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The ubiquity of camera-embedded devices and the advances in deep learning have stimulated various intelligent mobile
video applications. These applications often demand on-device processing of video streams to deliver real-time, high-quality
services for privacy and robustness concerns. However, the performance of these applications is constrained by the raw video
streams, which tend to be taken with small-aperture cameras of ubiquitous mobile platforms in dim light. Despite extensive
low-light video enhancement solutions, they are unfit for deployment to mobile devices due to their complex models and and
ignorance of system dynamics like energy budgets. In this paper, we propose AdaEnlight, an energy-aware low-light video
stream enhancement system on mobile devices. It achieves real-time video enhancement with competitive visual quality while
allowing runtime behavior adaptation to the platform-imposed dynamic energy budgets. We report extensive experiments
on diverse datasets, scenarios, and platforms and demonstrate the superiority of AdaEnlight compared with state-of-the-art
low-light image and video enhancement solutions.
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1 INTRODUCTION
The pervasive deployment of camera-embedded mobile devices e.g., smartphones, wearables, tablets, and robots
has stimulated a wide spectrum of novel mobile video based applications. Examples include face detection on

Corresponding author: guob@nwpu.edu.cn.
Authors’ addresses: Sicong Liu, Northwestern Polytechnical University, School of Computer Science, Xi’an, China; Xiaochen Li, Northwestern
Polytechnical University, School of Computer Science, Xi’an, China; Zimu Zhou, City University of Hong Kong, School of Data Science,
Hong Kong, China; Bin Guo, Northwestern Polytechnical University, School of Computer Science, Xi’an, China ; Meng Zhang, Northwestern
Polytechnical University, School of Computer Science, Xi’an, China; Haocheng Shen, Northwestern Polytechnical University, School of
Computer Science, Xi’an, China; Zhiwen Yu, Northwestern Polytechnical University, School of Computer Science, Xi’an, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
© 2022 Association for Computing Machinery.
2474-9567/2022/12-ART172 $$15.00
https://doi.org/10.1145/3569464

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 4, Article 172. Publication date: December 2022.

ar
X

iv
:2

21
1.

16
13

5v
2 

 [
cs

.C
V

] 
 3

0 
N

ov
 2

02
2

HTTPS://ORCID.ORG/0000-0003-4402-1260
HTTPS://ORCID.ORG/0000-0003-2653-5786
HTTPS://ORCID.ORG/0000-0002-5457-6967
HTTPS://ORCID.ORG/0000-0001-6097-2467
HTTPS://ORCID.ORG/0000-0003-0637-249X
HTTPS://ORCID.ORG/0000-0001-8472-6244
HTTPS://ORCID.ORG/0000-0002-9905-3238
https://doi.org/10.1145/3569464
https://orcid.org/0000-0003-4402-1260
https://orcid.org/0000-0003-2653-5786
https://orcid.org/0000-0002-5457-6967
https://orcid.org/0000-0001-6097-2467
https://orcid.org/0000-0003-0637-249X
https://orcid.org/0000-0001-8472-6244
https://orcid.org/0000-0002-9905-3238
https://doi.org/10.1145/3569464


172:2 • Liu et al.

Camera Raw 
video stream

AdaEnlight

Enhanced 
video stream

Ubiquitous camera-embedded mobiles

Low-light 
conditions

Limited & dynamic 
resources

On-device video applications

Surveillance

Video

Video

Automatic delivery

Limited 
aperture size

Fig. 1. Illustration of AdaEnlight as a video enhancement middleware for downstream mobile video applications.

