
362

Why, How and Where of Delays in Software Security Patch
Management: An Empirical Investigation in the Healthcare
Sector

NESARA DISSANAYAKE, CREST – Centre for Research on Engineering Software Technologies, The
University of Adelaide, Australia
MANSOOREH ZAHEDI, The University of Melbourne, Australia
ASANGI JAYATILAKA, CREST – Centre for Research on Engineering Software Technologies, The Univer-
sity of Adelaide, Australia
MUHAMMAD ALI BABAR, CREST – Centre for Research on Engineering Software Technologies, The
University of Adelaide, Australia

Numerous security attacks that resulted in devastating consequences can be traced back to a delay in applying a
security patch. Despite the criticality of timely patch application, not much is known about why and how delays
occur when applying security patches in practice, and how the delays can be mitigated. Based on longitudinal
data collected from 132 delayed patching tasks over a period of four years and observations of patch meetings
involving eight teams from two organisations in the healthcare domain, and using quantitative and qualitative
data analysis approaches, we identify a set of reasons relating to technology, people and organisation as key
explanations that cause delays in patching. Our findings also reveal that the most prominent cause of delays is
attributable to coordination delays in the patch management process and a majority of delays occur during the
patch deployment phase. Towards mitigating the delays, we describe a set of strategies employed by the studied
practitioners. This research serves as the first step toward understanding the practical reasons for delays and
possible mitigation strategies in vulnerability patch management. Our findings provide useful insights for
practitioners to understand what and where improvement is needed in the patch management process and
guide them towards taking timely actions against potential attacks. Also, our findings help researchers to
invest effort into designing and developing computer-supported tools to better support a timely security patch
management process.

CCS Concepts: • Security and privacy → Software security engineering; Vulnerability management; •
Software and its engineering→ Maintaining software.

Additional Key Words and Phrases: patch management, security updates, delays, socio-technical research

ACM Reference Format:
Nesara Dissanayake, Mansooreh Zahedi, Asangi Jayatilaka, and Muhammad Ali Babar. 2022. Why, How and
Where of Delays in Software Security Patch Management: An Empirical Investigation in the Healthcare Sector.
Proc. ACM Hum.-Comput. Interact. 6, CSCW2, Article 362 (November 2022), 29 pages. https://doi.org/10.1145/
3555087

Authors’ addresses: Nesara Dissanayake, CREST –Centre for Research on Engineering Software Technologies, The University
of Adelaide, Australia, nesara.madugodasdissanayakege@adelaide.edu.au; Mansooreh Zahedi, The University of Melbourne,
Australia, mansooreh.zahedi@unimelb.edu.au; Asangi Jayatilaka, CREST – Centre for Research on Engineering Software
Technologies, The University of Adelaide, Australia, asangi.jayatilaka@adelaide.edu.au; Muhammad Ali Babar, CREST –
Centre for Research on Engineering Software Technologies, The University of Adelaide, Australia, ali.babar@adelaide.edu.au.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
2573-0142/2022/11-ART362 $15.00
https://doi.org/10.1145/3555087

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 362. Publication date: November 2022.

ar
X

iv
:2

20
2.

09
01

6v
2

 [
cs

.S
E

]
 4

 S
ep

 2
02

2

https://doi.org/10.1145/3555087
https://doi.org/10.1145/3555087
https://doi.org/10.1145/3555087

362:2 Dissanayake, et al.

1 INTRODUCTION
Cyberattacks breaching corporate networks often result in catastrophic consequences ranging
from exposure of sensitive and confidential data [19, 38] and betrayal of client trust to even human
death [15]. The most effective remediation of this problem is to apply security patches to the
identified vulnerabilities through a process called software security patch management, referred to
as security patch management hereafter, consisting of detecting, retrieving, assessing, installing,
and verifying security patches [48]. Despite the gravity of the process, security patch management
remains one of the most challenging endeavours due to the inherent technical and socio-technical
interdependencies involved in the collaborative process of dealing with third-party vulnerabilities
and vendor patches [12, 27, 51]. As a result, organisations struggle to apply timely patches often
leaving myriad vulnerabilities open to exploits. Consequently, it has resulted in most security
attacks targeting known vulnerabilities for which a patch existed but delayed application. Despite
the demonstrated criticality of timely patching, the recent statistics [47] reveal that the situation
has still not improved indicating serious concerns and the increased importance of the efforts aimed
at reducing delays in security patch management in practice.

While the previous studies have investigated the socio-technical aspects of security patch man-
agement, particularly, the process followed [27, 51] and the role of collaboration in the process
[40], these studies have not exclusively focused on the delays in applying security patches. Further,
another set of studies has attempted to optimise the patch management process by synchronising
the organisational patch cycle with the vendor’s patch release cycle [4, 5, 37]. Focused on the
coordination aspect, our previous study [12] presented a grounded theory of the role of coordi-
nation in security patch management based on observations of 51 patch meetings between two
case organisations over nine months. The theory explains the causes that define the need for
coordination in the process (i.e., the socio-technical dependencies), constraints that can hinder
effective coordination, the breakdowns resulting from ineffective coordination of the causes and
constraints, and the mechanisms to manage the causes, constraints and breakdowns. Although
previous studies have focused on approaches to reduce delays in security patch management and
the effects of ineffective coordination on timely security patch management, to date, there has been
no study that comprehensively explores why and how delays continue to happen when applying
security patches. It adds to the demonstrated critical need for investigating the delays in patching,
grounded in evidence from practice. Motivated by the need, we extended the longitudinal study of
the two case organisations focusing on the delays in security patch management. The study findings
are based on the analysis of the artefacts over four years following the Straussian Grounded Theory
method for the data analysis. Our study was guided by the following key research questions (RQs):

RQ1.Why, how, and where do delays occur in software security patch management?
RQ2. How can the delays be mitigated?

Based on qualitative and quantitative analysis of the longitudinal data gathered from patch
meeting minutes spanning over four years from October 2016 to May 2021 between two organ-
isations in the healthcare domain, we attempt to answer these crucial overarching questions of
delays in security patch management. The findings explain the causes of delays with a taxonomy
comprising technology, people and organisation-related reasons and describe which reasons are
more prominent based on their frequency distribution, and where the delays occur in the patch
management process. This study also reports a classification of strategies applied in practice to
mitigate the delays including when to apply them during the patch management process. To the
best of our knowledge, this is the first study to provide a comprehensive understanding of the
causes and strategies for delays in security patch management.

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 362. Publication date: November 2022.

Why, How and Where of Delays in Software Security Patch Management: An Empirical Investigation in the Healthcare
Sector 362:3

Grounded in descriptive evidence from practice, our research contributes to the state-of-the-art
understanding of research and practice in several ways: (i) identifies a set of reasons for delays
when applying security patches in practice; (ii) describes the most prominent reasons for delays
with rationales explaining their variations; (iii) reports where a majority of delays occur in the
patch management process presenting their distribution over the process phases; (iv) presents a
collection of strategies employed in practice to mitigate the delays including when to apply them
in the patch management process; (v) structures the understanding about delays in vulnerability
patch management, drawing attention to a critical yet less explored phenomenon in the CSCW
community; (vi) grounded in practical evidence, the findings lay a foundation for future researchers
and tool designers to design and develop computer-supported solutions to reduce delays in patch
application, and (vii) offers practical guidance for practitioners to identify what and where is
improvement needed to mitigate patching delays and drive their decisions appropriately.

2 BACKGROUND ANDMOTIVATION
Software security patch management is defined as “a multifaceted process of identifying, acquiring,
testing, installing, and verifying security patches for software products and systems" [11]. A security
patch is an additional piece of code developed to address security vulnerabilities identified in
software [34]. Following the discovery of a new vulnerability, a candidate security patch is developed
and released by third-party vendors to prevent exploitation by malicious entities. For example, the
Meltdown [29] and Spectre [26] patches released in 2018 by vendors such as Microsoft, Google,
IBM and Apple were aimed at fixing two critical vulnerabilities in modern processors allowing
malicious programs to gain unauthorised access to the software system. In security contexts,
patch management represents a critical concern in achieving and maintaining the security of
the managed software systems. This is because applying a security patch is considered the most
effective mechanism to mitigate the identified vulnerabilities [48]. Similarly, applying security
patches with minimum delays is instrumental in significantly reducing the risks of cyberattacks
that exploit software vulnerabilities (see Figure 1) [48]. Despite the importance of timely patch
management, it remains one of the most challenging processes facing modern organisations. To
guide the process, several guidelines such as the National Institute of Standards and Technology
(NIST)’s Special Publication (SP) 800-40 [35, 41, 48] have been published over the years.

Time

Secu
rity

 vu
lne

rab
ilit

y

dis
co

ve
ry

Vuln
era

bil
ity

 ex
plo

ita
tio

n

Vuln
era

bil
ity

 di
scl

osu
re

Secu
rity

 pa
tch

 re
lea

se

Secu
rity

 pa
tch

 ap
pli

cat
ion

Security patch managementSecurity patch
development

t = delay

Planned
patch application

Actual
application

Patch cycle (e.g., 1 month)

Patch
retrieval

Fig. 1. The focus of the study in the vulnerability timeline.

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 362. Publication date: November 2022.

362:4 Dissanayake, et al.

There have been several research efforts undertaken to explore the patch management process.
Two recent studies [27, 51] have investigated the stages the practitioners proceed through patch
management. Figure 2 shows an overview of the five main phases in the process. These phases
represent the general workflow in a patch cycle (i.e., from the patch retrieval to planned patch
application) depicted in Figure 1.

P1. Patch Information
Retrieval

P2. Vulnerability + Assessment and
 Scanning Prioritization

P3. Patch Testing P4. Patch Deployment P5. Post-Deployment
Patch Verification

Fig. 2. The five phases of the security patch management process.

The patch information retrieval (P1) phase refers to learning about new patches and downloading
them from vendor websites. Next, practitioners scan systems to identify the existing vulnerabilities,
assess them based on their applicability to managed systems, and prioritise based on vulnerability
severity and patch type when deciding to patch (P2). Once the decision to patch is finalised, they
prepare to deploy the patches whereby testing the patches for accuracy (P3) and preparing machines
by changing configurations, followed by the patch deployment (P4) phase in which the patches are
installed and rebooted. As the final step, the patch deployment is verified and post-deployment
issues are handled, if any (P5).
In addition, prior research has invested effort in improving the patch management process

through both technical and socio-technical aspects. In the scope of technical enhancements, advanc-
ing automation in the security patch management process, for example, automated detection of
faulty patches [8, 14, 32] and mechanisms for reducing system downtime in reboots [1, 13, 43], have
been widely studied. However, the literature presents little empirical evidence of the socio-technical
aspects relating to security patch management. Existing socio-technical studies have primarily
focused on the workflows of system administrators but did not focus on other roles (e.g., change
manager) and external stakeholders (e.g., customer) involved in the patch management process.
Crameri et al. [8] were among the first to investigate system administrators’ patch management
practices. From a survey conducted with 50 system administrators, they reported that 70% of
administrators avoided deploying patches due to issues caused by a lack of integration between
patch testing, deployment and post-deployment issue reporting. Dietrich et al. [10] explored the
system administrators’ perspective on factors leading to security misconfigurations. Their findings
confirmed that the situation has not changed even after a decade, reporting that delaying and
avoiding security patches are among the most frequently reported security misconfigurations.
However, these studies did not explain the reasons for such delays or missed patches.
Extending the study by Crameri et al., two recent studies [27, 51] have examined a larger

sample of system administrators through a combination of surveys and interviews to perform
a comprehensive investigation of the patch management process. Both studies explored system
administrators’ practices, behaviour, and experiences in the patch management process. According
to them, administrators rely on various sources such as security advisories, direct vendor notifi-
cations, patch management tools, mailing lists and online forums to retrieve meaningful patch
information. Further investigating system administrators’ patch information retrieval-related needs
and practices, Jenkins et al. [24] studied how the mailing list of the website PatchManagement.org
extends support in patch management activities. They argue that the mailing list acts as an online
community of practice extending support not only in the patch information retrieval phase but

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 362. Publication date: November 2022.

