛𝑒𝑤 is the updated one.
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Table 1: Overview of the Nine Evaluated Systems

# iTrust Gantt
Project Maven Pig Infinispan Seam2 Drools Derby Groovy

Version 13.0 2.0.9 3.5.2 0.17.0 9.2.0 7.5.0 14.1.0 2.3.0 2.5.0
Programming Language Java Java Java Java Java Java Java Java Java
KLoC 43 45 101 365 521 449 1091 136 381
Executed classes 137 124 82 289 319 150 248 611 100
Evaluated requirements 34 16 36 87 232 189 183 390 104
Relevant Traces in RTM 255 315 151 547 1116 463 841 2315 180

4 EXPERIMENT SETUP
We now introduce our experimental setup to evaluate our ap-

proach. Section 4.1 introduces nine evaluated systems. Section 4.2
defines metrics for evaluating the performance of our approach and
baseline approaches. Section 4.3 discusses our research questions
and the design of experiments.

4.1 Evaluated Systems
Our evaluation is based on nine real-world software systems:

iTrust, GanttProject5, Maven6, Pig7, Infinispan8, Drools9, Derby10,
Seam211, and Groovy12. Table 1 presents a summary of nine evalu-
ated systems. We chose these systems because of their availability
of both requirements specifications with developer maintained use
cases and their Requirements-to-code Trace Matrices (RTM). For
GanttProject, high-quality class-level traces are gained by recruiting
the original developers. The RTM of iTrust contains method-level
traces maintained by original developers and is publicly available.
However, the RTMs of the other eight systems are class-level. To
keep our experiment consistent at the same granularity, we prop-
agated the method-level traces of iTrust to class-level traces by
aggregating all traces to methods of a class on the class-level.

Meanwhile, Maven, Pig, Infinispan, Drools, Derby, Seam2, and
Groovy come from the dataset named IlmSeven [59]. The dataset
consists of seven open source projects where the traces between
issues and changed classes for each project are elicited from its
GitHub and the issue-tracking tool Jira. Specifically, Maven is the
mainstream software project management tool. Pig is a platform
to analyze large datasets consisting of a high-level language for
expressing data analysis programs along with the infrastructure
for assessing these programs. Infinispan is a distributed in-memory
key-value NoSQL data store software. Drools is a business rule
management system and reasoning engine for business policy and
rules development, access, and change management. Derby is a
relational database management system that can be embedded in
Java programs and used for online transaction processing. Seam2
is a lightweight framework for building web applications in Java.
Finally, Groovy is an object-oriented programming language for the
Java platform. All projects are implemented in the Java language
(the Groovy project using both Java and Groovy itself). We used all

5https://github.com/bardsoftware/ganttproject
6https://github.com/apache/maven
7https://github.com/apache/pig
8https://github.com/infinispan/infinispan
9https://github.com/kiegroup/drools
10https://github.com/apache/derby
11http://www.seamframework.org/Seam2.html
12https://github.com/apache/groovy

seven projects and follow the same suggestions and heuristics pro-
posed by Hui et al. [23] (also our baseline) to filter and merge each
project’s issues to avoid the likely noises and too fine-grained sys-
tem functionalities when using the original issues as requirements.
Our dataset is available at: https://github.com/huiAlex/TAROT.

4.2 Evaluation Metrics
We first leveraged two well-known metrics (i.e., recall and pre-

cision) to evaluate the performance of our approach. Precision
represents the proportion of correct links among retrieved trace
links, and recall represents the proportion of retrieved correct links
among all correct links. They are defined as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 ∩ 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 |

|𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 | (6)

𝑅𝑒𝑐𝑎𝑙𝑙 =
|𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 ∩ 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 |

|𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 | (7)

where 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 is the set of relevant links and 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 is the set
of links retrieved by traceability recovery approaches.

