
Patch-wise Features for Blur Image Classification
Sri Charan Kattamuru
Applied Research, Swiggy

Bangalore, India
sricharan.k@swiggy.in

Kshitij Agrawal
Applied Research, Swiggy

Bangalore, India
kshitij.agrawal@swiggy.in

Shyam Prasad Adhikari
Applied Research, Swiggy

Bangalore, India
shyam.pa@swiggy.in

Abhishek Bose
Applied Research, Swiggy

Bangalore, India
abhishek.bose@swiggy.in

Hemant Misra
Applied Research, Swiggy

Bangalore, India
hemant.misra@swiggy.in

ABSTRACT
Images captured through smartphone cameras often suffer from
degradation, blur being one of the major ones, posing a challenge
in processing these images for downstream tasks. In this paper we
propose low-compute lightweight patch-wise features for image
quality assessment. Using our method we can discriminate between
blur vs sharp image degradation. To this end, we train a decision-
tree-based XGBoost model on various intuitive image features like
gray level variance, first and second order gradients, texture fea-
tures like local binary patterns. Experiments conducted on an open
dataset show that the proposed low compute method results in
90.1% mean accuracy on the validation set, which is comparable
to the accuracy of a compute-intensive VGG16 network with 94%
mean accuracy fine-tuned to this task. To demonstrate the general-
izability of our proposed features and model we test the model on
BHBID dataset and an internal dataset where we attain accuracy of
98% and 91%, respectively. The proposed method is 10x faster than
the VGG16 based model on CPU and scales linearly to the input
image size making it suitable to be implemented on low compute
edge devices.

KEYWORDS
Classification, Blur Classification, Image Quality Assessment, XG-
Boost, Low-compute

1 INTRODUCTION
Images have become ubiquitous with the advent of smartphone
devices with advanced camera systems. This explosion in digital
image data has been the driving force behind many computer vision
applications such as object detection, face recognition [9], medical
image classification [2], document recognition, and self-driving
cars [3]. These tasks often rely on high quality images with objects
in sharp focus and any degradation in image quality leads to adverse
performance [15].

Blur is one such undesirable degradation effect that is commonly
found in images. This is caused by factors such as lack of focus or
due to relative motion between the camera and target. Intuitively,
we observe that the degree of blur in an image inversely effects the
amount of information within an image. And this poses a challenge
to extract semantic level information from it. Thus, blur classifi-
cation is proposed as a preprocessing step to identify and reject
low quality images either at the time of image acquisition or before
processing them for downstream tasks.

Blur detection, segmentation and image deblurring are areas of
active research [4, 7, 13] which help identify and rectify the images
affected with blur. The objective of blur detection is to identify
the region within an image that is affected with blur. While blur
segmentation is posed as a pixel-wise classification task to generate
a blur map. Image deblurring restores a sharp image from a given
blurred image. Some approaches to image deblurring pose this task
as an image filtering problem [12], while some approaches pose
this as an image-to-image translation problem [7].

The tasks of image quality assessment and blur classification can
be divided into reference-based and non-reference based methods.
Non-reference based methods are more challenging since we do
not have any access to a sharp reference image which contains
accurate information of the scene.

Convolutional neural networks (CNNs) are a well-known ap-
proach [5, 6] for image classification, but there exist a few obvious
downsides of using CNNs for the task of blur classification. These
are data-hungry models and tend to perform best with training on
large scale datasets. They have parameters in the order of millions
and are trained on optimized GPU-based architectures that take
considerably long time to train. Even after training such a large
model, in most cases, they cannot be deployed directly on the edge
or low compute devices. We generally require sophisticated hard-
ware designed specifically to run thesemodels alongwith additional
optimization steps like distillation, pruning or quantization [8].

