
Directed shortest paths via approximate cost balancing

LSE Research Online URL for this paper: http://eprints.lse.ac.uk/117210/

Version: Accepted Version

Article:

Orlin, James B. and Végh, László A. ORCID: 0000-0003-1152-200X (2023)
Directed shortest paths via approximate cost balancing. Journal of the ACM, 70
(1). ISSN 0004-5411

https://doi.org/10.1145/3565019

lseresearchonline@lse.ac.uk
https://eprints.lse.ac.uk/

Reuse
Items deposited in LSE Research Online are protected by copyright, with all rights
reserved unless indicated otherwise. They may be downloaded and/or printed for private
study, or other acts as permitted by national copyright laws. The publisher or other rights
holders may allow further reproduction and re-use of the full text version. This is
indicated by the licence information on the LSE Research Online record for the item.

Directed Shortest Paths via Approximate Cost Balancing

James B. Orlin∗

Sloan School of Management

Massachusetts Institute of Technology

jorlin@mit.edu

László A. Végh†

Department of Mathematics

London School of Economics and Political Science

l.vegh@lse.ac.uk

Abstract

We present an O(nm) algorithm for all-pairs shortest paths computations in a directed graph
with n nodes, m arcs, and nonnegative integer arc costs. This matches the complexity bound
attained by Thorup [31] for the all-pairs problems in undirected graphs. The main insight is
that shortest paths problems with approximately balanced directed cost functions can be solved
similarly to the undirected case. The algorithm finds an approximately balanced reduced cost
function in an O(m

√
n log n) preprocessing step. Using these reduced costs, every shortest path

query can be solved in O(m) time using an adaptation of Thorup’s component hierarchy method.
The balancing result can also be applied to the ℓ∞-matrix balancing problem.

1 Introduction

Let G = (N,A, c) be a directed graph with nonnegative arc costs, and n = |N |, m = |A|. In this
paper, we consider the single-source shortest paths (SSSP) and the all-pairs shortest paths (APSP)
problems. In the SSSP problem, the goal is to find the shortest paths from a given source node
s ∈ N to every other node; in the APSP problem, the goal is to determine the shortest path
distances between every pair of nodes.

The seminal approach for SSSP is Dijkstra’s 1959 algorithm [7]. An O(m+ n log n) implemen-
tation of this algorithm using the Fibonacci heap data structure is due to Fredman and Tarjan [12].
Under the assumption that all of arc lengths are integral, Thorup [33] improved the running time
for SSSP to O(m + n log log n). Thorup’s algorithm uses the word RAM model of computation,
discussed in Section 2.1.

For the APSP problem, one can obtain O(mn + n2 log log n) by running the SSSP algorithm
of [33] n times. This has been the best previously known result for directed graphs. The main
contribution of this paper is an O(mn) algorithm for APSP in the word RAM model.

A breakthrough result by Thorup [31] obtained a linear time SSSP algorithm in the word RAM
model for undirected graphs, implying O(mn) for APSP. Our algorithm matches this bound for
undirected graphs: it is based on an O(m

√
n log n) preprocessing algorithm that enables SSSP

queries in O(m) time.

∗Supported by the ONR Grant N00014–17–1–2194.
†Supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and

innovation programme (grant agreement ScaleOpt–757481).

1

Thorup [31] uses a label setting algorithm that is similar to Dijkstra’s algorithm. Label setting
algorithms maintain upper bounds D(i) on the true shortest path distances d(i) from the origin
node s to each node i, and add nodes one-by-one to the set of permanent nodes S. At the time
a node i is made permanent, D(i) = d(i) holds—see [1, Chapter 4]. In Dijkstra’s algorithm,
D(i) ≤ D(j) is true for all nodes j /∈ S in the iteration when node i is made permanent. Relaxing
this property is a key in further improvements

Let us define the bottleneck costs for nodes i, j ∈ N as

b(i, j) := min

{

max
e∈P

c(e) : P is an i–j path in G

}

. (1)

Dinitz [8] showed that label setting algorithms are guaranteed to find the shortest path distances
if the following is true: whenever a node i is made permanent, D(i) ≤ D(j) + b(j, i) for all j /∈ S.
If an algorithm satisfies this weaker condition, then at termination it obtains distances satisfying
d(j) ≤ d(i) + b(i, j) for all i and j, which in turn implies the shortest path optimality conditions:
d(j) ≤ d(i) + c(i, j) for all (i, j) ∈ A—see Lemma 4.2.

Thorup’s algorithm as well as the algorithm presented in this paper rely on this weaker guarantee
of correctness. Both algorithms accomplish this by creating a component hierarchy—see Defini-
tion 2.2 for the variant used in this paper. Thorup developed this tool for SSSP on undirected
networks; the hierarchy framework was subsequently extended to directed graphs in [15, 23, 24].

Our results also rely on the classical observation that shortest path computations are invariant
under shifting the costs by a node potential. For a potential π : N → R, the reduced cost is defined
as cπ(u, v) := c(u, v) + π(u) − π(v). Computing shortest paths for c and any reduced cost cπ are
equivalent: if P is a u–v path, then cπ(P) = c(P) + π(u)− π(v).

We extend the use of reduced costs to the bottleneck costs.

bπ(i, j) := min

{

max
e∈P

cπ(e) : P is an i–j path in G

}

.

Our preprocessing step obtains a reduced cost function satisfying the following ξ-min-balancedness
property for a constant ξ > 1.

Definition 1.1. A strongly connected directed graph G = (N,A, c) with nonnegative arc costs
c ∈ RA

≥0 is ξ-min-balanced for some ξ ≥ 1 if for every arc e ∈ A, there exists a directed cycle C ⊆ A
with e ∈ C, such that c(f) ≤ ξc(e) for all f ∈ C.

The importance of ξ-min-balancedness in the context of hierarchy-based algorithms arises from
the near-symmetry of the bottleneck values b(i, j). Lemma 2.1 below shows a graph is ξ-min-
balanced if and only if b(j, i) ≤ ξb(i, j) for all i, j ∈ N . Thorup’s component hierarchy for undirected
graphs implicitly relies on the fact that b(i, j) = b(j, i) for all nodes i and j. For a ξ-balanced reduced
cost function cπ, the values bπ(i, j) and bπ(j, i) are within a factor ξ. We can leverage this proximity
to use component hierarchies essentially the same way as for undirected graphs in Thorup’s original
work [31], and achieve the same O(m) complexity for an SSSP query, after an initial O(m

√
n log n)

balancing algorithm.
This balancedness notion is closely related to the extensive literature on matrix balancing and

gives an improvement for approximate ℓ∞-balancing. We give an overview of the related literature
in Section 1.1.2.

2

1.1 Related work

1.1.1 The SSSP and APSP problems

In the context of shortest path problems, the choice of the computational model is of high impor-
tance. The main choice is between the comparison-addition model with real costs, and variants of
word RAM models with integer costs (see Section 2.1). In the comparison-addition model, addi-
tions and comparisons each take O(1) time, regardless of the quantities involved. Other operations
are not permitted except in so much as they can be simulated using additions and comparisons.

There is an important difference between these computational models in terms of lower bounds:
sorting in the comparison-addition model requires Ω(n log n), whereas no superlinear lower bound
is known for integer sorting. Since Dijkstra’s algorithm makes nodes permanent in a non-decreasing
order of the shortest path distance d(i) from s, the O(m+ n log n) Fibonacci-heap implementation
[11] is optimal for Dijkstra’s algorithm in the comparison-addition model. Moreover, this is still
the best known running time for SSSP in this model.

The best running time for APSP in the comparison-addition model is O(mn+ n2 log log n) by
Pettie [24]. This matches the best previous running time bounds for the integer RAM model, where
the same bound was previously attained in [15, 33].

Pettie’s [24] algorithm is based on the hierarchy framework. The same paper gives a lower
bound that, at first glance, seems to imply that an O(m) running time for the directed SSSP may
not be achievable.

Let r be the ratio between the largest and the smallest nonzero arc cost. Pettie argued that if a
shortest path algorithm for the directed SSSP is based on the hierarchy framework, then the running
time of the algorithm is Ω(m+min{n log r, n log n}), even if the hierarchy is provided beforehand.
This follows via an information-theoretic argument that is valid both in the comparison-addition
as well as in the word RAM models. It uses the fact that any hierarchy approach must make
node i permanent before j whenever d(j) ≥ d(i) + b(i, j). However, this interpretation of hierarchy
frameworks for directed networks does not allow for replacing the costs by equivalent reduced
costs, even though such a transformation may considerably change the bottleneck values b(i, j).
Therefore, his arguments do not contradict our development of an O(m) time algorithm for the
directed SSSP.

For undirected graphs, Pettie and Ramachandran [26] solve APSP in O(mn logα(m,n)) in the
comparison-addition model, where α(m,n) is the inverse Ackermann function. After an O(m +
min{n log n, n log log r}) time preprocessing step, every SSSP problem can be solved in timeO(m logα(m,n)).

For dense graphs, that is, graphs with m = Ω(n2) edges, the classical Floyd-Warshall algorithm
[9, 34] yields O(nm) = O(n3). The first o(n3) algorithm was given by Fredman [11], in time
O(n3/ log1/3 n). This was followed by a long series of improvements with better logarithmic factors,
see references in [35]. In 2014, Williams [35] achieved a breakthrough with a randomized algorithm
running in time n3/2Ω(

√
logn), by speeding up min-plus (tropical) matrix multiplication using tools

from circuit complexity. A deterministic algorithm of the same asymptotic running time was
obtained by Chan and Williams [4].

1.1.2 Approximate graph and matrix balancing

Our notion of ξ-min-balanced graphs is closely related to previous work on graph and matrix
balancing. For ξ = 1, we simply say that G is min-balanced. A graph G is min-balanced if and
only if for each proper subset S of nodes, the following is true: the minimum cost over arcs entering
S is at equal to the minimum cost over arcs leaving S—see Lemma 2.1.

3

Schneider and Schneider [27] defined max-balanced graphs where for every subset S, the maxi-
mum cost over arcs entering S equals the maximum cost over arcs leaving S. For each e ∈ E, let
c′(e) = cmax − c(e). Then G is max-balanced with respect to c′ if and only if G is min-balanced
with respect to c. For exact min/max-balancing, the running time O(mn + n2 log n) by Young,
Tarjan, and Orlin [36] is still the best known complexity bound. Relaxing the exactness condition,
we give an O (2ρ(ρ+ 1)

√
n log n) algorithm for ξ-min-balancing for any ρ ∈ Z≥0, ξ = 1 + 1/2ρ−1.

Min-balancing is a generalization of the min-mean cycle problem: if C is a min-mean cycle,
then any min-balanced residual cost function satisfies cπ(e) ≥ µ for all e ∈ E and cπ(e) = µ
for e ∈ C for some µ ∈ R. In fact, following [27], one can solve min-balancing as a sequence
of min-mean cycle computations; see the discussion after Theorem 3.1. Karp’s O(mn) algorithm
from 1978 [16] is still the best known strongly polynomial algorithm for min-mean cycle problem.
Weakly polynomial algorithms that run in O(m

√
n log(nC)) time were given by Orlin and Ahuja

[18] and by McCormick [17]. The latter provides a scaling algorithm based on the same subroutine
of Goldberg [14] that plays a key role in our balancing algorithm. The algorithms [17, 18] easily
extend to finding an ε-approximate min-mean cycle in O(m

√
n log(n/ε)) time. That is, finding a

reduced cost cπ, a cycle C, and a value µ such that cπ(e) ≥ µ for all e ∈ E and cπ(e) ≤ (1 + ε)µ
for all e ∈ C.

A restricted case of APSP is the problem of finding the shortest cycle in a network. Orlin and
Sedeño-Noda [19] show how to solve the shortest cycle problem in O(nm) time by solving a sequence
of n (truncated) shortest path problems, each in O(m) time. Their preprocessing algorithm was the
solution of a minimum cycle mean problem in O(nm) time. However—analogously to the approach
in this paper—they could have relied instead on [17, 18] to find a 2-approximation of the minimum
cycle mean in O(m

√
n log n) time.

We say that a graph is weakly max-balanced if for every node v ∈ N , the maximum cost over
arcs entering v equals the maximum cost over arcs leaving v; that is, we require the property in
the definition of max-balancing only for singleton sets S = {v}.

This notion corresponds to the well-studied matrix balancing problem: given a nonnegative
matrix M ∈ Rn×n, and a parameter p ≥ 1, find a positive diagonal matrix D such that in DMD−1,
the p-norm of the i-th column equals the p-norm of the i-th row. Given G = (N,A, c), we let
Mij = ecij if (i, j) ∈ A and Mij = 0 otherwise. Then, balancing M in ∞-norm amounts to finding
a weakly max-balanced reduced cost cπ.

Matrix balancing was introduced by Osborne [20] as a preconditioning step for eigenvalue com-
putations. He also proposed a natural iterative algorithm for ℓ2-norm balancing. Parlett and
Reinsch [22] extended this algorithm to other norms. Schulman and Sinclair [28] showed that a
natural variant of the Osborne–Parlett–Reinsch (OPR) algorithm finds an ε-approximately bal-
anced solution in ℓ∞ norm in time O(n3 log(nρ/ε)), where ρ is the initial imbalance. Ostrovsky,
Rabani, and Yousefi [21] give polynomial bounds for variants of the OPR algorithm for fixed finite p
values, in particular, O(m+n2ε−2 logw) for a weighted randomized variant, where w is the ratio of
the sum of the entries over the minimum nonzero entry, and m is the number of nonzero entries. Re-
cently, Altschuler and Parillo [3] showed an Õ(mε−2 logw) bound for a simpler randomized variant
of OPR. Cohen et al. [5] use second order optimization techniques to attain Õ(m log κ log2(nw/ε)),
where κ is the ratio between the maximum and minimum entries of the optimal rescaling matrix
D; similar running times follow from [2]. The value κ may be exponentially large; the paper [5]
also shows a Õ(m1.5 log(nw/ε)) bound via interior point methods using fast Laplacian solvers.1

1In the quoted running times, Õ(.) hides polylogarithmic factors. Various papers define ε-accuracy in different
ways; here, we adapt the statements to ℓ1-accuracy as in [3].

4

Our graph balancing problem corresponds to ℓ∞ matrix balancing. Except for [28], the above
works are applicable for finite ℓp norms only. Compared to [28], our approximate balancing
algorithm has lower polynomial terms, but our running time depends linearly on 1/ε instead of a
logarithmic dependence.2

1.2 Overview

The rest of the paper is structured as follows. Section 2 introduces notation and basic concepts,
including the directed variant of component hierarchies used in this paper, and the comparison-
addition and word RAM computational models. Section 3 is dedicated to the approximate min-
balancing algorithm. The algorithm is developed in several steps: a key ingredient is a subroutine
by Goldberg [14] that easily gives rise to a weakly polynomial algorithm. In order to achieve
a strongly polynomial bound, we need a further preprocessing step to achieve an initial ‘rough
balancing’. An additional technical contribution is a new variant of the Union-Find data structure,
called Union-Find-Increase. At the beginning of Section 3, we give a detailed overview of the overall
algorithm and the various subsections.