Why, How and Where of Delays in Software Security Patch Management: An Empirical Investigation in the Healthcare
Sector 362:5

throughout the process in various aspects such as guidance for patch prioritisation, workarounds
for post-deployment issues and tool selection.

Another set of studies [11, 23, 27, 37, 43, 51] has explored the challenges in the patch management
process. For example, the impact of organisational policies and culture [27, 40, 51], collaboration
and coordination challenges due to conflicts between stakeholders [23, 27, 37, 43], lack of resources
in terms of skills and expertise required for handling complex patching tasks [24, 42, 51], and the
increasing rate of patch release [42, 43, 51] are some of the most common challenges faced by
practitioners. In addition, challenges relating to the lack of dedicated patch testing environments
[27, 32, 52], post-deployment patch verification [7, 27], and system downtime during patch deploy-
ment [13, 27, 43, 51] have been widely discussed. Despite widespread attempts to the adoption of
automation in different phases of the process, it is revealed that the need for human interaction
still presents an inevitable challenge [11, 14, 27, 42, 51].

To address some of these pressing socio-technical challenges, several studies have proposed tools,
frameworks and practices. For example, a set of studies [4, 5, 9] has proposed synchronising an
organisation’s patch cycle with the vendor’s patch release cycle to optimise the process, minimise
stakeholder conflicts and reduce costs. Concerning the coordination challenges, Dissanayake et. al
[12] have proposed a grounded theory of the role of coordination in security patch management
explaining the causes that create the need for coordinating in the security patch management
process, constraints for effective coordination, breakdowns resulting from ineffective handling of
the coordination causes and constraints, and mechanisms for managing the causes while mediating
the constraints. Although several approaches have been proposed to improve the patch management
process to reduce delays, the reasons why such delays occur and how to mitigate them remain
unexplored. Furthermore, given patch management is largely an industry-centric topic, relatively
little has been done to understand the state of practice. For example, why do practitioners continue to
delay applying the security patches leading to compromises that would have been easily prevented
like the Equifax case [19]?
In contrast, delays have been widely studied in related fields like software development. In the

majority of these studies [20–22, 39], the focus has been on delays in global software development
(GSD). For example, they have explored the effect of distance on delays in a multi-site software
development organisation and mechanisms to reduce delays. Closely related to our study but
focused on software development projects is the empirical analysis conducted over a decade ago
by Genuchten [16]. By analysing the planning data of six projects in one software development
department of an organisation, he provided a classification of reasons for delays in software
development activities. The findings report that capacity-related reasons cause the majority of
the delays in the studied context. Further, the study highlights the importance of understanding
the causes of delays for software developers to take necessary actions for improvement. Similarly,
the recent expediting attacks targeting unpatched software security flaws exhibit a pressing need
towards understanding the practical causes of delays in patch management and suitable strategies
to take appropriate actions, which is accomplished by this study.

3 RESEARCH METHOD
To understand why and how delays occur in practice, we conducted a longitudinal study with
two organisations (Org A and B) involving 21 participants from 8 teams in Australia. In selecting
the case organisations, we used a combination of purposive [46] and convenience [30] sampling
to ensure that our data are representative of the substantive area through which the findings
emerge. The demographics of the studied teams are illustrated in Table 1. Org A is an Australian
state government health services agency that outsourced its OS security patching to Org B, an
American multinational corporation. Org B was responsible for patching Org A’s 1500 servers

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 362. Publication date: November 2022.

362:6 Dissanayake, et al.

representing the entire health sector in the state government. In addition, the non-security patches
were handled by different teams in Org A, which is not included in our analysis. Org A consisted of
several teams each managing different modules, for example, the teams T1-3 represented the main
modules in Org A while the teams T5-6 were central to all other in-house teams overseeing their
respective modules. The security patch management process was coordinated through bi-weekly
patch meetings between the two organisations, attended by key stakeholders representing each
team detailed in Table 1. Abiding by the human ethics guidelines, the details of the companies,
teams and participants have been kept confidential. Figure 3 shows the organisational setup in the
studied cases.

Table 1. Demographics of participants

Organisation Team Team’s Domain Team
Size ∗∗

Roles

Org A T1 Electronic Medical Records
(EMR)

5 Application Owner, System Administra-
tor, Server Engineer, Server Manager

T2 Digital Health Windows (Win) 3 Server Engineer, System Administrator,
Application Services Manager

T3 Digital Health Non-Windows
(Non-Win)

2 Unix Specialist, Server Engineer, System
Administrator

T4 Clinical and Pathology
Services

1 Pathology Server Engineer

T5 Security 1 Security Advisor
T6 Change Management 1 Change Manager

Org B T1 Server (Technical) 7 Server Engineer, Senior Server Engineer,
Unix Engineer, Server Manager, Client
Delivery Manager

T2 Finance and Audit
(Non-technical)

1 Accounts Manager

∗ The team size refers to the number of team participants in the patch meeting.

Patch
Meetings

Patching
Tracker

main artifact

EMR

Security

Win

Non-Win

Change
Management

Pathology

Server

Finance and Audit

Org A Org B

Fig. 3. The organisational setup present in the studied context.

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 362. Publication date: November 2022.

Why, How and Where of Delays in Software Security Patch Management: An Empirical Investigation in the Healthcare
Sector 362:7

3.1 Data Collection
We collected longitudinal data from patch meeting minutes maintained by the case organisations as
the main artefact from patch meetings. In addition, we observed the patch meetings to supplement
our understanding of the process, activities, and strategies documented in the meeting minutes
and verify the emerged findings from the artefact analysis.
As the main source of data collection, we gathered patch meeting minutes referred to as the

“patching tracker" by the studied teams. The patching tracker, a detailed Excel spreadsheet, was used
as a tracking tool between the collaborative parties to document the status of the tasks, similar to a
centralised version control and issue tracking system. The three main teams of Org A (i.e., T1, T2,
and T3) each maintained separate patching trackers to document their patch management tasks
(i.e., activities) with details of the task number, subject, raised date, action required or taken, raised
by, owner, assigned to and the status (including Closed, In-progress, New, On-hold and Monitor), as
shown in Figure 4. Each tracker was updated regularly with the date and action or decision taken
when the task was discussed in detail at patch meetings.

Fig. 4. A screenshot of an extract from the Patching Tracker - 19.05.2021.

Additionally, to understand what occurs in practice and to obtain a better understanding of
the documented tasks in the patching tracker, we observed 66 patch meetings from March 2020
- May 2021. The meetings provided a collaborative platform for the participants to discuss and
refine the patching process, plan monthly patch schedules, assess the progress, resolve problems,
and make decisions about patch exemptions. The fortnightly meetings were held online through
Microsoft Teams due to COVID-19 and lasted approximately an hour and a half. Additionally, the
observations increased analytical validity and ensured triangulation in our findings [57].

3.2 Data Analysis
First, we qualitatively analysed the data employing the Grounded Theory’s (GT) [18, 49] data
analysis procedures, particularly Strauss and Corbin’s version of GT procedures (Straussian GT)
[49], as they offer well-structured and rigorous data analysis techniques well-suited to answer
complex and practice-based why and how type questions [49]. Second, to identify how the delays
and the causes are distributed, we quantitatively analysed the data using frequency analysis, a
widely used technique for producing descriptive statistics derived from the data.

We analysed the data at the task level as previous studies [3, 16] have shown that most project
delays are caused by delays in the smallest unit of work (i.e., task-level delays). A task in this study
refers to a single row recorded in the patching tracker. Out of 268 tasks available in total, 232
tasks were closed. We only analysed closed tasks since we needed the end dates to calculate delays.
Figure 4 shows a screenshot of an extract from the patching tracker. To define a delay according to

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 362. Publication date: November 2022.

362:8 Dissanayake, et al.

the studied context, the first author held a discussion with Org A’s Security Advisor about their
policies to understand the defined time frames for any given task during the monthly patch cycle
practised. Table 2 presents a summary of the standard time frames as expected in the organisation.
Correspondingly, we mapped the tasks to their relevant phase of the patch management process
based on two existing studies [27, 51].

Table 2. Definition of standard time frames in the studied organisation

Phase
ID

Patch management process phase Standard
time frame

Note

P1 Patch Information Retrieval 2 days Needs to be completed within two days of
patch release

P2 Vulnerability Scanning, Assessment
and Prioritisation

1 week Needs to be completed within the first week
of patch release

P3 Patch Testing 1 week Needs to be completed within the second
week of patch release

P4 Patch Deployment 2 weeks Needs to be completed within the fourth
week of patch release

P5 Post-Deployment Patch Verification 1 month Any post-deployment issues must be re-
solved by the next patch cycle

The preliminary analysis revealed 132 delayed tasks from a total of 232 closed tasks that we
analysed (56.9%). While there were 57 tasks (24.6%) not delayed, the remaining tasks were excluded
for several reasons such as duplicate tasks, lack of information (e.g., no end date), and not being
related to patch management specifically.

To understand the causes of delays and remediation mechanisms, we analysed in-depth the delays
identified through preliminary analysis following open, axial, and selective coding procedures
[49], as shown in Figure 5. The first author performed the data analysis while the second and third
authors cross-checked all the codes throughout the process to increase the reliability of the findings
and reduce bias [50]. Any disagreements in the coding were resolved through weekly discussions
among all authors involving multiple rounds of revisions. The patching tracker, codes, and memos
were stored in NVivo, the data analysis tool, and shared with all authors.

Key Points Concepts Sub-categories

Capacity
limitations

Organisation-
related Reasons

Raw data

Reasons for
delays

Open Coding Axial Coding

Categories

Unavailability of
task assignees
(work overload)

Resource
limitations

(human)

Codes

Performance
issues (server)

Infrastructure
limitations
(hardware)

Periodic patch
cycles (monthly
patch cycle)

Time
limitations

Technology-
related Reasons Strategies

applied

Delays in
security patch
management

Core category

Selective Coding

[L1TF spectre update] - Windows ID 41
16/5/19 - Task [T1] assigned to [P1-BT1]
for implementation.
14/6/19 - This task is on hold due to
resource being borrowed by the [T6] team

[Backup server patching] - EMR ID 49
24/1/20 - Backup server patching failed
due to patch load impacting servers before
reboot. Proposal sent to change window.

[Storage failover issues] - EMR ID 43
07/02 - Patching failed last night. Waiting
for next failure to log another case to
vendor. Next patch run due in late March.

People-related
Reasons

Fig. 5. Emergence of the category Reasons for delays from the underlying concept of Capacity limitations and
codes.

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 362. Publication date: November 2022.

Why, How and Where of Delays in Software Security Patch Management: An Empirical Investigation in the Healthcare
Sector 362:9

We started with open coding, whereby we analysed all columns row by row in the spreadsheet to
identify key points summarising the content. It was further summarised into codes containing short
phrases. Constant comparison of emerged codes between each team’s patching tracker, different
teams’ patching trackers of a single meeting, and different meetings resulted in concepts [49], a
higher level of abstraction of the codes. Similarly, we grouped sub-categories, and continuously
comparing sub-categories gave rise to categories, the next level of abstraction. Next, we performed
axial coding in which we linked categories to their subcategories based on the relationships
between categories relating to their properties (i.e., “characteristics of a category") and dimensions
(i.e., “variations within properties") [49]. During the analysis, we created memos for explaining the
codes and their relationships which helped us during this process. During the final phase of the
analysis, we applied selective coding by which we identified the central or core category which
represents the most recurrent and central problem in the studied phenomenon, or simply which
explains “what this research is all about” [49], in this case, delays in security patchmanagement.
For confidentiality reasons, we do not share the raw data. However, we made our codebook

containing the codes, descriptions and examples of raw data publicly available 1.

