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Abstract
Companies build separate training and inference GPU clus-

ters for deep learning, and use separate schedulers to manage
them. This leads to problems for both training and inference:
inference clusters have low GPU utilization when the traffic
load is low; training jobs often experience long queueing time
due to lack of resources. We introduce Aryl, a new cluster
scheduler to address these problems. Aryl introduces capac-
ity loaning to loan idle inference GPU servers for training
jobs. It further exploits elastic scaling that scales a training
job’s GPU allocation to better utilize loaned resources. Ca-
pacity loaning and elastic scaling create new challenges to
cluster management. When the loaned servers need to be re-
turned, we need to minimize the number of job preemptions;
when more GPUs become available, we need to allocate them
to elastic jobs and minimize the job completion time (JCT).
Aryl addresses these combinatorial problems using principled
heuristics. It introduces the notion of server preemption cost
which it greedily reduces during server reclaiming. It further
relies on the JCT reduction value defined for each additional
worker for an elastic job to solve the scheduling problem as a
multiple-choice knapsack problem. Prototype implementation
on a 64-GPU testbed and large-scale simulation with 15-day
traces of over 50,000 production jobs show that Aryl brings
1.53x and 1.50x reductions in average queuing time and JCT,
and improves cluster usage by up to 26.9% over the cluster
scheduler without capacity loaning or elastic scaling.

1 Introduction

Recently, Deep Neural Networks (DNNs) have seen wild
successes in many applications [26]. Hyperscale online ser-
vice providers have adopted DNN, and build large-scale GPU
clusters to accelerate DNN workloads for both training and
inference. GPU cluster scheduling is a fundamental and criti-
cal task to utilize the expensive GPU clusters efficiently, by
optimizing the job resource allocation and task placement.

It is common practice today to separately build and man-
age two types of GPU clusters, one for training and one for

inference. This is because, for the same model, inference
requires less computation and GPU memory than training
and is less likely to utilize the numerous cores of training
GPU [11,35,39]. Inference clusters usually use weaker GPUs,
like Nvidia T4, with a fraction of the resources of the training
GPUs, e.g., Nvidia V100 and A100.

This separation creates problems for both sides (§2). Our
observations are based on experiences of operating production
clusters with O(10K) GPUs for training and even more for
inference. Specifically, inference cluster utilization is usually
low (<40%) for an extended period of time due to the diurnal
traffic pattern. At the same time, training jobs experience long
queuing before they can start, with an average of over 3,000s
and 95%ile of almost 10,000s as seen from a 15-day trace with
over 50,000 jobs. The long queuing time is due to both the
high cluster utilization and the GPU resource fragmentation.

To address the above problems, we propose capacity loan-
ing to allow the inference cluster to loan the idle GPU servers
during low-traffic periods to run training jobs, and reclaim
them back when inference workloads increase again (§2.1).
Capacity loaning mitigates both the utilization problem for
inference and queuing problem for training. It is feasible for
training jobs which do not have strict requirements on GPU
type. For on-loan servers, we need to ensure that they are
rapidly utilized by training jobs when they become available.
We draw inspiration from elastic scaling [1,5,36] for training
jobs to better use the on-loan servers (§2.2). Elastic scaling
enables a running job to scale out or scale in to better utilize
the dynamically changing resource pool. It also helps reduce
queueing delay since an elastic job can start with a small
number of workers first and increase its workers when more
resources become available.

Capacity loading and elastic scaling create new degrees
of freedom for cluster scheduling. As we navigate the new
design space, we meet several new challenges that must be
addressed before we can reap the benefits.

First, though loaning decisions can be solely made by the
inference cluster scheduler to ensure inference workloads are
not affected, reclaiming is more intricate. When the inference
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cluster needs to reclaim some on-loan servers, the training
scheduler has to preempt all running jobs on those servers.
Given the high overhead and prolonged running time associ-
ated with preemption, the scheduler must carefully select the
servers in order to minimize the total preemptions.

Second, the job scheduling problem is inherently more
complicated with elastic scaling. Resource allocation has to
consider a mix of inelastic jobs with fixed demand and elastic
jobs with variable demand. We show that classical schedul-
ing policies such as shortest job first (SJF) no longer works
well with elasticity, and finding the JCT-optimal solution for
merely two jobs is difficult. Given the allocation results, the
scheduler still needs to determine the worker-server placement
to minimize fragmentation, where servers are now heteroge-
neous with different GPUs because of capacity loaning.

Our key intuition in solving these challenges is to prioritize
the minimum resources needed by each job over the elastic
demand, and to prioritize the dedicated training servers over
the on-loan inference servers. This makes sense because the
minimum demand of an elastic job is equivalent to an inelastic
job to which not allocating resources is detrimental, but the
elastic part can be fulfilled later without stalling the job.

Our solution therefore exhibits a two-phase structure fol-
lowing the above intuition. For reclaiming, we first kill the
elastic workers running on on-loan servers since stopping
them does not lead to any job-level preemption. When pre-
emption becomes inevitable, we characterize the problem as
a knapsack problem with dependent item values [32] and
develop an efficient heuristic to solve it (§4).

For resource allocation, we first allocate for both inelastic
jobs and elastic jobs’ base demand, with the aim of launching
as many jobs as possible. We then scale out the scheduled elas-
tic jobs if resources permit. The first phase can be solved using
SJF to reduce queuing time and the second phase is formu-
lated as a multiple-choice knapsack problem [47] to minimize
running time, which in practice can often be solved using
dynamic programming (§5.2). We then tackle the placement
problem by placing the inelastic jobs to training servers, and
elastic jobs to on-loan servers as much as feasible. Jobs are
ordered based on the best-fit-decreasing policy to address the
bin packing nature [10] and minimize fragmentation (§5.3).

Putting everything together, we design (§3–§5), implement
(§6), and evaluate (§7) Aryl, a new cluster scheduler that real-
izes capacity loaning with elastic scaling. Aryl has an orches-
trator that manages capacity loaning by executing instructions
from the inference scheduler on when and how much to loan
or reclaim, and by deciding which on-loan servers to return
for reclaiming. Then a job scheduler periodically determines
allocation and placement, and scales new and existing elastic
jobs in response to the resource and job dynamics. To be
pragmatic, Aryl considers elastic scaling only for large DNNs
whose training throughput scales well in our experiments.

The results of Aryl are promising (§7). We build a high-
fidelity simulator, and replay a 15-day job trace collected

from 3,544 training GPUs and 4,160 inference GPUs. We
find that compared to a FIFO scheduler, Aryl can reduce the
average and 95%ile JCT by up to 1.50x and 1.47x, respec-
tively, and improve GPU usage by 26.9%. In terms of job
scheduling, Aryl also outperforms state-of-the-art Pollux by
1.32x and 1.37x in median JCT and 95%ile JCT when elastic
jobs occupy 36% training resources.

We summarize our contributions as follows.
• We report problems of separate management of training

and inference clusters, i.e. low utilization in the inference
cluster and long queuing time in the training cluster, mea-
sured from production GPU clusters.

• We propose cluster-level capacity loaning and job-level
elastic scaling, two new control knobs for cluster schedul-
ing to address the above problems.

• We study the resulting cluster scheduling problems, de-
velop a key intuition to prioritize the minimum resources
needed by each job to address elasticity, and use a princi-
pled approach to characterize and solve each problem.

• We design and implement Aryl, a novel cluster scheduler
that integrates our solutions. Aryl works with existing re-
source management frameworks and is ready for deploy-
ment. Evaluation using testbed experiments and large-scale
simulations validates its superior performance.

2 Motivation

2.1 Why Capacity Loaning?
Large GPU clusters are built to accommodate inference and
training workloads with distinct requirements. Inference jobs
are latency-sensitive since they are customer-facing [11, 39].
Training jobs are much more resource-heavy and run for an
extended period of time. Thus they emphasize on job comple-
tion times instead. Operators usually deploy separate clusters
with different GPU for training and inference, and manage
them independently to minimize interference. Our produc-
tion environment, for example, mainly uses Tesla V100 in
the training cluster and T4 in the inference cluster. Job traces
show that this practice leads to low utilization of inference
resources and sub-optimal performance for training jobs.
Inefficient inference resource utilization. Similar to many
web services [27], the inference cluster is overprovisioned
in order to handle the peak traffic. Inevitably, its resources
are often underutilized due to the dynamic inference requests
generated by customers.

We plot the GPU utilization in one of our inference clus-
ters with 5-minute intervals for one week’s time in Figure 1.
Utilization is defined as the fraction of GPUs occupied by at
least one inference job. We observe a clear diurnal pattern:
peak traffic lasts about four hours at night, and demand trough
occurs before dawn. The peak-to-trough ratio is ∼2.2 within
a day, and the average utilization is∼65%, both implying that
there are abundant resources to be exploited in the inference
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Figure 1: Inference cluster GPU utilization, i.e. fraction of GPUs serving
at least one request, in our inference cluster. The measurement spans one
week’s time from Oct 1 to Oct 7, 2020. The cluster has about 4,000 GPUs.
In peak hours GPU utilization approaches 95%.
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Figure 2: The fraction of queuing jobs among all the newly-submitted jobs
in each hour in our training cluster for one week’s time. A job suffers queuing
time when the scheduler fails to satisfy its resource demand in the first try. If
the ratio is high, it means most of the jobs submitted in that hour is queued.
The cluster has ∼3,500 GPUs and the average utilization is 82%.

cluster for extended periods of time.
Long queuing time for training jobs. Turning to the train-
ing cluster, a salient observation we make is that many train-
ing jobs experience long queuing time before they can be
dispatched with enough resources. Figure 2 depicts the hourly
queuing job ratio in our training cluster for the same week as
in Figure 1. A significant fraction of jobs (as high as 100%)
still have to wait for resources from time to time. The aver-
age queuing time is longer than 3,000 seconds and certainly
non-negligible. resolve their queuing delay.