In Section 4, we describe the shortest path algorithm for 3-min-balanced directed graphs. This
is very similar to Thorup’s original algorithm [31]. However, the setting is different, and we use
a slightly different notion of the component hierarchy. For completeness, we include a concise
description of the algorithm and the proof of correctness. Concluding remarks are given in the final
Section 5.

2 Notation and preliminaries

For an integer k, we let [k] = {1, 2, . . . , k}. We let Z≥0 denote the nonnegative integers and let Z>0

denote the positive integers; similarly for Q≥0, Q>0, R≥0, and R>0. We let log x = log2 x refer to
base 2 logarithm unless stated otherwise. For a vector z ∈ RT and S ⊆ T , we let z|S ∈ RS denote
the restriction of z to S.

Throughout, we let G = (N,A, c) be a directed graph with nonnegative arc costs c ∈ RA
≥0. Let

m = |A| and let n denote the smallest integer power of 2 greater than or equal to |N |; we assume
n,m ≥ 2. This choice instead of n = |N | will be convenient in the word RAM model. We use
Cmin = mine∈E c(e) and Cmax = maxe∈E c(e) to denote the smallest and largest values of the cost
function. All graphs considered will be simple and loopless.

For a node i ∈ N , we let A(i) denote the set of the outgoing arcs from i. For an arc set F ⊆ A,
we let N(F) denote the set of nodes incident to F . For a node set X ⊆ N , let A[X] denote the set
of arcs in A with both endpoints inside X.

For a node set S ⊆ N , let S̄ = N \ S denote the complement of S. We let (S, S̄) ⊆ A denote
the set of arcs directed from a node in S to a node in S̄.

For a node set Z ⊆ N , we denote the graph obtained by contracting Z by G/Z = (N ′, A′, c′).
Here, N ′ = (N \ Z) ∪ {z}; z represents the contracted node set. We include every arc (i, j) ∈ A in
A′ with the same cost if i, j /∈ Z. Arcs with both endpoints in Z are deleted. If i ∈ Z or j ∈ Z,
the corresponding endpoint is replaced by z. In case parallel arcs are created, we only keep one
with the smallest cost. For a partition P = (P1, P2, . . . , Pk) of N , the contraction G/P denotes the
graph obtained after contracting (in an arbitrary order) each of the sets Pi, i ∈ k in G.

We will assume that G = (N,A, c) is strongly connected ; that is, a directed path exists between

2We note that, in contrast to the previous work, we consider min- rather than max-balancing. The exact min- and
max-balancing problems can be transformed to each other by setting c′(e) = cmax − c(e); however, such a reduction
does not preserve multiplicative approximation factors, and hence our result cannot be directly compared with [28].
Nevertheless, it seems that both algorithms can be adaptable to both the min and max settings. Such extensions are
not included in this paper.

5

any two nodes. If the input is not strongly connected, then we preprocess the graph as follows.
We find the strongly connected components in O(n +m) time using Tarjan’s algorithm [29]. We
select a value M greater than the sum of all arc costs, pick one node in each strongly connected
component, add a directed cycle on these nodes, and set the cost of these arcs to M . This results
in a strongly connected graph G′ = (N,A′, c′) with |A′| = O(m+ n). Computing shortest paths in
G′ provides the shortest paths in G; if the shortest path distance between nodes i and j in G′ is at
least M , then j is not reachable from i in G.

Dijkstra’s algorithm Dijkstra’s algorithm [7] is the starting point of the fastest algorithms for
SSSP and APSP. We now give a brief overview of the key steps. The algorithm maintains distance
labels D(i) for each node i that are upper bounds on d(i), the shortest path distance from s. The
algorithm adds nodes one-by-one to a permanent node set S with the property that D(i) = d(i) for
every i ∈ S. Further, for every i ∈ N \ S, D(i) is the length of a shortest s–i path in the subgraph
induced by the node set S ∪ {i}.

These are initialized as D(s) = 0, D(i) =∞ for i ∈ N \ {i}, and S = ∅. Every iteration adds a
new node to S, selecting the node i ∈ N \ S with the smallest label D(i). Then, the outgoing arcs
(i, j) are considered, and D(j) is updated to min{D(j), D(i) + c(i, j)}. The crucial property of the
analysis is that this selection rule is correct, that is, for i ∈ argmin{D(j) : j ∈ N \ S}, we must
have D(i) = d(i).

Bottleneck costs in balanced graphs Our shortest path algorithm requires the input graph
to be 3-min-balanced—see Definition 1.1. As shown next, the bottleneck costs are approximately
balanced in such graphs.

Recall the definition of the bottleneck cost b(i, j) in (1). We extend the definition to non-
empty disjoint subsets S, T ⊊ N as b(S, T) := min{b(i, j) : i ∈ S, j ∈ T}. Equivalently, b(S, S̄) =
min{c(i, j) : i ∈ S, j ∈ S̄}. By a bottleneck i–j path we mean an i–j path where the maximum arc
cost is b(i, j).

Lemma 2.1. The following are equivalent.

(1) G is ξ-min-balanced.

(2) For all proper subsets ∅ ≠ S ⊊ N , b(S̄, S) ≤ ξb(S, S̄).

(3) For all i ∈ N and j ∈ N , b(j, i) ≤ ξb(i, j).

Proof. (1) ⇒ (2). Suppose that G is ξ-min-balanced and ∅ ≠ S ⊊ N . Choose e ∈ argmin{c(e) :
e ∈ (S, S̄)}; thus, c(e) = b(S, S̄). Let C be the bottleneck cycle containing e. Because C contains
an arc f of (S̄, S), the following is true: b(S̄, S) ≤ c(f) ≤ ξc(e) = ξb(S, S̄).

(2) ⇒ (3). Suppose that (2) is true. For given nodes i and j, let S = {k ∈ N : b(j, k) ≤ ξb(i, j)}.
Clearly, j ∈ S. We show by contradiction that i ∈ S, and consequently, b(j, i) ≤ ξb(i, j). Suppose
that i ∈ S̄. Let e ∈ argmin{c(e) : e ∈ (S, S̄)}, and suppose that e = (h, ℓ). Then b(j, h) ≤ ξb(i, j)
because h ∈ S; further, c(h, ℓ) = b(S, S̄) ≤ ξb(S̄, S) ≤ ξb(i, j) by (2) and the fact that the bottleneck
path from i to j includes an arc of (S̄, S). Then b(j, ℓ) ≤ max{b(j, h), c(h, ℓ)} ≤ ξb(i, j). But this
implies that ℓ ∈ S, a contradiction.

(3) ⇒ (1). Suppose that (3) is true. Let e = (j, i) be any arc of A; note that b(j, i) ≤ c(e).
Let P be a path from i to j with arcs of length at most b(i, j), and let C = P ∪ {e}. Then C
is a cycle, and max{c(f) : f ∈ C} ≤ max{b(i, j), c(e)} ≤ max{ξb(j, i), c(e)} ≤ ξc(e). Thus, G is
ξ-min-balanced.

6

The component hierarchy We now introduce the concept of a component hierarchy. This is
a variant of Thorup’s [31] component hierarchy, adapted for approximately min-balanced directed
graphs. The papers [15, 23, 24] also use component hierarchies for directed graphs. However, our
notion exploits the ξ-min-balanced property, and will be more similar to the undirected concept
[31] in that it does not impose orderings of the children of the vertices.

We use the standard terminology for a tree (V ′, E′) rooted at r ∈ V ′.

• For v ∈ V ′ \ {r}, the parent p(v) of v is the first vertex after v on the unique path in the tree
from v to r. All nodes in the path are called the ancestors of v.

• For v ∈ V ′, children(v) ⊆ V ′ is the set of nodes u such that p(u) = v.

• For every v ∈ V ′, desc(v) ⊆ V ′ is the set of nodes in the subtree rooted at v.

• For u, v ∈ V ′, lca(u, v) is the least common ancestor of u and v, i.e., the unique vertex on the
u–v path in E′ that is an ancestor of both u and v.

Definition 2.2. The tuple (V ∪ N,E, r, a) is called a component hierarchy of G for a strongly
connected directed graph G = (N,A, c) if

• (V ∪N,E) is a tree with root r ∈ V , and N is the set of leaves.

• The vector a : V → Z>0 is such that each a(v) is an integer power of 2. For every v ∈ V \{r},
a(v) ≤ a(p(v))/2.

• For any i, j ∈ N with lca(i, j) = v, we have a(v) ≤ b(i, j) ≤ 3a(v); moreover, there exists an
i–j path P inside desc(v) ∩N such that c(e) ≤ 3a(v) for every arc e ∈ P .

2.1 Computational models

Our results use two different computational models. The approximate min-balancing algorithm in
Section 3 can be implemented in the more restrictive comparison-addition model. However, the
word RAM model is needed for constructing the component hierarchy: we require the operation of
rounding down numbers to the nearest power of two in order to obtain a(v) values that are powers
of two. The shortest path algorithm in Section 4 uses integer arithmetic in two parts: (1) storing
vertices and nodes in buckets, and (2) in the Split/FindMin data structure.

The comparison-addition model The input is a set of real numbers, and only addition and
comparison operations are allowed; each takes constant time. Subtraction can be easily simulated
with a constant overhead by representing numbers in the form α− β. Multiplication by an integer
N can be simulated by O(logN) additions. See [23, 26] for more details.

The algorithms in Section 3 also include division by a power of 2 in a restricted sense: for a
value γ = O(log n), we require that all calculated values can be expressed as sums of quotients in
the form w =

∑γ
i=0wi/2

i, where the wi values can be obtained as a difference of two sums of input
values. We can work with such numbers in the comparison-addition model by representing such a
sum by ordered pairs (w1, d1), . . . , (wi, di).

One can convert the sum of quotients into a single quotient with denominator ≤ 2γ in time
O(γ). Moreover, additions, subtractions, and comparisons of sums of quotients can each be carried
out in O(γ + 1) steps. When the approximate balancing algorithms are used as preprocessing for
the APSP, one can multiply the outputs by 2γ at termination. Then the shortest path algorithms
will determine the shortest path trees for the original problem as well.

7

The word RAM model We use the standard random access machine model, where every
memory cell can store an integer of w bits. For convenience, we assume the word size is at least
log(nCmax) so that each input and output number fits into a single word.

There is no universally accepted computational model for integer weights. We use the same
model as in [15]; this is more restrictive than the one in [31], which also allows arbitrary multipli-
cations. In our model, unit-time operations include comparison, addition, subtraction, bit shifts
by an arbitrary number of positions, and bitwise boolean operations.

We do not allow multiplications and divisions in general. However, the bit shift operations
enable multiplications by integer powers of 2 in O(1) time. Due to the assumption that n is a
power of 2, multiplying by a monomial term such as bnk can be done in O(1) time if b, k = O(1).
We will use divisions by powers of 2. These operations can be simulated with constant overhead,
maintaining a representation a/2b of the occurring numbers. Throughout, we maintain numbers in
such representation with b = O(log n).

We highlight the only two operations involving integer arithmetics that are used for constructing
the component hierarchy in Section 3.3 and for the bucketing operations in Section 4.3.

(i) Given r ∈ Z≥0, compute the largest integer power of 2 smaller or equal than r; we denote this
by ⌊r⌋2.

(ii) Given r ∈ Z≥0, and b ∈ Z≥0, compute ⌊r/2b⌋.

All other integer operations are only needed for Split/FindMin; we discuss this in more detail in
Section 4.5.

Any running time bound obtained in the comparison-addition model is directly applicable to
the word RAM model. Bounds in the comparison-addition model can be worse than in the word
RAM model. In particular, restricted divisions in the comparison-addition model require O(γ) time
for numbers in the sum of quotients form w =

∑γ
i=0wi/2

i, in contrast to O(1) in the word RAM
model where bit shift operations are permitted.

3 An algorithm for approximate min-balancing

This section is dedicated to the proof of the following theorem. The algorithm asserted in the
theorem is Algorithm 5 in Section 3.3.

Theorem 3.1. Assume we are given a strongly connected directed graph G = (N,A, c) with arc
costs c ∈ RA

≥0, and a parameter ρ ∈ Z≥0; let ξ := 1 + 1/2ρ−1.

(a) There exists an O (2ρ(ρ+ 1) ·m√n log n) time algorithm in the comparison-addition model that
finds a potential π ∈ RN such that cπ is ξ-min-balanced.

(b) For ρ = 0 and ξ = 3 and an integer input c ∈ ZA
≥0, we can obtain a potential π ∈ QN and a

component hierarchy of (N,A, cπ) in time O (m
√
n log n) in the word RAM model. Further, all

π(v) values are integer multiples of 1/(4n3).

It is instructive to start the overview from exact min-balancing, that is, ξ = 1, even though our
algorithm is not applicable to this case. For ξ = 1, the exact max-balancing algorithms [27, 36]
can be used (by negating the costs). A simple and natural algorithm (see [27]) is based on the
iterative application of min-mean cycle finding. First, find all arcs that are in a min-mean cycle in
the graph; let µ ≥ 0 denote the minimum cycle mean value, and F the set of all arcs in such cycles.
Every arc e ∈ F must have cπ(e) = µ if cπ is a min-balanced reduced cost function.

8

It is easy to see that the min-cycle mean algorithm produces a potential π such that cπ(e) ≥ µ
for all e ∈ E, and cπ(e) = µ for all e ∈ F . We can then contract all strongly connected components
of F , and recurse on the contracted graph, by repeatedly modifying the potential π and contracting
the components of min-mean cycles.

The current best running times are O(mn + n2 log n) for min-balancing [36] and O(mn) for
minimum-mean cycle computation [16]. Both these running times are substantially higher than the
overall running time in Theorem 3.1.

We can thus only afford to approximately compute min-mean cycles. This can be achieved
faster using a subroutine in Goldberg’s paper [14], originally developed for a weakly polynomial
algorithm for negative cycle detection. There are some technical differences from [14]; we present
the detailed description of the subroutine and the proof of correctness in Section 3.5.

The input to the subroutine Small-Cycles is a strongly connected directed graph with mini-
mum arc cost L and a parameter D > 0. In time O(m

√
n), it finds a reduced cost cπ and strongly

connected components of arcs with reduced cost in the range of [L,L+2D]. At the same time, the
reduced cost of every arc between different components is at least L+D.