A common way to evaluate the accuracy of IR techniques is
to compare the precision values obtained at different recall levels,
resulting in a set of precision-recall points displayed as curves.
We then leveraged the following two metrics: AP (i.e., average
precision) and MAP (i.e., mean average precision). AP and MAP are
computed as:

𝐴𝑃 =

∑𝑁
𝑟=1 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑟 ) × 𝑖𝑠𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 (𝑟 ))

|𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 | (8)

𝑀𝐴𝑃 =

∑𝑄

𝑞=1𝐴𝑃 (𝑞)
𝑄

(9)

where 𝑟 is the rank of the target artifact in an ordered list of links,
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑟 ) represents its precision value, 𝑖𝑠𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 () is a binary
function assigned 1 if the link is relevant or 0 otherwise, 𝑁 is the
number of all documents, 𝑞 is a single query, and 𝑄 is the number
of all queries. AP measures how well relevant documents of all
queries (requirements) are ranked to the top of the retrieved links.
Meanwhile, MAP uses the average of the AP scores of all queries to
measure how well relevant documents for each query are ranked
to the top of the retrieved links.

4.3 Research Questions
We aim to study whether the use of consensual biterms from text

structures of requirements and code, i.e., enriching the input corpus
and adjusting the calculated IR values, can help improve IR-based
traceability recovery. Furthermore, because TAROT is proposed
based on text structures only, we also want to study whether it can
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collaborate with other enhancing strategies built upon different
perspectives (e.g., code dependency analysis and the use of user
feedback). Finally, we want to study how the corpus-enriching part
and the value-adjusting part contribute separately to TAROT. Thus,
we proposed the following three research questions:

RQ1: Can TAROT help improve the performance of IR-based trace-
ability recovery?

RQ2: Can TAROT collaborate with other enhancing strategies built
upon different perspectives for IR-based traceability recovery?

RQ3: How many contributions do different parts of TAROT make
individually?

To study RQ1, we combine TAROT with the pure IR-based ap-
proach and named the combination as IR-ONLY_TAROT. We then
compared the performance of IR-ONLY_TAROT and two baseline
approaches. The first is the pure IR-based approach (IR-ONLY,
without any enhancing strategies involved). Another one is Con-
POS, which is the state-of-the-art approach that uses major POS
categories and applies constraints to prune candidate IR links as
a filtering process [2], while TAROT also uses POS taggers, but it
chooses to first enrich the input corpora for IR techniques and then
adjust the calculated IR values. We argue that TAROT have more
potentials to better improving IR-based approaches because the
quantity of either requirement texts or code texts is already quite
small in practice. Correctly enriching those texts will be eventually
more effective than further pruning them, and ConPOS is a really
good baseline to evaluate our idea and approach. We then involved
three mainstream IR models in our evaluation, i.e., VSM, LSI, and JS
(which are widely used and evaluated in traceability research [15]),
to compare IR-ONLY_TAROT with the two baseline approaches.
Note that for the k value of LSI, we adopt a brute-force search
strategy[33] to determine the optimal value of k for each evaluated
system. For iTrust, GanttProject, Maven, Pig, Infinispan, Seam2,
Drools, Derby, and Groovy, their calibrated k values are 85, 65, 70,
140, 170, 180, 300, 130, and 175, respectively. For new systems, we
suggest using the same calibration process before fine-tuning them
to optimize the performance.

In addition to the metrics proposed in Section 4.2, we also use
a statistical significance test to check whether the performance
of IR-ONLY_TAROT is significantly better than that of baseline
approaches. Through the significance test used in reference [5,
34, 35], we use the F-measure at each recall point as the single
dependent variable of our significant test. We use the F-measure
because we want to know whether IR-ONLY_TAROT improves
both accuracy and recall. F-measured value is calculated as follows:

𝐹 =
2𝑃 × 𝑅

𝑃 + 𝑅
(10)

where P represents precision, R represents recall, and F is the har-
monic mean of P and R. A higher F-measure means that both preci-
sion and recall are high and balanced. We then use the Wilcoxon
rank sum test [64] to test the following null hypothesis:

𝐻0: There is no difference between the performance of TAROT and
baseline approaches.

We use 𝛼 = 0.05 to accept or refute the null hypothesis 𝐻0. We
also use a non-parametric effect size measure for ordinal data, i.e.,

Cliff’s 𝑑𝑒𝑙𝑡𝑎 (𝛿) [38], to quantify the amount of difference between
IR-ONLY_TAROT and two baseline appproaches as follows:

𝛿 =

����# (𝑥1 > 𝑥2) −# (𝑥1 < 𝑥2)
𝑛1𝑛2

���� (11)

where 𝑥1 and 𝑥2 represent F-measures of TAROT and a chosen
baseline approach, and 𝑛1 and 𝑛2 are the sizes of the sample groups.
The effect size is considered negligible for 𝛿 < 0.15, small for
0.15 ≤ 𝛿 < 0.33, medium for 0.33 ≤ 𝛿 < 0.47, large for 𝛿 > 0.47.