For our application we perform blur classification for image
quality assessment, to identify and reject images that contain unin-
tentional blur (as shown in Fig. 1). Additionally, we require a model
that accurately performs this classification with fast inference times.
In this work,

• We propose a method for non-reference based blur classifi-
cation that utilizes conceptually intuitive features

• We train the proposed set of features using Extreme Gradient
Boosting (XGBoost) classifier

• We train convolutional neural networks of varying com-
plexity on the task of blur classification and compare these
against our hand-crafted features across metrics like accu-
racy, roc-auc and benchmark them on inference time

We experimentally demonstrate that our proposed feature sets
combined with XGBoost classifier present a model that is accurate
and provides fast inference times.

ar
X

iv
:2

30
4.

03
15

6v
1 

 [
cs

.C
V

] 
 6

 A
pr

 2
02

3



Figure 1: Figure shows the predictions by our best performing model, the rows correspond to samples from BHBID, KBD,
Internal Dataset respectively. Columns 1 & 2 correspond to the true positives of blur, columns 3 & 4 correspond to the true
positives in sharp, column 5 & 6 correspond to the false positives in blur and sharp respectively

2 RELATEDWORKS
We focus on blur detection or classification at the image level to
classify the presence of blur in an image.

Feature based methods - Blur classification is a well studied
area of research and multiple features like Statistical Features, Tex-
ture Features, Image quality metrics, Spectrum and Transform fea-
tures, and Local power spectrum Features have been used to classify
blur [1, 13, 16]. Gradient based methods like Laplacian and Tenen-
grad capture the regions of rapid changes in intensity, like edges.
The presence of high level of edges can be correlated to sharpness
of an image. This is extended to capture variance and mean of a
laplacian at a global level to represent the amount of blur within an
image [14]. The authors of [16] use a combination of 35 features to
classify different types of blur within an image by training a SVM
in an one against one method and ensemble multiple such SVMs
together to classify the type of blur.

Global features do not present an accurate representation of
blur around the main object of interest and in [13] the authors
propose using both spatial and frequency features to train a naive
bayes classifier on local patches. They further extend the concept to
multiscale features to create a blur segmentation map. From [1] it
is observed that frequency domain features are less robust to noise.
Hence, in our work, we draw inspiration from [13] and explore the
use of gradient based operations applied at a patch level to images
for robust blur classification.

Local binary pattern (LBP) based descriptors have been used to
give a robust representation of image texture. In [10] the authors
propose a modification to LBP by using only uniform patterns,

where the local grid contains only two transitions from zero to one
or vice versa. The authors utilize this formulation for the task of
defocus blur segmentation.

Deep Learning based methods - Some work has been done
to investigate the usefulness of CNNs as a feature extractor and in
[14] they replace handcrafted features with a convolutional neu-
ral network, however in their comparison the laplacian features
perform better. Modern research in deep learning methods has fo-
cused on blur segmentation and rectification of various types of
blur (defocus, motion, haze etc).

Most of the approaches first detect the focused and out-of-focus
regions within an image and subsequently use these segmented
regions for deblurring. In [4] the authors use VGG based FCN to
extract relevant features from blurred and sharp regions within an
image. The benefit of this approach is that it bypasses the need for
handcrafted features, while it also comes with a penalty of high
computational requirement, limiting the use in edge devices and
fast inference situation. In our work we adapt the feature extraction
pipeline and fine-tune this for the task of blur classification.

3 PROPOSED METHOD
We propose a method that uses conceptually simple spatial image
features, along with their statistical measures such as the mean
and the variance. These features rely on the fact that the texture of
sharp images is different from that of a blurred image. As the image
is subjected to blur the edge details within the scene are reduced.
More precisely, the strength and the count of strong edges in blurred
images are lower compared to that of a sharp image in other words,

2



(a) Original image (b) Image with text (c) Grid-wise inference on (a) (d) Grid-wise inference on (b)