If the input graph has positive arc costs, the iterative application of this subroutine yields a
simple weakly polynomial algorithm with running time O (2ρ(ρ+ 1) ·m√n log (nCmax/Cmin)), as
described in Section 3.1.

In order to turn this into a strongly polynomial algorithm, in Section 3.2 we start by a prepro-
cessing algorithm that finds a 14n2-min-balanced reduced cost. An important step in this algorithm
is to determine the balance values β(e) for all arcs e ∈ E; this is defined as the smallest value b
such that G contains a cycle C with e ∈ C and c(f) ≤ b for all f ∈ C. These balance values can
be efficiently found using a simple recursive framework.

The strongly polynomial algorithm in Section 3.3 requires the input cost function to be 14n2-
min-balanced. How can we benefit from this ‘rough’ balance of the input? The weakly poly-
nomial algorithm consists of O (2ρ(ρ+ 1) · log(nCmax/Cmin)) calls to Small-Cycles. If each
call uses the entire arc set in the current contracted graph, we obtain a total running time
O (2ρ(ρ+ 1) ·m√n log (nCmax/Cmin)) as above. However, when running Small-Cycles with pa-
rameter L, it is possible to restrict attention to arcs e with c(e) ≤ 2nL. We refer to such arcs
as active. If the input is assumed to be a 14n2-min-balanced cost-function, then each arc is ac-
tive for O (2ρ log n) calls of Small-Cycles prior to being contracted. Thus each arc contributes
O (2ρ(ρ+ 1)

√
n log n) to the total running time.

In the weakly polynomial algorithm, the parameter L giving a lower bound on the minimum
reduced cost of non-contracted arcs increases by a factor at most 1 + 1/2ρ in each iteration. To
avoid the dependence on Cmax/Cmin in the strongly polynomial algorithm, this value may sometimes
‘jump’ by large amounts in iterations with no active arcs.

An important technical detail is the maintenance of the reduced costs. In every iteration, we
only directly maintain cπ(e) for the active arcs. Querying the reduced cost of a newly activated
arc is nontrivial, since one or both of its endpoints may have been part of one or more contracted
cycles, each of which corresponds to a node in the contracted graph. To compute the potential of
an original node i, we need to add to the potential of node i the potentials of every contracted
node j that contains node i. We develop a new extension of the Union-Find data structure, called
Union-Find-Increase by incorporating a new ‘increase’ operation. This is described in Section 3.4.

Contractions and preprocessing We use contractions several times. Whenever a set S is
contracted, we let s be the contracted node, and set the potential πs = 0. For each arc with one
endpoint in S, we keep the same reduced cost as immediately before the contraction.

On multiple occasions we need the subroutine Strongly-connected(N,A) that implements

9

Tarjan’s algorithm [29] to find the strongly connected components of the directed graph (N,A) in
timeO(|N |+|A|). The output includes the strongly connected components (N1, A1), (N2, A2), . . . , (Nk, Ak)
in the topological order, namely, for every arc (u, v) ∈ A such that u ∈ Ni, v ∈ Nj , it must hold
that i ≤ j.

In Theorem 3.1, the input is a nonnegative cost function. For our algorithm, it is more con-
venient to assume a strictly positive cost function. We now show how the nonnegative case can
be reduced to the strictly positive case by a simple O(m) time preprocessing. Recall the notation
Cmin = mine∈E c(e) and Cmax = maxe∈E c(e).

We first call Strongly-connected(N,A0) on the subgraph of 0-cost arcs A0. We contract
all strongly connected components, and keep the notation G = (N,A) for the contracted graph,
where the output of the subroutine gives a topological ordering N = {v1, v2, . . . , vn} such that for
every 0-cost arc (vi, vj), we must have i < j. We let C ′ denote the smallest nonzero arc cost, and
set π(vi) = −iC ′/n. Then, it is easy to see that cπ(e) ≥ C ′/n for every e ∈ A.

We then replace the cost function c by ncπ, after which we obtain a cost function c′ with
C ′ ≤ c′(e) ≤ n(C ′ + Cmax) for every e ∈ A. This preprocessing algorithm can be implemented in
O(m log n) time in the comparison-addition model.

3.1 A simple weakly polynomial variant

The following subroutine is a variant of Refine in Goldberg’s paper [14].

Algorithm 1 Small-cycles

Input: A directed graph G = (N,A, c) with a cost function c ∈ RA, and L ∈ R, D ∈ R>0 such
that c(e) ≥ L for all e ∈ A.

Output: A partition P = (P1, P2, . . . , Pk) of the node set N and a potential vector π ∈ RN such
that

(i) For every i ∈ [k], cπ(e) ≥ L for every e ∈ A[Pi], and Pi is strongly connected in the
subgraph of arcs {e ∈ A[Pi] : L ≤ cπ(e) ≤ L+ 2D};

(ii) cπ(e) ≥ L+D for all e ∈ A \
(

∪i∈[k]A[Pi]
)

;

(iii) −|N |D ≤ π(v) ≤ 0, and π(v) is an integer multiple of D for all v ∈ N .

Lemma 3.2. The subroutine Small-cycles(L,D,N,A, c) can be implemented in O(|A|
√

|N | log |N |)
time in the comparison-addition model.

The proof adapts the argument in [14]; it is deferred to Section 3.5. We now summarize the
weakly polynomial algorithm Simple-Min-Balance (Algorithm 2). We initialize L1 = Cmin and
D1 = L1/2

ρ. Every iteration calls Small-Cycles for the current values of Lt and Dt. In Step 5,
we contract each subset (some or all of which may be singletons) in the partition Pt returned by
the subroutine, and iterate with the returned reduced cost, setting the new value Lt+1 = Lt +Dt.
We update Dt+1 to Lt+1/2

ρ whenever t is an integer multiple of 2ρ; otherwise, we keep Dt+1 = Dt.
Thus, the value of Lt doubles in every 2ρ iterations.

We let (N̂t, Ât) denote the contracted graph at iteration t. The algorithm terminates when N̂t

has a single node only, at iteration t = T .

Uncontraction In the final step of the algorithm, we uncontract all sets in the reverse order of
contractions. We start by setting π = pT . Assume a set S was contracted to a node s in iteration
t, and we have uncontracted all sets from iterations t+ 1, . . . , T . When uncontracting S, for every
v ∈ S we set π(v) = pt(v) + π(s), i.e., the potential right before contraction, plus the potential

10

Algorithm 2 Simple-min-balance

Input: A strongly connected directed graph G = (N,A, c) with c ∈ RA
>0, parameters ρ ∈ Z≥0 and

ξ = 1 + 1/2ρ−1.
Output: A potential π ∈ RN such that cπ is ξ-min-balanced.
1: (N̂1, Â1, ĉ1)← (N,A, c) ; t← 1 ;
2: L1 ← mine∈A c(e) ; D1 ← L1/2

ρ

3: while |N̂t| > 1 do
4: (Pt, pt)← Small-Cycles(Lt, Dt, N̂t, Ât, ĉt) ;
5: (N̂t+1, Ât+1, ĉt+1)← (N̂t, Ât, ĉ

pt
t)/Pt ;

6: Lt+1 ← Lt +Dt ;
7: if t is an integer multiple of 2ρ then Dt+1 ← Lt+1/2

ρ ;
8: else Dt+1 ← Dt ;

9: t← t+ 1 ;

10: Uncontract (N̂t, Ât, ĉt), and compute the overall potential π ∈ RN ;
11: return π.

of s accumulated during the uncontraction steps. This takes time O(n′) where n′ is the total size
of all sets contracted during the algorithm; it is easy to bound n′ ≤ 2n. Thus, the total time for
uncontraction is O(n).

Lemma 3.3. Algorithm 2 finds a ξ-min-balanced cost function in time O (2ρ(ρ+ 1) ·m√n log(nCmax/Cmin))
in the comparison-addition model.

Proof. At initialization, L1 = Cmin, and Lt increases by a factor 2 in every 2ρ iterations. At every
iteration, we can extend the cost function ĉt to the original arc set A: for an arc e contracted in
an earlier iteration τ < t, we let ĉt(e) = ĉτ (e) represent the value right before the contraction. It
is easy to see that this extension of ĉt to A gives a valid reduced cost of c.

Throughout, we have that Lt ≤ ĉt(e) for all e ∈ Ât, and ĉt(e) ≥ 0 for all contracted arcs. Thus,
for any cycle C ⊆ A that contains some non-contracted arcs in Ât, 2Lt ≤ ĉt(C) = c(C) ≤ nCmax

holds. Consequently, Lt ≤ nCmax/2 throughout, implying a bound O(2ρ log(nCmax/Cmin)) on the
number of iterations.

As explained above, the final uncontraction and computing π can be implemented in O(n)
time. To show that the final cπ is ξ-min-balanced, consider an arc e ∈ A, and assume it was
contracted in iteration t, that is, e ∈ A[Pj] for a component Pj of the partition Pt. In particular,
cπ(e) = cpt(e) ≥ Lt. The set Pj is strongly connected in the subgraph of arcs of reduced cost
≤ Lt + 2Dt ≤ ξLt. Thus, at iteration t, Pj contains a cycle C with e ∈ C such that ĉt(f) ≤ ξLt

for all f ∈ C. This cycle may contain nodes that were contracted during previous iterations.
Every component previously contracted contains a strongly connected subgraph of arcs with costs
Lt−1 + Dt−1 ≤ ξLt−1, noting that the arc costs do not change anymore after contraction. Thus,
when uncontracting a node, we can extend C to a cycle of arc costs ≤ ξLt. Hence, we can obtain
a cycle C ′ in the original graph G with e ∈ C ′ and cπ(f) ≤ ξLt ≤ ξcπ(e) for all f ∈ C ′.

The algorithm only performs addition and comparison operations, and divisions by 2ρ. Divisions
only happen when setting Dt+1 = Lt+1/2

ρ. At such iterations, we have Dt+1 = 2kCmin, where
k = t/2ρ is an integer. As remarked in Section 2.1, we can implement every step in O(ρ + 1)
time.

11

3.2 A quick algorithm for rough balancing

In this section, we present the subroutineRough-balance(N,A, c), which finds a potential π ∈ RN

such that cπ is 14n2-min-balanced. As mentioned previously, this will be an important preprocessing
step for the strongly polynomial algorithm in Section 3.3. The running time can be stated as follows.
Here, α(m,n) is the inverse Ackermann function.

Lemma 3.4. Let G = (N,A, c) be a strongly connected directed graph with c ∈ RN
>0. Then, in

time O(mα(m,n) log n), we can find a potential π ∈ RN such that cπ is 14n2-min-balanced, where
n = |N | and m = |A|. The algorithm can be implemented in the comparison-addition model, and
every cπ(e) value will be an integer multiple of 4n2.

Given G = (N,A, c) with c ∈ RA
≥0, and r > 0, we let G[≤ r] denote the subgraph of G formed

by the arcs e ∈ A with c(e) ≤ r. For every e ∈ A, we define β(e) ∈ R>0 as the smallest value r such
that G[≤ r] contains a directed cycle C with e ∈ C. We call β(e) the balance value of e. Clearly,
G is ξ-min-balanced if and only if β(e) ≤ ξc(e) for every e ∈ A.

The algorithm proceeds in two stages. Section 3.2.1 presents Find-Balance(N,A, c), which de-
termines the balance value β(e) for every arc in e ∈ A. The main algorithmRough-Balance(N,A, c)
follows in Section 3.2.2.

3.2.1 Determining the balance values

Algorithm 3 presents the recursive subroutine Find-Balance(N,A, c). Let c[1] < c[2] < . . . < c[K]
denote the set of different arc cost values. If K = 1, i.e., all arc costs are the same, then we return
β(e) = c(e) = c[1] for every arc. Otherwise, we let r and r′ denote the two consecutive values in the
middle. We identify the strongly connected components (N1, A1), (N2, A2), . . . , (Nk, Ak) of G[≤ r],
and recursively determine the β(e) values for e ∈ Ai by calling the algorithm for each nonsingleton
component (Ni, Ai). For all arcs e ∈ A[Ni] \Ai, we set β(e) = c(e).

We then contract all components (Ni, Ai) to singletons to obtain Ĝ = (N̂ , Â, ĉ). We increase
each arc cost ĉ(e) in this graph to max{ĉ(e), r′}, make another recursive call to the algorithm on
Ĝ, and use the obtained balanced values for the pre-images of the contracted arcs.

Lemma 3.5. Algorithm 3 correctly computes the balance values in G in time O(m log n).

Proof. For any pair of nodes v and w in Ni, b(w, v) ≤ r. If e = (v, w) ∈ A and c(e) > r, then
β(e) = c(e) is correctly determined. If c(e) ≤ r, then e ∈ Ai, and β(e) ≤ r can be found recursively
by finding the balance values in (Ni, Ai).

Suppose instead that e = (v, w) ∈ E, where v ∈ Ni and w ∈ Nj for j ̸= i. Then β(e) ≥ r′,
and we can replace c(e) by c′(e) = max{c(e), r′} without changing β(e). In addition, contracting
the strongly connected components (Ni, Ai) does not affect β(e). Thus, the algorithm correctly
computes the balance numbers.

We now turn to the running time. The initial time to sort the arcs is O(m logm) = O(m log n).
Let T (m′,K ′) be the running time for the algorithm if the input has m′ sorted arcs with K ′

different costs. The algorithm finds the median value for the arc costs and partitions the graph into
subgraphs with m∗ arcs and m′ −m∗ arcs respectively, where m∗ ∈ [1,m′ − 1]. This takes O(m′)
time, and leads to the following recursion:

T (m′,K ′) ≤ O(m′) + max
m∗∈[1,m′]

{T (m∗, ⌊K/2⌋) + T (m−m∗, ⌊K/2⌋+ 1)} .

We conclude that T (m′,K ′) = O(m′ log(K ′ + 1)) because the number of different arc values is
halved in every recursive call. Hence, every arc can participate in at most ⌊log(K ′ + 1)⌋ recursive
calls.

12

Algorithm 3 Find-balance

Input: A strongly connected directed graph G = (N,A, c) with c ∈ QA
>0.

Output: A function β : A→ Q giving the balance value β(e) of each arc e ∈ A.
1: Let c[1] < c[2] < . . . < c[K] denote the set of arc cost values c(e) ;
2: if K = 1 then β(e)← c(e) for all e ∈ A ;
3: else
4: r ← c

[⌊

K
2

⌋]

; r′ ← c
[⌊

K
2

⌋

+ 1
]

;
5: {(N1, A1), (N2, A2), . . . , (Nk, Ak)} ← Strongly-Connected(G[≤ r]) ;
6: for i = 1, . . . , k do
7: if |Ni| > 1 then
8: for e ∈ A[Ni] \Ai do β(e)← c(e) ;

9: βi ←Find-Balance(Ni, Ai, c|Ai
) ;

10: for e ∈ Ai do β(e)← βi(e) ;

11: obtain Ĝ = (N̂ , Â, ĉ) by contracting every set Nj , j ∈ [k] ;
12: for e ∈ Â do ĉ(e)← max{ĉ(e), r′} ;
13: β̂ ← Find-Balance(Ĝ) ;

14: for e ∈ A \
(

⋃s
j=1A[Nj]

)

do β(e)← β̂(ê), where ê is the contracted image of e ;

15: return β.