The long queuing time is not only due to lack of resources.
In fact, the average GPU utilization across the same period
of time is 82%, which means there are often idle GPUs. The
dynamic training demand certainly also contributes to the
long queuing time. In addition, training demand does not
exhibit a clear pattern for prediction.
Capacity loaning. We propose to exploit the unused infer-
ence resources in demand trough to run training jobs temporar-
ily, i.e. loaning inference capacity for training. It mitigates
both above problems at the same time: The inference clus-
ter is better utilized, and training jobs have more resources
to help reduce queuing time. The on-loan capacity can be
reclaimed dynamically in case the inference traffic spikes to
ensure quality of service.

Though training jobs typically request specific GPUs, we
find that up to 21% of jobs in our production traces do not do
so and can work with any GPU types. Aryl can launch these
jobs on the loaned inference servers rather than waiting for
training servers. To ensure feasibility, we may need to adjust
the batch size of the training job so that the models and the
intermediate data can fit into the smaller inference GPU mem-
ory. This is straightforward since we know the GPU memory
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(a) ResNet - Acc: 74.2%(-0.14%)

0 5 10 15 20 25 30
Epochs

0
3
6
9

12
15

Th
ro

ug
hp

ut
 (1

03  i
m

g/
s)

(b) VGG - Acc: 88.5%(+0.03%)
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(c) BERT - F1: 88.43(-0.71)
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(d) GNMT-16 - BLEU: 25.4(-1.2)

Figure 3: Throughput of four elastic training jobs using Tesla V100 GPUs.
In our testbed, each server hosts 8 GPUs connected by NVLink. Servers
use 100G InfiniBand interconnects. Each worker container uses 2 GPUs.
The workers are doubled every 5 epochs, starting from 1 worker. We list the
performance and the gap with inelastic training in the brackets.

differences; more details can be found in Appendix §E.
Another more aggressive way to exploit the borrowed

servers is to run a training job on heterogeneous GPUs,
i.e. using both training and inference GPUs (e.g. V100 and
T4). Heterogeneous training further improves the scheduling
flexibility with more performance gains potentially. How-
ever, it requires delicate systems and algorithm support to
work well, since the workers have to adopt different hyper-
parameter settings and inherently make progress at different
paces [8, 33, 38, 57]. Given that heterogeneous training re-
mains an active research topic, our production training sys-
tem only provides experimental support for it at the moment.
Aryl’s design does not depend on it, and we evaluate the effect
of heterogeneous training on Aryl in §7.2 when it is enabled
for a small fraction of our jobs with non-ideal performance.

2.2 Elastic Scaling for the Full Potential

To better cope with the constantly changing cluster capac-
ity and further exploit the loaned inference resources, Aryl
considers elastic scaling. Recently, elastic scaling has been
introduced into ML frameworks [1, 5, 36] where a job can
take a variable number of workers according to resource avail-
ability. One can even adjust the number of workers on-the-fly
when the job is running.

Elastic scaling can greatly facilitate capacity loaning. With
additional resources, training jobs can dynamically scale out
to use more workers with more inference GPUs to acceler-
ate training (provided they are running on inference GPUs
already). When the cluster experiences high loads, some jobs
could scale in to free some servers. In addition, when va-
cating the inference resources so they can be reclaimed, the
scaling-in operation reduces the need of completely preempt-
ing the jobs which incurs high overheads with checkpointing,
re-launching containers, etc. An acute reader might be won-
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dering about the feasibility and benefit of elastic scaling in
general. Indeed, besides the scalability issue of distributed
training systems [22, 24, 41, 56], when we change the number
of workers on-the-fly, the training hyperparameters may have
to be updated as well in order to cope with the new setup.
This can be fairly complex: for example, simply keeping the
local batch size unchanged and linearly increasing the global
batch size may impede the convergence of the model [17].

Thus in Aryl, elastic scaling is only adopted for jobs that
scale well to changing number of workers without updating
the local batch size. Existing studies [9, 23, 29, 30, 58] show
that certain models like ResNet [21] and BERT [13] satisfy
this requirement. We also find that, as shown in Figure 3,
ResNet-50 [21], VGG16 [46], BERT [13], and GNMT-16 [53]
all enjoy good throughput scalability and are well-suited for
elastic scaling. Our traces reveal that these large jobs account
for 36% of training cluster resources with an average running
time of 14.2 hours, suggesting ample potential gains using
Aryl. For these jobs Aryl also restricts itself to limited elastic-
ity where the worker number varies within a range, beyond
which more complicated hyperparameter tuning becomes nec-
essary and thus out of scope.

2.3 Existing Cluster Schedulers

Much prior work exists on GPU cluster scheduling amid the
proliferation of DL workloads. Aryl differs from them mainly
in two aspects.

First, capacity loaning represents a new angle to the cluster
scheduling problem few have studied. Though shared infras-
tructure is exploited by recent systems [28, 48, 49, 51, 52, 62],
their focus is to schedule multiple types of workloads in a sin-
gle cluster. Aryl instead focuses on virtually loaning resources
between two different clusters. Specifically, it considers the
problem of how to reclaim the transient on-loan resources
while minimizing its negative impact on training jobs running
on them (§4), which has not been considered before. Further,
Aryl takes advantage of elasticity of training jobs to better
utilize the dynamic cluster resources.

Second, some recent studies also considered scheduling
elastic jobs. Gandiva [54] adopts an opportunistic approach to
grow or shrink of number of GPUs used by a job without con-
sidering cluster-wide efficiency. AFS [22] greedily prioritizes
the jobs with the highest throughput per GPU. Pollux [42]
co-optimizes both resource allocation and hyperparameter of
DNN jobs to achieve high resource efficiency.

Compared to them, Aryl exploits the interplay between
elastic scaling and capacity loaning to further improve the
performance which has not been explored. In terms of techni-
cal approach, Aryl preserves the problem nature of scheduling
elastic jobs and treats it as a variant of the knapsack problem,
enabling it to make globally good allocation decisions and
outperform greedy local heuristics in prior work. Though Aryl
does not consider tuning hyperparameters, it can be readily

Job Queue
② Jobs & Resource

Resource 
Orchestrator

Job Scheduler

(c)
Loan

Reclaim
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Allocate

(d) Notify Preemption

Training Inference

 Reclaim 

(a) Loan/Reclaim
Amount

Job Profiler

① 
Profile (b) Select 

to Reclaim
④ Preempt⑤

Interrupted Jobs

Figure 4: Aryl system architecture. Solid lines indicate control flow and
dashed ones data flow. Red lines represent capacity loaning workflow, while
blue ones elastic scaling workflow. Each square represents a GPU server; the
gray ones are in use.

integrated into Aryl to provide even better performance (§7.4).
More details on the differences between Aryl and existing
schedulers are presented in Appendix §F for brevity.

3 Design Overview

In this section, we describe Aryl’s overall architecture and the
key design questions we need to address.
Overall architecture. Aryl is a GPU cluster scheduler that
exploits capacity loaning with elastic job scheduling. It runs
on top of a cluster resource manager such as YARN [50] and
Kubernetes [3] to execute its decisions.

Figure 4 presents Aryl’s architecture. At the cluster level,
the resource orchestrator obtains instructions from the infer-
ence cluster about the number of servers to loan or reclaim (a),
determines which servers shall be returned for reclaiming (b),
and commands the underlying resource manager to move the
selected servers virtually across management boundaries to
enforce the decisions (c). When the orchestrator reclaims on-
loan servers, it may need to preempt the training jobs running
on them (d). Job preemption is executed via the job scheduler.

At the job level, jobs are submitted to the job queues. The
job profiler estimates the workload 1 after jobs are enqueued.
The job scheduler 2 periodically collects job status and re-
source usage of the training cluster. Then it 3 computes
the resource allocation and placement decisions for each job.
Meanwhile, it gets preemption instructions from the orchestra-
tor, interrupts the running jobs 4 , and puts them back to the
job queues 5 . Job launching, scaling and interruption actions
are again executed by the resource manager. Job scheduler
works periodically in a much smaller interval than the orches-
trator in order to better handle job dynamics.

Since Aryl mainly deals with the training cluster and does
not interfere with inference cluster scheduling, we use “jobs”
to simply refer to training jobs hereafter without ambiguity.
The basic unit of capacity loaning is a physical server. This
is to prevent training jobs from interfering with the inference
jobs on the same server [16].
Key questions. Aryl’s design is centered around two key
questions.
• Server reclaiming. Which servers should be returned so

that the number of preempted jobs is minimized, when some
on-loan servers need to be reclaimed?
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• Job scheduling. How should we determine resource allo-
cation across jobs, and how do we place a job’s workers on
servers, when some jobs are elastic and some servers are
loaned from the inference cluster?

We now present how we address them with Aryl’s detailed
design in §4 and §5, respectively.

4 Loaning and Reclaiming Inference Servers

Aryl moves resources dynamically across inference and train-
ing clusters to improve utilization and training performance.