3.3 Member checking
We conducted a member checking [36] session to ensure the credibility, accuracy, validity, and
transferability of our study findings. Member checking, a technique of “taking ideas back to research
participants for the confirmation" [6], provides an opportunity to validate the findings with par-
ticipants and resonance with their experiences [2]. We presented the study findings at a session
held at Org A. Three authors attended the session in person while nine patch meeting participants
(six from Org A and three from Org B) and an executive director of Org A were present physically.
In addition, seven patch meeting participants (four from Org A and three from Org B) attended
the session virtually. The first author presented the findings for 20 minutes followed by a detailed
feedback discussion lasting for 40 minutes. For the member checking, we revisited findings for
each RQ and asked questions including if they agree with the findings, which reasons for delays
they have encountered the most in their experience, any other reasons or strategies they use that
are not captured in the findings, and if they can relate the findings with their experiences. The
session was audio-recorded with permission and transcribed for analysis by the first author. The
feedback and comments from member checking are presented in Section 4.5.

4 FINDINGS
In this section, we present the findings of our study. Figure 6 presents an overarching representation
of the findings from the qualitative analysis. We provide examples from the patching tracker chosen
based on their representativeness, as supporting evidence and to increase the verifiability of our
findings [53]. In the examples, we include the subject of the task (see Figure 4) and evidence relating
to the delay using unique identifiers for ease of reference, for example, “P[n]-AT1" refers to a
participant from Org A’s EMR team, and “Win, Task ID 2" refers to the 2nd task discussed in the
Digital Health Windows meeting.

4.1 Why, how, and where do delays occur in security patch management?
We identified a set of reasons that cause delays in security patch management, presented as a
taxonomy in Figure 7. In summary, we found nine reasons, grouped into three main categories:
technology-related reasons, people-related reasons and organisation-related reasons. Next, we
quantitatively analysed the identified set of reasons to understand the most prominent reasons that

1https://doi.org/10.5281/zenodo.5635608

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 362. Publication date: November 2022.

https://doi.org/10.5281/zenodo.5635608

362:10 Dissanayake, et al.

Delays in Software
Security Patch
Management

Set of Reasons
cause

Strategies
applied to minimise

Overall patch
management process

Specific patch
management process

phase

applied to applied to

Technology-related
reasons

People-related
reasons

Core category Category Sub-category

Organisation-
related reasons

include

Fig. 6. High-level overview of the findings from the qualitative data analysis.

need practitioners’ and researchers’ attention. To achieve this, we conducted a frequency analysis
on the reasons for delays. An important observation was that in the majority of the delays, we
found multiple reasons attributing to one delayed task. For example, a delay in applying a critical
security patch was identified due to a combination of reasons such as delayed input by the vendor
(R5), delays in coordination with the vendor (R4), and lack of expertise (R8). In total, we found
417 occurrences of the identified nine reasons ascribed to the 132 delayed tasks analysed. Figure
8 presents the frequency distribution of the reasons for delays. Accordingly, the most prominent
causes for delays relate to people-related reasons, for example, delays in coordinating the patch
management activities (24.9%) and providing input requirements (16.8%).
In determining where the aforementioned delays occur in the patch management process, our

quantitative data analysis revealed that the delays are distributed throughout the process with a
majority of the delays, i.e., 54% occurring during the patch deployment (P4) phase as shown in
Figure 9. We identify that it can be attributed to the inherent socio-technical complexities involved
in the patch deployment tasks and decisions. The second-highest number of delays happen during
patch testing (P3) and post-deployment patch verification (P5) phases where each account for 15%
of the delays. Possible explanations of these numbers can be recognised by the evident challenges in
the respective stages, for example, managing the delays occurring due to the poor quality of patches,
which may result in unanticipated post-patching failures leading to disastrous consequences and
inconvenience to users, e.g., unavailability of service. Additionally, we have reported the average
delay duration in months in each process phase. As shown in Figure 9, the longest average delay
is reported as 3.6 months belonging to patch testing and vulnerability scanning, assessment and
prioritisation tasks. In the following, we describe the nine reasons for delays mentioned in italic
under their corresponding main categories.

4.1.1 Technology-related reasons. The technology-related reasons denote the compound char-
acteristics intrinsic to software security patches, limitations of the tools used in patch management,
and technological limitations resulting in the need of human intervention in the process.

Concerning the complexity of patches, the patch interdependencies consisting of software, hard-
ware, and firmware presented a major reason for delays in patch testing and deployment tasks.
We identify that such complexities emerge from the existing dependencies in the source code, for
example, function-level or library-level dependencies [12]. Patching large and complex software

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 362. Publication date: November 2022.

Why, How and Where of Delays in Software Security Patch Management: An Empirical Investigation in the Healthcare
Sector 362:11

Reasons for
delays

Technology-related
Reasons

R1. Complexity of
patches

R2. Limitations of
current tools

Patch interdependencies (30)
Faulty patches (12)
Extensive monitoring for faulty patch fixes (8)
Patch heterogeneity (5)
Increasing rate of patch release (2)

Lack of accuracy (9)

Lack of scalability (3)
Functionality limitations (7)

Delays in obtaining approval (37)
Lack of awareness of task progression (22)
Lack of understanding of roles and responsibilities (6)
Poor communication and information misinterpretation (5)
Missing information due to overload of emails (2)
Delays in obtaining customers' approval (14)
Delays in coordinating with vendors for support (12)
Administrative overhead of coordinating with multiple customers (3)
Delegation delays due to conflicts of task ownership (3)

Delays in delivering reports (16)
Delays in delivering patch schedule information (15)
Delays in providing team requirements (4)
Delays in patch release by vendors (11)
Delays in providing input for support cases (8)

Troubleshooting (23)
 Manual patch deployment (17)

Decision approvals need thorough assessment of patch impact (10)
Manual configurations (6)

Resource limitations (e.g., human resources) (24)
Infrastructure limitations (e.g., performance issues) (11)
Time limitations (e.g., monthly patch cycles) (5)

Delays in getting approval from higher management (18)

Delays due to changes in company schedules (13)

Multi reboots requiring longer and additional patch windows (8)
Customer requests to postpone patch deployment schedules (4)

Missing patch pre-requisites during installation (1)
Inaccurate estimates of patch windows (3)
Incomplete patch deployment (5)
Inadequate post-patch deployment verification (6)

People-related
Reasons

Organisation-related
Reasons

Category Sub-category Concept Code (number of references)

R3. Need of human
intervention

R4. Coordination
delays

R5. Input
requirement delays

R6. Failures due
to poor planning

and execution

R7. Organisation
delays

R8. Capacity
limitations

R9. Service-
availability
restrictions

Inability to allow service downtime from reboots (13)

Fig. 7. Detailed overview of the causes of delays in software security patch management.

systems involves a diverse set of operating systems, tools, and software applications with multiple
versions. It introduces additional challenges to match the compatibility of several versions which
often leads to delays during patch testing. Moreover, patch interdependencies with the legacy
software were a recurrent cause of the delays in the studied context. This reason exacerbated
problems with delays since the solutions, for example, upgrading or decommissioning the legacy
system, or continuing to receive extended support (i.e., obtain patches) from the vendors presented
even further challenges. This is because, besides the large costs involved in these workaround
solutions, the teams were faced with high risks as most of the legacy systems operated on critical
medical services. In addition, due to the complex and business-critical nature of legacy systems,
resolving legacy software dependencies often resulted in significant delays leading up to several
months in some cases.

On the other hand, the unknown errors during patch testing, deployment, and post-deployment
arising from faulty patches led to delays. In such instances, the practitioners spent a significant
amount of time troubleshooting the error not knowing that it is caused by a faulty patch. Following
the identification of the root cause as a faulty patch, the practitioners often pursued the vendor’s

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 362. Publication date: November 2022.

362:12 Dissanayake, et al.

3.6%

4.6%

6.0%

7.4%

9.6%

13.4%

13.7%

16.8%

24.9%

R6: Failures due to poor planning and
execution

R2: Tools limitations

R9: Service availability restrictions

R7: Organisation delays

R8: Capacity limitations

R3: Need of human intervention

R1: Complexity of patches

R5: Input-requirements delays

R4: Coordination delays

Frequency % of occurrence

Fig. 8. Frequency distribution of the reasons for de-
lays in security patch management from a total of 417
occurrences of delayed reasons.

5%
11%

15%

54%

15%2.5

3.6 3.6
2.9

1.8

P1: Patch
Information

Retrieval

P2: Vulnerability
Scanning,

Assessment &
Prioritisation

P3: Patch Testing P4: Patch
Deployment

P5: Post-
Deployment

Patch
Verification

Distribution of delayed tasks % Average delay in months

Fig. 9. Distribution of delays over the security patch
management process and average delay duration in
months in each phase. Total number of delayed tasks
= 132.

support which further delayed the completion of the task. We also observed that some security
patches required extensive monitoring to verify the fixes for post-deployment errors. For example,
the task was kept under monitoring for several weeks until the results confirmed the applied fix
poses no unanticipated adverse effects to the managed systems. Furthermore, the increasing rate
of patch release coupled with the patch heterogeneity adds to the complexity of patches creating
delays in patching. This is because as the number and diversity of patches increase, the number and
complexity of the patch interdependencies that need to be managed also increase. Consequently, it
leaves myriad attack vectors vulnerable to cyberattacks increasing the risk of exploits.

[Subject - Patch deployment error at the [server s1]
“13/12/19 - Workaround applied and timings were all good. Keep open till January run for
confirmation." - EMR, Issue ID 35

The analysis unveiled that some delays can be attributed to the limitations of tools. In particular, the
lack of accuracy in the output of current tools (e.g., missing some vulnerabilities during scanning,
omitting patches during patch deployment) resulted in inaccurate vulnerability prioritisation
and incomplete patch deployment respectively. Subsequently, the practitioners had to re-execute
the tasks resulting in delays in the task completion. Another limitation is associated with the
lack of scalability to handle diverse types of patches and their features. In such cases, patches
introduce complications to tool functionalities such as disabling some tool functions. Furthermore,
we identified functionality limitations of existing tools like the inability to detect patch compatibility
arising from the patch dependencies and the lack of capability to detect multi-reboot requirements
that delayed the tasks.

[Subject - Additional reboot required for .NET patching]
“7/2/20 - An investigation is needed around the number of required reboots for EMR patch-
ing and window requirements as a result if more reboots are required. A new process needs
to be fleshed out when patching is postponed to accommodate the identification of the
number of reboots required." - EMR, Task ID 35

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 362. Publication date: November 2022.

Why, How and Where of Delays in Software Security Patch Management: An Empirical Investigation in the Healthcare
Sector 362:13

Another prominent cause of delays is ascribed to the need of human expertise throughout the
patch management process. The need for human intervention emerges because of the inability to
achieve complete automation in the process owing to technological limitations. Troubleshooting
the issues, mostly related to the unknown errors during and post-deployment, and faulty patches
consumed a lot of the practitioner’s time and effort delaying patch testing and deployment tasks.
Similarly, manual configurations, for example, selecting the suitable Group Policy Object (GPO)
configurations based on the needs and making decisions about the patch process, e.g., changes to
the patch cycle and patch window, needed to be thoroughly assessed for the impact on multiple
aspects to avoid breakdowns. Moreover, we noticed that the practitioners undertook manual patch
deployment during complex, erroneous, or business-critical patch installations, for example, legacy
systems patching. Manual intervention was also required for re-executing failed patch deployments
and re-planning patch schedules due to requirement changes.