3.2.2 Constructing the potential

We now describe the algorithm Rough-balance(N,A, c). We first compute the balance values
β(e) by running Find-Balance(N,A, c). We define

η(e) := max

{

c(e),
β(e)

2n

}

.

For r ≥ 0, we let G[η ≤ r] denote the subgraph of G formed by the arcs e ∈ A with η(e) ≤ r.
We say that e ∈ A is active with respect to the value r if η(e) ≤ r but e is not contained in any
strongly connected component of G[η ≤ r].

The Rough-balance subroutine is shown in Algorithm 4. A value r ≥ 0 is maintained, and
the graph Ĝ denotes the contraction of the strongly connected components of G[η ≤ r]; we use the
η values also in Ĝ that refer to the pre-image of the arc in G. At the beginning of the first iteration,
r is set as the minimum η(e) value in G; in later iterations, we increase r by a factor 2n, or to
the minimum of the η(e) values in the current Ĝ. Each iteration computes a topological ordering
of the active arcs w.r.t. r. Then, the potential πvi of the i-th node vi in the order is decreased by
ri/(2n). We terminate once Ĝ becomes a single node, i.e., G[η ≤ r] is strongly connected.

We handle contractions as in Section 3.1. That is, the final reduced cost of an arc e is equal to
its reduced cost immediately before its endpoints got contracted into the same node. At the end,
we uncontract and obtain the overall potential in the original graph in time O(n).

We now turn to the proof of Lemma 3.4. As the first step, we bound the reduced costs obtained
in the algorithm. The reduced costs are defined in the contracted graph, but can be naturally
mapped back to the input graph G.

Lemma 3.6. Consider the potentials at the end of any iteration of Algorithm 4, and let cπ(e)
denote the reduced cost of any arc e ∈ A. Then, |cπ(e)− c(e)| ≤ 2r/3. If e is an active arc in the
current iteration, then cπ(e) ≥ c(e) + r/(6n).

13

Algorithm 4 Rough-balance

Input: A strongly connected directed graph G = (N,A, c) with c ∈ RA
>0.

Output: A potential π : V → R such that cπ is 14n2-min-balanced.
1: obtain the balance values β(e) by calling Find-Balance(G) ;

2: for e ∈ A do η(e)← max
{

c(e), β(e)2n

}

;

3: r ← 0 ; Ĝ← G ;
4: for i ∈ N do πi ← 0 ;

5: while |N̂ | > 1 do
6: r ← max{2nr,min{η(e) : e ∈ Â}} ;
7: contract all strongly connected components of Ĝ[η ≤ r] in Ĝ ;
8: compute a topological ordering N̂ = {v1, v2, . . . , vk} of Ĝ[η ≤ r] such that i < j for all

(vi, vj) ∈ Â with η(vi, vj) ≤ r ;
9: for i = 1, . . . , k do πvi ← πvi − ri

2n ;

10: uncontract Ĝ and map π back to the original graph G ;
11: return π.

Proof. The initial potential values are πi = 0 and are monotone decreasing throughout. The current
iteration decreases every potential by at most r/2. Since the value of r increases by at least a factor
2n ≥ 4 in every iteration, the cumulative change in all iterations thus far is at most 2r/3. This
implies the first statement.

Assume now that e = (vi, vj) is active. Then, cπ(e) increases by at least r/(2n) in the current
iteration, since πvi is decreased by a smaller amount than πvj . The second part follows, since the
total change up to the previous iteration with value r′′ ≤ r/(2n) was 2r′′/3 ≤ r/(3n).

Lemma 3.7. An arc e ∈ A is contained in a strongly connected component of G[η ≤ r] if and only
if β(e) ≤ r. Every arc can be active in at most one iteration.

Proof. Suppose first that β(e) ≤ r. By definition of β(e), there exists a cycle C with e ∈ C such
that c(f) ≤ β(e) for all f ∈ C. Consequently, β(f) ≤ β(e) and η(f) ≤ β(e) for all f ∈ C, showing
that e is inside a strongly connected component of G[η ≤ r] whenever β(e) ≤ r. Conversely, assume
that there exists a cycle C ′ containing e such that η(f) ≤ r for all f ∈ C ′. Since c(f) ≤ η(f), it
follows that β(e) ≤ r.

Therefore, an arc e is active if and only if η(e) ≤ r < β(e). Since η(e) ≥ β(e)/(2n), and r
increases by at least a factor 2n between two iterations, it follows that each arc can be active at
most once.

Proof of Lemma 3.4. We first show that the algorithmRough-balance finds a 14n2-min-balanced
cost function. Consider any arc e ∈ A, and let us pick a cycle C containing e such that c(f), β(f) ≤
β(e) for every f ∈ C. Take the largest value of r during the algorithm such that r < β(e); let
r′ ≥ β(e) denote the value in the next iteration. By Lemma 3.7, e ∈ Â in the current iteration, and
e will be contracted in the next iteration, along with the entire cycle C. Hence, |cπ(f)−c(f)| ≤ 2r/3
for all f ∈ C for the final reduced cost cπ according to Lemma 3.6.

Claim 3.8. We have r′ = 2nr or r′ = c(e) = β(e).

Proof. If r′ > 2nr, then r′ = min{η(f) : f ∈ Â}. Hence, r′ ≤ η(e) ≤ β(e) ≤ r′. Equality must hold
throughout, which in particular implies η(e) = c(e) = β(e).

We consider two cases.

14

Case I: r < c(e). By the above claim, β(e) ≤ r′ ≤ 2nc(e). On the one hand, we have

cπ(e) ≥ c(e)− 2

3
r ≥ 1

3
c(e) .

On the other hand, for every f ∈ C, we have

cπ(f) ≤ c(f) +
2

3
r ≤ β(e) +

2

3
c(e) ≤

(

2n+
2

3

)

c(e) ≤ (6n+ 2)cπ(e) .

Hence, βπ(e) ≤ (6n+ 2)cπ(e) < 14n2cπ(e).

Case II: r ≥ c(e). Since r < r′, Claim 3.8 yields r′ = 2nr ≥ β(e), and thus r ≥ β(e)/(2n).
Consequently, r ≥ η(e) = max{c(e), β(e)/(2n)}.

Since η(e) ≤ r < β(e), by Lemma 3.6, e is an active arc, and the second part of the lemma
guarantees that

cπ(e) ≥ c(e) +
r

6n
.

For every f ∈ C, we have

cπ(f) ≤ c(f) +
2

3
r ≤ β(e) +

2

3
r ≤

(

2n+
2

3

)

r ≤
(

2n+
2

3

)

6ncπ(e) ≤ 14n2cπ(e)

showing that βπ(e) ≤ 14n2cπ(e). This completes the proof.

Running time bound The initial call to Find-Balance(N,A, c) takes O(m log n) time accord-
ing to Lemma 3.5. The significant terms in the running time are computing strongly connected
components of G[η ≤ r] along with the topological ordering of active arcs, and updating the po-
tentials. According to Lemma 3.7, each arc is active at most once. Hence, it is either contracted
in the first iteration it appears in G[η ≤ r], or the subsequent one. Therefore, the total number of
these operations is O(m). Maintaining the contracted graph using the Union-Find data structure
is O(mα(n,m)), see also Section 3.4. The number of operations in the final uncontraction is O(n),
similarly to the argument in Section 3.1.

To implement in the comparison-addition model, note that every number during the computa-
tions will be integer multiples of (2n)2. Additions, subtractions, and comparisons of numbers in
this form can be implemented in O(log n) time, as in Section 2.1. We also need multiplications by
i ≤ n and by 2n as well as divisions by 2n; these operations also take time O(log n). Hence, the
total running time can be bounded by O(mα(m,n) log n).

3.3 The strongly polynomial algorithm

We are ready to present the strongly polynomial algorithm as stated in Theorem 3.1. Given a graph
G = (N,A, c) with nonnegative arc costs, we preprocess it by contracting 0-cycles and changing to
a strictly positive reduced cost. We then apply the subroutine Rough-balance to find a 14n2-
min-balanced reduced cost function cπ. We can thus assume that the input of Algorithm 5 is a
strictly positive and 14n2-min-balanced cost function c.

Algorithm 5 is similar to the weakly polynomial Algorithm 2. The two crucial differences are
that (a) the subroutine Small-Cycles is called only for a subset of ‘active’ arcs; and (b) we may
‘jump’ over irrelevant values of L.

At the beginning of the algorithm, we sort the arcs in the increasing order of costs c(e). At
iteration t, we maintain two key parameters, the ‘lower bound’ Lt and the ‘step-size’ Dt, a con-
tracted graph (N̂t, Ât, ĉt), and a set of active arcs Ft ⊆ Ât. This is the subset of arcs with
ĉt(e) ≤ (n+ 1)

(

1 + 1
2ρ

)

Lt.

15

Algorithm 5 Min-Balance

Input: A strongly connected directed graph G = (N,A, c) with a 14n2-balanced cost vector c ∈
RA
>0, parameters ρ ∈ Z+ and ξ = 1 + 1/2ρ−1.

Output: A potential vector π ∈ RN such that cπ is ξ-min-balanced.
1: sort all arcs in the increasing order of costs as c(e1) ≤ c(e2) ≤ . . . ≤ c(em) ;
2: (N̂1, Â1, ĉ1)← (N,A, c) ; t← 1 ;
3: L1 ← c(e1), D1 ← L1/2

ρ ;
4: F1 ←

{

e ∈ A : c(e) ≤ (n+ 1)
(

1 + 1
2ρ

)

L1

}

;

5: while |N̂t| > 1 do
6: (Pt, pt)← Small-Cycles(Lt, Dt, N̂t(Ft), Ft, ĉt) ;
7: (N̂t+1, F̂ , ĉt+1)← (N̂t, Ft, ĉ

pt
t)/Pt ;

8: Lt+1 ← Lt +Dt ;
9: if t is an integer multiple of 2ρ then

10: if 4nLt+1 < mine∈Ât+1
c(e) then Lt+1 ← mine∈Ât+1

c(e)/2 ;

11: Dt+1 ← Lt+1/2
ρ ;

12: else Dt+1 ← Dt ;

13: Ft+1 ← F̂ ∪
{

e ∈ Ât+1 : (n+ 1)
(

1 + 1
2ρ

)

Lt < c(e) ≤ (n+ 1)
(

1 + 1
2ρ

)

Lt+1

}

;

14: for e ∈ Ft+1 \ Ft do ĉt+1(e)←Get-Cost(e) ;

15: uncontract (N̂t, Ât, ĉt), and compute the overall potential π ∈ RN .
16: return π.

As in Algorithm 2, the parameters are initialized as L1 = c(e1), D1 = L1/2
ρ. The iterations

start with a call to Small-Cycles for the current value of Lt and Dt, but restricted to the graph
(N̂t(Ft), Ft) induced by the active arcs; this returns a partition Pt and potentials pt. With a slight
abuse of notation, the node potentials pt are extended to the entire node set N̂t, by setting pt(v) = 0
for v ∈ N̂t \ N̂t(Ft). We contract each non-singleton subset in the partition Pt; the new costs ĉt+1

represent the contractions of ĉptt . However, we only maintain the ĉt+1(e) values explicitly for the
active arcs F̂ , the contracted image of Ft.

We now turn to the updates of Lt and Dt. In most iterations3, we set Lt+1 = Lt + Dt, and
keep Dt+1 = Dt. Exceptions are the special iterations when t is an integer multiple of 2ρ, in which
case we set Dt+1 = Lt+1/2

ρ. In these special iterations, the update defining Lt+1 is also different.
We start by letting Lt+1 = Lt +Dt, and then compare this value to mine∈Ât+1

c(e)/(4n). If Lt+1

is smaller, then we increase Lt+1 to mine∈Ât+1
c(e)/2. Note that Lt increases by at least a factor 2

between any two special iterations.
After updating Lt+1 and Dt+1, we update the set of active arcs by adding all arcs e ∈ Ât+1 with

cost c(e) ∈
(

(n+ 1)
(

1 + 1
2ρ

)

Lt, (n+ 1)
(

1 + 1
2ρ

)

Lt+1

]

. We emphasize that c(e) here refers to the
input costs and not the reduced cost. The subroutine Get-Cost(e) obtains the reduced cost ĉt(e)
of the newly added arcs. This will be explained in Section 3.4, using the Union-Find-Increase data
structure. We terminate once the graph is contracted to a singleton; at this point, we uncontract
and obtain the output potential π in the original graph as in Algorithm 2.

Let us now turn to the analysis. We let T denote the total number of iterations.

Lemma 3.9. Let τ ∈ [T] be an iteration of Algorithm 5 such that in all previous iterations t ∈ [τ],
ĉt(e) ≥ Lt was valid for all e ∈ Ft. Then, |ĉτ+1(e)− c(e)| ≤ n

(

1 + 1
2ρ

)

Lτ for every e ∈ Ât.

3More precisely, in 1− 2−ρ fraction of all iterations; there are no such iterations for ρ = 0.

16

Proof. The condition guarantees that the input to Small-Cycles at all iterations t ≤ τ satisfies
the requirement on the arc costs. The potential pt found by Small-Cycles has values −|N̂t|Dt ≤
pt(v) ≤ 0. Therefore, for each e ∈ Ât, |ĉτ+1(e)− c(e)| ≤ n

∑τ
t=1Dt.

We show that
∑τ

t=1Dt ≤
(

1 + 1
2ρ

)

Lτ . Indeed, Lt+1 ≥ Lt + Dt in every iteration, implying
∑τ−1

t=1 Dt ≤ Lτ ; and Dτ ≤ Lτ/2
ρ.

Lemma 3.10. In every iteration t ∈ [T] of Algorithm 5, ĉt(e) ≥ Lt for all e ∈ Ât. The final
reduced cost function cπ is ξ-min-balanced. Further, every arc e ∈ A with c(e) < Lt/(14n

3) was
contracted before iteration t.

Proof. Let us start with the first claim. The proof is by induction. For t = 1, ĉ1(e) ≥ L1 is true
for every e ∈ A = Â1 by the definition of L1 = c(e1). Assume the claim was true for all 1 ≤ t′ ≤ t;
we show it for t+ 1.

Assume first we set the value Lt+1 = minf∈Ât+1
c(f)/2 in an iteration where t is divisible

by 2ρ. This happens if 2n(Lt + Dt) < minf∈Ât+1
c(f)/2. Lemma 3.9 then implies that ĉ(e) >

minf∈Ât+1
c(f)− 2nLt > Lt+1 for every e ∈ Ât+1.