To study RQ2, we choose CLUSTER’ as the representative en-
hancing strategies built upon different perspectives for IR-based
traceability recovery to test whether TAROT can collaborate with
other enhancements. CLUSTER’ propagates a small amount of user
feedback with closeness analysis on code dependencies [23]. We
use IR-ONLY_TAROT to generate IR candidate links and make them
as the input of CLUSTER’. We name this combination of TAROT
and CLUSTER’ as CLUSTER’_TAROT. Like RQ1, we also com-
pared CLUSTER’ and CLUSTER’_TAROT on VSM, LSI, and JS, use
F-measure at each recall point to see whether CLUSTER’_TAROT
can improve both accuracy and recall, use the Wilcoxon rank sum
test to test𝐻0 (𝛼 = 0.05), and use Cliff’s𝑑𝑒𝑙𝑡𝑎 to quantify the amount
of difference between CLUSTER’ and CLUSTER’_TAROT.

To study RQ3, we perform an ablation study to evaluate the
performance of TAROT’s different parts. We regard IR-ONLY as the
basics and add each part of TAROT to the basics incrementally. By
comparing the performance of the approach before and after adding
a part can see how many contributions that each step of TAROT
makes. Specifically, “+𝑏” represents when we only use extracted
consensual biterms to improve the input quality for IR techniques,
without considering the global weight 𝜆 and the local weight 𝜃 . “+
𝜆” represents when we adjust IR values through the biterms, the
global weight 𝜆 will be taken into consideration. “+ 𝜃” represents
when we adjust IR values through the biterms, the local weight 𝜃
will be taken into consideration. We also use VSM, LSI, and JS, to
compare IR-ONLYs with different steps included.

5 DISCUSSIONS ON RESULTS
RQ1: Can TAROT help improve the performance of IR-

based traceability recovery? Table 2 shows the experiment re-
sults of nine evaluated systems (rows). For each system and each
IR model (columns), we compared the performance of IR-ONLY,
ConPOS, and IR-ONLY_TAROT. Sub column 1 shows the average
precision (AP). Sub column 2 shows the mean average precision
(MAP). Sub column 3 shows the 𝑝-value of the F-measure signifi-
cance test for IR-ONLY_TAROT and sub column 4 shows the Cliff’s
𝛿 . For each approach, the best result of AP, MAP, and 𝑝-value ≤ 0.05
are in bold text. The results show that IR-ONLY_TAROT outper-
forms ConPOS on both AP and MAP for all cases. When compared
with IR-ONLY, IR-ONLY_TAROT performs better on MAP for all
case, only performs worse on AP in 3 cases of DroolsAP on Drools
(0.12 on average). Specifically, in 42 out of 54 cases, the F-measure
for the result of IR-ONLY_TAROT is significantly higher than those
of the two baseline approaches (p-value ≤ 0.05) at each level of
recall, which indicates that IR-ONLY_TAROT outperforms baseline
approaches in the majority of cases. Figure 4 shows and compares
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Table 2: The number of computed AP, MAP, p-value, and Cliff’s 𝛿 evaluating each approach (evaluated systems iTrust,
GanttProject, Maven, Pig, Infnispan, Seam2, Drools, Derby, and Groovy combined with IR models VSM, LSI, and JS)

VSM LSI JS

AP MAP 𝑝-value C’𝛿 AP MAP 𝑝-value C’𝛿 AP MAP 𝑝-value C’𝛿

iTrust

IR-ONLY 45.78 58.43 0.05 0.10 46.01 59.17 0.06 0.10 40.57 56.01 <0.01 0.14
ConPOS 46.89 59.03 0.13 0.08 46.60 59.00 0.17 0.07 39.95 55.27 0.02 0.12
IR-ONLY_TAROT 49.50 62.12 - - 49.18 61.50 - - 45.74 58.59 - -

CLUSTER’ 64.08 68.51 0.54 0.03 64.55 69.94 0.34 0.05 61.75 66.53 0.03 0.11
CLUSTER’_TAROT 65.90 72.33 - - 67.02 72.95 - - 64.20 69.09 - -