smartphones for user authentication [10], outdoor surveillance with mobile robots [1, 21], and object detection
with drones [61], etc. These applications are features with two characteristics. (i) There is a growing interest
in on-device processing of these video streams rather than cloud offloading for privacy concerns or real-time
interactions [2]. (ii) The video streams captured by mobile devices often suffer from low-light effect since they are
typically taken by non-professional users with narrow-aperture cameras [41, 46]. Low-light videos can notably
impair user experience e.g., for video display, and downstream application accuracy, e.g., face detection.
Despite extensive research on low-light image and video enhancement [6, 14, 15, 19, 28, 29, 36, 59], they are

unfit for deployment to mobile devices because they fail to meet the following requirements.
• Real-time Processing on Resource-constrained Mobile Devices. The real-time processing of video stream is
necessary for application’s responsiveness, and on-device processing benefits the user privacy. However,
mainstream low-light video enhancement schemes are computation-intensive [6, 19, 36, 59]. Even the state-
of-the-art lightweight image enhancement model Zero-DCE++ [28] fails to achieve real-time processing on
mobile devices such as a Raspberry Pi (5 𝑓 𝑟𝑎𝑚𝑒𝑠/𝑠 for 270 × 480 RGB images, see Sec. 5).

• Adapting to Diverse Energy Supply of Mobile Devices. Energy awareness is crucial for the long-term operation
of the above video processing since mobile devices are often battery-powered [4, 13]. It is desired that the
low-light video processing module can adapt its enhancement quality according to the energy budget at
runtime. Despite prior studies on adaptive mobile computer vision [3, 23, 26, 44, 48, 58] and general energy
profiling of neural networks [22, 25, 39, 53–55], there lacks a runtime energy profiler and adaptation loop
dedicated to deep learning enabled low-light video enhancement.

In this paper, we propose AdaEnlight, an energy-aware on-device low-light video enhancement solution for
mobile platforms. It is challenging to achieve high enhanced visual quality, low execution latency, and adaptation
to energy budget on mobile platforms. AdaEnlight tackles these challenges via a modular system design and a
set of novel algorithms. Observing that latency bottleneck of the state-of-the-art image enhancement schemes
[14, 28] lies in the iterative enhancement curve function, AdaEnlight devises a novel non-iterative curve function
for acceleration without compromising enhancement quality. AdaEnlight also incorporates temporal consistency
among frames to mitigate the flicking problem [29] when enhancing video streams. To adapt to the dynamic
energy budget imposed by mobile platforms, AdaEnlight exploits a runtime energy profiler to estimate the energy
cot of the video enhancement process at runtime and configures its hyper-parameters (e.g., computation reuse
and frame resolution) accordingly. We implement AdaEnlight as a compact video pre-processing middleware to
provide enhanced video streams for various downstream mobile video applications such as facial recognition in
automatic package delivery and object detection in video surveillance (see Fig. 1).
Our main contributions are summarized as follows.
• To the best of our knowledge, AdaEnlight is the first on-device low-light video enhancement system for
mobile scenarios. It achieves near real-time and high-quality processing on commodity mobile platforms
and stays adaptive to the dynamic energy budget.
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Fig. 2. An example study of the ubiquity of low-light video streams in the mobile video surveillance scenario.

• The key technical novelties include a non-iterative low-light enhancement model that breaks the latency
bottleneck of the state-of-the-art enhancement schemes and enforces temporal consistency between video
frames. Also, it adopts a runtime energy-aware controller that integrate a runtime energy profiler to adjust
the video enhancement behaviors adaptively.

• We evaluate AdaEnlight on four public benchmarks and real-world mobile scenarios on three mobile
platforms (Honor 9 smartphone, raspberry Pi 4B, and JetsonAGXXavier). Experiments show thatAdaEnlight
achieves near real-time (30 ∼ 50𝑚𝑠 per frame) video enhancement with competitive visual quality to existing
image and video enhancement schemes. AdaEnlight also enables agile self-adaptation to satisfy the dynamic
energy budgets at runtime.

In the rest of this paper, we present an overview of AdaEnlight as well as its functional modules in Sec. 2,
Sec. 3, and Sec. 4. We show the evaluations in Sec. 5, review related work in Sec. 6, and conclude in Sec. 7.

2 ADAENLIGHT OVERVIEW
This section presents our problem scope and the design overview of AdaEnlight.

2.1 Problem Scope
In short, we target at on-device low-light enhancement of ubiquitous video streams. We elaborate on the concrete
motivations and requirements below.