Let us next assume the update was Lt+1 = Lt + Dt. If e ∈ F̂ , i.e., the contracted image of
Ft, then ĉt+1(e) ≥ Lt + Dt = Lt+1 is guaranteed by Small-Cycles. Let e ∈ Ât+1 \ Ft, i.e.,
c(e) > (n+ 1)

(

1 + 1
2ρ

)

Lt. Then, Lemma 3.9 shows ĉt+1(e) >
(

1 + 1
2ρ

)

Lt ≥ Lt+1.
The ξ-min-balancedness property of the final reduced cost cπ follows as in Lemma 3.3 for the

weakly polynomial Algorithm 2.
Consider now an arc e ∈ A with c(e) < Lt/(14n

3). By the 14n2-min-balancedness of the input
cost function c, there exists a cycle C ⊆ A such that c(f) ≤ 14n2c(e) for all f ∈ C. The final
reduced cost cπ is nonnegative, and therefore

cπ(e) ≤ cπ(C) = c(C) ≤ 14n3c(e) < Lt .

Recall that the final reduced cost cπ(e) equals ĉt′(e) for the iteration t′ when f was contracted.
Since ĉt(f) ≥ Lt for all f ∈ Ât, it follows that t

′ < t, as required.

In Section 3.4 we will show that the overall running time of the operations Get-Cost(e) can
be bounded as O(mα(m,n)). We need one more claim that shows the geometric increase of Lt.

Lemma 3.11. For every iteration t′ ≥ 1, we have Lt′+2ρ ≥ 2Lt′.

Proof. Let t = t′ + 2ρ. Assume first 2ρ|t′ − 1. Then, Dt′ = Lt′/2
ρ, and we have Dt′′ = Dt′ for all

t′′ ∈ [t′, t− 1]. Consequently, Lt ≥ Lt′ + 2ρDt′ = 2Lt′ . The inequality may be strict if in iteration
t− 1 we set Lt > Lt−1 +Dt−1.

Assume now t′ = t0 + k such that 2ρ|t0 − 1 and k ∈ [1, 2ρ − 1]. Then, Lt′ = Lt0(1 + k/2ρ),
Lt0+2ρ ≥ 2Lt0 , and Lt = Lt0+2ρ(1 + k/2ρ) ≥ 2Lt0(1 + k/2ρ), thus, we again have Lt ≥ 2Lt′ .

We are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Part (a): the approximate min-balancing algorithm. Let us start with
bounding the total number of arithmetic operations. After the O(m log n) preprocessing algorithm,
we run the algorithm Rough-Balance to find a 14n2-balanced cost function in time O(m log n)
(Lemma 3.4). We now turn the analysis of Algorithm 5. Let mt = |Ft| denote the number of
active arcs in iteration t. The number of arithmetic operations in Small-Cycles in iteration t
is bounded as max{O(1), O((ρ + 1) ·mt

√
n)}. The term O(1) is needed since there may be some

‘idle’ iterations without any active arcs, that is, mt = 0. In such a case the update rule in line 10

17

guarantees that new active arcs appear within the next O(2ρ) iterations. Thus, the number ‘idle’
iterations without active arcs can be bounded as O(m2ρ), since every arc can give the minimum
value in line 10 at most once. The total running time of the ‘idle’ iterations is dominated by the
other terms.

Let us now focus on the iterations containing active arcs. We show that

T
∑

t=1

mt = O (2ρm log n) . (2)

Consider any arc e ∈ A. Let t1 be the first and t2 be the last iteration such that e ∈ Ft. By
definition, t1 is the smallest value such that c(e) ≤ (n + 1)

(

1 + 1
2ρ

)

Lt1 , and by the last part of
Lemma 3.10 Lt2/(14n

3) ≤ c(e). Thus, Lt2 ≤ 28n4Lt1 . Lemma 3.11 shows that Lt increases by a
factor 2 in every 2ρ iterations. Hence, t2 − t1 ≤ 2ρ log(28n4), implying (2).

Hence, the total number of operations in the calls to Small-Cycles is bounded asO (2ρm
√
n log n).

The time of contractions and cost updates can be bounded as O(mα(m,n)) as shown in Section 3.4,
and the final uncontraction takes O(n).

Implementation in the comparison-addition model: As noted previously, Rough-Balance and
Small-Cycles are both implementable in this model. Algorithm 5 uses additions, comparisons,
multiplications by 4n, divisions by 2 and by 2ρ. Further, all numbers in the computations will be
integer multiples of 2b for b ≤ 2ρ+ 1. As noted in Section 2.1, all operations can be implemented
in time O(ρ+ 1). The running time bound follows.

Part (b): obtaining the component hierarchy. Assume now ρ = 0 and ξ = 3; let us use the
algorithm as described in Algorithm 5 with two simple modifications: we set the initial value as

L1 = ⌊c(e1)⌋2 in line 3, and if 4nLt+1 < mine∈Ât+1
c(e), then we update Lt+1 to

⌊

mine∈Ât+1
c(e)/2

⌋

2
in line 10. Thus, these values are rounded down to the nearest power of two. Such an operation is
not allowed in the comparison-addition model, but can be done by a most significant bit operation
in the word RAM model.

Recalling also that n is a power of 2, and that we set Dt+1 = Lt+1/2
ρ = Lt+1 in every step, it

follows that every Lt value is a power of 2.
The sets contracted during the algorithm can be naturally represented by a rooted tree (V ∪

N,E), where the nodes N correspond to the leaves and the root r ∈ V to the final contraction
of the entire node set. If the set represented by some v ∈ V was contracted at iteration t, we set
a(v) = Lt.

We claim that (V ∪ N,E, a) forms a component hierarchy of Gπ = (N,A, cπ). All a(v) = Lt

values are integer powers of 2 (this is the reason for the additional rounding steps). It is immediate
that the leaves in the subtree of each v ∈ V form a strongly connected component in Gπ. Let
v represent a set contracted in iteration t, that is, v = Pi for a set Pi in the partition Pt. If
lca(i, j) = v for i, j ∈ N , that means that the nodes i and j got contracted together in iteration
t. We show that a(v) ≤ β(i, j) ≤ 3a(v), and that the nodes in desc(v) contain a path between i
and j of arcs with cost at most 3a(v); consequently, β(i, j) ≤ 3a(v). If t = 1, then L1 = ⌊Cmin⌋2,
and Pi is strongly connected in the subgraph of arcs of cost at most 3L1. If t > 1, then (N̂t, Ât)
contains a path between the contracted images of i and j with all arc costs between a(v) = Lt and
3Lt, and every i–j path must contain an arc of cost ≥ Lt. We can map this back to the original
graph by uncontracting the sets from previous iterations; all arc obtained in the uncontraction will
have costs ≤ 3Lt−1 < 3Lt.

Note that for ρ = 0 and an integer input, the Algorithm 5 finds an integer π. This is because
all Dt values are integral, and Small-Cycles changes the potential by integer multiples of Dt.

18

However, the input to Algorithm 5 is not the original cost but the cost obtained after the prepro-
cessing and Rough-Balance. Preprocessing returns ncπ̄ for a 1/n-integral potential π̄. For an
integer input c, Rough-Balance returns a 1/4n2-integral potential. From these three steps, we
can obtain a relabelling cπ of the original potential that is 1/(4n3)-integral if the original input cost
was nonnegative integer.

3.4 Union-Find-Increase: Maintaining the reduced costs

In Get-Cost(e), we need to compute the current reduced cost of an arc e. Let e = (i, j) in the
original graph. In the current contracted graph N̂t, e is mapped to an arc (i′, j′); that is, i is in
a contracted set represented by node i′, and j is in a contracted set represented by j′ (i = i′ and
j = j′ is possible). In the case that e is newly active (that is, it was not active at the previous
iteration), we need to recover the reduced cost ĉt(e). We do so by performing the uncontractions,
as in the final step. Let π be the potential obtained by uncontracting all sets. To compute π(i),
we need to add up all the pt′(i[t

′]) values for every iteration t′ ≤ t, where i[t′] is the contracted
node in N̂t′ representing i, and similarly for computing π(j). Since there could have already been
Ω(t) = Ω(n) contractions of sets containing i and j, a näıve implementation would take O(n) to
compute a single reduced cost, or O(nm) to obtain all current reduced costs.

We show that the time to calculate the reduced costs of newly active arcs in Small-Cycles

can be bounded as O(mα(m,n)) by using an appropriate variant of the classical Union-Find data
structure that we call Union-Find-Increase.

We refer the reader to [30] and [6, Chapter 21] for the description and analysis of Union-Find ;
we highlight the simple modifications only. The data structure maintains a forest F on the node
set N = {1, 2, . . . , n}, with each tree in F corresponding to a set in the partition. For each i ∈ N ,
let Anc(i) be the ancestors of i in F (including i).

In addition, each i ∈ N is associated with a key value σ(i) that is initially 0, and which
changes dynamically. We add two new operations to the data structure Union-Find : the operation
Increase(i, δ) increases σ(j) by δ for all j in the same tree as i; and the operation Value(i) returns
σ(i). However, the σ(i) values are not maintained explicitly. Instead, the algorithm maintains
auxiliary values τ(j) such that the following property is satisfied for all i ∈ N :

σ(i) =
∑

j∈Anc(i)

τ(j) . (3)

We need to modify the original operations as follows:

• Suppose a Union operation is performed on root nodes j and k, and j is made the root of the
combined component. Then τ(k)← τ(k)− τ(j).

• Suppose that a path compression takes place along path j1, . . . , jk, where jk is the root of
the nodes in j1 to jk. The Union-Find algorithm sets the parent of ji to jk for i ∈ [1, k− 1].
Let γ(ji) = τ(ji+1) + . . . + τ(jk−1); the time to compute the values are proportional to the
length of the path. In addition to compressing the path, we set τ(ji)← τ(ji) + γ(ji) for each
i ∈ [1, k − 1].

Given these modifications, Increase(i, δ) can be implemented by first calling Find(i) to determine
the root j of the tree containing i, and increasing τ(j) by δ. To implement Value(i), we first run
Find(i), which uses path compression so that i becomes the child of the root node node j of the
tree. Thus, we can return σ(i) = τ(i) + τ(j).

19

Clearly, the amortized complexity bound O(ℓα(ℓ, n)) for a sequence of ℓ steps for Union-Find
is applicable for the modified data structure.

When applying Union-Find-Increase to implement the operations Get-Cost(e), the key values
σ(i) correspond to the uncontracted potentials π(i), and the sets to the pre-images of the nodes
v ∈ N̂t in the original node set N . We can further contract sets with the Union step. When pt(v) is
changed by δ for a contracted node v ∈ N̂t, we need to update the potential of every original node
represented by v; this is achieved by Increase(i, δ). Finally, Get-Cost(e) for an arc e = (i, j) can
be implemented by calls to Value(i) and Value(j), and setting ĉt(e) = c(e) + π(i)− π(j).

3.5 The adaptation of Goldberg’s algorithm

In this section, we prove Lemma 3.2, showing how the subroutine Small-Cycles can be imple-
mented using a modification of Goldberg’s algorithm [14].

Let G = (N,A, c) be a directed graph with an integer cost function c ∈ ZA. Let n = |N |,
m = |A|, and C = ∥c∥∞. Goldberg developed an O(m

√
n logC) algorithm that finds a shortest

path in a network or else finds a negative cost cycle. The algorithm runs in logC scaling phases.
The key subroutine is Refine; this is called at each scaling phase and takes O(m

√
n) time.

Algorithm 6 Refine

Input: A directed graph G = (N,A, c) with a cost function c ∈ ZA such that c(e) ≥ −1 for all
e ∈ A.

Output: A negative cost cycle C, or a potential vector π ∈ ZN such that

(i) cπ(e) ≥ 0 for all e ∈ A, and

(ii) −n+ 1 ≤ π(v) ≤ 0 for every v ∈ N .

We describe the modificationBalanced-Refine that allows for negative cost cycles in a specific
way.

Algorithm 7 Balanced-Refine

Input: A directed graph G = (N,A, c) with a cost function c ∈ ZA such that c(e) ≥ −1 for all
e ∈ A.

Output: A potential vector π ∈ ZN and a subset of arcs A′ ⊆ A such that

(i) A′ is the union of directed cycles, and −1 ≤ cπ(e) ≤ 0 for all e ∈ A′;

(ii) cπ(e) ≥ 0 for all e ∈ A \A′, and

(iii) −n+ 1 ≤ π(v) ≤ 0 for every v ∈ N .

The running time of Balanced-Refine is also O(m
√
n). The subroutine Small-Cycles (see

Lemma 3.2) calls this for the cost function c̄(e) =
⌊

c(e)−L
D

⌋

− 1. We obtain an arc set A′ and a

potential π̄. We return the partition P formed by the (strongly) connected components of A′, and
the potential π = Dπ̄. Note that c̄π̄(e) ≤ 0 implies L ≤ cπ(e) ≤ L + 2D, and c̄π̄(e) ≥ 0 implies
cπ(e) ≥ L+D. The required properties then follow.

To obtain an algorithm in the comparison-addition model, we do not need to compute the c̄(e)
values explicitly: the only relevant information will be whether an arc cost is −1, 0, or positive.
This simply corresponds to the cases L ≤ c(e) < L+D, L+D ≤ c(e) ≤ L+2D, and L+2D < c(e).
We can directly update the original potentials π, subtracting Dk whenever π̄ is decreased by k.
This leads to an overhead O(log |N |) in the overall running time.

20

For completeness, we now describe the subroutines Refine and Balanced-Refine in parallel;
omitted parts of the analysis follow as in [14]. Both algorithms iteratively construct an integer
potential π ∈ ZN . Throughout, cπ(e) ≥ −1 for all e ∈ A. At termination, cπ(e) ≥ 0 for all arcs
in the contracted graph. The main difference is that Refine terminates once a negative cycle is
found. In contrast, Balanced-Refine adds all negative cycles to the arc set A′ and contracts
them.

An arc with cπ(e) ≤ 0 is called admissible; we let Gπ = (N,Aπ) be the subgraph formed
by admissible arcs. Arcs with cπ(e) = −1 are called improvable arcs, and nodes with incoming
improvable arcs are called improvable nodes ; we denote this set as I ⊆ N .

TheDecycle subroutine eliminates all directed cycles fromGπ by contractions, using Strongly-
Connected(Gπ). Refine terminates if a negative cost cycle is found; in contrast, Balanced-

Refine adds all such cycles to A′ and proceeds with the algorithm. Contractions are carried out
as described in Section 3.