GanttProject

IR-ONLY 43.17 49.79 <0.01 0.14 43.89 51.72 <0.01 0.15 36.50 46.76 <0.01 0.22
ConPOS 44.33 51.41 <0.01 0.17 44.81 53.15 <0.01 0.18 38.24 50.04 <0.01 0.24
IR-ONLY_TAROT 47.37 54.09 - - 48.63 55.25 - - 43.90 51.76 - -

CLUSTER’ 62.49 71.90 <0.01 0.18 66.28 72.13 0.09 0.08 70.69 74.10 0.97 0.0
CLUSTER’_TAROT 73.18 75.38 - - 70.91 72.05 - - 73.19 75.37 - -

Maven

IR-ONLY 22.27 37.11 <0.01 0.24 22.15 40.65 <0.01 0.20 24.08 40.29 <0.01 0.29
ConPOS 22.34 37.12 <0.01 0.17 21.23 38.67 <0.01 0.18 22.56 37.33 <0.01 0.24
IR-ONLY_TAROT 26.77 43.65 - - 26.97 47.17 - - 25.50 48.35 - -

CLUSTER’ 42.53 47.31 0.61 0.03 41.92 49.61 0.75 0.02 42.00 49.95 0.21 0.08
CLUSTER’_TAROT 45.17 53.91 - - 44.18 54.87 - - 47.55 55.75 - -

Pig

IR-ONLY 19.71 36.37 0.02 0.08 17.89 36.62 0.12 0.05 14.64 31.90 <0.01 0.13
ConPOS 20.05 39.18 0.03 0.07 17.96 37.67 0.13 0.05 13.46 32.94 <0.01 0.13
IR-ONLY_TAROT 22.93 39.38 - - 21.09 37.88 - - 20.51 37.58 - -

CLUSTER’ 31.11 43.56 <0.01 0.12 29.49 40.44 0.16 0.05 27.39 36.84 <0.01 0.10
CLUSTER’_TAROT 26.47 42.98 - - 28.31 39.60 - - 28.96 41.26 - -

Infinispan

IR-ONLY 8.73 25.44 <0.01 0.09 9.05 26.84 <0.01 0.10 7.32 26.02 <0.01 0.14
ConPOS 9.45 26.70 <0.01 0.08 9.48 26.86 <0.01 0.09 7.68 26.61 <0.01 0.13
IR-ONLY_TAROT 11.34 29.04 - - 12.00 30.68 - - 10.17 27.82 - -

CLUSTER’ 18.77 30.50 0.13 0.04 20.70 32.64 0.35 0.02 20.92 31.82 0.02 0.06
CLUSTER’_TAROT 19.73 32.61 - - 20.69 34.37 - - 21.34 31.12 - -

Seam2

IR-ONLY 18.99 40.61 <0.01 0.12 17.19 42.49 <0.01 0.10 16.64 40.47 <0.01 0.11
ConPOS 20.26 41.96 <0.01 0.11 18.65 43.49 <0.01 0.10 17.33 42.01 <0.01 0.11
IR-ONLY_TAROT 23.65 46.11 - - 21.85 46.41 - - 20.84 43.06 - -

CLUSTER’ 34.16 49.32 0.08 0.07 33.45 47.47 0.02 0.09 30.32 45.95 0.02 0.09
CLUSTER’_TAROT 36.14 52.71 - - 37.06 52.54 - - 34.6 51.43 - -

Drools
IR-ONLY 8.87 21.06 0.12 0.04 7.98 20.98 0.02 0.07 7.56 21.20 0.14 0.04
ConPOS 8.48 21.27 0.13 0.04 7.03 21.41 0.02 0.07 6.67 21.25 0.10 0.05
IR-ONLY_TAROT 8.83 22.41 - - 7.84 22.46 - - 7.39 21.86 - -

CLUSTER’ 15.86 24.65 0.02 0.07 13.62 24.46 <0.01 0.07 15.08 23.88 0.63 0.01
CLUSTER’_TAROT 15.77 26.72 - - 14.60 26.24 - - 13.08 24.24 - -