We presume that the inference cluster scheduler dynami-
cally estimates the capacity needed to meet the latency, GPU
utilization [4], or other performance targets, based on the
predicted inference traffic [11, 20, 44]. Inference workloads
are able to grow or shrink their containers along with the in-
coming traffic. Inference scheduler informs Aryl’s resource
orchestrator of (1) the amount of resources available for loan-
ing when traffic is low, and (2) the amount of resources to
be reclaimed from training in busy hours if any. That is, the
inference cluster scheduler completely determines when and
which servers to lend, and when and how many servers to
ask back, based on its own policy. This way the inference
performance is not affected by capacity loaning.

The key question for the training scheduler is the reclaim-
ing mechanism as mentioned in §3, i.e. which on-loan servers
should be returned given the number of servers needed by
the inference scheduler. This matters because reclaiming a
server entails preempting all its running jobs immediately.
A job with checkpointing incurs overheads to save and load
the checkpoint when resuming training later. If the job does
not involve checkpointing [31], its entire progress is lost and
training has to restart from the very beginning. To use check-
pointing or not is solely controlled by the user. Therefore,
the scheduler needs to minimize preemptions by strategically
picking the servers to return, especially considering that it
is actually common in our environment for jobs to not have
checkpointing.
Minimizing preemptions. Vacating an on-loan server means
its jobs are preempted in a cluster with no elastic jobs. We
start with how Aryl minimizes inevitable preemption under
this case. and will explain how elastic scaling plays its part in
minimizing preemptions in §5.3.

Denote the number of servers that need to be returned at
this point as NR. Our problem is to pick NR on-loan servers—
which host inelastic jobs’ workers—in order to minimize
preemptions. More concretely, we choose to minimize the
number of preempted jobs so fewer users are affected. This
implies when reclaiming a server, we prefer the one with a
big job to the one with a few small ones.

The problem closely resembles the classic knapsack prob-
lem (i.e. the 0-1 knapsack problem): The number of servers
to reclaim NR can be considered as the capacity of the knap-
sack; each server consumes one unit capacity, and the num-
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c c d d
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Figure 5: A reclaiming example. Each server has 8 GPUs. GPUs in-use are
indicated by the job ID inside each square. GPUs with the same color are
hosting the same job.

Server # running jobs sum of job’s GPU fraction sum of job’s server fraction
1 1 0.5 0.5
2 1 0.5 0.5
3 1 1 1
4 1 0.8 0.5
5 2 0.4 1
6 1 0.8 0.5

Table 1: Different definitions of server preemption cost for the reclaiming
example in Figure 5.

ber of running jobs is each server’s preemption cost (i.e.
value). However, the server’s preemption cost actually has
inter-dependencies that make the problem more difficult.

Consider an example as depicted in Figure 5. Table 1
shows each server’s preemption cost as the number of its
running jobs (second column). Suppose we need to reclaim
two servers. Servers 1 and 2 are obviously the optimal choice
with one preemption. Yet the corresponding knapsack prob-
lem would select any two 1-cost servers such as 3 and 4 which
lead to more preemptions. The issue here is that in our prob-
lem the costs of servers are coupled when they host the same
job(s), whereas in the 0-1 knapsack problem the cost is inde-
pendent of each other. Reclaiming server 1 for instance results
in an idle server 2 whose cost becomes 0 instead of 1.

Knapsack problem with dependent item values is known
to be NP-hard [32]. When NR is one server, selecting the
one with fewest preemptions is simply by iterating all the
on-loan servers. Given an NR larger than a single server, we
propose to resolve the dependency by treating it as part of
the server preemption cost. One possible way is to define
server preemption cost as the sum of the GPU fractions of
each job on the server. For instance, server 4’s cost would be
0.8 as it hosts 80% of job c’s GPUs, and server 5’s cost is 0.4
(0.2+0.2) as shown in Table 1. One can immediately see that
this does not work well as it does not capture the job count.
It causes server 5 to be selected with the least cost, which
actually leads to two preemptions. Thus we choose to define
server preemption cost as the sum of the server fractions of
each job as shown also in Table 1. This way server 5’s cost is
0.5+0.5=1, i.e. the highest.

Once the preemption cost of each server is computed, the
orchestrator selects the servers using the following heuristic:
it iteratively picks the server with the lowest preemption cost,
preempts its jobs by removing them from all their servers, and
updates the cost of these servers correspondingly, until NR
servers are vacated. Appendix §B summarizes the complete
reclaiming design.
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Job wmin wmax Min. running time
A 2 6 50
B 2 6 20

Table 2: Two elastic jobs and their demand information. Jobs completes in
min. running time when allocated with wmax workers.

Solution Initial allocation JCT Average
JCTA B A B

1 6 2 50 53.33 51.67
2 2 6 63.33 20 41.67
3 4 4 60 30 45

Table 3: Possible resource allocation results for the two jobs when they share
a cluster that can host 8 workers. Only the initial allocation is shown; once
the first job finishes, the other is immediately allocated more resources as
much as possible. Three solutions lead to very different JCTs.

5 Job Scheduling

Aryl schedules jobs—both inelastic and elastic—to reduce
overall JCT by utilizing resources as efficiently as possible.
We start by explaining the challenge due to elasticity (§5.1).
Then we present the solutions to the two facets of our schedul-
ing problem. The first is resource allocation with both elastic
and inelastic jobs, i.e. how to determine the number of work-
ers each job gets (§5.2); the second is placement, i.e. which
servers to place a job’s workers on (§5.3). Here we assume
that training throughput scales linearly with the number of
workers within the scaling range, as discussed in §2.2.

5.1 Challenge of Elasticity
Job elasticity presents a unique challenge to resource alloca-
tion. Conventional schedulers either deal with jobs with fixed
demands, or ones that can arbitrarily scale [22, 42]. However,
for jobs with limited elasticity [36], the question of how to
arbitrate resources so as to minimize average JCT is intricate.

Let us consider a simple example as shown in Table 2.
There are two elastic jobs with different minimum running
times when allocated their maximum demand. Assume the
cluster has eight workers in total. Table 3 shows three com-
mon allocation strategies and the corresponding JCT perfor-
mance. In solution 1, we favor job A by giving it the maximum
demand; in solution 2, we favor B instead; and in solution
3 we equally allocate resources to them. All three strategies
lead to different JCTs and the difference between the worst
and best is 24%, demonstrating that inefficient allocation can
lead to poor JCT performance.
Classic algorithms are not optimal. One may be wondering
if the classic shortest (or smallest) job first strategies would
work here. At least in the example of Table 2, the optimal
allocation is indeed to first satisfy job B, which has the shortest
running time. Yet, we can construct a counter example as
depicted in Table 4 to show that this does not always work.
We slightly modify job A to have a maximum demand of 3,
and minimum running time of 100; other setup is identical
to Table 2. In this case, if we satisfy B first, the average JCT
(63.33) is actually worse than satisfying A’s demand first (62).

Intuitively, shortest job first, or SJF, is designed for fixed

Job wmin wmax Min. running time JCT when favored Avg. JCT
A 2 3 100 A: 100, B: 24 62
B 2 6 20 A: 106.67, B: 20 63.33

Table 4: A counter example with two elastic jobs, where prioritizing A with
longer running time is actually better for JCT.

job running times with the intuition that each job should be
given the least queuing time, which is the only variable in
computing JCT [45]. In our case, job running time itself varies
along with the resource allocated, which in turn affects the
overall JCT and makes the problem more complex.

More specifically, the above examples reveal two charac-
teristics of elastic job’s running time that SJF cannot handle.
(1) Elastic scaling complicates the job sorting decision of SJF.
Since job running time varies with resource allocated, it is
no longer apparent that we simply sort them based on their
minimum running time. As shown already, doing so does not
lead to the optimal result. (2) The resource efficiency of each
job is different. In Table 4, job A has a larger workload (i.e.
product of maximum demand and minimum running time)
than B, implying that the running time improvement of A is
larger than that of B if both are given the same number of
workers. Even though the resource allocation difference is
merely one when we prioritize different jobs, job A’s running
time contributes to a 6.67-second JCT reduction while job
B’s only increases by 4 seconds.

In the simplest two-job case, we can analyze the outcome
of different allocation strategies. In Appendix §C, we provide
a complete theoretical analysis of this case. Allocation in
the general case is undoubtedly more complicated with more
elastic jobs plus inelastic jobs, as the optimal strategy requires
enumerating the exponentially many possible resource alloca-
tions. Our quest in the following is therefore to find a good
heuristic for the problem.

5.2 Two-Phase Resource Allocation
Intuition: Prioritize inelastic workload. To ease the chal-
lenge of elasticity, our insight is that an elastic job has two
types of demand: a base demand that is inelastic in nature, i.e.
the minimum demand, and a flexible demand that is elastic.
They should be treated separately: The base demand essen-
tially corresponds to an inelastic job whose allocation strategy
is binary, and not allocating resources to it incurs more queu-
ing delay to the job. In contrast, the flexible demand can be
unfulfilled without serious impact since the job is still making
progress with base demand.