Figure 2: Blurred image from KBD. (a) is the original image and (b) is the same image with a text watermark on the top left.
Adding a watermark we observed a 10.7% increase in the mean of the laplacian map, along with an increase of 39.8% in the
standard-deviation. Similarly we also observed a 9.5% and 30.2% increase respectively in the mean and standard deviation of
the tenengrad map. In (c) we apply patch-wise classification and plot the predictions on each image grid, where each patch
depicts the probability-score of an image being blur and the blur prediction. In (d) we can see how the text watermark affects
the probability score and the decision of the model.

in blurred images the gradient follows a heavy tailed distribution.
Additionally, blur causes a smoothening effect in images which
implies that in a neighbourhood the pixel intensities are closer to
the central pixel. The features extracted are as follows:

(1) Normalized gray level variance This operator is an in-
dication of the overall intensity of the image Eqn. (1). The
intensity distribution of a blurred image is relatively packed
and on the lower spectrum with an overall uniform distribu-
tion of intensity when compared to sharp images.

𝑁𝐺𝐿𝑉 =

∑
(𝑖, 𝑗) ∈Ω (𝑥,𝑦) (𝐼𝑖, 𝑗 − 𝜇)2

𝜇 (𝑥,𝑦) (1)

where 𝜇 (𝑥,𝑦) is the mean value for computed over the neigh-
borhood window Ω(𝑥,𝑦)

(2) Tenengrad Sobel is a first order derivative operator and
indicates the spatial locations of change in intensity of an
image. Locations that tend to have a high change in inten-
sities represent stronger edges. We use the horizontal and
vertical Sobel maps to obtain the Tenengrad map Eqn. (2)
and use the mean of this operator as our feature.

𝑇𝐸𝑁 (𝑥,𝑦) =
∑︁

(𝑖, 𝑗) ∈Ω (𝑥,𝑦)
(𝑆𝑥 (𝑖, 𝑗)2 + 𝑆𝑦 (𝑖, 𝑗)2) (2)

where 𝑆𝑥 and 𝑆𝑦 are the Sobel gradients in x and y direction

(3) Laplacian Laplacian operator is the second-order derivative
of the input signal. It is highly sensitive to the noise in the
input image when compared to Sobel. Laplacian produces
high values where there is a rapid change of intensities. We
convolve the input image with a Laplacian operator and
obtain the mean of the Laplacian map and also extract the
variance from the Laplacian map.

𝐿𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛𝑣𝑎𝑟 (𝑥,𝑦) =
∑︁

(𝑖, 𝑗) ∈Ω (𝑥,𝑦)
(Δ𝐼 (𝑖, 𝑗) − Δ̄𝐼 )2 (3)

where Δ̄𝐼 is the mean value of the Laplacian map in a neigh-
bourhood Ω(𝑥,𝑦)

(4) LBP Sharpness Map In [17] the authors propose that the
LBP feature descriptor can be leveraged to accurately detect
blur within an image patch. For a blurred image, LBP opera-
tor relies on the fact that the intensities in a neighbourhood
are closer to the central pixel. We use the statistical mean and
variance of the LBP descriptor of an image. These features
can even help to distinguish between partially blurred im-
ages with intended blur from completely unintended blurred
images.

𝑀𝐿𝐵𝑃 (𝑥,𝑦) =
∑9
𝑖=6 𝑛(𝐿𝐵𝑃𝑟𝑖𝑢28,1 𝑖)

𝑁
(4)

where𝑛(𝐿𝐵𝑃𝑟𝑖𝑢28,1 𝑖) represents the number of rotation-invariant
uniform 8-bit LBP patterns of type i, and N is the total number
of pixels in the neighbourhood

On the whole, we compute the Tenengrad gradient, Laplacian
gradient, LBP sharpness map and obtain statistical measures of
these maps and the Normalized gray level variance of the input
image and stack these together to create a feature vector (Table
1). This descriptor is used for classifying an input image as blur
or sharp. We compute the features at a global level, on the entire
image. Our experiments (refer experiments 5) reveal that global
level features fail to capture finer details of the image and this
leads to some obvious misclassifications. We improve upon this
by employing the proposed features in a patch-wise manner to
capture finer context. We train XGBoost and CNN models using

3



Table 1: Selected set of features for blur classification. These
features are calculated at global or in a patch-wise manner
at local level.