A set of nodes S ⊆ N is closed if no admissible arc leaves S. For a closed set, the subroutine
Cut-Relabel(S) decreases π(u) by 1 for every u ∈ S. The closedness of S guarantees that no
improvable arcs are created.

Assume Gπ is acyclic. Let us pick any improvable node i, and let S be the set of nodes reachable
from i in Gπ; this is a closed set. After Cut-Relabel(S), i is no longer improvable, and no new
improvable nodes appear. In this manner, we can decrease the number of improvable nodes in O(m)
time. By alternating between the subroutines Decycle and Cut-Relabel, one can eliminate all
improvable nodes in O(nm) time, resulting in a graph with nonnegative reduced costs.

Goldberg improves this to O(m
√
n) time by eliminating at least

√
k improvable nodes in O(m)

time, where k = |I| is the number of improvable nodes in Gπ. The first step in speeding up the
running time is to eliminate more than one improvable node when running Cut-Relabel.

A set X ⊆ I of improvable nodes is called an anti-chain in Gπ if for all nodes i and j in X,
there is no directed path from node i to node j in Gπ. Let S be the set of nodes reachable in Gπ

from a node of X. After running Cut-Relabel(S), none of the nodes in X are improvable.
In order to find a large anti-chain of improvable nodes, Goldberg’s algorithm appends a source

node s to (the acyclic graph) Gπ and for each other node j, it adds an arc (s, j) with a cost of 0.
Then for each node j in Gπ, the algorithm determines the shortest path distance d(j) in Gπ from
node s to node j; these values can be computed in linear time for an acyclic graph.

Case I: d(j) ≥ −
√
k for all nodes j ∈ I: For each integer q with −

√
k ≤ q ≤ −1, let Xq = {j ∈

I : d(j) = −q}. This gives an anti-chain partition of I; thus we have |Xq| ≥
√
k for the largest

one among these sets. After running Cut-Relabel(S) for the nodes reachable from the largest
anti-chain Xq, the number of improvable nodes reduces by at least

√
k in O(m) time.

Case II: minj∈I d(j) < −
√
k: In this case, there exists a directed path P in Gπ that contains

improvable arcs (v1, w1), (v2, w2), . . . , (vt, wt) for t ≥
√
k in this order. We now describe the subrou-

tine Eliminate-Chain after which none of the nodes in wi are improvable, and no new improvable
nodes are created.

We start with the original variant of the subroutine used in Refine. The nodes wi are processed
in reverse order. For each node wi, i = t, t − 1, . . . 1, find the sets Si of nodes reachable from wi

in Gπ, and run Cut-Relabel(Si). No new improvable arcs are created, and if v /∈ Si for any
improvable arc (v, wi), then i is not improvable after the change. It is easy to see that Si ⊊ Sj for
all 1 ≤ j < i ≤ t.

If v ∈ Si for an improvable arc (v, wi) at any iteration, then we discover a negative cost
cycle containing (v, wi). The subroutine Refine terminates at this point by returning this cycle.
Goldberg [14] presents an efficient O(m) implementation of Refine by exploiting that the sets Si

21

are nested. The implementation (temporarily) contracts the Si sets, and maintains a data structure
using priority queues.

We now describe the variant of Eliminate-Chain used in Balanced-Refine. We say that
an arc (v, w) is eligible if (v, w) is improvable and if (v, w) is not contained in an admissible cycle.
(This definition is not relevant in Refine, since that algorithm terminates if an improvable arc is
in an admissible cycle.) We say that a node w is eligible if there is an eligible arc directed into w.
Initially, Gw is acyclic, and hence wj is eligible for all j ∈ [t].

Now consider the iteration in which the eligible node wi is selected. We note that wi is not
eligible after running Cut-Relabel(Si). This is because for any arc (v, wi) that is still improvable
after Cut-Relabel(Si), we must have v ∈ Si, implying that (v, wi) was not eligible.

Let us select the smallest index j such that after Cut-Relabel(Si), wj becomes reachable
from wi in Gπ; that is, wj enters Si. Let us analyze the case when j < i; note that Si also contains
every node on the subpath in P from wj to wi. Thus, wℓ is not eligible for any ℓ ∈ [j, i] after
Cut-Relabel(Si). At the subsequent iteration of Eliminate-Chain we skip all nodes in Si and
instead select wj−1, which is eligible.

After running Cut-Relabel(Si), Eliminate-Chain temporarily contracts Si in the same way
as the version used in Refine. Thus, Balanced-Refine uses essentially the same implementation
and data structures as in [14].

At the end of Eliminate-Chain, we uncontract all Si’s. Some of the wi’s may now be improv-
able, however, all improvable arcs incident to them are contained in directed admissible cycles. At
the next call to Decycle, the algorithm would contract any improvable arc that was not eligible.
Subsequently, the number of improvable nodes will have decreased by at least

√
k.

4 The shortest path algorithm

In this section, we assume that a 3-min-balanced directed graph G = (N,A, c) is given, along with
a component hierarchy (V ∪N,E, r, a) for G (see Definition 2.2). The algorithm described in this
section is an adaptation of Thorup’s [31] result to the setting of balanced directed graphs. We use
the word RAM model throughout this section.

We assume that the input cost function c is 3-min-balanced, integral, and strictly positive.
This is justified by Theorem 3.1: in time O(m

√
n log n), one can obtain a strictly positive and

1/(4n3)-integral reduced cost cπ such that Gπ = (N,A, cπ) is 3-min-balanced. Since for any i–j
path P , cπ(P) = c(P) − π(i) + π(j), the set of shortest paths between any two nodes is the same
in G and Gπ. Integrality can be assumed after multiplying the relabelled cost by 4n3 (recall that
n is a power of 2); this again does not change the set of shortest paths.

4.1 Upper bounds for the component hierarchy

In the component hierarchy (V ∪ N,E, r, a), recall that for a vertex v ∈ V , desc(v) ⊆ V ∪ N
denotes the set of descendants of v (with v ∈ desc(v)). We introduce the shorthand notation
desc(v,N) = desc(v) ∩N and desc(v, V) = desc(v) ∩ V . For a node u ∈ V ∪N , the height h(u) is
the length of the longest path between u and a node in desc(u); in particular, h(u) = 0 for u ∈ N .

We define the functions Γ, η : V → Q recursively, in non-decreasing order of h(u) as follows.

Γ(v) := 3a(v)(| children(v)| − 1) +
∑

v′∈children(v)\N
Γ(v′) ,

η(v) :=

⌈

Γ(v)

a(v)

⌉

.

(4)

These values will be relevant for the buckets in the algorithm. As shown in the next lemma, Γ(v)

22

is a bound on the length of a shortest path between any two nodes in desc(v,N); we will associate
η(v) + 1 buckets with each vertex v ∈ V .

Lemma 4.1. Let (V ∪N,E, r, a) be a component hierarchy for a directed graph G = (N,A, c), and
let Γ, η be as in (4). For any pair of nodes i, j ∈ N and v = lca(i, j), there is an i–j path P in
desc(v,N) of length at most Γ(v). In addition,

∑

v∈V
η(v) < 7|N | .

Proof. Let i, j ∈ N and v = lca(i, j). The proof is by induction on h(v). Consider the i–j path P ′

in desc(v) such that c(e) ≤ 3a(v) for all e ∈ P ′, as guaranteed by the property of the component
hierarchy.

In the base case h(v) = 1, the bound is immediate, since P ′ has at most | children(v)| − 1 arcs.
Assume now h(v) > 1, and that the statement holds for any i′, j′ with h(lca(i′, j′)) < h(v). One
can choose an i–j path P that satisfies the following property for each child u of v. If i′ and j′ are
the first and last nodes of P that are in desc(u), then the subpath in P from i′ to j′ consists of
nodes of desc(u). By the inductive hypothesis, for each child u of v, the length of the subpath in
desc(u) is at most Γ(u). There are at most | children(v)| − 1 arcs in P between different desc(u)
subpaths; their cost is at most 3a(v)(| children(v)| − 1). Thus, the bound c(P) ≤ Γ(v) follows.

Let us now turn to the second statement. We analyze the contribution of each i ∈ N to the
sum

∑

v∈V Γ(v)/a(v). Let i = v0, v1, v2, . . . , vk = r be the unique path in the tree (V ∪N,E) from
i to the root; thus, p(vt) = vt+1 for t = 0, . . . , k − 1. Then, the contribution of i to each Γ(vt) is
less than 3a(v1). Using that a(vt+1) ≥ 2a(vt) for each t = 0, . . . , k − 1, we see that

∑

v∈V

Γ(v)

a(v)
< 3

∑

i∈N

∞
∑

t=1

1

2t−1
< 6|N | .

The statement follows noting also that |V | ≤ |N | − 1, since (V ∪N,E) is a tree with leaves N , and
η(v) < 1 + (Γ(v)/a(v)) for all v ∈ V \N .

4.2 Overview of the algorithm

Given the input directed graph G = (N,A, c), our goal is to compute the shortest path distances
from a source node s ∈ N to all nodes in N . We assume that a positive integer cost function and
a component hierarchy are given as above. We start with an informal overview and highlight some
key ideas of the analysis.

The algorithm is a bucket-based label setting algorithm, similarly to a bucket-based implemen-
tation of Dijkstra’s algorithm. For each node i ∈ N , we maintain an upper bound D(i) on the true
distance d(i) from s, and gradually extend the set S of permanent nodes. Initially, D(s) = 0 and
D(i) = ∞ for i ∈ N \ {s} and S = {s}. At the iteration at which i enters S, D(i) = d(i) will be
guaranteed.

Recall that Dijkstra’s algorithm always selects a next node j to enter S with j ∈ argmin{D(i) :
i ∈ N \ S}. To obtain an O(m) algorithm, we relax this condition, and always add a new node
j ∈ N \ S to S such that

D(j) ≤ D(i) + b(i, j) ∀i ∈ N \ S . (5)

In accordance with this rule, the next lemma formulates the conditions that guarantee the correct-
ness of our algorithm.

23

Lemma 4.2. Given a directed graph G = (N,A, c) with c ∈ RN
≥0 and a source node s ∈ N , assume

that an algorithm proceeds by adding nodes in N one-by-one to a set S such that the following two
invariants are maintained at every iteration:

(a) For all j ∈ S and i ∈ N \ S, D(j) ≤ D(i) + b(i, j).

(b) For all j ∈ N \ S, D(j) is the length of a shortest path from s to j inside the node set S ∪ {j}.

Further, assume that initially D(s) = 0 and s is the first node added to S. Then, at any point of
the algorithm, for every j ∈ S, we have D(j) = d(j) and S contains a shortest s–j path.

Proof. For convenience, suppose that that the nodes are relabelled such that node i is the i-th node
added to S. The lemma is true for node 1 = s, since D(1) = d(1) = 0. We now assume inductively
that the lemma is true for nodes ℓ = 1 to i, and we prove it for node i+ 1.

Let P be any path from node 1 to node i + 1. We show c(P) ≥ D(i + 1); together with (b),
this implies D(i+ 1) = d(i+ 1).

Let V (P) be the vertices of P . If V (P) ⊆ {1, . . . , i+1}, then c(P) ≥ D(i+1) by (b). Otherwise,
let j be the first vertex of P that is not in {1, . . . , i+ 1}. Let P ′ be the subpath of P from 1 to j.
Then at the iteration in which node i+ 1 is added to S, we have

c(P) ≥ c(P ′) + b(j, i+ 1) ≥ D(j) + b(j, i+ 1) ≥ D(i+ 1) ,

where the second inequality follows by (a). This completes the proof.

We rely on the component hierarchy and the use of buckets to efficiently implement the se-
lection property (5). We will also have (possibly infinite) D(v) values for certain vertices v ∈ V .
Throughout, we maintain a set of active vertices (we describe the treatment of active vertices in
more detail later). Initially, the root r is the only active vertex and all other vertices are inactive.
At any point, the active vertices form an upper ideal (i.e., all ancestors of an active vertex are also
active). Once all their descendants are added to S, vertices in V also enter S (become permanent);
the algorithm terminates when r is added to S. A vertex is active during the iterations from its
activation until it is made permanent. One of the active vertices will be the current vertex, denoted
as CV and initalized as CV = r. This plays a special role: in particular, nodes added to S will
always be among the children of CV.

A vertex v is called a highest inactive vertex if v is inactive and p(v) is active. For an inactive
vertex v, we let HIA(v) denote its highest inactive ancestor : HIA(v) = v if v is a highest inactive
vertex; otherwise, HIA(v) is v’s unique ancestor that is a highest inactive vertex.

The next lemma, proved in Section 4.4, shows that for every active vertex v, D(v) is a lower
bound on min{D(j) : j ∈ desc(v,N)}, and when a node in j ∈ desc(v,N) is added to S, D(j) is
within a(v) from D(v).

Lemma 4.3. Let j ∈ N \ S and let v be an active ancestor of j. Then, D(v) ≤ D(j). In the
iteration when j is added to S, we also have D(j) < D(v) + a(v).

Recalling the property of the component hierarchy that b(i, j) ≥ a(v) for v = lca(i, j), this
immediately implies property (5).

Buckets The choice of CV and the sequence of nodes added to S is guided by the use of buckets
associated with the vertices v ∈ V . The buckets of v are created when v is activated by the
Activate(v) subroutine. Before activation, v was a highest inactive vertex, and for all such
vertices, we maintain D(v) = min{D(j) : j ∈ desc(v,N)} using the Split/FindMin data structure.

24

At activation, L(v) is set to a(v) · ⌊D(v)/a(v)⌋. Then an array η(v)+1 buckets is created for vertex
v, indexed from 0 to η(v). The value range of the bucket with index k is [L(v)+ ka(v), L(v)+ (k+
1)a(v)). We let U(v) := L(v) + (η(v) + 1)a(v) denote the upper range of the last bucket for vertex
v. We place a child x of v in the bucket whose value range contains D(x), or leave it unassigned if
D(x) > U(v).

An important feature of the algorithm is that the value range of the buckets at v, created at
activation, contains the d(i) values for all i ∈ desc(v,N) (Lemma 4.7). We now highlight the reason
behind this. At the iteration at which v is activated, let i = argmin{D(j) : j ∈ desc(v,N)}. One
can show that d(i) = D(i), and that d(j) ≥ d(i) for all j ∈ desc(v,N). After activation, we have
L(v) ≤ D(i) ≤ L(v)+ a(v). By Lemma 4.1, for any other node j ∈ desc(v,N), there is a path in G
with node i to node j of length at most Γ(v). Thus, d(j) ≤ d(i)+Γ(v) ≤ L(v)+(η(v)+1)a(v) = U(v).

The current index CI(v), initialized as 0, refers to the index of the first nonempty bucket, called
the current bucket. We will maintain D(v) as the lower endpoint of the current bucket, augmented
by a(v) every iteration the current bucket becomes empty. The vertex v is made permanent once
CI(v) = η(v) + 1, that is, all its buckets have been exhausted.