Therefore, we treat the inelastic workload, including elas-
tic jobs’ base demands and inelastic jobs, as the first class
citizen. We schedule them first with all available resources to
minimize the average JCT. This also avoids starvation. Then
in phase two, we consider the flexible demand of elastic jobs
to fully utilize the remaining resources from phase one.
Setup and assumptions. We focus on solving the offline set-
ting myopically where the set of jobs and resources are given,
and cope with the job dynamics and cluster capacity change
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Job BJob A

1 1
2

3
4

Group Item Weight JCT Reduction Value
A 1 2 50

B

1 1 20
2 2 30
3 3 36
4 4 40

Figure 6: Item weights and JCT reduction values for jobs in Table 4. Here,
we assume job A needs 2 GPU per worker and job B 1 GPU per worker.

by periodically performing scheduling in high frequency. This
is common in the literature [15, 60]. Our scheduling solution
is non-preemptive to minimize disruptions to training; pre-
emption only happens during reclaiming when it becomes
inevitable as in §4. Thus at a scheduling epoch, the set of
available resources refer to idle GPUs and GPUs being used
by flexible workers for resizing (including on-loan GPUs),
and the set of jobs include those waiting in the queue and
running elastic jobs (only flexible workers). The on-loan in-
ference GPUs are normalized relative to training GPUs when
calculating the resource capacity.

We rely on job’s running time information (min. running
time for elastic jobs), which can be predicted with profiling
and ML methods [59, 61]. Details can be found in §6 and the
effect of prediction error will be discussed in §7.5.
Two-phase heuristic design. We now elaborate our heuristic.
The problem in phase one is how to minimize average JCT
for jobs with fixed demands and known running times, for
which we adopt the shortest job first (SJF) policy [14] which
is a sensible and commonly used solution. As long as there
are idle GPUs and pending jobs, we schedule job j∗ with the
smallest running time. If demand of j∗ exceeds the remaining
capacity, we remove it from the pool and continue.

Phase two is more interesting. We must determine the num-
ber of additional GPUs elastic jobs get to maximize the JCT re-
duction. Note elastic jobs here include those already running.
It turns out this problem can be transformed into multiple-
choice knapsack problem [47]: The knapsack’s capacity is
the number of remaining GPUs. An elastic job j is a group
with wmax

j −wmin
j items, each representing a possible alloca-

tion result for j’s flexible demand. An item’s weight is the
number of GPUs required for this allocation, and its value is
the JCT reduction it brings over the job’s maximum running
time. Figure 6 illustrates this transformation with the two-job
example in Table 4. The problem is to pack the items into
the knapsack so that the total value is maximized, with the
constraint of taking exactly one or zero item from each group.

The multiple-choice knapsack problem, similar to the clas-
sical knapsack, is NP-hard and often solved by dynamic pro-
gramming which runs in pseudo-polynomial time [47]. With
a moderate number of GPUs and jobs, dynamic programming
can usually solve the instance efficiently. Appendix §D shows
the complete algorithm.

5.3 Worker Placement
Given the allocation results, i.e. number of workers each job
gets, we need to determine the placement of each worker.

Our fundamental strategy is bin packing with best-fit decreas-
ing heuristic [37]. Elastic jobs are preferably placed on the
inference servers to maximize the potential for scaling in dur-
ing reclaiming and reduce job preemptions while inelastic
jobs are placed on training servers whenever possible. §7.2
presents how this placement strategy helps reduce the job
preemptions in reclaiming the on-loan servers when there are
elastic jobs.

Given the allocation results, i.e. number of workers each job
gets, we still need to determine the placement of each worker
to complete scheduling. Our goal is to reduce fragmentation.
The primary concern is the mix of inelastic and elastic jobs
as well as the transient on-loan servers with different GPUs.

Our fundamental strategy is bin packing with best-fit de-
creasing (BFD) heuristic [37]. Jobs are sorted in decreasing
order of their per-worker GPU demand as GPU is most likely
the bottleneck resource for training. Starting from the largest
job, we place each worker of the job into a non-empty server
that best fits its demand; if none has sufficient remaining re-
sources, we place it on a new server. If the job is elastic, we
prefer to place it on inference servers in order to maximize the
potential for scaling in during reclaiming and reduce job pre-
emptions. If it is inelastic, we prefer to placing it on training
servers. When placing elastic jobs, we also place their base
and flexible demands on separate groups of inference servers
so that during reclaiming (§4), Aryl can release the server
group for flexible demands first without any preemption to
see if this alone is sufficient.

6 Implementation

We have implemented a prototype of Aryl with about 3500
lines of Python. The prototype works with our existing YARN
and Kubernetes deployment to move servers across clusters
virtually, manage worker containers for training, and monitor
the status of servers and workers. The reclaiming and schedul-
ing algorithms are implemented following Algorithms 1 and
2 in Appendices §B and §D.

We highlight key details of the implementation as follows.
Interface for capacity loaning. We create a whitelist API
to facilitate capacity loaning operations. Both Aryl’s sched-
uler and the inference scheduler maintain their own whitelist
of servers under their control. Aryl’s orchestrator adds on-
loan servers to job scheduler’s whitelist during loaning and
removes the selected servers during reclaiming after its sched-
uler confirms they no longer have running workers.
Data locality and resource isolation. Aryl performs capac-
ity loaning only between clusters in the same datacenter to
ensure the network bandwidth across servers is consistently
high. Also, the basic unit of loaning is a physical server so
co-location of inference and training jobs is not possible, and
no additional isolation mechanisms are needed.
Enable elastic scaling. We enable elastic training with a few
modifications to the ML frameworks. We embed a controller
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process to each elastic job that coordinates the worker join
and departure. Base demand guarantees the gang scheduling
of minimum requests and the flexible demand shortens the
running time whenever possible while preserving loss conver-
gence. Some recent work [36, 55] developed more complete
scaling solutions that our implementation could also utilize.
Job running time estimation. Aryl’s job scheduler relies on
the running time estimated by the job profiler. We implement
a simple profiler based on the properties of the training jobs.
For the planned routine jobs, the profiler estimates based on
the history runs of the same job. For those ad-hoc exploratory
jobs, we adopt the prediction model in [59] for estimation.
Heterogeneous GPU training. As discussed in §2, some
training jobs can run on heterogeneous GPUs experimentally.
When this feature is turned on, Aryl’s job scheduler places
them lastly on the remaining resources. The actual scheduling
logic for these jobs remains the same , except that if they are
elastic, their base demands are placed on training servers, and
flexible demands on inference servers whenever possible.

7 Evaluation

We evaluate Aryl using both large-scale simulations and
testbed experiments with traces from our production clusters.
The highlights of our findings are:

• In large-scale simulations, Aryl’s benefit is more salient
with 1.53x and 1.50x reductions on average queuing time
and JCT, respectively. Capacity loaning has a factor of
1.39 and 1.33 reductions in average queuing time and
JCT. Elastic scaling leads to reductions of 1.35x and
1.38x in average queuing time and JCT.

• Compared to state-of-the-art scheduler Pollux [42],
Aryl’s scheduling algorithm brings 1.35x average queu-
ing time and 1.42x average JCT reductions when both
consider tuning the training hyperparameters. Aryl’s re-
claiming algorithm performs comparably against the
optimal solution with only 1–3ms running time.

• In testbed, Aryl improves average job queuing time by
1.38x and average JCT by 1.22x over the baseline with-
out loaning or scaling. Preemption only happens to∼9%
of the jobs in reclaiming with an average 63-second
overhead.

These benefits are achieved with only ∼5% of the jobs being
elastic as discussed in §2.2.

7.1 Setup

Traces. We rely on a 15-day job trace from one of our produc-
tion training clusters with 3,544 GPUs (443 8-GPU servers).
There are 50,390 training jobs, and job running time range
from minutes to days. We also use a GPU utilization trace
from the inference cluster for the same time period. Part of
the traces have been shown in Figures 1 and 2 already.

Simulator. We built a discrete-event simulator for evaluating
Aryl at scale using job traces from production. It simulates
the cluster scale, hardware configuration, and all job events
including arrival, completion, scaling, and preemption. Job’s
running time in the simulator is derived from actual training
time in the traces. For elastic jobs, we compute its actual train-
ing time based on the traces which is inversely proportional
to its resource allocation as discussed in §5. We also evaluate
Aryl when jobs have imperfect scalability in §7.2.
Testbed. Our testbed consists of four 8-GPU training servers
and four 8-GPU inference servers. Each training server uses
Nvidia V100 GPUs with 32GB GPU memory and has 92
vCPU with 350 GB memory. Each inference server uses
Nvidia T4 GPUs with 16GB GPU memory and has 92 vCPU
with 210 GB memory. The resource management framework
is YARN, and training data is stored in HDFS.
Scenarios. We consider various scenarios with different de-
grees of support for elastic scaling and heterogeneous training,
both of which are not widely used today.

• Basic: Only large jobs with good scalability as discussed
in §2.2 (∼5% of all jobs) support elastic scaling within
a given range. No heterogeneous training. This corre-
sponds to the status quo in our environment and is the
default scenario.

• Advanced: On top of Basic, 10% jobs can run on hetero-
geneous GPU with non-ideal performance. Specifically,
heterogeneous training jobs only achieve at most 70%
of the ideal results. We present an empirical analysis of
heterogeneous training performance in Appendix §A.

• Ideal: All jobs support scaling and heterogeneous train-
ing with ideal performance.

Schemes compared. We compare Aryl to the following
schemes that represent the state-of-the-art and/or the most
common solutions to each sub-problem of Aryl. We consider
two basic strategies for server reclaiming:

• Random: On-loan servers are randomly selected.
• Smallest (Job) Count First (SCF): The top-k servers that

host the smallest number of jobs are chosen.
We consider several solutions to elastic scheduling. Some are
slightly modified to conform with our setup for elastic jobs.