Feature Description Index

Laplacian Mean and variance of the
laplacian map

1-2

Tenengrad Mean of the tenengrad
map

3

Normalized gray level
variance

Combination of variance
and mean from the
grayscale image

4

LBP Sharpness Map Mean and variance of the
sharpness map

5-6

these features for the task of blur classification and report the
metrics on different datasets.

4 DATASET
For the purpose of our experiments, we have used a kaggle dataset1
for training and validation, which we refer to as Kaggle Blur Dataset
(KBD). The dataset contains a total of 1050 images split equally
across the 3 categories namely sharp, motion-blur, and defocus-
blur. Since we do not distinguish between the type of blur in images
we have combined the two blur categories into a single category
which gives us a total of 700 blur images and 350 sharp images.

To demonstrate the generlizability of our approach, we evaluate
our model on the BHBID Dataset from [16]. This dataset contains
a total of 1188 sample images. The train split contains 418 blurred
images and 200 clear images. While the test split contains the re-
maining 210 blurred images and 80 sharp images.

We also evaluate the performance of this model on our internal
test set. This dataset contains indoor images captured from mobile
cameras. This contains a total of 407 images of varying resolution.
Among all the samples a total of 202 images are blurred and the
rest are sharp.

5 EXPERIMENTS
In order to compare the different methods we use the KBD to train
and validate all of our models. We use BHBID and our internal
dataset to test the trained models. We choose XGBoost for this task
as it perfectly fits our need for a fast and accurate classifier. Addi-
tionally, we train several CNN networks for the blur classification
task. In the subsequent section, we discuss the improvements in
feature selection and compare the performance of our experiments
in Table 2.

We train and evaluate the classifiers in a Stratified KFold Cross-
validation manner with K set to 5 and repeat this for 5 random
shuffles of the dataset. For each run, we use 25% of the samples as
our validation set and 75% of the data is used to train our models.We
train the XGBoost model with its parameters (max-depth, learning-
rate, n-estimators, gamma) set to default values of (6, 0.3, 100, 0)

1Kaggle Blur Dataset - https://www.kaggle.com/datasets/kwentar/blur-dataset

and use the default binary:logistic (binary cross-entropy) as our
objective function.

5.1 Global Image Features
In the feature extraction stage, spatial image features - tenengrad
mean, laplacian mean and variance, and normalized gray level vari-
ance are extracted from grayscale images. With this 4-dimensional
feature vector as input, we train a XGBoost model. This model
achieves a mean AUC of 0.933 and a mean accuracy of 0.869. On
our internal test set we observed missclassification of some blurred
images, this was due to a text watermark that is introduced by
some smartphones while capturing images. Such artefacts skew the
gradients and global features especially mean and variance cannot
encapsulate these local features Fig.2.

5.2 Patch-wise Image Features
To investigate the discriminative ability of the features, we isolated
the misclassified images, and conduct experiments by cropping
the image regions with text. The models classify the watermarked
images accurately in this case. Based on this we develop a patch-
wise voting mechanism for blur classification. We can observe from
Figure 2 that the watermarks cause a degradation in prediction
confidence.

Rather than employing our classifier in a sliding window fashion
on each patch within a single image, we split the image into 3x3
regular size grids and extract features from each of the grid in a
single pass. The features are concatenated to produce single feature
vector for each image. We refer to these as patch-wise features.
With these features, we observe an increase of 1.8% in accuracy and
an increase of 1.2 units in AUC.

We conduct ablation on the number of patches, by increasing in
number of grids within an image from 3x3 to 5x5 and 7x7 grids. For
each we train XGBoost classifiers, and observe an average increase
of 2.3% in mean acc and an average increase of 1.67 units in mean
auc compared to global features as we move to smaller grid sizes and
a larger number of grids. This is because high number of patches
capture details from the images on a much finer level. We observe
that for high resolution images a large number of grids at 7x7
patches are well suited, while for lower resolution images, a smaller
number of grids at 3x3 patches perform better. The best results
were observed when we use patch-wise features extracted on 7x7
grids, we refer to this as Grid 7x7 in Table 2.