Derby

IR-ONLY 10.23 26.95 <0.01 0.20 9.58 26.74 <0.01 0.17 9.32 26.21 <0.01 0.18
ConPOS 11.58 30.32 <0.01 0.13 10.31 29.76 <0.01 0.12 8.38 27.69 <0.01 0.20
IR-ONLY_TAROT 15.05 35.07 - - 13.29 35.29 - - 14.22 34.01 - -

CLUSTER’ 24.81 36.66 <0.01 0.06 24.11 34.35 <0.01 0.16 23.67 32.71 <0.01 0.13
CLUSTER’_TAROT 25.05 43.51 - - 27.91 42.23 - - 26.23 41.42 - -

Groovy

IR-ONLY 26.98 52.72 0.02 0.15 27.40 55.50 0.02 0.14 19.69 44.02 <0.01 0.22
ConPOS 28.19 56.39 0.47 0.04 27.83 58.99 0.52 0.04 17.23 48.61 0.89 0.01
IR-ONLY_TAROT 33.59 58.96 - - 33.53 61.80 - - 27.91 54.44 - -

CLUSTER’ 41.12 69.75 <0.01 0.27 43.93 73.69 <0.01 0.30 36.86 64.82 <0.01 0.34
CLUSTER’_TAROT 46.49 70.83 - - 48.52 73.74 - - 46.70 69.53 - -

the precision-recall curves for the three approaches grouped by
each system and IR model.

We now use the adapted excerpt from the iTrust system to
demonstrate why IR-ONLY_TAROT is able to outperform IR-ONLY
and ConPOS. For use case UC35 and code EmailUtil as shown in
Figure 1, they shared two biterms, i.e., “sendEmail” and “fakeEmail”.
Because the two biterms both appears in sub-flows of UC35 twice,
TAROT adds them into UC35 twice respectively according to the
biterms extension rules (discussed in Section 3.2.1). For EmailUtil,
TAROT adds “sendEmail” three times (appears in class comment
and method name) and “fakeEmail” once (appears in invoked
method name). It turns out that TAROT can successfully enrich

texts of UC35 and EmailUtil. Furthermore, TAROT further uses
global weight 𝜆 and local weight 𝜃 to improve the IR value of “UC35
-> EmailUtil”. For the result of IR-ONLY, the ranks of EmailUtil
in the candidate list of UC35 and lists of all 34 use cases are 40/137
and 1172/4658 respectively, while IR-ONLY_TAROT promotes them
to 8/137 and 201/4658 respectively. Yet for ConPOS, there is only
one verb shared by UC35 and EmailUtil, i.e., “send", which does
not help to achieve much improvement.

RQ2:CanTAROTcollaboratewith other enhancing strate-
gies for IR-based traceability recovery? Table 2 shows the per-
formances of CLUSTER’ and CLUSTER’ _TAROT on nine evaluated
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Figure 4: Precision/Recall curves grouped by evaluated systems (subgraph (a), (h), (o) for iTrust, and similarly for Gantt, Maven,
Pig, Infinispan, Seam2 and Drools, while (v), (w), (x) for Groovy, and similarly for Derby) and IR models (VSM, LSI, and JS).

systems. In 15 out of 27 cases, the F-measure for the result of CLUS-
TER’ _TAROT is significantly higher than that of CLUSTER’ (p-
value ≤ 0.05) at each level of recall, which indicates that CLUSTER’
_TAROT outperforms CLUSTER’ in the majority of cases. When
compared with CLUSTER’, CLUSTER’ _TAROT outperforms in 22
out of 27 cases on AP. Its AP is 2.49 higher than that of CLUS-
TER’ on average in total 27 cases. The highest value is 10.69 on
GanttProject-VSM. Meanwhile, CLUSTER’ _TAROT outperforms
CLUSTER’ in 23 out of 27 cases on MAP. Its MAP is 3.16 higher than
that of CLUSTER’ on average in total 27 cases. The highest value
is 8.71 on Derby-JS. It turns out that TAROT can collaborate with
CLUSTER’, which is a totally different IR enhancing strategies built
upon both code dependency analysis and the use of user feedback.
The combined CLUSTER’_TAROT can not only achieve further
improvement where CLUSTER’ has already achieves good results
(e.g., iTrust and GanttProject), but also achieve indeed improvement
where CLUSTER’ achieves relatively low results (e.g., Infinispan
and Drools). Finding more effective way to collaborate TAROT with
other enhancing strategies is one of our future work. This result

also inspires us to further explore whether TAROT can be benefi-
cial to ML-based techniques in our future work, because TAROT
inherently improves the quality and quantity of requirement and
code texts.