[Subject - [Hospital h1] patching stage 3 on 27th November]
“18/10/19 - Patching needs to be moved to OOB due to the change freeze from 15th November
to 3rd December.
31/10/19 - [B-T1] team putting in significant amounts of work, like 15-20 hours per month,
to redo the schedules on custom dates each time the deployments move off standard
windows." - EMR, Task ID 30

4.1.2 People-related reasons. These refer to a group of reasons relating to the coordination of
patch management, delivery of input requirements, and planning and execution of patch manage-
ment tasks.

Delays occurring due to lack of coordination presented the most recurrent reason for delays.
It refers to the delays in getting things done in the patch management process. It is challenging
because completing a single patching task (e.g., applying security patch X to server Y in Customer
Z) involves multiple interdependent activities and several stakeholders. We found coordination
delays stemming from both internal and external stakeholders.

Internal stakeholder coordination delays, in the studied context, relate to the delays from
lack of coordination of dependencies deriving from the interactions between stakeholders of Org A
and Org B. As several interdependent teams between the two organisations collaboratively worked
towards an end goal of timely application of security patches to ensure systems’ security, a delay of
one party resulted in delays in task completion. Similarly, a lack of awareness of task progression
between teams also created delays in inter-team task progression. As such, the multiteam system
[31] in the studied context resulted in delays in decision approvals as they had to go through
multiple teams (or levels). In addition, a lack of understanding of shared roles and responsibilities
led to delays in coordinating tasks between teams because the task assignee did not know whom
to contact in the event of errors or who was handling the interdependent task. We noticed that
coordination delays also occurred due to missing information owing to an overload of emails. Email
being the primary source of communication between the internal teams, there were cases where
some emails had been missed resulting in delays in passing information on time. Moreover, poor
communication and information misinterpretation contributed to delays in information passing.

Concerning external stakeholder coordination delays, we found delays attributed to the
coordination with customers (e.g., hospitals), end-users (e.g., hospital patients and staff), and
vendors (e.g., Microsoft). A dominant reason was the delays in obtaining customers’ approval for
patch deployment. Since patch deployment usually resulted in system downtime arising from the
reboots, obtaining approval for patch deployment schedules was important.

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 362. Publication date: November 2022.

362:14 Dissanayake, et al.

[Subject - Request to change patch window of [s1] server]
“10/5/19 - Currently set to 0000-0300, but the full backup of the server happening during
this window causes slowness and issues with patching. Suggest changing the window to
0600-0900. [P1-AT2] checking on the status with business approval
14/6/19 - [P1-AT2] to follow up as no response from the business." - Win, Task ID 19

The other reason was the delays in coordinating with vendors for support. Coordinating the vendor
dependencies is integral to security patch management as the practitioners rely on vendors’ support
for errors encountered during patching and to obtain information about patch releases. Additional
delays included the administrative overhead of coordinating with multiple customers for pre and
post-patching verification and delegation delays due to conflicts of task ownership with other
third-party vendors owing to lack of accountability.

Another instrumental people-related reason was the delays in providing input requirements. This
is because the patch management process represents a sequence of phases with tightly coupled
activities whereby an output of one phase is the input to the next phase. Similar to coordination
delays, we identified that the input requirements delays emerge internally and externally.
Internal input requirements delays occurred when requested information was not provided by

the internal teams on time. This included delays in delivering the reports such as the vulnerability
scan reports which led to delays in vulnerability assessment and prioritisation. Similarly, delays
in delivering patch schedules-related information led to delays in planning and subsequently
deploying patches. Other reasons included delays in supplying other information requisites such as
server details and providing the team’s requirements in the patch cycle. An important observation
was that the teams did not maintain an online repository with the server details which created
the need for waiting for information about up-to-date server details (i.e., with the latest patched
versions).

External input requirements delays are concerned with the requirements delivered late
by vendors. For example, delays in the patch release, particularly the patches for fixing critical
security vulnerabilities, can result in a significant increase in the risk of exposure to cyberattacks.
Additionally, the delays in receiving vendor’s support for patching errors and new patch release
information caused delays in addressing the vulnerabilities.

[Subject - New zero-day vulnerability warning]
“12/6/20 - Monitor Microsoft patch release for critical vulnerability identified on [T1] servers.
Font Type 1 expected as a zero-day soon, full report not available yet.
24/7/20 - No update from Microsoft." - EMR, Task ID 43

We noticed that some delays were caused by failures from poor planning and execution. Security
patch management in large and mission-critical domains like healthcare entails challenging tasks
that need to be cautiously planned and executed to avoid system breakdowns. However, the
complexity of patches, particularly, the unforeseen errors during deployment presented a major risk
to deploying within the planned time frame. With regards to poor planning, inaccurate estimates
of patch windows caused patch deployment to exceed the allocated patch windows resulting in
inconvenience to customers and end-users. As a consequence, practitioners often halted patch
deployment to avoid service disruptions resulting in patching delays.

[Subject - Execution exceeding the patch window]
“31/5/17 - Only 72.9% of scheduled patch deployments were completed as of 11.20 am. Two
further windows to be raised to ensure the appropriate length of time is scheduled due to
unknown 2016 updates that were required to be implemented, first window is 1st June 8
am to 12 pm." - Win, Task ID 4

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 362. Publication date: November 2022.

Why, How and Where of Delays in Software Security Patch Management: An Empirical Investigation in the Healthcare
Sector 362:15

Of poor execution, missing patch prerequisites such as registry changes, GPO configuration and
installation of preparation packages halted execution due to errors during the deployment. Sim-
ilarly, incomplete patch deployment (e.g., failing to reboot after deployment which resulted in
the installed patch not taking effect), and inadequate post-deployment patch verification such
as failing to monitor the status of patch deployment tasks caused the need to re-execute patch
deployment. Insufficient post-deployment patch verification also resulted in operation disruptions
due to unexpected errors. For instance, we observed a heated discussion during a patch meeting
owing to an issue with the printers not working reported by the customers to Org A caused by a
lack of post-deployment verification by Org B.

4.1.3 Organisation-related reasons. This category covers reasons relating to the organisation
approvals, schedules, capacity to undertake patch management tasks and policies on service avail-
ability.

We found some reasons denoting organisation delays resulting from organisation policies and
schedules. The need for compliance with organisation policies and the involvement of multiple
parties (i.e., two organisations and several teams) has resulted in delays in obtaining approval
from organisational management for monthly patch schedules and changes in the process. We also
noticed that delays occur due to changes in organisation schedules such as change freeze periods,
testing schedules like regression testing plans, and holidays (e.g., year-end shutdown period) during
which no patch deployments were allowed to be scheduled.

[Subject - Patching for December 2019]
“18/10/19 - OOB for November patching from 4th December instead of December patching.
31/10/19 - [AT1] patching for December month is off but November Microsoft patches will
be applied in the first week of December instead to keep compliance up." - EMR, Issue ID 29

Further, we noticed a lack of capacity concerning human resources, infrastructure and time
leading to delays. With regards to resource constraints, insufficient human resources appeared to
be a major factor in delays. For example, unavailability of task assignees due to high work overload
and assignee being on leave held up the tasks in progress until the assignee was available. Another
root cause was the lack of qualified personnel with sufficient experience to handle complex tasks
such as legacy system upgrades, thus leading to an experienced practitioner getting overloaded
with tasks that would end up queued for a long time. Regarding infrastructure-related limitations,
hardware and network limitations hindered task progression in ways such as performance delays.
For example, the high patch load described in the complexity of patches (R1) impacted the reboots
following deployment and issues with the bandwidth required for patching due to a lack of capacity
to handle the load.

[Subject - Backup server patching]
“24/1/20 - Patching cannot go ahead when the active backup is running. The patch load
can impact servers before reboot. Need a window change, proposal to be sent by [P1-BT1]
to [P2-AT1]." - EMR, Issue ID 39

Another reason stemmed from the periodic patch cycles as it presented the practitioners with
a time-bound restraint to progress with the tasks. In particular, some tasks such as testing the
workarounds for failed deployments had to be delayed for weeks given the time-driven (i.e., monthly)
patch cycle in practice.

Another crucial cause of delays stemmed from the service availability restrictions. We noticed
that patch deployment was often delayed due to organisations’ inability to allow service downtime

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 362. Publication date: November 2022.

362:16 Dissanayake, et al.

from reboots. Reboots were necessary for the patch to take effect after deployment and some
patches required multiple reboots or multi reboots depending on the level of complexity involved,
for example, the number of patch interdependencies. As such, the multi reboots required longer
and additional patch windows than the usually allocated 4-hour window. Consequently, in most
cases, the patch schedules were delayed to be deployed in out-of-band (OOB) windows to reduce
service disruptions from longer patch windows during business hours.

[Subject - [Servers s1 and s2] patching]
“26/7/19 - OOB window is needed for the multi reboots to catch up.
9/8/19 - Waiting for the customer’s confirmation of the new patch window, pending
information from [P1-AT1]." - EMR, Issue ID 20

However, getting customers’ approval for a change of patch window presented an additional
challenge to the practitioners as customers were always hesitant about the risk of system downtime.
Correspondingly, further delays occurred due to customers’ requests to postpone the schedules to
allow service continuity.

Summary for RQ1: We identified nine causes for patching delays associated with technology,
people and organisation-related reasons. In a majority of the delays, we found multiple reasons
attributing to one delayed task. Among these reasons, people-related reasons, for example, co-
ordination delays and input requirement delays appeared as the most prominent and recurrent
reasons. Concerning where the delays occur, we found that the delays are distributed throughout
the security patch management process, however, most of the delays, i.e., 54% occurred during one
phase, i.e., patch deployment. Yet, regarding the duration of delays, we found that tasks related
to vulnerability scanning, assessment and prioritisation and patch testing phases account for the
longest delays.

4.2 Mitigation strategies for delays in software security patch management
We identified a group of strategies implemented by the studied teams as corrective/reactive actions
to reduce the delays. Further investigation enabled us to identify where to apply the strategies in
the patch management process. Figure 10 presents the strategies grouped by the relevant patch
management process phase with the number of references for each strategy (in parentheses).

4.2.1 Strategies relating to the overall patch management process. The following set of
common strategies can be applied across all phases of the patch management process.

Frequent communication with all internal and external stakeholders is vital in reducing the
patching delays as it helped strengthen the collaboration and improve mutual understanding
by bringing all stakeholders on the same page. Regarding internal communication, the studied
practitioners held bi-weekly patch meetings to discuss patching issues, find solutions to the issues,
report the status of patching tasks, and measure the progress of the patch cycle. Besides the patch
meetings, they held informal discussions on complex and critical issues when required.

[Subject - Post-deployment issue - Data Capture servers not able to communicate with
[system s1]]
“7/8/20 - [P1-AT1] checking with [P2-AT2] for the other three servers that do not have a
commissioning request.
21/7/20 - Set up another meeting with BT1 to discuss this request (ID 1772737)." - EMR,
Issue ID 42

As to external communication, the practitioners frequently negotiated with customers about
the patch deployment schedules. It involved getting consent for patch deployment at customers’

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 362. Publication date: November 2022.