5.3 LBP Features
We investigate the addition of the global mean and variance of the
LBP features to our feature descriptor, resulting in a 6 dimensional
feature vector. Training the model on these features we observed
a mean increase of 1 unit in AUC and a mean increase of 1.2% in
accuracy.

We further conduct ablation on local patch-wise features by
adding global LBP features and patch-wise LBP features.We observe
similar trends (Figure 3) in the increase of AUC and accuracy. We
achieve the best performance, an average AUC of 0.956 and average
accuracy of 90.1%, using LBP Grid 7x7 features.

We compare all these methods on the validation sets, plot the
metrics in Figure 3 and report them for comparison in Table 2

4

https://www.kaggle.com/datasets/kwentar/blur-dataset


(a) Mean accuracy (b) Mean AUC

Figure 3: Figure shows the mean accuracy and mean auc plots for the XGB models trained on different features, it can be
observed that the metrics increase as we move to finer and more detailed features

5.4 Comparison with convolutional neural
networks

To present an effective benchmark of performance, we compare
our proposed features with various CNNs. We train two CNN clas-
sifiers which have a vgg16 backbone. These networks were fine-
tuned from different tasks, one was used as an encoder in a defocus
segmentation task, we refer to this as vgg-defocus and the other
was trained on imagenet for classification, we refer to this as vgg-
imagenet. VGG16 is a heavy and memory hungry network that is
orders of magnitude complex compared to our handcrafted features,
with this complexity in mind, we also train a simple cnn network
with 6 layers (4 conv + 2 linear). We also fine-tune a Mobilenet
[11] network which is preferable for low-latency and low-power
systems. We compare these over evaluation criteria such as AUC,
accuracy.

KBD contains images of varying resolution. In order to train
the networks, we follow the method laid out in [6] and resize the
shorter side of the image to 224 while preserving the aspect ratio.
We then perform a center crop of 224x224 from the resized image.
For fine-tuning, we freeze the convolutional layers in the networks
and modify the structure of the final layers for binary classification.
We use data augmentation, which includes a random horizontal
and random vertical flip with a probability of 0.6. We fine tune the
network using an Adam optimizer with a learning rate set to 1e-3,
a batch size of 256, and binary cross entropy loss as our objective
function. Similar to the XGBoost setup, we train these networks
in a Stratified KFold Cross Validation manner with 25% of the data
being used as validation set in each run. To prevent overfitting, we
train the vgg networks for 5 epochs each and the other networks
for 10 epochs each.

We report metrics on the original image resolution and also
on images downscaled to 224x224. The adaptive average pooling
layer handles the variable input size in the case of original image

Table 2: Improvements observed by introducing more fea-
tures and local features. We report the average accuracy and
auc score of different the methods across all the validation
sets of the KFold cross validation. For the CNN networks
we report metrics on input resolution and downsampled im-
ages to 224x224.

Feature Type Accuracy AUC

Global Features Global Feature 86.9 ± 3 0.933 ± 0.02
Global Feature + LBP 88.1 ± 2 0.943 ± 0.01

Patch-wise Features (No LBP)
Grid 3x3 88.7 ± 2 0.945 ± 0.02
Grid 5x5 89.3 ± 2 0.951 ± 0.01
Grid 7x7 89.6 ± 1 0.953 ± 0.01

Patch-wise Features + Global LBP
Grid 3x3 + Global LBP 89 ± 1 0.949 ± 0.01
Grid 5x5 + Global LBP 89.3 ± 2 0.952 ± 0.01
Grid 7x7 + Global LBP 89.6 ± 2 0.955 ± 0.01