Recall also from Lemma 4.1 that the overall number of buckets for all vertices is bounded as
O(n); this enables an O(n) running time bound on the operations involving buckets.

The trajectory of the current vertex The algorithm is guided by the movement of the current
vertex CV that explores the component hierarchy. Initially, it moves down from the root r to the
source node s, activating all vertices along the r–s path. As long as the current bucket at CV
contains a node, we add such nodes to S. Whenever a node i is added to S, the subroutine
Update(i) scans over the outgoing arcs (i, j), and updates the estimates D(j) to min{D(j), D(i)+
c(i, j)} as in Dijkstra’s algorithm. This requires some additional updates in the data structure, i.e.,
moving j to a different bucket if its parent p(j) is active, or updating the D(w) value of its highest
inactive ancestor.

If the current bucket B at v = CV contains some vertices but no nodes, then CV moves down
to a child vertex, and also activates it in case it had not yet been active. If B is empty and if B is
not the last bucket of v, then we move the current bucket to the next one, i.e., increment CI(v) by
1, and increase D(v) by a(v). If the last bucket at v becomes empty, then we make v permanent.
At this point, all nodes and vertices in desc(v) must have been already made permanent. The
algorithm then replaces CV by p(v) if v ̸= r. The algorithm terminates once the last bucket at the
root r becomes empty and r is made permanent.

After incrementing CI(v) in the case that B is empty, we proceed to the next bucket with no
change in CV if v = r or if the new D(v) value is less than D(p(v)) + a(p(v)). On the other
hand, if D(v) ≥ D(p(v)) + a(p(v)), then the current vertex CV moves up to p(v), and v is moved
from the current bucket at p(v) to a higher bucket. Overall, this scheme allows D(CV) to be
approximately minimal among the labels of active vertices, and thereby enabling the properties
asserted in Lemma 4.3.

Finally, if the last bucket at v becomes empty, then we make v permanent; at this point, all
nodes and vertices in desc(v) must have been already made permanent. The algorithm terminates
once the last bucket at the root r becomes empty and r is made permanent.

4.3 Description of the algorithm

A more formal description of the algorithm with pseudocodes is in order. Recall the basic notation
regarding component hierarchies from Section 2: p(v) (parent of v); children(v) (children of v);
desc(v) (descendant of v, refined as desc(v,N) for nodes and desc(v, V) for vertices); lca(u, v)
(least common ancestor of v).

25

The set S ⊆ N ∪ V denotes the set of permanent nodes and vertices, initialized as S = ∅;
the first node entering will be the source s. Shortest paths will be maintained using predecessor
arcs: for each i ∈ N \ {s} with D(i) < ∞, pred(i) ∈ S is an in-neighbour such that D(i) =
D(pred(i))+ c(pred(i), i). The graph of the arcs (pred(i), i) is acylic, and contains a path from the
source s to every node i ∈ N with D(i) <∞.

The description of the two main subroutines, Activate and Update follows.

The Activate subroutine and buckets Each vertex v ∈ V can be active or inactive. One of
the active vertices will be CV, the current vertex, initalized as CV = r.

The labels are defined for all nodes (initially as D(s) = 0 and D(i) = ∞ for i ∈ N \ {s}), for
all active vertices, and for all highest inactive vertices. For the latter set, we maintain D(v) =
min{D(i) : i ∈ desc(v)} using the Split/FindMin data structure, as detailed in Section 4.5. For all
other inactive vertices, the labels D(v) are undefined.

The Activate(v) subroutine (Algorithm 8) is called the first time CV is set to v. We create an
array of η(v)+1 empty buckets, indexed k = 0, . . . , η(v), and denoted as Bucket(v, k). The buckets
correspond to intervals [Lower(v, k),Upper(v, k)) of length a(v). The 0th bucket starts at L(v),
which equals D(v) rounded down to the nearest integer multiple of a(v) (recall this is an integer
power of 2).

For x ∈ V ∪ N , the MoveToBucket(x) procedure (Algorithm 9) checks if D(x) falls in the
value range of a bucket at the parent v = p(j), places it in such a bucket, and if it was previously
in a bucket, deletes it from there.

Algorithm 8 The Activate subroutine

1: procedure Activate(v)

2: L(v)← a(v)
⌊

D(v)
a(v)

⌋

;

3: D(v)← L(v); CI(v)← 0 ;
4: for k = 0, . . . , η(v) do
5: Bucket(v, k)← ∅ ;
6: Lower(v, k)← L(v) + ka(v) ;
7: Upper(v, k)← L(v) + (k + 1)a(v) ;

8: U(v)← L(v) + (η(v) + 1)a(v) ;
9: for w ∈ children(v) ∩ V do

10: D(w)← min{D(i) : i ∈ desc(v)} ; ▷ using the Split/FindMin data structure
11: MoveToBucket(w) ;

12: for j ∈ children(v) ∩N do
13: MoveToBucket(j) ;

Algorithm 9 The MoveToBucket subroutine

1: procedure MoveToBucket(x)
2: v ← p(x) ;
3: if v is active and D(x) < U(v) then

4: k ←
⌊

D(x)−L(v)
a(v)

⌋

;

5: if x /∈ Bucket(v, k) then
6: delete x from its current bucket (if any) ;
7: add x to Bucket(v, k) ;

26

The Update subroutine The Update subroutine (Algorithm 10) performs the label update
step once a node i is made permanent, similarly to Dijkstra’s algorithm. For every outgoing arc
(i, j), if D(i) + c(i, j) is strictly less than the current label D(j), we reduce D(j) to this value, and
set the predecessor pred(j) to i. If the parent p(j) is active, we call MoveToBucket(j) to update
the bucket containing j. Otherwise, we update D(w) for w = HIA(j), i.e., the highest inactive
ancestor of j, using Split/FindMin.

Algorithm 10 The Update subroutine

1: procedure Update(i)
2: for (i, j) ∈ A(i) do
3: if D(i) + c(i, j) < D(j) then
4: D(j)← D(i) + c(i, j) ; pred(j)← i ;
5: if p(j) is active then MoveToBucket(j) ;
6: else w ← HIA(j) ; D(w)← min{D(j), D(w)} ;
7: ▷ using the Split/FindMin data structure

The overall algorithm The overall algorithm is shown in Algorithm 11. Initially, the current
vertex is set as the root: CV = r. At any given iteration, we let v = CV and let B denote the
current bucket at v, i.e., B = Bucket(w,CI(v)).

If B contains a node i ∈ N , we make it permanent, i.e., add it to S, and call Update(i) to
update the labels for each out-neighbour j of i. If B contains no nodes but some vertices, we move
CV to such a vertex w, and activate it if necessary.

The remaining possibility is when the bucket B becomes empty in the current iteration. We
increment the counter CI(v) by 1 and accordingly update D(v) to D(v) + a(v), the starting point
of the new current bucket. In case CI(v) = η(v) + 1, i.e., if B was already the final bucket, then
we make v permanent, and unless v = r, we move CV up to the parent p(v). If v = r then the
algorithm terminates.

Otherwise, if CI(v) ≤ η(v), we check if the updated value D(v) ≥ D(p(v)) + a(p(v)), i.e., if
the update requires moving v to a higher bucket at p(v) (assuming v ̸= r). If this is the case, CV
moves up to p(v); otherwise, we proceed with CV = v.

4.4 Analysis

Theorem 4.4. Algorithm 11 computes shortest paths from node s ∈ N to all other nodes in O(m).

We prove the theorem in two parts. Lemma 4.5 shows the running time bound O(m). Correct-
ness follows using Lemma 4.2 and Lemma 4.3 stated above. To prove the latter lemma, we need
one more auxiliary statement (Lemma 4.6) that relates the label of an active vertex to that of its
active descendants.

Lemma 4.5. The total running time of Algorithm 11 is bounded as O(m).

Proof. The time for initialization is O(n). Let us show that the main while cycle is called O(n)
times. We consider the cases for v = CV and current bucket B as (i) B contains a node, or (ii) B
contains a vertex but no node, or (iii) B is empty.

Whenever case (i) occurs, a node is added to S, giving a bound of O(n) for this case. In case
(iii), CI(v) is incremented, and CV is possibly moved to p(v). The number of times this can occur
is equal to the total number of buckets, which is O(n) by Lemma 4.1.

Let us now turn to case (ii). Let τ denote the distance of the current vertex CV from the root
r in the component hierarchy. Both in the first and the final iteration, CV = r, and thus τ = 0.

27

Algorithm 11 Shortest-Paths

Input: A directed graph G = (N,A, c) with c ∈ ZA
>0, source node s ∈ N , a component hierarchy

(V ∪N,E, a) for G.
Output: Shortest path labels for each i ∈ N from s.
1: S ← ∅ ;
2: D(s)← 0 ; D(r)← 0 ;
3: for j ∈ N \ {s} do D(j)←∞ ;

4: for v ∈ V do compute Γ(v) and η(v) as in (4) ;

5: CV← r ; Activate(r) ;
6: while r /∈ S do
7: v ← CV ; B ← Bucket(v,CI(v)) ;
8: if B ∩N ̸= ∅ then
9: select a node i ∈ B ∩N and delete i from B ;

10: S ← S ∪ {i} ;
11: Update(i) ;
12: else if B ∩ V ̸= ∅ then
13: select a vertex w ∈ B ∩ V ;
14: CV← w ;
15: if w is inactive then Activate(w) ;

16: else ▷ B = ∅
17: CI(v)← CI(v) + 1 ; D(v)← D(v) + a(v) ;
18: if CI(v) = η(v) + 1 then
19: S ← S ∪ {v} ;
20: if v ̸= r then CV← p(v) ;

21: else if v ̸= r and D(v) ≥ D(p(v)) + a(p(v)) then
22: CV← p(v) ;
23: MoveToBucket(v) ;

24: return labels D(i): i ∈ N .

28

Whenever case (ii) occurs, τ increases by one. The only way τ can decrease is if CV is moved from
a vertex to its parent in case (iii). Thus, the total number of occurrences of case (ii) is equal to
the total number of increases in τ , which equals the total number of decreases, in turn bounded by
O(n). Thus, each of the three cases can only occur O(n) times, bounding the number of iterations
of the while cycle.

The subroutine Update(i) is called once for each i ∈ N . At each call, the arcs in A(i) are
scanned. The time to update D(j) for (i, j) ∈ A(i) is O(1). If p(j) is active, then the time to put
node j in the correct bucket at p(j) is O(1). A potential bottleneck occurs when p(j) is inactive
and D(j) is updated. In this case, the algorithm determines w = HIA(j) and then updates D(w).
The amortized time to determine w and update D(w) is O(1) using Thorup’s [31] implementation
of the Split/FindMin data structure (see Section 4.5). Thus, the total time of the updates is O(m).

We now considerActivate(v), which is called O(n) times. The total number of buckets is O(n),
and each x ∈ children(v) has to be placed in a bucket; note that

∑

v∈V | children(v)| ≤ 2n− 1. The
overall time for creating buckets and placing the children in buckets takes O(n). Further, we
need to update D(w) for w ∈ children(v) ∩ V . For each w, this is again accomplished using the
Split/FindMin data structure in amortized time O(1).

The total running time of the Split/FindMin operations can be bounded as O(m). The O(n)
bound on the while iterations, the total O(n) on Activate and O(m) on Update yields the overall
O(m) bound.

The next lemma will be key in proving Lemma 4.3.

Lemma 4.6. Let v and w be active vertices such that w ∈ desc(v, V). Then

(i) D(w) ≤ D(v) + a(v); and

(ii) if CV ∈ desc(w, V), then D(w) + a(w) ≤ D(v) + a(v).

Proof. We start by showing part (ii). We prove it for the case v = p(w); this immediately implies
the general case. We first consider the case that w has just become the current vertex and v was
previously the current vertex. Since w was selected from the current bucket of v, it follows that
D(w) < D(v) + a(v). Moreover, D(w), D(v) and a(v) are all integer multiples of a(w). (In the
case that w was just activated, its label D(w) was obtained by rounding its previous label down to
the nearest multiple of a(w).) The claim that D(w) + a(w) ≤ D(v) + a(v) follows.

If w is the current vertex, then D(w) may only change if the current bucket at w is empty, in
which case D(w) is incremented to D′(w) = D(w)+a(w). If D′(w) ≥ D(v)+a(v), then the current
vertex moves up to v, at which point CV /∈ desc(w, V). Otherwise, D′(w) < D(v) + a(v), implying
D′(w) + a(w) ≤ D(w) + a(w) as above.

In all other iterations when CV ∈ desc(w, V), neither D(v) nor D(w) may change, and therefore
the statement remains valid. This completes the proof of part (ii).

Let us now show part (i); we do not assume v = p(w) for this proof. In light of part (ii), we
can focus on iterations when CV /∈ desc(w, V). When w is activated, w = CV. Consider any
iteration when CV leaves desc(w, V); this means that CV moves from w to p(w). This happens
when the current bucket at w is empty and D(w) ≥ D(p(w))+a(p(w)); but again using divisibility
this means D(w) = D(p(w)) + a(p(w)). By part (ii) applied to p(w) and v, it follows that D(w) =
D(p(w)) + a(p(w)) ≤ D(v) + a(v). In all subsequent iterations until w becomes the current vertex
again, D(w) remains unchanged, and D(v) may only increase. Thus, D(w) ≤ D(v) + a(v) is
maintained, implying (i).

We are ready to show Lemma 4.3, restated here.

29

Lemma 4.3. Let j ∈ N \ S and let v be an active ancestor of j. Then, D(v) ≤ D(j). In the
iteration when j is added to S, we also have D(j) < D(v) + a(v).

Proof. Let us start with the second statement. When j is added to S, then w = p(j) must be the
current vertex, and j is in the current bucket at v, that is, D(w) ≤ D(j) < D(w)+a(w). According
to Lemma 4.6(ii), we have D(w) + a(w) ≤ D(v) + a(v). Thus, the second statement holds.

We now prove the first statement by induction on the number of iterations. The statement
clearly holds at initialization: r is the only active vertex. D(r) = 0, D(s) = 0, and D(i) = ∞ for
i ∈ N \ {s}. Assume D(v) ≤ D(j) holds at the beginning of the current iteration for every pair
j and v such that j ∈ N , v ∈ V is active, and j ∈ desc(v,N). The label of an active vertex may
only increase, and the label of a node may only decrease in the algorithm; we analyze the two cases
separately.

Consider a pair of v and j such that D(v) increases. D(v) may only change when CV = v,
and the current bucket at v is empty; the new value is set to D′(v) = D(v) + a(v). We claim that
D′(v) ≤ D(j) holds. If j ∈ children(v), then this is true because the current bucket was empty.
Otherwise, let w ∈ children(v) ∩ V be the vertex following v on the v–j path in the component
hierarchy. Since the first bucket is empty, we must have D(v) + a(v) ≤ D(w). By induction, we
have D(w) ≤ D(j); thus, D′(v) ≤ D(j) must still hold.