2.1.1 Motivations. Our work is motivated by the ubiquity of camera-embedded devices (e.g., smartphones,
wearables, tablets, and robots) in everyday life for various video applications ranging from video surveillance [21]
to video conferencing [9]. These video streams, which we call as ubiquitous video streams, are often captured by
non-professional users and are likely to experience low-light conditions. The reasons are two-fold. (i) The limited
camera aperture size on mobile devices restrict the overall amount of light that reaches the camera sensor and
thereby decrease the signal-to-noise ratio of the captured videos [46]. (ii) Non-professional users may take videos
under uncontrolled lighting conditions, e.g., back-lit, weak light, and extremely dark environments [41]. Also, we
conduct an example study using a mobile robot (i.e., Yahboom) to show the ubiquity of low-light video streams in
the daily video surveillance scenario. The robot continuously collects video streams by random walking indoor
and outdoor for 6 hours, at daytime and nighttime. Fig. 2 shows the details of four groups of study. The proportion
of low-light video streams is up to 87.5% (i.e., group No.4) and 10.5% (i.e., group No.1) at nighttime and daytime,
respectively.
We consider video enhancement locally on-device rather than remotely on cloud for the following reasons.
• The ubiquitous video streams may be immediately consumed on the mobile devices [2]. For example,
a surveillance drone may run object recognition algorithms on video streams taken in dim light and
only uploads suspicious frames to cloud servers to save bandwidth. An automatic delivery robot may
authenticate the target recipient before delivery by running face recognition algorithms locally for privacy
concerns.
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Fig. 3. Comparison of video enhancement locally on-device and remotely on-cloud. (a) Example frames enhanced by local
processing and remote processing. The upper row follows the encode-decode-enhance pipeline of remote processing, while
the lower row are directly enhanced as in local processing. (b) Enhanced video quality of the encode-decode-enhance pipeline
under different frame bitrates into the video codec.

• On-device processing avoids the extra loss in visual quality due to video encoding during data transmission.
Specifically, offloading video enhancement to cloud follows an “encode-decode-enhance” pipeline. Frames
are encoded at the mobile device, transmitted via wireless networks, decoded at the cloud, and finally fed
into the video enhancement module. Video encoding is necessary due to the limited wireless bandwidth.
Yet it can decrease the enhanced visual quality because many mainstream video encoding schemes e.g.,
H.264 [51] are lossy. Fig. 3a shows an example, where the upper row shows the frames enhanced following
cloud processing i.e., encode-decode-enhance, while the lower row shows the results of local processing
i.e., directly enhance. There is notable loss in detection precision (53.4% accuracy loss in the upper left
figures) and visual quality (30.6 VMAF loss in the upper right figures). Fig. 3b provides a more quantitative
study. We enhance one example video clip from our self-collected dataset (MobileScene, see Sec. 5.1
for details) following the “encode-decode-enhance” pipeline using the standard H.264 video codec for
encoding/decoding and AdaEnlight for enhancement. We vary the input bitrate into the codec and measure
the visual quality of the enhanced frames by the VMAF index [31]. As is shown, the bitrate (and thus
the network bandwidth) limits the visual quality of video enhancement. The VMAF index is only 55 at
the bitrate of 1Mbps. Even at a bitrate of 64Mbps (higher than the uplink bandwidth of commercial 5G
networks [45]), the VMAF index is only around 60, which is lower than that of local processing (see Tab. 5
and Tab. 6 in our evaluations).

2.1.2 Requirements. To support the low-light enhancement of ubiquitous video streams on mobile devices, a
solution should meet the following criteria.

• Near Real-time Video Enhancement. As with other mobile computer vision tasks [32, 43, 52], the low-light
enhancement model should be lightweight to fit in the limited execution resources on mobile platforms
and to achieve near real-time processing of the video streams.

• Energy-aware Adaptation. Since many mobile devices are battery-powered, it is crucial that the video
enhancement is energy-aware. Particularly, it is desirable that the video enhancement process can trade off
between the output visual quality and the platform-imposed energy budget at runtime.

Despite prior research on the low-light image/video enhancement [6, 14, 15, 19, 28, 29, 36, 59] and adaptive
mobile computer vision [3, 23, 26, 44, 48, 58], no solution fulfills the above requirements simultaneously, which
motives the design of AdaEnlight. Note that we focus on enhancement of RGB videos taken in low light. We leave
extreme low light enhancement to future work because such cases often require videos stored in raw formats
[6, 19, 29], which are not pervasively supported in mobile and embedded platforms.
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Fig. 4. Workflow of AdaEnlight.