RQ3: Howmany contributions does different parts of TA-
ROTmake individually? Table 3 shows the experiment results of
nine evaluated systems (rows). For each system and each IR model
(columns), we compared the performance of incrementally adding
each part of TAROT including “+ 𝑏" means only extending artifact
texts with consensual biterms on the bases of the pure IR-based
approach (IR-ONLY), “+ 𝑏 + 𝜆" means further introducing global
weight 𝜆, and “+ 𝑏 + 𝜆 + 𝜃 " means the entire TAROT. Sub column
1 shows the average precision (AP). Sub column 2 shows the mean
average precision (MAP). For each approach, the best result of AP,
MAP, and 𝑝-value ≤ 0.05 are in bold text. From the table, we can
observe that “+𝑏" outperforms IR-ONLY in all 27 cases on AP (on
average 1.69) and in 24 out of 27 cases on MAP (on average 2.18) ,
which indicates that TAROT can extract funcationality consensual
biterms and promote the quality of artifact texts. In addition, the
results show that “+ 𝑏 + 𝜆" outperforms “+𝑏" in 24 out of 27 cases on
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Table 3: The number of computed AP and MAP evaluating
each part of TAROT (𝑏 = consensual biterms, 𝜆 = gloabal
weight, and 𝜃 = local weight)

VSM LSI JS

AP MAP AP MAP AP MAP

iTrust
IR-ONLY 45.78 58.43 46.01 59.17 40.57 56.01

+𝑏 48.28 58.43 47.85 59.26 44.66 58.40
+𝑏 + 𝜆 49.16 60.49 49.04 59.72 45.89 58.71

+𝑏 + 𝜆 +𝜃 49.50 62.12 49.18 61.50 45.74 58.59

GanttProject
IR-ONLY 43.17 49.79 43.89 51.72 36.50 46.76

+𝑏 45.72 53.28 46.19 53.24 41.23 50.81
+𝑏 + 𝜆 46.19 53.26 46.92 54.43 41.38 50.76

+𝑏 + 𝜆 +𝜃 47.37 54.09 48.63 55.25 43.90 51.76

Maven
IR-ONLY 22.27 37.11 22.15 40.65 24.08 40.29

+𝑏 24.42 41.47 22.75 45.27 25.81 43.39
+𝑏 + 𝜆 26.64 44.22 25.60 46.81 26.01 47.05

+𝑏 + 𝜆 +𝜃 26.77 43.65 26.97 47.17 25.50 48.35

Pig
IR-ONLY 19.71 36.37 17.89 36.62 14.64 31.90

+𝑏 21.55 37.75 19.52 36.92 17.70 34.35
+𝑏 + 𝜆 22.23 37.61 20.41 36.60 18.44 34.98

+𝑏 + 𝜆 +𝜃 22.93 39.38 21.09 37.88 20.51 37.58

Infinispan
IR-ONLY 8.73 25.44 9.05 26.84 7.32 26.02

+𝑏 9.76 27.53 9.99 28.72 8.25 27.81
+𝑏 + 𝜆 10.71 28.29 11.05 29.75 9.40 27.66

+𝑏 + 𝜆 +𝜃 11.34 29.04 12.00 30.68 10.17 27.82

Seam2
IR-ONLY 18.99 40.61 17.19 42.49 16.64 40.47

+𝑏 21.58 43.25 17.81 42.70 17.71 39.95
+𝑏 + 𝜆 24.05 44.76 21.34 45.14 20.53 42.26

+𝑏 + 𝜆 +𝜃 23.65 46.11 21.85 46.41 20.84 43.06

Drools
IR-ONLY 8.87 21.06 7.98 20.98 7.56 21.20

+𝑏 9.12 22.57 8.75 23.10 7.68 21.43
+𝑏 + 𝜆 8.99 22.10 8.45 23.37 7.47 21.54

+𝑏 + 𝜆 +𝜃 8.83 22.41 7.84 22.46 7.39 21.86

Derby
IR-ONLY 10.23 26.95 9.58 26.74 9.32 26.21

+𝑏 12.42 30.83 10.18 28.88 10.63 28.50
+𝑏 + 𝜆 13.78 33.21 11.77 32.64 12.26 31.71