Why, How and Where of Delays in Software Security Patch Management: An Empirical Investigation in the Healthcare
Sector 362:17

Common strategies relating to the overall patch management process

	 	 	 	 	 S1. Frequent communication (24)
	 	 	 	 	 S2. Collaborative decision-making (3)
	 	 	 	 	 S3. Task delegation (31)
	 	 	 	 	 S4. Regularly review and update patch management process-related documentation (3)

Strategies relating
to Patch Information

Retrieval (P1)

Strategies relating
to Vulnerability

Scanning, Assessment
& Prioritisation (P2)

Strategies relating
to Patch Testing (P3)

Strategies relating
to Patch

Deployment (P4)

Strategies relating
to Post-Deployment

Patch Verification (P5)

S11. Timely coordination
of patch deployment
schedules (19)

S12. Apply workarounds
to maximise service
availability (18)

S13. Manual deployment
for complex patches to
minimise damage (12)

S14. Agile deployment
for executing changes (6)

S15. Establish post-
deployment verification
procedures (10)

S16. Collectively handle
 post-deployment issues
(9)

S17. Document
deployment status of
every patch (3)

S8. Define compliance
policies and contingency
plans for test failures (9)

S9. Patch pre-requisites
investigation (4)

S10. Modify software
configurations and
dependencies (3)

S6. Plan alternatives for
delayed patches (6)

S7. Define priorities for
vulnerability remediation
(15)

S5. Set strict timelines
for patch download (2)

Fig. 10. Detailed overview of the strategies applied to mitigate delays in software security patch management.

premises, agreeing on the patch deployment dates and times (i.e., patch window), establishing
contact persons at the customer sites for emergency contact and notifying completion of the patch
deployment task. Similarly, the practitioners regularly negotiated with the vendors regarding the
delayed patch releases and support cases raised for faulty patches. Frequent communication helped
all stakeholders gain awareness of the tasks and schedules, assisting them with up-front planning
and coordination of the dependent tasks.

[Subject - Unix patching schedule confirmation]
“24/7/20 - The requirements analysis revealed a major OS upgrade, not simple patching.
The schedule is still being negotiated with [customer c1]." - Non-Win, Issue ID 7

Collectively making decisions about patch management, for example, patch prioritisation based
on the vulnerability assessment results and organisation needs, selecting workarounds for delayed
patching and post-deployment issues helped the team members gain insight into the prospective
plans and activities. In addition, it allowed the individual team members to make well-informed
decisions about their task assignments that reduced the impact of the delays from waiting for input
from dependent tasks and changes in the organisation’s schedules.

[Subject - Proposal for a patch cycle change in [servers s1 and s2]]
“4/4/18 - Discussions still ongoing for the decision. AT1 is still considering various options
and has put them out in slides for discussion at the meeting." - EMR, Issue ID 2

We observed the patch meeting facilitator delegating the tasks to BT1 team members based on
their expertise and experience during the patch meetings. In rare cases, the practitioners voluntarily
self-assigned the tasks based on their interests and due to the unavailability of task assignees. The
delegated tasks including details of the task, task assignee, raised by, and date of the assignment
were documented in the patching tracker during the meeting. It appeared a useful strategy to
increase dependency awareness of the tasks, particularly, in scenarios like task B is dependent

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 362. Publication date: November 2022.

362:18 Dissanayake, et al.

on task A (A→ B) and the assignee of task B needs input from task A to progress with the task.
Moreover, employing this strategy ensured well-defined roles and responsibilities around patch
management activities resulting in increased accountability for actions.

[Subject - Vulnerabilities in .NET Core]
“21/2/20 - .NET Core is not receiving updates. A new process is required to patch this version
and a service request (SR) needs to be submitted for review and assessment. [P1-BT1] to
raise the SR for the issue raised by BT1 on 7th Feb 2020." - Win, Issue ID 40

Another common strategy that emerged from the data analysis was having a systematic process
to regularly review and update the documentation about patch management process actions and
decisions. It is important to consistently review the process and test any process changes internally
before documenting them. A well-documented process ensures clarity in the process activities and
decisions and eases tracing back during troubleshooting post-deployment errors.

[Subject - Update documentation for the split of [servers s1 and s2] patching into two
procedures]
“13/12/19 - Finalising the documentation after testing internally for handover to 24x7.
10/1/20 - Documentation to be tested in February, will be ready for handover in March." -
EMR, Task ID 24

4.2.2 Strategies relating to patch information retrieval (P1). Setting tight timelines for patch
download, for example, within two days of the “Patch Tuesday" when large vendors like Microsoft,
Adobe, and others release the patches, was a strategy followed by the studied practitioners. It
allowed them sufficient time to plan and coordinate the patch windows, negotiate with customers,
obtain organisation approval, and undertake extensive patch testing before deployment. In the
studied context, Org B provided a report to Org A teams containing a list of the retrieved patches
each month that aided collaborative assessment of vulnerability risks.

[Subject - Provide .NET report at the start of the patch cycle]
“15/3/19 - Org A requests BT1 to provide an extract of .NET released patches every month
and a report including what patches will be applied to what servers." - EMR, Task ID 53

4.2.3 Strategies relating to Vulnerability Scanning, Assessment and Prioritisation (P2).
We observed the practitioners planning alternatives for scheduled patching that will be delayed
due to known reasons. For example, a major upgrade for critical legacy software is a complex
and time-consuming process that often involves several challenging subtasks like an intensive
assessment of the cost-benefit analysis and impact on other services, and laborious data migration
procedures. In such cases, the practitioners planned alternatives (i.e., what to do and when to do it)
for the time being until the software is patched to minimise the risks of attacks. We observed them
collaboratively analysing various workarounds for suitability during delayed patch releases and
delayed patching and assessing the timing of those alternate remediation plans.

Defining priorities for vulnerability remediation appeared beneficial in reducing the risk of ex-
ploitable attack vectors from delayed remediation due to the large number and diversity of patch
releases. The studied practitioners prioritised vulnerabilities based on the patch severity and impact.
In the studied context, the security team (AT4) prioritised security patches based on the global
vulnerability rating and their own risk assessment. High-risk critical patches were prioritised to be
deployed within 48 hours while the medium to low-risk patches were deployed in the next patching
cycle. Prioritisation based on the patch type, for example, operating system patch vs software
application patch, was another strategy employed for defining the priorities. In some cases, we

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 362. Publication date: November 2022.

Why, How and Where of Delays in Software Security Patch Management: An Empirical Investigation in the Healthcare
Sector 362:19

observed them prioritising the operating system security patches over other security patches like
.NET, IE, Adobe, and Java.

[Subject - OS security patches need to be tracked separately in the vulnerability reme-
diation]
“15/5/20 - [P1-AT1] requesting the OS security patches to be tracked separately from all
other vulnerability remediation. Org B’s report should only be addressing OS security
patches anyway but can make sure to separate any non-OS remediation tasks." - EMR,
Task ID 45

4.2.4 Strategies relating to Patch Testing (P3). Definition of compliance policies, for example,
the standards imposed by the security team to reboot every legacy server even if there are no
patches, and developing contingency plans in cases of failures appeared beneficial in mitigating
the risk of delays caused by the erroneous patches.

Patch prerequisites such as the registry changes and preparation package installation represent
preconditions that needed to be set up for the patch to take effect during the deployment. As a
strategy to avoid possible delays resulting from the runtime errors hindering patch deployment
due to missing prerequisites and delays in manual configurations associated with the prerequisites,
the BT1 team performed an investigation of prerequisites for the patches released every month as a
separate task during patch testing.

[Subject - Registry key missing for Knowledge Base (KB) ID [n] (LDAP)]
“2/10/20 - Patches not installed on [servers s1 and s2] due to missing a registry key. [P1-BT1]
to check settings and apply where missing." - Win, Task ID 24

In preparing the machines for patch deployment and avoiding potential delays arising from
complexities of patches due to patch dependencies, the practitioners dedicated a specific time to
identifying and modifying the dependencies and configurations during patch testing. For example,
they created patch clusters based on the patch similarity and configured the group settings, also
known as Group Policy Object (GPO), to reduce time spent on manual configurations on individual
patches.

4.2.5 Strategies relating to Patch Deployment (P4). Well-timed coordination of patch deploy-
ment schedules can help mitigate several delays associated with the coordination delays, capacity
limitations, organisation policies regarding service availability, organisation schedule changes,
failures from poor planning, and increased rate of patch release during patch deployment. The
activities involved internal planning and scheduling of the patch windows for each managed system
(i.e., when to patch), defining the teams’ roles and responsibilities for contacting customer sites for
patch deployment verification and planning the servers’ load to spread evenly through the patch
windows to avoid performance issues and unexpected service disruptions during patch deployment
(i.e., how to patch).

Given the mission-critical nature of healthcare operations, the risk of system downtime from
reboots presented a major challenge to the practitioners in reducing the risk of service disruptions
during patch deployment. As a strategy to maximise service availability and reduce potential
associated delays, they applied various countermeasures including clustering, load balancing, and
failover. Clustering refers to grouping patches based on their similarity. As such, configuring
the group settings and deployment of the patch clusters significantly reduced the time spent in
testing, deployment, and rebooting than comparable single-patch work resulting in increased
service availability. Similarly, load balancing which refers to balancing the load on servers during

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 362. Publication date: November 2022.

362:20 Dissanayake, et al.

deployment helped avoid unnecessary service disruptions. This is because the servers will be
patched in batches reducing the risk of all services being interrupted at the same time. Failover or
maintaining backup servers to concurrently run the services while being rebooted was another
workaround employed to minimise the downtime. Subsequently, the backup servers’ patching was
carefully planned with separate patch windows. A few other countermeasures included planning
extended windows for patches that required multi reboots in out-of-band windows and pre-loading
the patches offline to avoid patch deployment exceeding the allocated patch window.

[Subject - Patch deployment failed at [server s1]]
“24/1/18 - Single point of failure for [server s1]. AT1 to review the proposed design for
clustering for high availability. Currently hard to obtain reboot timings and only one
reboot is allowed. Ask the customer for an extended window and move the patching to the
weekend." - Win, Task ID 6

The practitioners decided to shift to manual patch deployment for business-critical server patching,
complex patches that involved multiple version dependencies, multi reboots and legacy software
systems, and redeployment of erroneous patches. This strategy was deemed effective in minimising
the damage (i.e., service operations left unstable post-deployment) caused by failed deployments
and avoiding the risk of further delays. However, we noticed that shifting to the manual deployment
itself could lead to delays in patching as described in R3 in Section 4.1.1.

Agile deployment was another strategy employed by the teams where they executed the changes
to patch deployment procedures in small iterations. This was adopted as a precautionary measure
against unexpected breakdowns since a small change in the deployment process could result in
disastrous consequences to service continuity and build confidence around the new changes.

4.2.6 Strategies relating to Post-Deployment Patch Verification (P5). Having a defined set
of procedures for post-deployment patch verification helps reduce the risk of delays caused by failures
from poor execution due to inadequate post-deployment verification. The studied teams verified
the patch deployment status using several approaches such as monitoring the system for any
functional, performance, or unexpected issues, analysing the system logs, collecting user feedback
(i.e., confirming with customers about any adverse impact on service continuity), and getting
periodic scans to verify the targeted security vulnerabilities have been patched.

[Subject - Automated second rescan for reboots]
“31/10/19 - [P1-BT1] raised this issue, he has configured the window to rescan for missing
patches and conduct a second reboot if required. No issues during patching, seeking client
feedback for verification." - EMR, Task ID 28

Post-deployment issues such as unresponsive server or unavailability of service may have de-
veloped due to failures during patch testing and deployment, or lack of proper post-deployment
verification. To avoid such issues leading to long delays causing unexpected service disruptions, the
practitioners engaged in a collaborative problem handling approach. We observed long discussions
at the patch meetings about the investigations of the root causes for post-deployment issues and
finding workarounds to failed deployments. Most commonly used workarounds in the studied
context included reverting to the previous working software version, restoring from the backup,
and patch redeployment in out-of-band windows.

The team members documented the deployment status of every patch in the patching tracker. It
served useful as a vulnerability wiki to keep track of the progress of every patch and as a reference

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 362. Publication date: November 2022.