2.2 Solution Overview
Our solution, AdaEnlight, is an energy-aware low-light video enhancement scheme that achieves near real-time
video processing with competitive enhanced visual quality against the state-of-the-arts [14, 28, 36], while allowing
runtime enhancement behavior adaptation to platform-imposed energy budgets. This is achieved by decoupling
the requirements in Sec. 2.1.2 with two functional modules: fast low-light video enhancement and energy-aware
adaptation controller.

• Fast Low-Light Video Enhancement (Sec. 3). This module aims at near real-time low-light video enhancement
on mobile platforms without compromising enhancement quality. Prior low-light enhancement schemes
are unfit for our purposes because they either induce unacceptable latency [19, 36] or are not optimized for
videos [14, 28] e.g., suffering from the flicking problem [29]. In AdaEnlight, we design a new low-light video
enhancement model by removing the latency bottleneck of a state-of-the-art low-light image enhancement
model [14] and enforcing temporal consistency between frames.

• Energy-aware Adaption Controller (Sec. 4). This module dynamically adjusts the frame resolution and compu-
tation reuse of the video enhancement model to maximize the enhanced video quality while minimizing the
energy consumption. Such adaptation is non-trivial due to the multi-objective nature of the optimization
problem and the challenge to estimate energy consumption at runtime. In AdaEnlight, we develop an
optimizer to heuristically solve the multi-objective optimization problem and propose a runtime energy
profiler to estimate the energy cost of the video enhancement model at runtime. This module also contains
a resource monitor and analyzer to automate the adaptation process.

Fig. 4 shows the workflow of AdaEnlight. The ubiquitous video streams captured by a camera-embedded
mobile device are fed into AdaEnlight’s fast low-light video enhancement module for visual quality enhancement.
Meanwhile, AdaEnlight’s energy-aware adaptation module adds an extra control flow to configure the video
enhancement module’s parameters according to the dynamic energy budgets of the mobile device.
We implement AdaEnlight as a compact video pre-processing middleware. It transparently augments the

low-light video streams into high-quality ones for downstream on-device video applications such as facial
recognition and object detection. As a middleware, AdaEnlight can resolve the application diversity and the
system complexity and effectively deal with multiple co-existing demands and constraints from different aspects
(e.g., visual quality, latency, energy). Application developers do not have to initiate the video enhancement or be
involved in the details of system monitoring and analysis.
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3 FAST LOW-LIGHT VIDEO ENHANCEMENT
This section presents AdaEnlight’s fast low-light video enhancement model. It is built upon prior curve Based
image enhancement solutions (Sec. 3.1). To satisfy our special requirements, i.e., near real-time processing and
video enhancement, we exploit Gamma correction based curve to accelerate the enhancement speed (Sec. 3.2) and
extend the image-specific solution to videos by incorporating temporal consistency between frames (Sec. 3.3).
The detailed implementations are in Sec. 3.4.

3.1 Primer on Curve Based Image Enhancement
Low-light image enhancement takes a low-light image as input, and outputs a normal-light, high-quality image
[29]. We base our design upon Zero-DCE [14], a recent zero-shot learning low-light image enhancement scheme
via deep curvature estimation. The reasons are as follows. (i). We choose the zero-shot learning based solution to
eliminate the need for paired training data, i.e., videos of the same scene taken in dim and normal illumination.
This is desired because access to such paired videos is limited in real-world mobile applications with high
variability. (ii). We select the curve-based model for it yields competitive image enhancement performance despite
its lightweight architecture [28], which holds potential for execution on resource-constrained mobile devices. As
next, we provide a brief review on Zero-DCE [14] and discuss its limitations for fast video enhancement.