+𝑏 + 𝜆 +𝜃 15.05 35.07 13.29 35.29 14.22 34.01

Groovy
IR-ONLY 26.98 52.72 27.40 55.50 19.69 44.02

+𝑏 27.94 52.27 28.08 54.69 22.15 46.52
+𝑏 + 𝜆 31.34 55.99 31.75 58.11 26.93 52.94

+𝑏 + 𝜆 +𝜃 33.59 58.96 33.53 61.80 27.91 54.44

AP (on average 1.69) and 21 out of 27 cases onMAP (on average 2.02)
respectively, which means shared consensual biterms can narrow
down the semantic gap. Moreover, the results show that “𝑏 + 𝜆 + 𝜃 "
can outperform “+ 𝑏 + 𝜆" in 21 out of 27 cases on AP (on average
1.13) and 24 out of 27 cases on MAP (on average 1.43) respectively.
We also noted that all three parts of TAROT can outperform IR-
ONLY in almost all cases on both AP and MAP, only in 4 out of 162
cases performs worse.

The overall evaluation results also implied that TAROT is likely
to be beneficial in practice because: (1) it can improve IR-based
traceability by solely analyzing the text structures without requiring
additional analysis (such as code instrumentation, whichmay not be
viable for real-world projects); (2) it can still work even on systems
with really low-quality texts (e.g., Infinispan, Drools, and Derby in
our evaluation); (3) it can complement other enhancing strategies,
and is also likely to be useful for ML-based traceability recovery
because TAROT inherently improves the quality and quantity of
requirement and code texts.

6 THREATS TO VALIDITY
Internal threats. One possible internal threat to our approach

is that we cannot guarantee 100% accuracy in segmenting texts, tag-
ging POSs, and parsing dependencies based on Stanford CoreNLP.
However, existing work has reported that the accuracy of off-the-
shelf NLP tools is acceptable when analyzing texts with the context

of proper sentences and grammatical structures [3], and we found
no obvious errors in the output of Stanford CoreNLP as well. We
will consider SE-specific NLP tools (e.g., [54]) in future work.

External threats.Our evaluation uses the same dataset of CLUS-
TER’ [23] with nine systems including seven open-source systems.
We think that our findings from this evaluation are relevant be-
cause these evaluated systems are either widely studied or used in
practice from different domains [34, 59]. Furthermore, we combined
the evaluated systems with three mainstream IR models (i.e., VSM,
LSI, and JS) to extend our experiments to a total of 27 variants (e.g.,
iTrust-VSM and Pig-JS). However, one possible threat is that our
evaluation is only based on part of the system functionalities of
Maven, Pig, Infinispan, Drools, Derby, Seam2, and Groovy because
Gao et al. set up heuristics to filter and merge issues with linked
commit logs from the IlmSeven dataset to elicit both requirements
and RTMs, thus covering only part of the extracted issues from Jira
and GitHub. Nevertheless, we use the same RTMs to compare our
approach with the baseline approaches on each evaluated system,
thus making no bias.

7 CONCLUSIONS AND FUTUREWORK
In this study, we propose to extract co-occurred word pairs from

the text structures of both requirements and code (i.e., consensual
biterms) to improve IR-based traceability recovery. The consensual
biterms are extracted by our crosscheck between candidate require-
ment biterms and candidate code biterms. We argue that although
the consensual biterms are just correlative term combinations that
can be located in both requirements and code, they represents
important semantics of the system that are consistently followed
during the software development process, thus being valuable for
automated traceability recovery. We then use these biterms to first
enrich the input corpora for IR techniques, and then adjust the gen-
erated IR values. An empirical evaluation based on nine real-world
systems shows that our approach can not only outperform baseline
approaches, but also collaborate with other enhancing strategies
built upon different perspectives. In future work we first plan to
extract more consensual biterms from additional software artifacts
(e.g., design and tests). We then plan to study whether consensual
biterms can improveML-based traceability recovery as well, such as
improving IR values used as features in ML-based approaches, or en-
hancing word-embeddings with additional biterms. Our replication
package is available at: https://github.com/huiAlex/TAROT.
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