• Gandiva [54]: Elastic scaling is also mentioned in Gan-
diva. It exploits elasticity by scaling out jobs to utilize
the remaining resources on servers whenever they are
under-utilized. We consider under-utilization to be the
period when there are available resources but no pending
jobs.

• AFS [22]: It allocates one GPU to each job first and iter-
atively gives one more GPU to the job with the largest
marginal throughput gain. We implement AFS by allo-
cating base demand to each job first and allocating one
more worker to the job with the largest throughput gain
per GPU.

• Pollux [42]: Pollux computes the goodput of training
jobs and applies genetic algorithms to find the resource
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# Scenario Solution Queuing Time (s) JCT (s) GPU Usage Preemption

Mean Median 95%ile Mean Median 95%ile Training Overall 1 Ratio 2

1 Baseline — 3072 55 8357 16610 791 82933 0.72 0.52 0

2 Basic 2008 25 3356 11089 567 56477 0.86 0.66 10.20%
3 Advanced Aryl 1833 23 3238 10402 523 56553 0.87 0.69 7.05%
4 Ideal 1157 22 3197 8874 417 41146 0.92 0.72 5.57%

5 Random 2843 23 5471 14657 703 62912 0.76 0.64 20.89%
6 Capacity Loaning SCF 2791 24 4991 14965 692 62451 0.76 0.66 18.74%
7 Aryl 2204 23 3418 12414 655 57982 0.76 0.66 12.34%

8

Elastic Scaling
(Basic)

Gandiva 3035 49 6632 15912 755 80567 0.79 NA NA
9 AFS 2284 47 3488 15045 686 60883 0.95 NA NA
10 Pollux 2791 58 5883 14534 721 72123 0.93 NA NA
11 Aryl 2275 47 3475 12048 602 57597 0.92 NA NA
12 Aryl+TunedJobs 2054 43 2749 10229 564 52458 0.91 NA NA

(1) Overall GPU usage denotes the GPU utilization in both training and inference cluster. It is applied when the training cluster size is changing in capacity loaning.
(2) Preemption ratio is the ratio between total number of preemptions and the total number of job submissions.

Table 5: Simulation results using different solutions.

Scenario Avg. Queuing Time Avg. JCT Preemption Ratio

Basic 2231 13864 12.56%
Advanced 1950 12237 10.28%
Ideal 1257 9751 11.89%

Table 6: Performance without special placement of elastic jobs. Aryl naively
places jobs based on the BFD heuristics.

allocation. It also adjusts batch size to maximize goodput
and learning rate based on Adascale [25]. We adopt the
model distribution listed by Pollux to capture the model
goodput.

We notice that Pollux’s idea of tuning the hyperparameters
according to allocated resources is orthogonal to job schedul-
ing. To compare with Pollux fairly, we integrate this idea into
Aryl in §7.4:

• Aryl+TunedJobs: Use Aryl’s job scheduler and adapt
Pollux’s job agent for job-level hyperparameter-tuning
within the scaling range. Job agent adjusts model batch
size and learning rate whenever job resource allocation
changes.

We consider Baseline to be a FIFO cluster scheduler with
no capacity loaning or elastic scaling.

7.2 Overall Performance in Simulation
We evaluate Aryl thoroughly with large-scale simulation. We
first provide overall performance of Aryl. Analyses of its
individual components are presented in §7.3 and §7.4.
Simulator fidelity. To first establish its fidelity, we evaluate
our simulator against the prototype system in testbed with the
small trace. We add 63-second overhead whenever a job is
preempted in simulation. The simulation results are similar to
testbed results, with a difference of 6.2% and 3.4% in average
and 95%ile JCT, and 3.5% and 4.4% in average and 95%ile
queuing time. The small difference mainly stems from the
overhead of placing workers and moving resources between
clusters which the simulator does not capture.
Cluster scale and workload. We use the full 15-day trace
and the same cluster configuration as our production clusters.
Queuing time, JCT, and cluster usage. Table 5 records the

performance of Aryl in different scenarios. Overall, queuing
time and JCT are improved by 1.53x and 1.50x when com-
paring to Baseline in the Basic scenario (row 2). The overall
cluster usage is improved by 26.9%. In the Advanced case
with non-ideal heterogeneous training, queuing time and JCT
are reduced by 1.68x and 1.60x over Baseline and by 1.10x
and 1.07x over Aryl itself in the Basic scenario. In the Ideal
case which represents the performance upper bound, the aver-
age combined usage of the inference and training clusters is
improved by 38.5% (to 72%) in Baseline. Compared with the
Basic case, average queuing time and JCT in the Ideal case
show additional 1.12x and 37% improvements by virtue of
complete job flexibility and perfect performance scalability.

Since the training cluster resource is dynamically changing,
we depict the hourly combined cluster usage for 48 hours
in Figure 9. The Baseline usage curve shows a clear diurnal
pattern mostly attributable to the inference cluster. When
capacity loaning is enabled, Aryl improves the usage and
flattens the curve; the most significant improvement is a 14%
usage increase between Basic and Baseline. The combined
usage does not reach 100% as the inference cluster needs
some headroom to gracefully handle the latency SLA.

Gain from capacity loaning. We disable elastic scaling in
Aryl and evaluate its gain over Baseline to understand the
benefit of capacity loaning. Table 5 (row 7) shows that loaning
alone reduces average queuing time and JCT by 1.39x and
1.34x over Baseline. Loaning also improves the combined
cluster usage from 52% to 66%. We observe that the JCT
improvement is not as significant as elastic scaling (row 11).
This is mainly because (1) loaning depends on idle inference
resources and its gain is less stable, and (2) compared to
scaling, loaning itself does not affect job running time.

How scaling helps capacity loaning? We now seek to un-
derstand how our two key ideas interact and complement
each. Scaling helps capacity loaning, especially in reducing
preemptions in reclaiming the on-loan servers. With elastic
scaling disabled, Table 5 shows that preemption as percentage
of running jobs increases from 10.20% (row 2) to 12.34%
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Queuing Time (s) JCT (s)

Mean Median 95%ile Mean Median 95%ile

Baseline 4573 1283 23351 11547 2122 60170
Aryl 1029 272 7249 6832 1256 35604

Table 7: Queuing time and JCT of jobs running on
on-loan servers.
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Figure 7: The daily average resource usage of on-
loan servers (monitored every 5 minutes).
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Figure 8: Preemption ratio and average collat-
eral damage comparison in simulator.

Figure 9: Overall resource usage rate in differ-
ent scenarios.

Figure 10: Queuing time
and JCT degradation in
imperfect scaling.

(row 7). We also observe that on average the flexible server
group (hosting flexible workers only) alone satisfies 52.6%
of reclaiming demand each time. With more aggressive flex-
ibility (row 4), preemption is reduced to 5.57% and satisfy
82.4% of reclaiming demand each time.

In §5.3, we discussed how Aryl places elastic and inelastic
jobs with on-loan servers in the cluster. In Table 6, we com-
pare the placement performance in different scenarios without
special treatment to elastic jobs, i.e. instead of grouping their
flexible demand and placing to on-loan servers as much as
possible, the scheduler places them to training servers first
just like inelastic jobs. The most significant difference is in
preemption ratio. Without grouping the flexible demand, pre-
emption ratio increases by up to 113% in Ideal (compared
to Table 5 row 4). Preemptions also incur degradation to job
runtime; for example average queuing time and JCT in the
Basic case increase by up to 10% and 20%.
Impact of imperfect scaling Thus far we have assumed lin-
ear scalability of elastic jobs based on our empirical analysis
in §2.2. Here we also evaluate Aryl’s performance where
elastic jobs scale imperfectly with throughput loss. Specifi-
cally, whenever a job scales beyond the midpoint of its scal-
ing range, its throughput suffers additional 10% loss from
the ideal performance each time it scales one step further.
Figure 10 presents the queuing time and JCT degradation
compared with linear scalability in Basic and Ideal scenar-
ios. In Basic, average queuing time and JCT are 4% and 12%
higher than those with linear scalability (Table 5 row 2). Since
Aryl prioritizes base demand, queuing time does not degrade
much even in the Ideal case. Yet average JCT is inflated by
19% to 10,564 seconds (compared to Table 5 row 4).

7.3 Deep-Dive: Capacity Loaning
We first focus on capacity loaning, aiming to understand
its sources of gain and how our knapsack-based reclaiming
heuristic (Algorithm 1) compares to other schemes. The re-
sults here are obtained without elastic scaling.
Sources of gain. The JCT improvement mainly comes from

reduction in queuing time as jobs now can run on the loaned
resources instead of waiting in the queue. Table 7 shows
the statistics of queuing time and JCT for jobs running on
the on-loan servers. The median and 95%ile queuing time
is improved by 4.72x and 3.22x, respectively, compared to
Baseline. The resource usage rate of on-loan servers through-
out the experiment is consistently above 93% as depicted in
Figure 7, which proves the effectiveness of resource loaning.
Reclaiming heuristic. We compare our reclaiming heuristic
to Random and SCF. We consider two metrics, percentage of
preempted jobs among running jobs, and collateral damage
as the fraction of GPUs vacated in excess of the reclaiming
demand. It is clear from Figure 8 Aryl outperforms other
solutions with and without elastic scaling. Without scaling,
Aryl’s knapsack-based heuristic reduces preemption and col-
lateral damage by 1.5x, 1.67x and 1.37x, 1.59x over SCF and
Random, respectively. With scaling, Aryl scales elastic jobs
on the flexible server group first which further widens the
gap. From Table 5, it is clear that reducing preemptions is
beneficial: Aryl reduces the average queuing time and JCT by
1.26x, 1.28x and 1.20x and 1.18x over SCF and Random.