Consider now a pair v and j such that D(j) decreases. This can happen in a call to Update(i)
such that (i, j) ∈ E and D′(j) = D(i) + c(i, j) < D(j). We need to show D′(j) ≥ D(v).

Let z = lca(i, j); by the property of the component hierarchy, we have c(i, j) ≥ a(z). By
induction, D(z) ≤ D(i), and thus D(z) + a(z) ≤ D(i) + c(i, j). Since z and v are both on the path
from j to r, either z ∈ desc(v, V) or v ∈ desc(z, V).

If v ∈ desc(z, V), then D(v) ≤ D(z) + a(z) ≤ D(i) + c(i, j) = D′(j) using Lemma 4.6(i).
If z ∈ desc(v, V), then also i ∈ desc(v, V), and thus D(v) ≤ D(i) < D(i) + c(i, j) = D′(j) by
induction. This completes the proof of the first statement.

Lemma 4.7. For every vertex v ∈ V and descendant i ∈ desc(v), d(i) < U(v).

Proof. Let D(.) denote the labels immediately prior to the activation of vertex v, and let D′(.) be
the labels immediately after activation. ThenD′(v) ≤ D(v) < D′(v)+a(v). Let i := argmin{D(j) :
j ∈ desc(v,N)}. Then d(i) ≤ D(i) = D(v). By Lemma 4.1, for all j ∈ desc(v,N),

d(j) ≤ d(i) + Γ(v) ≤ D(v) + Γ(v) ≤ D(v) + η(v)a(v)

≤ D′(v) + (η(v) + 1)a(v)− 1 = U(v)− 1 .

We are ready to prove Theorem 4.4.

Proof of Theorem 4.4. Lemma 4.5 provides the running time analysis. It remains to show that
D(i) = d(i) for every i ∈ S, and that the algorithm terminates with N ⊆ S.

We can use Lemma 4.2 to show that the algorithm correctly sets the labels inside S. For this,
we need to verify the following two properties:

(a) For all j ∈ S and i ∈ N \ S, D(j) ≤ D(i) + b(i, j).

(b) For all j ∈ N \ S, D(j) is the length shortest path from s to j inside the node set S ∪ {j}.

30

The proof of (b) follows the same argument as for Dijkstra’s algorithm, see e.g. [1, Section 4.5].
Part (a) clearly holds in the first step when S = {r}. At the iteration when a node j is added to S,
consider any i ∈ N \ S, i ̸= j, and let v = lca(i, j). Then, Lemma 4.6 shows D(j)− a(v) ≤ D(v) ≤
D(i). The claim follows since b(i, j) ≥ a(v) is a property of the component hierarchy.

It remains to show that N ⊆ S at termination, i.e., at the iteration that sets D(r) = U(r) and
makes r permanent. For a contradiction, let j ∈ N \ S at the this iteration. Let P = i1, i2, . . . , ik
(where i1 = s and ik = j) be a shortest path from node s to node j. Clearly, k ≥ 2, and without
loss of generality, let us assume that each node it, t ≤ k − 1 was added to S during the algorithm
(or else we can replace j by the first node it of P not added to S).

In the iteration when h = ik−1 was added to S, we had D(h) = d(h) as shown above. Further,
Update(i) updated D(j) to D(h) + chj = c(P) = d(h). Clearly, D(h) = d(h) for the rest of the
algorithm. According to Lemma 4.3, the final iteration has

U(r) = D(r) ≤ D(h) = d(h) < U(r) ,

where the first equality follows by the termination condition, and the last inequality by Lemma 4.7.
This completes the proof.

4.5 The Split/FindMin data structure

For each highest inactive vertex v, the algorithm needs to be able to compute D(v) = min{D(j) :
j ∈ desc(v,N)}. To accomplish this, we will use the Split/FindMin data structure. Before reviewing
this data structure, we note that in addition to computing D(v) for highest inactive vertices, the
data structure will need to be updated whenever either of the following algorithmic operations
takes place:

• When a highest inactive vertex is activated, the subset children(v) ∩ V all become highest
inactive vertices.

• In step Update(i), if D(j) is updated, then D(v) should be updated for v = HIA(j).

The steps can be implemented using the Split/FindMin data structure. This was first introduced
by Gabow [13] for the maximum weight matching problem, and can be stated as follows (see also
[25]). The data structure is initialized with a sequence E = {e1, . . . , en} of n weighted elements.
At each iteration, there is a set S, which is a partition of E into consecutive subsequences. For
every element ei, we maintain a key value κ(ei). At a given operation described below, we let S(ei)
denote the unique subsequence S that contains ei. Note that S and S(ei) are modified whenever a
split operation is called.

The operations are as follows:

• init(e1, e2, . . . , en): Create a sequence set S ← {(e1, e2, . . . , en)} with κ(ei) =∞ for all i ∈ [n].

• split(ei): For S(ei) = (ej , . . . , ei−1, ei, . . . , ek), let S ← (S\S(ei))∪{(ej , . . . , ei−1), (ei, . . . , ek)}.

• findmin(ei): Return min{κ(ej) : ej ∈ S(ei)}.

• descreasekey(ei, w): Set κ(ei)← min{κ(ei), w}.

To use this data structure for our setting, we take the component hierarchy (V ∪ N,E, r, a),
and impose an arbitrary ordering on the children of every vertex v ∈ V . This induces a total
ordering on the set of leaves N ; we index the node set N = {e1, e2, . . . , en} accordingly. Then,
all sets desc(v) will correspond to contiguous subsequences of nodes. Initially, there are no active

31

vertices and E is the set of nodes. Then r is activated. In general, when a vertex v is activated, it
corresponds to performing | children(v)|−1 splits on the nodes in desc(v), resulting in a consecutive
subsequence for each child of v. (The nodes in children(v) correspond to subsequences of length 1.)
Whenever D(j) is updated, this corresponds to a decreasekey operation. Using the Split/FindMin
data structure for the shortest path algorithm requires at most n findmin operations, at most n−1
splits, and at most m decreasekey operations.

For O(n) split and O(m) decreasekey operations with m ≥ n, Gabow [13] gave an implementa-
tion in O(mα(m,n)) total time in the comparison-addition model. This was improved by Thorup
to O(m) in the word RAM model, using the atomic heaps data structure by Fredman and Willard
[10]. The original implementation of fusion trees permits all bitwise operations as well as multi-
plication. In a subsequent paper [32], Thorup showed how to implement fusion trees on a mild
extension of the AC0 model, thus avoiding the need for multiplication except for multiplication by
powers of 2.

We note that the data Split/FindMin structure was also used in all subsequent papers on
shortest path problems using the hierarchy approach [15, 23, 24, 26]. In the comparison-addition
model, an improved bound O(m logα(n,m)) was given by Pettie [25].

5 Conclusions

In this paper, we have given an O(mn) algorithm for the directed all pairs shortest paths problem
with nonnegative integer weights. Our algorithm first replaces the cost function by a reduced cost
satisfying an approximate balancing property in O(m

√
n log n) time. Subsequently, every shortest

path computation can be done in linear time, by adapting Thorup’s algorithm [31].
One might wonder if our technique may also lead to an improvement for APSP in the comparison-

addition model, where the best running time is O(mn + n2 log log n) by Pettie [24]. This running
time bound is based on multiple bottlenecks. However, as explained in Section 1.1.1, the approxi-
mate cost balancing is able to get around the sorting bottleneck of [24]. Using the O(m logα(n,m))
implementation of Split/FindMin, an overall O(mn logα(n,m)) might be achievable.

However, there is one remaining important bottleneck where our algorithm crucially relies on
bit-shift operations: the operation MoveToBucket(j), which places a node/vertex in the bucket
at v = p(j) containing the value D(j). Pettie and Ramachandran [26] show that these operations
can be efficiently carried out in O(1) amortized time per operation in a bucket-heap data structure,
assuming the hierarchy satisfies certain ‘balancedness’ property. Section 5 of the paper shows
how the ‘coarse hierarchy’ obtainable from a minimum spanning tree and used by Thorup can be
transformed to a ‘balanced hierarchy’. This method does not seem to easily apply to the directed
hierarchy concept used in this paper.

Our approximate min-balancing algorithm may be of interest on its own, and has strong con-
nections to the matrix balancing literature as detailed in Section 1.1.2. For finding an (1 + ε)-
min-balanced reduced cost for ε = O(1), our algorithm takes O

(

1
εm
√
n log n

)

time. One might

wonder if there is an algorithm with the same polynomial term Õ(m
√
n) but with a dependence

on log(1/ε). We note that the algorithm in [28] for approximate max-balancing has a log(1/ε)
dependence.

Acknowledgement The authors are very grateful to an anonymous referee. Their insightful
comments lead to simplifications in some arguments and significant improvements in the presenta-
tion.

32

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows – Theory, Algorithms and
Applications. Prentice Hall, 1993.

[2] Z. Allen-Zhu, Y. Li, R. Oliveira, and A. Wigderson. Much faster algorithms for matrix scaling.
In 58th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 890–
901, 2017.

[3] J. M. Altschuler and P. A. Parrilo. Near-linear convergence of the random Osborne algorithm
for matrix balancing. Mathematical Programming, 2022. (to appear).

[4] T. Chan and R. Williams. Deterministic APSP, orthogonal vectors, and more. ACM Trans-
actions on Algorithms, 17(1):1–14, 2021.

[5] M. B. Cohen, A. Madry, D. Tsipras, and A. Vladu. Matrix scaling and balancing via box
constrained Newton’s method and interior point methods. In 58th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 902–913, 2017.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The
MIT Press, 3rd edition, 2009.

[7] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1(1):269–271, 1959.

[8] E. Dinic. Economical algorithms for finding shortest paths in a network. Transportation
Modeling Systems, pages 36–44, 1978.

[9] R. W. Floyd. Algorithm 97: shortest path. Communications of the ACM, 5(6):345, 1962.

[10] M. Fredman and D. Willard. Trans-dichotomous algorithms for minimum spanning trees and
shortest paths. Journal of Computer and System Sciences, 48(3):533–551, 1994.

[11] M. L. Fredman. New bounds on the complexity of the shortest path problem. SIAM Journal
on Computing, 5(1):83–89, 1976.

[12] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network opti-
mization algorithms. Journal of the ACM (JACM), 34(3):596–615, 1987.

[13] H. N. Gabow. A scaling algorithm for weighted matching on general graphs. In 26th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pages 90–100, 1985.

[14] A. V. Goldberg. Scaling algorithms for the shortest paths problem. SIAM Journal on Com-
puting, 24(3):494–504, 1995.

[15] T. Hagerup. Improved shortest paths on the word RAM. In International Colloquium on
Automata, Languages, and Programming (ICALP), pages 61–72. Springer, 2000.

[16] R. M. Karp. A characterization of the minimum cycle mean in a digraph. Discrete Mathematics,
23(3):309–311, 1978.

[17] S. T. McCormick. Approximate binary search algorithms for mean cuts and cycles. Operations
Research Letters, 14(3):129–132, 1993.

33

[18] J. B. Orlin and R. K. Ahuja. New scaling algorithms for the assignment and minimum mean
cycle problems. Mathematical Programming, 54(1-3):41–56, 1992.

[19] J. B. Orlin and A. Sedeño Noda. An O(nm) time algorithm for finding the min length directed
cycle in a graph. In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1866–1879, 2017.

[20] E. Osborne. On pre-conditioning of matrices. Journal of the ACM (JACM), 7(4):338–345,
1960.

[21] R. Ostrovsky, Y. Rabani, and A. Yousefi. Matrix balancing in lp norms: bounding the conver-
gence rate of Osborne’s iteration. In Proceedings of the 28th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 154–169, 2017.

[22] B. N. Parlett and C. Reinsch. Balancing a matrix for calculation of eigenvalues and eigenvec-
tors. Numerische Mathematik, 13(4):293–304, 1969.

[23] S. Pettie. On the comparison-addition complexity of all-pairs shortest paths. In International
Symposium on Algorithms and Computation, pages 32–43. Springer, 2002.

[24] S. Pettie. A new approach to all-pairs shortest paths on real-weighted graphs. Theoretical
Computer Science, 312(1):47–74, 2004.

[25] S. Pettie. Sensitivity analysis of minimum spanning trees in sub-inverse-Ackermann time.
Journal of Graph Algorithms and Applications, 19(1):375–391, 2015.

[26] S. Pettie and V. Ramachandran. A shortest path algorithm for real-weighted undirected
graphs. SIAM Journal on Computing, 34(6):1398–1431, 2005.

[27] H. Schneider and M. H. Schneider. Max-balancing weighted directed graphs and matrix scaling.
Mathematics of Operations Research, 16(1):208–222, 1991.

[28] L. J. Schulman and A. Sinclair. Analysis of a classical matrix preconditioning algorithm.
Journal of the ACM (JACM), 64(2):1–23, 2017.

[29] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146–160, 1972.

[30] R. E. Tarjan. Data structures and network algorithms, volume 44. SIAM, 1983.

[31] M. Thorup. Undirected single-source shortest paths with positive integer weights in linear
time. Journal of the ACM (JACM), 46(3):362–394, 1999.

[32] M. Thorup. On AC0 implementations of fusion trees and atomic heaps. In Proceedings of the
14th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 699–707, 2003.

[33] M. Thorup. Integer priority queues with decrease key in constant time and the single source
shortest paths problem. Journal of Computer and System Sciences, 69(3):330–353, 2004.

[34] S. Warshall. A theorem on boolean matrices. Journal of the ACM (JACM), 9(1):11–12, 1962.

[35] R. R. Williams. Faster all-pairs shortest paths via circuit complexity. In Proceedings of the
46th ACM Symposium on Theory of Computing (STOC), pages 664–673, 2014.

[36] N. E. Young, R. E. Tarjan, and J. B. Orlin. Faster parametric shortest path and minimum-
balance algorithms. Networks, 21(2):205–221, 1991.

34

	Introduction
	Related work
	The SSSP and APSP problems
	Approximate graph and matrix balancing

	Overview

	Notation and preliminaries
	Computational models

	An algorithm for approximate min-balancing
	A simple weakly polynomial variant
	A quick algorithm for rough balancing
	Determining the balance values
	Constructing the potential

	The strongly polynomial algorithm
	Union-Find-Increase: Maintaining the reduced costs
	The adaptation of Goldberg's algorithm

	The shortest path algorithm
	Upper bounds for the component hierarchy
	Overview of the algorithm
	Description of the algorithm
	Analysis
	The Split/FindMin data structure

	Conclusions