Patch-wise Features
LBP Grid 3x3 89 ± 2 0.95 ± 0.01
LBP Grid 5x5 89.4 ± 2 0.953 ± 0.01
LBP Grid 7x7 90.1 ± 1 0.956 ± 0.01

CNN Methods

𝒗𝒈𝒈 − 𝒅𝒆𝒇 𝒐𝒄𝒖𝒔∗ 94.2 ± 1.6 0.985 ± 0.01
𝑣𝑔𝑔 − 𝑖𝑚𝑎𝑔𝑒𝑛𝑒𝑡∗ 93.1 ± 1.6 0.971 ± 0.02
vgg-defocus 83.2 ± 2 0.894 ± 0.04
vgg-imagenet 78.3 ± 2 0.883 ± 0.04

∗ The metrics were calculated on downscaled images

resolution. We report the mean AUC and mean accuracy metrics
on the validation splits in Table 2.

Table 3: Comparison of CNN methods - we measure the in-
ference time on images of size 1000x1000

Network Param
Count

Inference
Time

Accuracy

VGG16 ∗ 138M 16.4s 93.1
MobileNetv2 ∗ 2.3M 4.3s 90.8
Simple CNN Classifier ∗ 0.96M 0.94s 80.5

∗ Accuracy calculated on downscaled images
5



Figure 4: Comparison of runtimes across different methods. We take 5 different images from KBD, resize it to different sizes
and record the time required to run inference on these. It can be seen that the best performing feature LBP Grid 7x7 is 10 times
faster than VGG

Table 4: Performance of our best feature set (LBP Grid 7x7)
on two different test sets.

Dataset Accuracy AUC F1 Score
Blur Sharp

BHBID (𝑇𝑒𝑠𝑡𝑆𝑒𝑡) 98 0.98 0.98 0.96
Internal Dataset 91 0.96 0.89 0.91

5.5 Results
We benchmark the inference time required to classify an image
across all the methods. All the models are run on a computer with
an Intel i5-8250U CPU running at 1800 MHz using 8GB RAM, run-
ning Ubuntu 20.04.3 LTS and Python 3.8.10, no other compiler
optimizations are used. For the XGBoost model, we measure the
time required to extract the features and perform the classification.
For vgg16 we set the batch size to 1 and record the time elapsed
for the forward pass. For all the algorithms, we measure the time
required to process 5 different images, we repeat this experiment
for 10 runs and report the mean of the 10 runs in Fig. 4.

We also test our extracted features using support vectormachines
(SVM) classifiers and compare the performance to XGBoost clas-
sifier. They perform 3, 3.4, 3.4 percentage points (accuracy) lower
than XGBoost in case of Grid 7x7, Grid 7x7 + Global LBP, LBP Grid
7x7. This shows that the extracted features are discriminative across
various classifiers.

When discussing CNN classifiers, it is worth noting that the
VGG network provides the best performance but is very large and

requires a lot of memory. In contrast, the lightweight Mobilenet is
reasonably fast and accurate but does not compare well in speed
with our selected features. Simple CNN is very fast but it performs
worse than Mobilenet Table 3

To demonstrate the generalization of our method we test our
methods on two additional datasets. We train our model on the
training split of BHBID Dataset and report the results achieved
by our best model LBP Grid 7x7. We also report the metrics on
our internal test set, we use the XGBoost model that was trained
on KBD out-of-the-box and perform classification using our best
model LBP Grid 7x7. The results are summarized in Table 4.

A drawback of this approach is that this fails when none of the
patches in the image contain features in other words a plain image
with no noticeable difference in intensity, in such cases the images
are classified as blur.