We also run an exhaustive search to find the optimal re-
claiming solution as the upper bound. Aryl results in the same
number of preemptions as optimal when reclaiming fewer
than 60 servers, and incurs 19% more preemptions otherwise.
Aryl’s reclaiming decision shows an average 84% resem-
blance as the optimal solution. The average running time of
the optimal solution, however, is 420k times that of Aryl.

7.4 Deep-Dive: Job Scheduling
We evaluate job scheduling in more details here. The results
are obtained without capacity loaning in Basic scenario.
Sources of gain. Figures 11–12 plot the distribution of queu-
ing time and JCT for all schemes. Our key insight in solving
the scheduling problem is to prioritize the inelastic workload
(§5.2). Gandiva does not improve Baseline much due to its
opportunistic nature: it only scales jobs in low-utilization
periods. Both Aryl and AFS allocate the minimum demand
to each job initially. From Figure 11, they have similar me-
dian queuing time. Though Pollux considers job’s minimum
demand and favors those with large goodput, it does not ex-
plicitly launch as many jobs as possible, thus incurring longer
queuing time. Aryl outperforms Pollux by 1.23x and 1.69x in
median and 95%ile queuing time.

Turning to JCT, we find from Figure 12 that Pollux tends to
prolong the large-and-long jobs by shrinking their resources
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Figure 11: 50%ile, 75%ile, 95%ile and
99%ile of queuing time (Basic).

Figure 12: 50%ile, 75%ile, 95%ile and
99%ile of JCT (Basic).

Figure 13: Queuing time reduction of
Baseline as elastic jobs increases.

Figure 14: JCT reduction of Baseline
as elastic jobs increases.

towards the end of training to yield for newly-started jobs
that make rapid progress with the same resources. Moreover,
Pollux’s performance heavily hinges upon the problem scale
and the number of iterations allowed for its genetic algorithm.
In a large cluster of over 3,500 GPUs with heavy workload,
the preset 100 iterations are not sufficient to get an efficient
allocation result. To keep the scheduling overhead acceptable,
we set the number of iteration to 250 and Aryl still has 1.20x
and 1.25x improvements in median and 95%ile JCT. AFS
assumes unbounded elasticity and shows a higher resource
usage. However, unlimited elasticity and greedy allocation
implicitly favor jobs with better throughput at the cost of
others. Its average JCT is 1.2x that of Aryl which balances
the resources each job gets by making global allocation and
considering limited elasticity.
Sensitivity analysis: Proportion of elastic jobs. We wish to
analyze whether Aryl is sensitive to the proportion of elastic
jobs in the mix. Figure 13 shows the performance comparison
when elastic jobs grow from 20% to 100% of the population.
All schemes show improvements as a result. Aryl delivers
the largest gains in both queuing time and JCT compared to
other schemes with more elastic jobs, demonstrating that its
scheduler most efficiently exploits job elasticity. AFS also has
good gains in queuing time as it initially allocates minimum
demand to each job. Its JCT gains, however, are much lower
due to the greedy heuristic in ordering the jobs for allocation.
Pollux’s queuing time performance is poor as queuing time is
not considered in its design. Its JCTs are much better because
it auto-tunes the hyperparameters for best performance.
Using hyperparameter tuning. We study Aryl+TunedJobs
now which adapts Pollux’s job agent to tune jobs’ hyper-
parameters as explained in §7.1. In the Basic scenario,
Aryl+TunedJobs (row 12 in Table 5) contributes an addi-
tional 18% and 13% improvements over Baseline in 95%ile
JCT and 99%ile JCT. The improvement is more significant
when all the jobs are elastic as seen in Figures 13–14.

More importantly, Aryl+TunedJobs allows for a fair com-
parison of job scheduling against Pollux as both have hyper-
parameter tuning now. It outperforms Pollux by 1.32x and
1.37x in median and 95%ile JCT in Basic scenario (Figure 12).
Aryl’s gain over Pollux is larger here which shows that Aryl’s
scheduling policy performs better in JCT. The main reason is
that Aryl specifically optimizes JCT while Pollux optimizes
goodput in order to improve resource efficiency. Thus JCT for
some jobs is affected especially near the end of training when
the marginal gain of resources becomes smaller (i.e. goodput

is lower) and resource allocation is decreased. Another side-
effect of goodput-based scheduling is back-and-forth scaling
as goodput varies as soon as hyperparameter or allocation
changes. We find the total scaling times of Pollux is 1.76x
that of Aryl+TunedJobs in the Ideal scenario, and many are
scaling-out followed immediately by scaling-in in the next
interval. This may also degrade JCT.

7.5 Testbed Results
Here we use our prototype in testbed experiments to schedule
jobs and YARN to run, scale, and preempt them on servers.
Workload. We use a scaled-down version of the traces with
180 training jobs with 10 elastic ones (similar to the Basic
scenario); jobs with (maximum) demand larger than 16 GPUs
(50% cluster) are excluded. Job submission in the trace lasts
for 8 hours and training time varies from 2 minutes to 2
hours. The inference trace is also scaled down according to
the testbed capacity.
JCT and queuing time. Table 8 shows the statistics of queu-
ing time and JCT. Aryl improves average and 95%ile queuing
time by 1.38x and 1.36x over Baseline (row group 1). In terms
of JCT, Aryl improves the median and 95%ile by 19.9% and
11.7% over Baseline. The gains come from both capacity loan-
ing and elastic scaling: the orchestrator performed 6 loaning
and 8 reclaiming operations involving a total of 10 servers,
and the scheduler issued 73 scaling operations. In capacity
loaning, Aryl outperforms Random and SCF by 19% and 15%
in average queuing time. In elastic scaling, Aryl’s tail queuing
time is 10% shorter than AFS. Its JCT gain is 1.19x over
Baseline compared to 1.14x and 1.15x for AFS and Pollux.

The results here show that Aryl is highly effective in reduc-
ing queuing time. The JCT improvements are relatively small
due to the inference cluster’s limited resources compared to
job demand. We observe the inference cluster loaned at most
three servers which is equivalent to one training server in com-
putational capability, while it is common for a job to demand
an entire training server in our trace.
Preemption. Aryl reduces preemption significantly by over
1.3x compared to Random and SCF reclaiming schemes (row
group 2). We also measure the preemption overhead, includ-
ing the time to save a checkpoint to the disk, terminate con-
tainers, launch new containers on different servers, and load
the checkpoint before training starts. The average overhead is
63 seconds, which is adopted in our large-scale simulation.
Sensitivity analysis: Error in running time estimation.
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Scenario Solution Queuing Time (s) JCT (s) Preemption

Mean Median 95%ile Mean Median 95%ile Ratio

Basic Baseline 1532 772 1003 4078 2183 3096 0
Aryl 1109 503 738 3335 1747 2731 18%

Capacity
Loaning

Random 1527 658 993 3893 2046 3015 34%
SCF 1473 614 864 3857 1994 3001 30%
Aryl 1230 594 823 3748 1946 2864 22%

Elastic
Scaling

Gandiva 1443 645 1002 3882 2015 2893 NA
AFS 1338 534 882 3521 1836 2803 NA
Pollux 1405 576 937 3552 1934 3004 NA
Aryl 1318 546 798 3413 1791 2794 NA

Table 8: Testbed results using different solutions.
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Figure 15: The number of job preemptions and average collateral damage
comparison in testbed.

Our second sensitivity analysis concerns the running time
prediction which Aryl’s scheduler relies on. Table 9 shows
the performance under different estimation accuracy. Aryl im-
proves queuing delay by 1.76x over Baseline even when there
are 60% wrong predictions (each with at most 25% error). Its
gain is consistent with less than 60% wrong predictions.

8 Discussion

Fine-grained resource sharing. Aryl uses bare-metal ma-
chine as the basic unit of loaning and reclaiming. Our inten-
tion is to avoid interference between training and inference.
This concern can be alleviated by improvements from the
infrastructure (e.g. better isolation mechanisms). Then one
may consider fine-grained sharing on the GPU level, which
allows more sharing opportunities but also demands a more
careful scheduling design because of the larger problem scale.
Performance under scaling. We assume the elastic job’s
training throughput is linear in the amount of allocated re-
sources within the scaling range. In practice training through-
put is likely to scale sub-linearly due to factors such as net-
work communication and synchronization overhead. An im-
proved approach may be to empirically profile the throughput
and running time of the workloads as a non-linear function
of resources. Aryl’s scheduling algorithm still works with
non-linear scaling which does not change the combinatorial
nature of the problem; we provided simulation results in §7.2.
Heterogeneous GPU training. Training with heterogeneous
GPUs is still an active area of research and the current mecha-
nisms are primitive [8]. We observe that though adjusting the
batch size can roughly synchronize the workers, it may pro-
long the convergence of the model in some cases. More effort
is needed to improve training efficiency with heterogeneous
GPUs and to automate hyperparameter adjustment [7, 34].