Why, How and Where of Delays in Software Security Patch Management: An Empirical Investigation in the Healthcare
Sector 362:21

in cases of errors encountered during the execution. Further, employing this strategy during post-
deployment patch verification ensured all patches are properly deployed and audited. As a result,
the delays that occurred due to tool limitations, for example, missing patches during deployment
were minimised.

Summary for RQ2: We identified 17 strategies applied by the practitioners as corrective/reactive
actions to manage the delays. Among these strategies, frequent communication, collaborative
decision-making, task delegation, and regularly reviewing and updating the documentation were
common strategies applied across all phases of the security patch management process. Further,
we found a group of strategies executed at each phase of the process to mitigate the delays that
occurred during each step.

4.3 Findings from Member checking
The participants provided positive feedback on the study findings and agreed with the accuracy of
the results. Several participants including the executive complimented our research, saying “Thanks
for all the information. Very interesting analysis"- P1-Org A, “From my point of view, I think your
analysis is very good and useful because it’s not just looking at how good or bad things are but also
highlights where the improvement could be"- Executive-Org A. Further, it was interesting to see their
motivation to improve the delays following the presentation. “I hate to see this good work going
wasted, a really good analysis where we got some really good insights. So, I’d like to see our teams
taking these on board, then revisit this to see how the pie chart changes when we address the top reasons
for delays"- Executive-Org A. The participants did not mention any new information or variations
to the findings and explained the challenges of dealing with some of the delays, for example, “The
patching timeline is fixed by vendors such as Microsoft who use a monthly schedule so reducing the
time frame of getting appropriate approvals and executing is an absolute necessity. And getting new
patches tested, confirmed, and approved in a week is always a challenge before they are rolled out
confidently to production"- P1-Org A, “Also, not all environments have testing environments to test
these patches. So, in a fair few cases application testing actually occurs in deployment environments
which can cause many failures leading to delays"- P2-Org B, “Yes, to add to it, vendors introducing
application patches at the same time as OS patches can also cause delays and conflicts with OS security
patching"- P3-Org B. They also asked us several questions including how they can reduce the delays
further, to which we suggested some improvements which are discussed in Section 5.

5 DISCUSSION
In this section, we reflect upon our findings and discuss them in light of the existing literature.
Further, we present the implications for research and practice.

Mitigating delays in security patch management is instrumental in maintaining the security,
availability, and confidentiality of information technology (IT) systems [35], and failure to do so has
resulted in several devastating outcomes [19]. Yet, the topic remains less explored in the literature,
particularly, in understanding the practical reasons for delays in applying the patches. Based on a
comprehensive analysis of the gathered artefacts over a period of four years, we have identified
why, how and where delays happen in security patch management in practice and a set of corrective
strategies to mitigate them.

Our findings unveil that the primary cause of the most prevalent delays (24.9%) is coordination
delays in the patch management process (Figure 8). The need for effective coordination in patch
management appears from a combination of complex technical dependencies inherent in patches

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 362. Publication date: November 2022.

362:22 Dissanayake, et al.

and the collaborative environment in the patch management process demanding orchestrated social
dependencies between a diverse group of stakeholders [12]. An interesting finding is that internal
coordination delays were more recurrent than the delays occurring from external stakeholders,
i.e., customers and vendors. This was confirmed during the member checking as described by
the executive, “I’m not surprised by some of these reasons, especially the coordination delays as the
difficulties in collaborating and communicating between the teams are evident in almost every aspect
of the process." Although it appears that such delays are within the control of the practitioners,
our findings emphasize the need for further support on coordination across patch management
tasks and stakeholders. Similarly, with regards to the second most recurrent reason, the input
requirements delays (16.8%), a majority of the delays emerged from internal teams as opposed to
external vendors, indicating that adopting strategies like frequent communication (S1) and task
delegation at meetings (S3) can help reduce such delays.

The next prominent reason, the complexity of patches (13.7%) can be attributed to the inherent
complex patch dependencies and unknown risks of faulty patches. Although the intrinsic factors
are essentially in control of the third-party vendors in charge of patch development, strategies
like extensive patch testing to identify the prerequisites and inherent patch dependencies (S9, S10)
[11, 12, 27] and defining contingency plans to handle faulty patch errors (S8) can help reduce
delays arising from the patch complexity. The socio-technical endeavour in patch management
constituting the fourth-most recurring delay (13.4%) can be explained by the inevitable need for
human intervention in the process. While it suggests a need for a better understanding of the
human interaction in patch management, our findings can guide practitioners in the planning of
patch schedules allowing sufficient time for manual intervention (S11). Regarding the delays caused
by capacity limitations in human resources, infrastructure, and time (9.6%), properly planning the
task assignments with minimum task dependencies (S3), patch clustering and load balancing (S12),
and implementing patch deployment changes in an agile manner (S14) can be helpful.

While organisation-related delays (7.4%) can be implied to be within the control of practitioners,
service availability restrictions (6%) may appear difficult to always be taken control of. This is
because service continuity presents a pressing need for modern enterprises, particularly in the
context of mission-critical domains for which service disruptions even for a few seconds can
result in severe consequences. As described by a participant during member checking, “it is very
challenging with the service availability restrictions, one example is the ambulance service, even though
we have received approval, we always have to call the service just to confirm if it’s okay to patch
because we don’t want to shut down the system in the middle of an operation". However, applying
workarounds such as failover, clustering, and load balancing (S12) can help reduce such delays.
Concerning the least occurring delays, limitations of existing tools (4.6%), although reflect reasons
not within practitioners’ control, having well-established roles, patch management practices, and
policies can help mitigate such delays. Finally, the delays emerging from failures in poor planning
and execution (3.6%) can be addressed with careful planning and execution (S9-11, S17).

Further reflecting upon our findings and in comparison to previous works, we discuss that
some of the identified reasons are not necessarily specific to security patching in the domain of
healthcare, but could be also observed in other domains. For example, the complexity of patches
(R1). The patch interdependencies are found to be intrinsic characteristics present in the patches
released by the vendors [12]. Therefore, the resultant delays from managing these patch interde-
pendencies could be challenging in other domains as well. Similarly, the need of human expertise
is a standard notion accepted in security patch management because the process is inherently a
socio-technical endeavour, where the human and technical interactions are tightly interconnected
[11, 40]. Therefore, we find the reasons relating to the need of human intervention (R3) as

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 362. Publication date: November 2022.

Why, How and Where of Delays in Software Security Patch Management: An Empirical Investigation in the Healthcare
Sector 362:23

reasons that could also apply beyond the studied context. In addition, we recognise the reasons
relating to the service availability restrictions (R9) could be present in other domains as well.
This is because the reboots following patch deployment are necessary for the applied patch to take
effect. Further, the service interruptions caused by the reboots have been widely acknowledged as
a major obstacle in patch management across several domains [1, 13, 27, 43, 51].

In contrast, we believe that some of the reasons are likely to be specific to the domain of healthcare
and the context of studied organisations. For example, the reasons attributing to organisation
delays (R7) and capacity limitations (R8). Concerning organisation-related reasons, patching
delays resulting from delayed approval from higher management may not directly apply to a small
organisation with one team or to an organisation with a flat hierarchy where no line approvals
are needed. Although these reasons may not necessarily represent reasons beyond the studied
cases or the context, an understanding of the context-specific reasons enables researchers and
practitioners to better appreciate the practical utility of the solutions and formulate appropriate
plans for mitigating potential delays. We believe there are possibilities for future research to explore
the reasons for delays in a broader context using these categories.

5.1 Related Works
Our study confirms the findings of the previous studies that suggest some challenges in security
patch management could contribute to delays in patching. For example, our finding of coor-
dination delays contributing to the majority of the delays complements the existing research
[23, 27, 37, 40, 43], which reported that coordination is one of the most pressing challenges of timely
patch management. Our analysis extends the knowledge by showing how coordination delays are
introduced internally and externally. Additionally, our findings further highlight the importance
and the need to focus more on the socio-technical aspects such as coordination in the time-critical
security patch management process as mentioned by previous literature [11, 12, 27, 40, 51].
Our analysis reveals that the complexity of patches causes the third-most frequent reason for

delays; it complements the previous work [8, 14, 24, 37, 40, 51, 52], which has mentioned that faulty
patches and configuring patch dependencies are challenging as they often lead to breakdowns
during patch deployment. Similarly, the need of human expertise in the process [8, 12, 27, 51] and
capacity limitations, specifically, lack of human resources [24, 42, 51] are mentioned as challenges
in security patch management in the related studies. Further, several studies (e.g., [1, 13, 27, 43, 51])
have highlighted service disruption as a central challenge of patch deployment. Our study extends
the knowledge of these challenges by showing how, why and when they contribute towards
patching delays.
Alternatively, previous studies [4, 5] have predominantly focused on achieving timely patch

management through optimising the process by attaining a balance between an organisation’s patch
cycle and a vendor’s patch release cycle. Dey et al. [9] have developed a quantitative framework
that analyses and compares various patching policies to find the optimum policy considering the
costs of periodic patching against the security risks from patching delays. By investigating vendors’
patch release and practitioners’ patch deployment practices, Nappa et al. [37] revealed that only
14% of the patches are deployed on time and the patching mechanism (e.g., automated vs manual
patch deployment) impacts the rate of patch deployment. Despite the widespread attention towards
timely security patch management, an important observation is the absence of an investigation of
the root causes (i.e., reasons) for delays in security patch management. To the best of our knowledge,
the existing studies have not explored why the application of patches is delayed but rather proposed
approaches to achieve a timely patch management process. Hence, our study contributes to the
existing body of knowledge by:
- providing a taxonomy of reasons explaining why delays occur when applying security patches in

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 362. Publication date: November 2022.

362:24 Dissanayake, et al.

practice,
- reporting what reasons for delays are more prominent based on frequency analysis,
- demonstrating where the delays occur in the patch management process,
- presenting a set of strategies to mitigate the delays and describing when they can be applied in
the patching process,
- providing practical implications for practitioners to identify and mitigate delays, and,
- establishing a foundation for future research towards effective management of patching delays.

5.2 Implications for Practitioners
Our findings reveal why delays happen when applying security patches in practice with a set of
reasons contributing to the delays, explain how the reasons vary, and how delays are distributed in
the patch management process. As a direct practical implication of the provided understanding,
the security analysts and system administrators will be able to identify and assess the factors
associated with the causes of delays and take precautions to mitigate potential delays. Further, the
understanding of the frequency analysis of reasons and distribution of the delays highlights what
reasons need practitioners’ immediate attention and where is improvement needed to overcome the
delays. In addition, the knowledge will help practitioners in suitable decision-making, prioritisation,
and planning of patch management tasks with minimal impediments.

In addition to explaining why, how, and where do delays occur in patching, our findings describe
how the delays can be mitigated. We present a set of strategies employed by the studied practitioners
to rectify the delays. Knowing what to do and when to do can be useful for practitioners and organ-
isations in taking prompt actions to mitigate the impact of the delays. The findings may also help
predict a delay in a given scenario whereby practitioners can better plan patch cycles and refine the
patching process in light of their organisational contexts. For example, practitioners can consider
the development of new tools like Environment Diagrams as a visualisation tool, to keep track of
the system dependencies that would save time in patch testing and deployment. Other approaches
like maintaining an online shared repository documenting organisation schedules and regularly
documenting patch exemptions in detail would assist teams with accurate planning of patch
schedules. Towards overcoming delays of coordination in patching, adopting computer-supported
collaborative tools like “Slack" can benefit accomplishing timely communication, collaboration,
and information sharing between all stakeholders [28]. In this way, our findings offer guidance to
practitioners to make suitable decisions to alleviate the threat of cyberattacks from delayed patching.