6 CONCLUSION
In this work, we address the task of blur classification for image
quality assessment. We extract various spatial and statistical image
features to classify an input image as blurred or sharp. And empiri-
cally demonstrate how extracting features at a global level fails to
capture the intricate details in an image. We propose a patch-wise
method for feature extraction and show its effectiveness for blur
classification on multiple datasets. We also apply this method to our
internal dataset without any further tweaks after training on KBD.
We train XGBoost models and show the superiority of our features
both in terms of inference time and classification metrics. Our best
performing feature is the LBP Grid 7x7 that has an AUC of 0.95 on

6



KBD and an AUC of 0.98 on the BHBID Dataset. We compare our
features against pretrained as well as lightweight CNN models, and
find that they are 6.9 percentage points better than the VGG model
(at original image resolution) and are twice as fast when compared
to the low-latency Mobilenet.

REFERENCES
[1] Usman Ali and Muhammad Tariq Mahmood. 2018. Analysis of blur measure

operators for single image blur segmentation. Applied Sciences 8, 5 (2018), 807.
[2] SH Shabbeer Basha, Soumen Ghosh, Kancharagunta Kishan Babu, Shiv Ram

Dubey, Viswanath Pulabaigari, and Snehasis Mukherjee. 2018. Rccnet: An effi-
cient convolutional neural network for histological routine colon cancer nuclei
classification. In 2018 15th International Conference on Control, Automation, Ro-
botics and Vision (ICARCV). IEEE, 1222–1227.

[3] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai
Zhang, et al. 2016. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316 (2016).

[4] Xiaodong Cun and Chi-Man Pun. 2020. Defocus blur detection via depth distilla-
tion. In European Conference on Computer Vision. Springer, 747–763.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[6] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. Advances in neural information
processing systems 25 (2012).

[7] Orest Kupyn, Tetiana Martyniuk, Junru Wu, and Zhangyang Wang. 2019.
Deblurgan-v2: Deblurring (orders-of-magnitude) faster and better. In Proceedings

of the IEEE/CVF International Conference on Computer Vision. 8878–8887.
[8] Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and Xiaotong Zhang. 2021.

Pruning and quantization for deep neural network acceleration: A survey. Neu-
rocomputing 461 (2021), 370–403.

[9] Iacopo Masi, Yue Wu, Tal Hassner, and Prem Natarajan. 2018. Deep face recogni-
tion: A survey. In 2018 31st SIBGRAPI conference on graphics, patterns and images
(SIBGRAPI). IEEE, 471–478.

[10] Timo Ojala, Matti Pietikainen, and Topi Maenpaa. 2002. Multiresolution gray-
scale and rotation invariant texture classification with local binary patterns. IEEE
Transactions on pattern analysis and machine intelligence 24, 7 (2002), 971–987.

[11] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
4510–4520.

[12] PD Sankhe, M Patil, and M Margaret. 2011. Deblurring of grayscale images
using inverse and Wiener filter. In Proceedings of the International Conference &
Workshop on Emerging Trends in Technology. 145–148.

[13] Jianping Shi, Li Xu, and Jiaya Jia. 2014. Discriminative blur detection features. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2965–2972.

[14] Tomasz Szandała. 2020. Convolutional neural network for blur images detec-
tion as an alternative for Laplacian method. In 2020 IEEE Symposium Series on
Computational Intelligence (SSCI). IEEE, 2901–2904.

[15] Igor Vasiljevic, Ayan Chakrabarti, and Gregory Shakhnarovich. 2016. Examining
the impact of blur on recognition by convolutional networks. arXiv preprint
arXiv:1611.05760 (2016).

[16] Rui Wang, Wei Li, Rui Li, and Liang Zhang. 2019. Automatic blur type classi-
fication via ensemble SVM. Signal processing: image communication 71 (2019),
24–35.

[17] Xin Yi and Mark Eramian. 2016. LBP-based segmentation of defocus blur. IEEE
transactions on image processing 25, 4 (2016), 1626–1638.

7


	Abstract
	1 Introduction
	2 Related Works
	3 Proposed Method
	4 Dataset
	5 Experiments
	5.1 Global Image Features
	5.2 Patch-wise Image Features
	5.3 LBP Features
	5.4 Comparison with convolutional neural networks
	5.5 Results

	6 Conclusion
	References