% wrong prediction Queuing time gain JCT gain

0% 2.37 1.57
20% 2.21 1.52
40% 2.17 1.49
60% 1.76 1.38

Table 9: Queuing delay and JCT gain with incorrect running time estimation.
The fraction of incorrect estimation varies from 0% to 60%. We assume each
incorrect prediction is within an error margin of 25%.

9 Related Work

We now discuss related work not mentioned in §2.
GPU cluster schedulers. There are some schedulers tailored
for GPU training clusters. We have discussed Pollux, AFS,
and Gandiva extensively in §2.3 and §7.2. Tiresias [19] ap-
plies least-attained-service to minimize average JCT. It does
not consider elastic scaling. Optimus [40] schedules jobs with
a online fitting model, which predicts training model’s run-
ning time. PAI [52] introduces a scheduler which reserves
high-end GPUs for high-GPU tasks and packs low-GPU tasks
on less advanced GPUs. These works all schedule jobs in
a cluster with fixed capacity. In Appendix §F, we further
elaborate the differences between Aryl and existing DNN
schedulers.
Systems support for elastic scaling. There is emerging in-
terest in exploiting resource elasticity in distributed training.
Systems such as [1, 2, 5] extend various ML frameworks to
support elasticity. [36] proposes an auto-scaling policy by con-
sidering cost and scaling efficiency and proves that the scaling
overhead is only 4% of checkpointing overhead. AntMan [55]
provides a scaling mechanism to micromanage computation
and GPU memory during training, and a job scheduler for
performance guarantees. They are complementary to Aryl as
they provide practical solutions for scaling DNN jobs.
Dynamic resource allocation. Graphene [18] and Priori-
tyMeister [62] dynamically adjust resource allocation to fit
job’s time-varying demand and utilize resources more effi-
ciently. In Aryl, we consider scaling for jobs that can work
with a range of resources, which are taken as constraints to
the scheduling problem. Aryl schedules jobs with an extra
dimension of how much resource should a job get and its
impact on cluster performance.

10 Conclusion

We have presented Aryl, an elastic GPU cluster scheduler for
deep learning. The key idea is to exploit cluster-level elasticity
by loaning idle inferences servers for training, and job-level
elasticity by scaling jobs to better utilize the dynamic resource
pool. In designing and evaluating Aryl, we have addressed
new challenges in cluster management, by introducing heuris-
tics to reduce job preemption cost due to loan-reclaiming,
and to minimize job completion time when elastic jobs are
presented. We plan to extend Aryl to support training over

12



heterogeneous GPUs, and to investigate information-agnostic
scheduling without knowing jobs’ running time a priori.
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A Heterogeneous GPU Training

In §2.1, we consider heterogeneous training as a special ap-
proach to utilize different types of GPUs. We also evaluate
Aryl in a scenario where 10% of jobs can run on heteroge-
neous GPU with non-ideal performance in §7.2. We now
provide some details regarding the implementation of hetero-
geneous GPU training and empirical analysis of the training
performance. Distributed data-parallel training with bulk syn-
chronous parallel for communication is adopted as they are
the most widely used techniques in distributed training. The
key to efficient training is to balance the training time among
workers and avoid stragglers. We adopt a similar approach
as [8] to tune the batch size of each work in an online man-
ner. Initially, we set the local batch size of each worker based
on their computation capacity and GPU memory constraints.
Specifically, the batch size of T4 workers is one-fourth of the
batch size of V100 workers. During training, we adjust the
local batch size and ensure a similar training time for each
iteration. We initialize the window size to be 10 and the step
size is set to 1. At each observation window, local batch size
of leader workers will increase and that of straggler workers
will decrease in step size.

Table 10 shows the throughput and running time of differ-
ent DNN jobs running on V100 and T4. By comparing the
experimental results with the theoretical throughput, we find
naively tuning batch size without additional optimization tech-
niques leads to an average degradation of 27%. To achieve
the same validation metric, the running time is also length-
ened by up to 34% compared with homogeneous training with
V100. Therefore, we quantify the non-ideal performance of
heterogeneous training to be 70% of the theoretical results
in §7.2.

B Reclaiming Heuristics

Algorithm 1 shows the pseudo code of how to select servers
during reclaiming operation.

C Analysis of Scheduling Elastic Jobs

In §5.1, we design a simplified example to show the chal-
lenges of finding optimal resource allocation to elastic jobs.
Here we provide a formal analysis on which factors affect the
optimal allocation in a two-job scenario.
Setup. In a cluster with C available GPUs, two pending elas-
tic jobs p and q are waiting for resource allocation. Both
jobs have specified their minimum and maximum resource de-
mand. Table 11 lists the notations to be used in the following
analysis.
Objective. The objective is to determine the resource allo-
cation gp and gq of the two elastic jobs p and q so that the
average JCT is minimized.

Algorithm 1 Server selection for reclaiming.

Input: J : set of jobs on on-loan severs, where each job j has
info of S j, the set of servers it is hosted; OnLoanList: set
of on-loan severs, where each server s has info of Js, the
set of jobs running on it; NR: reclaim demand.

Output: ReclaimList, set of servers to reclaim
1: procedure INITPREEMPTIONCOST(J ,OnLoanList)
2: Q← Queue()
3: for server s ∈ OnLoanList do
4: Q.push(〈s,0〉) . initialize preemption cost
5: for job j ∈ J do
6: for s ∈ S j do
7: Q.add_preemption_cost(s,1/

∣∣S j
∣∣) . add job

cost to s
8: SortByCostIncreasing(Q)
9: return Q

10: procedure UPDATECOST(Q,s′)
11: for job j ∈ Js′ do
12: for s ∈ S j and s /∈ s′ do
13: Js.remove_job( j) . preempt job j
14: Q.subtract_preemption_cost(s,1/

∣∣S j
∣∣)

15: SortByCostIncreasing(Q)
16: return Q
17: procedure SELECTSERVERS(J ,OnLoanList,NR)
18: if NR = 1 then
19: s← FindBestServer(OnLoanList)
20: return ReclaimList(s)
21: Q← InitPreemptionCost(J ,OnLoanList)
22: ReclaimList← []
23: while NR > 0 do
24: 〈s,cost〉 ← Q.top()
25: ReclaimList.append(s)
26: Q.pop() . remove from the top
27: NR← NR−1
28: UpdateCost(Q,s)
29: return ReclaimList

Definitions and constraints. To facilitate understanding, we
still assume linear scalability of elastic jobs. In specific, we
define the workload L to be the GPU hours of a job. For elastic
scaling jobs, the total workload is constant. Its running time
can be computed from L and its resource allocation.

rt(L,gmin) =
L

gmin
(1)

We also make assumptions on the cluster capacity. We omit
some of the scenarios as they have straightforward results,
including (1) the available resources can merely fulfill the
minimum demand of one job (2) there are abundant available
resources to host the maximum demand of both jobs. The
most intricate case is considered by adding the following
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Models & Dataset & Metric Allocation Batch Size Throughput Running Time (m)V100 T4 V100 T4 Theoretical Experimental

ResNet-50 [21] & ImageNet [12]
& Top 1 Accuracy: 75%

16 0 256 - - 18883 127
12 4 248 85 15342 14383 162
8 8 250 84 11801 9823 155
4 12 237 82 8261 7297 161

GNMT [53] & WMT’16 [6]
& BLEU: 25.5

16 0 128 - - 791771 35
12 4 128 66 643313 484684 46
8 8 123 67 494856 436631 47
4 12 124 66 346399 312033 44

BERT [13] & SQuaD v1.1 [43]
& F1: 86

32 0 10 - - 1572 46
24 8 10 4 1277 923 61
16 16 9 5 982 874 61
8 24 9 5 687 655 57

(1) Theoretical throughput is computed based on the computation capacity difference with homogeneous training using V100 GPU. Here, we consider T4 to be one fourth of
V100.

Table 10: Performance of DNN jobs adopting heterogeneous training. Local batch size is measured when it is stabled.

Term Description
C Number of GPUs in the cluster
L j Workload of job j
gmin( j) Minimum (base) demand GPU of job j
gmax( j) Maximum demand GPU of job j
g j Allocation of job j
rt(L j,g j) Running time of job j in g j allocation when the

remaining workload is L j

Table 11: Notations and their descriptions.

constraints:

gmax(p)≤ gmax(q)<C

gmin(p)+gmin(q)<C < gmax(p)+gmax(q)
(2)

where C denotes the cluster capacity and it is constrained by
the minimum demand and maximum demand of pending jobs,
implying that the cluster has sufficient capacity to host two
jobs simultaneously, but not enough to host at their maximum
demand.
Problem formulation. Since in Equation 2 we already nar-
row down the value of cluster capacity, it can be inferred that
neither of the jobs will experience any queuing time. We can
then formulate the average JCT by solely considering their
running time. From Equation 1, the job running time can be
derived from its resource allocation. The average JCT can be
represented as:

min
gp,gq

f (gp,gq)

s.t gp +gq =C

gmin(p)≤ gp ≤ gmax(p)

gmin(q)≤ gq ≤ gmax(q)

(3)

(3a)
(3b)
(3c)

To minimize the average JCT, it is reasonable to let the jobs
reserve as many GPUs as possible (Equation 3a). Meanwhile,
the resource allocation should conform with the scaling con-
straints of the jobs (Equation 3b, 3c).