5.3 Implications for Researchers
Given our findings are based on the cases studied limiting to the domain of healthcare, other
researchers can extend and adapt the results through future studies within the same domain
involving different stakeholders or different domains. Further, future research exploring the viability
of the findings based on the contextual factors, for example, variations in context-specific reasons
for delays like capacity limitations (R8) and organisation delays (R7), can result in useful insights
from additional cases with extended scope. With regards to the reported strategies for mitigating
the delays, future studies can investigate their suitability and effectiveness depending on the context
and organisation policies (e.g., similar to future work of [12, 27, 51]). In addition, the findings can
be used in potential interview guides and surveys to verify the findings in other contexts and
discover variations within them. Another possibility is to investigate the impact of patching delays
on organisations and other stakeholders such as end-users.
The data analysis has revealed that the limitations in current tools contribute to delays in

applying the patches. We believe that future research can address this limitation by developing

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 362. Publication date: November 2022.

Why, How and Where of Delays in Software Security Patch Management: An Empirical Investigation in the Healthcare
Sector 362:25

advanced tools leveraging deep learning techniques. For example, an automated tool that provides
dependency visibility by highlighting mismatches of patch dependencies. Considering the most
recurrent delays occur due to a lack of coordination in the patching process and delays in providing
the required inputs, future research can invest efforts into developing computer-supported tools
and platforms that can support better coordination across patching tasks and reducing delays in
collaborative tasks. Solutions could be further investigated on how automation support can be
extended to assist the decision-making in patch management, for example, developing intelligent
interactive systems like software bots [55] for collaborating with practitioners that guide them to
decisions by asking rational questions. This further opens up an avenue for future research to ex-
plore how “human-AI collaboration" [25], an emerging research paradigm in the CSCW community
[54], can be extended to a crucial topic like security patch management. Moreover, there is room
for research to explore how to improve the performance and accuracy of the patch management
tools. Tool development needs to consider the diversity of operating systems, software applica-
tions, platforms, and programming languages in vulnerability patch management to overcome the
obstacles of lack of accuracy and scalability in the current tools (R2). In addition, the researchers,
particularly the usable security researchers, can study how to improve the design of such smart tools.

6 THREATS TO VALIDITY
In this section, we discuss the potential threats to validity and how they were mitigated following
the guidelines proposed by [33, 45, 56].

External validity - Generalizability: This study is based on the empirical data collected from
a particular context, i.e., security patch management in the healthcare domain. Hence, our findings
do not claim for generalization to all other contexts of patch management, instead, this study
focuses on performing a comprehensive investigation of the delays in security patch management
within the studied setting to provide detailed explanations through rigorous data analysis. However,
we do not assert the results to be absolute or final, rather they can be recreated and adapted in
other contexts [17, 18, 49].
Regarding data representativeness, the study includes data collected limited to the patching

tracker. However, collecting data from two organisations with multiple teams including participants
with diverse roles and wide experience increased the data reliability and assisted in ensuring
participant triangulation [33]. Although we have analysed data spanning over four years from
October 2016 to May 2021, it is possible that we may have missed some variations in the findings,
specifically the context-specific reasons and strategies. We suggest that any future studies on this
topic include more data sources such as additional cases or interviews to extend the scope of our
findings and verify their explanatory power in other contexts.

Reliability: To mitigate the threat of subjectivity and ensure reliability in the data analysis,
all the data collection and analysis procedures, emerged codes, and identified relationships were
discussed in detail among all authors and finalised through multiple revisions. In addition, related
to interpretive validity [33], we conducted member checking to verify the accuracy of our findings,
which was attended by three authors, further ensuring investigator triangulation.

Construct Validity: To address the threat of construct validity, we used multiple sources of
evidence, i.e., analysis of artefacts and observations, and multiple stakeholders, maintained a chain
of evidence (e.g., the coding procedure following the Grounded Theory method [44]), and had the
findings reviewed through member checking.

Internal Validity: To mitigate the threat of internal validity and misrepresentation, we ensured
participant triangulation by covering the entire population involved in security patch management

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 362. Publication date: November 2022.

362:26 Dissanayake, et al.

representing all teams in both organisations. In addition, the participants had a wide experience in
security patch management, which helps mitigate the risk of participants’ lack of expertise.

Evaluative Validity: The verifiability of the findings that emerged from a grounded theory data
analysis can be attained from the adequacy and soundness of the research methodology through
which the findings emerge [18, 49]. To achieve this, we have detailed our data analysis process of
the application of the Straussian GT procedures in Section 3. Further, to alleviate the reporting bias,
we have included quotes from the patching tracker in Section 4.

7 CONCLUSION
In this study, we empirically explore and systemically explain why, how, and where delays occur
when applying security patches in practice, and how the delays can be mitigated. Through a
longitudinal study representing eight different teams from two organisations in the domain of
healthcare, and based on a Grounded Theory data analysis of 132 delayed tasks documented in
the patching tracker over a period of four years from October 2016 to May 2021, we identify a
set of reasons relating to technology, people and organisation that cause delays in security patch
management. We also provide an evidence-based understanding of the frequency distribution of
reasons for delays and distribution of delays over the patch management process. Such information
highlights the reasons that need immediate attention and the areas of improvement in the patch
management process. Additionally, we report a set of strategies that can be used for mitigating the
delays in applying security patches by practitioners.
Compared to the related literature, our study provides a holistic understanding of the delays

when applying security patches in practice; it is the first attempt to empirically investigate the topic
in-depth. We assert that the reported understanding of why, how, and where delays occur during
patching and how they can be mitigated will help practitioners take suitable decisions to mitigate
delays and guide them towards taking timely actions to avoid potentially disastrous consequences
from delays in patching. Furthermore, our findings lay the foundation for future research to
investigate and develop computer-supported tools that can address the practical concerns causing
delays in patch management, drawing attention to a topic, critical and timely, yet less explored in
the CSCW community.

ACKNOWLEDGMENTS
The authors sincerely thank the industry collaborators of CREST, without whose support this
research would not have been possible. Thank you for allowing us to participate in your process of
security patch management, and for providing us with great feedback on our presentation. We also
thank the reviewers for their valuable insights and feedback.

REFERENCES
[1] Frederico Araujo and Teryl Taylor. 2020. Improving Cybersecurity Hygiene through JIT Patching. In Proceedings of the

28th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE ’20). ACM, 1421–1432. https://doi.org/10.1145/3368089.3417056

[2] Linda Birt, Suzanne Scott, Debbie Cavers, and Christine Campbell Fiona Walter. 2016. Member Checking: A Tool
to Enhance Trustworthiness or Merely a Nod to Validation? Qualitative Health Research 26, 13 (2016), 1802–1811.
https://doi.org/10.1177/1049732316654870

[3] Frederick P. Brooks. 1975. The Mythical Man-Month: Essays on Software Engineering. Adisson-Wesley, London.
[4] Huseyin Cavusoglu, Hasan Cavusoglu, and Jun Zhang. 2006. Economics of Security Patch Management. In WEIS.

Citeseer, 1–10.
[5] Hasan Cavusoglu, Huseyin Cavusoglu, and Jun Zhang. 2008. Security Patch Management: Share the Burden or Share

the Damage? Management Science 54, 4 (2008), 657–670. https://doi.org/10.1287/mnsc.1070.0794
[6] Kathy Charmaz. 2006. Constructing Grounded Theory: A Practical Guide through Qualitative Analysis. Sage.

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 362. Publication date: November 2022.

https://doi.org/10.1145/3368089.3417056
https://doi.org/10.1177/1049732316654870
https://doi.org/10.1287/mnsc.1070.0794

Why, How and Where of Delays in Software Security Patch Management: An Empirical Investigation in the Healthcare
Sector 362:27

[7] Haogang Chen, Taesoo Kim, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek. 2014. Identifying Information
Disclosure in Web Applications with Retroactive Auditing. In 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14). USENIX Association, 555–569. https://www.usenix.org/conference/osdi14/technical-
sessions/presentation/chen_haogang

[8] Olivier Crameri, Nikola Knezevic, Dejan Kostic, Ricardo Bianchini, and Willy Zwaenepoel. 2007. Staged Deployment
in Mirage, an Integrated Software Upgrade Testing and Distribution System. ACM SIGOPS Operating Systems Review
41, 6 (2007), 221–236. https://doi.org/10.1145/1323293.1294283

[9] Debabrata Dey, Atanu Lahiri, and Guoying Zhang. 2015. Optimal Policies for Security Patch Management. INFORMS
Journal on Computing 27, 3 (2015), 462–477. https://doi.org/10.1287/ijoc.2014.0638

[10] Constanze Dietrich, Katharina Krombholz, Kevin Borgolte, and Tobias Fiebig. 2018. Investigating System Operators’
Perspective on Security Misconfigurations. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security (CCS’18). ACM, 1272–1289. https://doi.org/10.1145/3243734.3243794

[11] Nesara Dissanayake, Asangi Jayatilaka, Mansooreh Zahedi, and Muhammad Ali Babar. 2021. Software security patch
management-A systematic literature review of challenges, approaches, tools and practices. Information and Software
Technology 144 (2021), 106771. https://doi.org/10.1016/j.infsof.2021.106771

[12] Nesara Dissanayake, Mansooreh Zahedi, Asangi Jayatilaka, and Muhammad Ali Babar. 2021. A Grounded Theory
of the Role of Coordination in Software Security Patch Management. In Proceedings of the 29th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE ’21). ACM, New
York, NY, USA. https://doi.org/10.1145/3468264.3468595

[13] Tudor Dumitraş and Priya Narasimhan. 2009. Why Do Upgrades Fail and What Can We Do about It?. In
ACM/IFIP/USENIX International Conference on Distributed Systems Platforms and Open Distributed Processing (Middle-
ware 2009. Lecture Notes in Computer Science, Vol. 5896). Springer, Berlin, 349–372. https://doi.org/10.1007/978-3-642-
10445-9_18

[14] John Dunagan, Roussi Roussev, Brad Daniels, Aaron Johnson, Chad Verbowski, and Yi-Min Wang. 2004. Towards a
self-managing software patching process using black-box persistent-state manifests. In International Conference on
Autonomic Computing, 2004. Proceedings. IEEE, 106–113. https://doi.org/10.1109/ICAC.2004.1301353

[15] Melissa Eddy and Nicole Perlroth. 2020. Cyber Attack Suspected in German Woman’s Death. Retrieved June 23, 2021
from https://www.nytimes.com/2020/09/18/world/europe/cyber-attack-germany-ransomeware-death.html?smid=tw-
share

[16] Michiel Van Genuchten. 1991. Why is Software Late? An Empirical Study of Reasons for Delay in Software Development.
IEEE Transactions on Software Engineering 17, 6 (1991), 582–590.

[17] Barney G. Glaser. 1978. Theoretical Sensitivity: Advances in the Methodology of Grounded Theory. Sociology Press, Mill
Valley, CA.

[18] Barney G. Glaser and Anselmo L. Strauss. 1967. The Discovery of Grounded Theory: Strategies for Qualitative Research.
Aldine Transaction, Chicago.

[19] Dan Goodin. 2017. Failure to patch two-month-old bug led to massive Equifax breach. Retrieved June 23, 2021
from https://arstechnica.com/information-technology/2017/09/massive-equifax-breach-caused-by-failure-to-patch-
two-month-old-bug/

[20] James D. Herbsleb and Audris Mockus. 2003. An Empirical Study of Speed and Communication in Globally Distributed
Software Development. IEEE Transactions on Software Engineering 29, 6 (2003), 481–494. https://doi.org/10.1109/TSE.
2003.1205177

[21] James D. Herbsleb, Audris Mockus, Thomas A. Finholt, and Rebecca E. Grinter. 2000. Distance, dependencies, and
delay in a global collaboration. In Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work
(CSCW). Association for Computing Machinery, 319–328. https://doi.org/10.1145/358916.359003

[22] James D. Herbsleb, Audris Mockus, Thomas A. Finholt, and Rebecca E. Grinter. 2001. An Empirical Study of Global
Software Development: Distance and Speed. In Proceedings of the 23rd International Conference on Software Engineering,
ICSE 2001. IEEE, 81–90. https://doi.org/10.1109/ICSE.2001.919083

[23] Hai Huang, Salman Baset, Chunqiang Tang, Ashu Gupta, KN Madhu Sudhan, Fazal Feroze, Rajesh Garg, and Sumithra
Ravichandran. 2012. Patch Management Automation for Enterprise Cloud. In IEEE Network Operations and Management
Symposium. IEEE, 691–705. https://doi.org/10.1109/NOMS.2012.6211988

[24] Adam Jenkins, Pieris Kalligeros, Kami Vaniea, andMaria K.Wolters. 2020. “Anyone Else Seeing this Error?”: Community,
System Administrators, and Patch Information. In 2020 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 105–119. https://doi.org/10.1109/EuroSP48549.2020.00015

[25] Ece Kamar. 2016. Directions in Hybrid Intelligence: Complementing AI Systems with Human Intelligence. In IJCAI.
IEEE, 4070–4073.

[26] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp,
Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 362. Publication date: November 2022.

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chen_haogang
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chen_haogang
https://doi.org/10.1145/1323293.1294283
https://doi.org/10.1287/ijoc.2014.0638
https://doi.org/10.1145/3243734.3243794
https://doi.org/10.1016/j.infsof.2021.106771
https://doi.org/10.1145/3468264.3468595
https://doi.org/10.1007/978-3-642-10445-9_18
https://doi.org/10.1007/978-3-642-10445-9_18
https://doi.org/10.1109/ICAC.2004.1301353
https://www.nytimes.com/2020/09/18/world/europe/cyber-attack-germany-ransomeware-death.html?smid=tw-share
https://www.nytimes.com/2020/09/18/world/europe/cyber-attack-germany-ransomeware-death.html?smid=tw-share
https://arstechnica.com/information-technology/2017/09/massive-equifax-breach-caused-by-failure-to-patch-two-month-old-bug/
https://arstechnica.com/information-technology/2017/09/massive-equifax-breach-caused-by-failure-to-patch-two-month-old-bug/
https://doi.org/10.1109/TSE.2003.1205177
https://doi.org/10.1109/TSE.2003.1205177
https://doi.org/10.1145/358916.359003
https://doi.org/10.1109/ICSE.2001.919083
https://doi.org/10.1109/NOMS.2012.6211988
https://doi.org/10.1109/EuroSP48549.2020.00015

362:28 Dissanayake, et al.

Execution. In 2019 IEEE Symposium on Security and Privacy (S&P’19). IEEE, 1–19. https://doi.org/10.1109/SP.2019.00002
[27] Frank Li, Lisa Rogers, Arunesh Mathur, NathanMalkin, and Marshini Chetty. 2019. Keepers of the Machines: Examining

How System Administrators Manage Software Updates. In Fifteenth Symposium on Usable Privacy and Security (SOUPS
2019). USENIX Association, 273–288.

[28] Bin Lin, Alexey Zagalsky, Margaret-Anne Storey, and Alexander Serebrenik. 2016. Why Developers Are Slacking Off:
Understanding How Software Teams Use Slack. In Proceedings of the 19th ACM Conference on Computer Supported
Cooperative Work and Social Computing Companion (CSCW ’16 Companion). ACM, New York, NY, USA, 333–336.
https://doi.org/10.1145/2818052.2869117

[29] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard,
Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User
Space. In 27th USENIX Security Symposium (USENIX Security 18). USENIX Association, 973–990. https://www.usenix.
org/conference/usenixsecurity18/presentation/lipp

[30] Martin N. Marshall. 1996. Sampling for qualitative research. Family practice 13, 6 (1996), 522–526. https://doi.org/10.
1093/fampra/13.6.522

[31] John E. Mathieu, Michelle A. Marks, and Stephen J. Zaccaro. 2001. Multiteam systems. Handbook of Industrial, Work
and Organizational Psychology 2 (2001), 289–313.

[32] Matthew Maurer and David Brumley. 2012. TACHYON: Tandem execution for efficient live patch testing. In 21st
{USENIX} Security Symposium ({USENIX} Security 12. {USENIX} Association, Bellevue, WA, 617–630. https://www.
usenix.org/conference/usenixsecurity12/technical-sessions/presentation/maurer

[33] Joseph A. Maxwell. 1992. Understanding and Validity in Qualitative Research. Harvard Educational Review 62, 3 (1992),
279–301. https://doi.org/10.17763/haer.62.3.8323320856251826

[34] Peter Mell, Tiffany Bergeron, and David Henning. 2005. Creating a patch and vulnerability management program.
NIST Special Publication 800 (2005), 40.

[35] Peter Mell, Tiffany Bergeron, and David Henning. 2005. Creating a Patch and Vulnerability Management Program.
NIST Special Publication (SP) 800-40 Revision 2 (2005).

[36] Sharan B. Merriam. 1998. Qualitative Research and Case Study Applications in Education. Revised and Expanded from.
ERIC.

[37] Antonio Nappa, Richard Johnson, Leyla Bilge, Juan Caballero, and Tudor Dumitras. 2015. The Attack of the Clones: A
Study of the Impact of Shared Code on Vulnerability Patching. In IEEE Symposium on Security and Privacy (S&P). IEEE,
692–708. https://doi.org/10.1109/SP.2015.48

[38] Lily Hay Newman. 2017. Equifax Officially Has No Excuse. Retrieved June 23, 2021 from https://www.wired.com/
story/equifax-breach-no-excuse/

[39] Thanh Nguyen, Timo Wolf, and Daniela Damian. 2008. Global Software Development and Delay: Does Distance Still
Matter?. In 2008 IEEE International Conference on Global Software Engineering. IEEE, 45–54. https://doi.org/10.1109/
ICGSE.2008.39

[40] Felicia M. Nicastro. 2003. Security Patch Management. Inf. Secur. J. A Glob. Perspect. 12, 5 (2003), 5–18. https:
//doi.org/10.1201/1086/43808.12.5.20031101/78486.2

[41] NIST. 2002. Procedures for Handling Security Patches. Special Publication (SP) 800-40 (2002).
[42] Gerald Post and Albert Kagan. 2003. Computer security and operating system updates. Information and Software

Technology 45, 8 (2003), 461–467.
[43] Shaya Potter and Jason Nieh. 2005. Reducing Downtime Due to System Maintenance and Upgrades. In Proceedings of

the 19th USENIX Systems Administration Conference. IEEE, 6–6.
[44] Pilar Rodriguez, Cathy Urquhart, and Emilia Mendes. 2020. A Theory of Value for Value-based Feature Selection in

Software Engineering. IEEE Transactions on Software Engineering (2020). https://doi.org/10.1109/TSE.2020.2989666
[45] Per Runeson and Martin Höst. 2009. Guidelines for conducting and reporting case study research in software

engineering. Empirical Software Engineering 14, 2 (2009), 131–164.
[46] Thomas A. Schwandt. 1997. Qualitative Inquiry. Sage, London.
[47] Accenture Security. 2020. 2020 Cyber Threatscape Report. Retrieved June 23, 2021 from https://www.accenture.com/

_acnmedia/PDF-136/Accenture-2020-Cyber-Threatscape-Full-Report.pdf
[48] Murugiah Souppaya and Karen Scarfone. 2013. Guide to Enterprise Patch Management Technologies. NIST Special

Publication 800-40 Revision 3 (2013), 40. http://dx.doi.org/10.6028/NIST.SP.800-40r3
[49] Anselm L. Strauss and Juliet M. Corbin. 1998. Basics of Qualitative Research : Techniques and Procedures for Developing

Grounded Theory (2nd ed.). Sage.
[50] Anselm L. Strauss and Juliet M. Corbin. 2007. Basics of Qualitative Research: Techniques and Procedures for Developing

Grounded Theory (3rd ed.). Sage.
[51] Christian Tiefenau, Maximilian Häring, Katharina Krombholz, and Emanuel von Zezschwitz. 2020. Security, Availability,

and Multiple Information Sources: Exploring Update Behavior of System Administrators. In Sixteenth Symposium on

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 362. Publication date: November 2022.

https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1145/2818052.2869117
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://doi.org/10.1093/fampra/13.6.522
https://doi.org/10.1093/fampra/13.6.522
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/maurer
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/maurer
https://doi.org/10.17763/haer.62.3.8323320856251826
https://doi.org/10.1109/SP.2015.48
https://www.wired.com/story/equifax-breach-no-excuse/
https://www.wired.com/story/equifax-breach-no-excuse/
https://doi.org/10.1109/ICGSE.2008.39
https://doi.org/10.1109/ICGSE.2008.39
https://doi.org/10.1201/1086/43808.12.5.20031101/78486.2
https://doi.org/10.1201/1086/43808.12.5.20031101/78486.2
https://doi.org/10.1109/TSE.2020.2989666
https://www.accenture.com/_acnmedia/PDF-136/Accenture-2020-Cyber-Threatscape-Full-Report.pdf
https://www.accenture.com/_acnmedia/PDF-136/Accenture-2020-Cyber-Threatscape-Full-Report.pdf
http://dx.doi.org/10.6028/NIST.SP.800-40r3

Why, How and Where of Delays in Software Security Patch Management: An Empirical Investigation in the Healthcare
Sector 362:29

Usable Privacy and Security (SOUPS 2020). USENIX Association, 239–258.
[52] Joseph Tucek, Weiwei Xiong, and Yuanyuan Zhou. 2009. Efficient online validation with delta execution. In Proceedings

of the 14th international conference on Architectural support for programming languages and operating systems. 193–204.
[53] Cathy Urquhart. 2013. Grounded Theory for Qualitative Research: A Practical Guide. Sage.
[54] Dakuo Wang, Justin D. Weisz, Michael Muller, Parikshit Ram, Werner Geyer, Casey Dugan, Yla R Tausczik, Horst

Samulowitz, and Alexander Gray. 2019. Human-AI Collaboration in Data Science: Exploring Data Scientists’ Perceptions
of Automated AI. Proceedings of the ACM on Human-Computer Interaction 3, CSCW (2019). https://doi.org/10.1145/
3359313

[55] Mairieli Wessel, Bruno Mendes de Souza, Igor Steinmacher, Igor S. Wiese, Ivanilton Polato, Ana Paula Chaves, and
Marco A. Gerosa. 2018. The Power of Bots: Characterizing and Understanding Bots in OSS Projects. Proceedings of the
ACM Conference on Computer Supported Cooperative Work Social Computing 2, CSCW (2018). https://doi.org/10.1145/
3274451

[56] Robert K. Yin. 1994. Case Study Research: Design and Methods.
[57] Robert K. Yin. 2009. Case Study Research: Design and Methods (4 ed.). Sage, Thousand Oaks, CA, USA.

Received July 2021; revised November 2021; accepted February 2022

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 362. Publication date: November 2022.

https://doi.org/10.1145/3359313
https://doi.org/10.1145/3359313
https://doi.org/10.1145/3274451
https://doi.org/10.1145/3274451

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Research Method
	3.1 Data Collection
	3.2 Data Analysis
	3.3 Member checking

	4 Findings
	4.1 Why, how, and where do delays occur in security patch management?
	4.2 Mitigation strategies for delays in software security patch management
	4.3 Findings from Member checking

	5 Discussion
	5.1 Related Works
	5.2 Implications for Practitioners
	5.3 Implications for Researchers

	6 Threats to Validity
	7 Conclusion
	Acknowledgments
	References