Under the initial allocation, the average JCT could be rep-
resented as:

f (gp,gq) =
1
2
× ∑

i∈{p,q}

Li

gi
(4)

It is certain that either (1) two jobs complete at the same time
or (2) one of the jobs completes before the other. In terms of
the latter case, the uncompleted elastic job can use the vacated
resources and scale up to its maximum demand to shorten its
running time. For example, job p completes first before job q.
The JCT can be computed as:

JCTp = rt(Lp,gp)

JCTq = JCTp + rt(Lq− JCTp×gq,gmax(q))

where the running time of job q consists of two parts: (1) the
time trained in gq GPUs, which is the same as the running
time of job p and (2) the time to train the remaining workload
in its maximum demand. We could also derive the JCT if job
q completes first in the same approach.

We refine the formulation case by case with details of the
prerequisites.
Case I: Job p completes first. By substituting gq with C−gp,
the average JCT can be further transformed as:

min
gp

1
2
× (

Lp

gp
+

Lp

gp
+

Lq−
Lp
gp
× (C−gp)

gmax(q)
)

s.t
Lp

gp
<

Lq

C−gp
,

gmin(p)≤ gp ≤ gmax(p),

C−gmax(q)≤ gp ≤C−gmin(q)

(5)

(5a)

(5b)
(5c)

where Equation 5a guarantees job p completes first in the
initial allocation (or at the same time as job q). Equation 5b
and 5c constrain the resources allocated to each job.
Case II: Job q completes first. Similar as Case (I), the average
JCT is:

min
gp

1
2
× (

Lq

C−gp
+

Lq

C−gp
+

Lp−
Lq

C−gp
×gp

gmax(p)
)

s.t
Lq

C−gp
<

Lp

gp
,

gmin(p)≤ gp ≤ gmax(p),

C−gmax(q)≤ gp ≤C−gmin(q)

(6)

(6a)

(6b)
(6c)
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where the remaining workload of p is completed by gmax(p)
GPUs.

Equation 5 and 6 intersect when two jobs completes at
the same time (i.e. Lp

gp
=

Lq
gq

). With further simplification, the
average JCT can be represented as:

f (gp) =

{ Lp+Lq
2×gmax(q)

+
Lp
gp
× (1− C

2×gmax(q)
) (I)

Lp+Lq
2×gmax(p) +

Lq
C−gp

× (1− C
2×gmax(p) ) (II)

(7)

By integrating the constraints of both cases with the problem
setup (Equation 2), we find the cluster capacity C is the decid-
ing factor as it changes the sign of the coefficient of gp (i.e.
1− C

2×gmax(q)
).

When the cluster capacity is within the following range:

2×gmax(p)≤C < gmax(p)+gmax(q) (8)

which makes the value of Equation 7 monotonically decrease
with gp. The minimum average JCT occurs when gp is maxi-
mum (i.e. fulfulling job p’s maximum demand).

However, when the cluster capacity is smaller as:

gmin(p)+gmin(q)≤C < 2×gmax(p) (9)

the value of Equation 7 increases first and then decreases,
implying the minimum average JCT are at the end points of
gp’s interval. Specifically, the optimal allocation is when job p
receives its maximum demand or job q receives its maximum
demand, depending on the job workload.

We summarize the optimal allocation as follows.
• When the cluster capacity C ∈ [2× gmax(p),gmax(p) +

gmax(q)], fulfilling the maximum demand of job p (i.e. the
job with a smaller gmax) will bring best average JCT.

• When the cluster capacity C ∈ [gmin(p) + gmin(q),2 ×
gmax(p)], the best average JCT is when the job with a
smaller workload L receives its maximum demand.

Conclusion. From the result, we find that the optimal re-
source allocation is affected by multiple factors, including
cluster capacity C, the job workload L and the scaling range
gmin,gmax. Given the complexity of scheduling two elastic
jobs, generalizing a consistent solution of optimal resource
allocation when there are additional constraints (e.g. inelas-
tic jobs, dynamic cluster, GPU demand per worker) is hard.
Therefore, we propose a two-phase heuristic that prioritizes
base demand to reduce queuing time and resorts to Knapsack
packing to shorten the running time of elastic jobs.

D Job Scheduling Heuristics

Algorithm 2 shows the detailed steps of how we schedule and
allocated resources to the queuing jobs.

Algorithm 2 Two-phase heuristic for resource allocation

Input: J q: set of queuing jobs, J r
e : set of running elastic jobs,

Ca: available resources
1: procedure SORTJOBS(J )
2: J ′← []
3: for job j ∈ J do
4: if j is elastic then
5: J ′.append(〈 j,T max

j 〉) . max. running time
6: else
7: J ′.append(〈 j,Tj〉)
8: J ′← SortByRunTimeIncrease(J ′)
9: return J ′

10: procedure ALLOCATEELASTIC(J , C)
11: groups← [] . multiple-choice knapsack
12: for job j ∈ J do
13: g← NewGroup()
14: groups.append(g)
15: for w = 1; w≤ wmax

j −wmin
j ; w++ do

16: m← NewItem()
17: m.weight← (w+wmin

j )D j . D j: per-worker
GPU demand

18: m.value← T max
j ×w/(w+wmin

j )
19: groups.append(m)

20: S ←MaxValueDP(groups,C) . allocation result
21: return S
22: procedure ALLOCATION(J q, J r

e , C a)
23: J ← SortJobs(J q)
24: J ∗,C∗← AllocateInelastic(J ,Ca) . SJF for inelastic

demand
25: if C∗ ≥ 0 then
26: J r

e .add(J ∗.get_elastic_jobs())
27: J ∗e ← AllocateElastic(J r

e ,C
∗) . allocate for

flexible demand
28: return J ∗,J ∗e

E Jobs on Inference Servers

In §2.1, we note that up to 21% of jobs in our production
trace do not request specific GPUs. As long as the models and
intermediate data fit into the GPU memory, it can be trained
on either training GPU or inference GPU. Since inference
GPUs have smaller memory of 16GB, some of these jobs
need adjustment of the batch size. When Aryl schedules these
jobs on inference servers, it cut down the batch size to half
based on the theoretical GPU memory difference between
V100 and T4 to ensure feasibility, if necessary.

F Existing Job Schedulers

Apart from the discussion in §2.3, we compare the Aryl’s job
scheduler with other existing schedulers in an algorithmic
perspective. Table 13 provides a summary.
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# Solution Queuing Time JCT Preemption

Mean Median 95%ile Mean Median 95%ile Ratio

1 Static 3649 41 4993 18747 734 66524 36.75%
2 SSF 2354 26 3657 14953 688 62293 14.34%
3 LSF 2993 28 4774 12953 674 61005 28.58%
4 Aryl 2204 23 3418 12414 655 57982 12.34%

Table 12: Simulation results using different reclaiming heuristics

Dynamic capacity Limited elasticity Avoid starvation Worker-unit scaling

Tiresias [19] 7 7 3 7
Optimus [40] 7 ∆ 7 3
Gandiva [54] 7 ∆ 7 7
AFS [22] 7 7 3 7
Pollux [42] ∆ ∆ 7 7
Aryl 3 3 3 3

Table 13: Comparison with existing job schedulers. ∆ indicates that it is
handled implicitly.

Dynamic capacity. Aryl takes cluster capacity as a changing
variable in both resource allocation and job placement. Dur-
ing resource allocation, existing schedulers greedily allocate
resources job-by-job based on certain metrics regardless of
the cluster capacity. Specifically, Tiresias adopts the least at-
tained service to rank jobs; Optimus uses the largest marginal
gains; AFS computes the largest throughput improvement. In
designing the scheduling policy, these works ignore the out-
standing question of whether there are remaining resources to
host them. Though Pollux implicitly considers the cluster ca-
pacity during scheduling, the random crossover in its genetic
algorithm could easily violate the capacity constraints, and
repairing operation is randomly conducted. Aryl considers
all possible allocations of each job and the cluster capacity
and groups the flexible workers during placement when the
cluster resource is dynamic. Though Gandiva supports flexi-
ble system primitives to handle dynamic capacity, it adopts
an opportunistic approach to schedule jobs.
Limited elasticity. Aryl’s job scheduler takes every elastic
job demand into account during allocation and effectively
avoid excessive scaling. Tiresias allocates resources based on
the fixed job requirement. Gandiva scales up the job when the
cluster is underutilized and the hosting servers have available
resources. Though it avoids excessive scaling, it neglects the
scalability of the jobs. AFS unlimitedly scales up jobs as long
as they have a good throughput gain. Pollux’s scheduling pol-
icy states that a job can only be allocated with twice of the
maximum resources it has been allocated previously. Even-
tually, it could still cause unlimited scaling. Optimus has no
specific boundaries for jobs but heavily relies on an accurate
prediction of loss convergence to adjust job resources.
Avoid starvation. Aryl allocates base demand of all queuing
jobs in phase one to minimize starvation, as well as for AFS.
Tiresias is a preemptive scheduler where starvation is handled
properly with priority promotion. Optimus, Gandiva and Pol-
lux do not launch as many jobs as possible initially, incurring
starvation for jobs at the end of the queue.
Worker-unit scaling. Aryl allocates resources in worker de-
mand instead of GPUs. It frees DL frameworks from adjusting
the job’s distributed architecture and preserves the balance

of pace each worker trains. Only Optimus considers the pa-
rameter server architecture of distributed jobs and adjust the
workers of each job. AFS naively allocates 1 GPU at a time;
Pollux only cares about how many GPUs should be allocated
to each job. They are built on an assumption that a running
job could either switch between different training modes or
balance the training pace with negligible effort. Both are still
operations requiring delicate adjustments.
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