3.1.1 Principles of Zero-DCE. The design of Zero-DCE [14] follows the curve adjustment in photo editing
software. It derives an image-specific curve that maps a low-light image to its enhanced version. The curve is
defined as a high-order pixel-wise function learned by a deep neural network, where its loss function is designed
as a set of differentiable non-reference losses to enable zero-shot learning. The curve function is defined as:

𝐸𝑛 (x) = 𝐸𝑛−1 (x) +𝐴𝑛 (x) · 𝐸𝑛−1 (x) · (1 − 𝐸𝑛−1 (x)) (1)

where x is the pixel coordinates of the input image 𝐼 (x), 𝐸𝑛 (x) is the enhanced output image (note that 𝐸0 (x) =
𝐼 (x)), 𝑛 is the number of iteration to control the curvature, 𝐴𝑛 (x) is a parameter map of the same size as 𝐼 (x),
where each element in 𝐴𝑛 (x) is a trainable curve parameter in [−1, 1]. Each pixel in 𝐼 (x) is normalized to [0, 1]
and the enhancement is performed separately to three RGB channels. The curve function 𝐸𝑛 (x) is learned via a
neural network with a loss function that consists of spatial consistency, exposure control, color constancy, and
illumination smoothness. The spatial consistency loss 𝐿𝑠𝑝𝑎 encourages spatial coherence of the enhanced image.
The exposure loss 𝐿𝑒𝑥𝑝 controls the exposure level of enhanced image. The color loss 𝐿𝑐𝑜𝑙 corrects the potential
color deviations. The illumination smoothness loss 𝐿𝑡𝑣𝐴 preserves monotonicity relations between neighboring
pixels. More details can be found in [14].

3.1.2 Limitations of Zero-DCE. Despite being one of the most lightweight image enhancement scheme, Zero-DCE
fails to support fast video enhancement on resource-constrained mobile devices for the following reasons. (i),
the iterative procedure in i.e., Equ.(1), for image enhancement, incurs notable delay that prohibits real-time
video enhancement. For example, Zero-DCE takes an average of 11.74𝑠 to enhance a 270 × 480 RGB image on a
Raspberry Pi 4B platform (detailed setups in Sec. 5.1). The follow-up Zero-DCE++ [28] accelerates Zero-DCE by
adopting depth-wise separable convolutions and reusing the curve parameter maps𝐴𝑛 (x). However, Zero-DCE++
still induces 0.19𝑠 delay, i.e., only 5 frames per second. The main bottleneck lies in the iterative procedure, where
𝑛 is empirically optimized to 8 in both Zero-DCE and Zero-DCE++. (ii), directly applying image enhancement
schemes to videos leads to flicking between frames [6, 59]. Fig. 5 shows the difference between two consecutive
images enhanced by Zero-DCE and Zero-DCE++. There is notable differences between adjacent frames (up to
9.192) and thereby results in flicking in videos. These limitations motivate us to rethink the design for the fast
video enhancement in two aspects, as will be explained in Sec. 3.2 and Sec. 3.3.
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(a) Zero-DCE (b) Zero-DCE++ (c) AdaEnlight

Fig. 5. Illustration of the flicking problems when applying low-light image enhancement schemes, e.g., (a) Zero-DCE [14] and
(b) Zero-DCE++ [28] to videos. The figures show the difference between two consecutive frames. The greater the difference,
the more serious the flicking problem is. In comparison, (c) shows the low frame difference of AdaEnlight.

3.2 Non-iterative Frame Enhancement with Gamma Correction-based Curve
As previously mentioned (Sec. 3.1.2), the latency bottleneck of curve-based image enhancement [14, 28] lies in
the iterative enhancement process. We observe that the iterative procedure may be eliminated if a non-iterative
curve function with higher non-linearity is adopted. Therefore, we propose to replace the traditional quadratic
curve in Equ.(1) by an exponential curve to induce higher-order non-linearity and smaller latency. Specifically,
we propose the following non-iterative image enhancement scheme.

𝐸 (x) = 𝐼 (x)Γ (x) (2)

where 𝐼 (x) and 𝐸 (x) denote the input and enhanced image, respectively. Γ(x) are pixel-wise trainable parameters
learned from a neural network. The detailed training methodology of Γ(x) are deferred to Sec. 3.4. We make two
detail notes on our design of Equ.(2).

• The exponential curve function in Equ.(2) is inspired by the Gamma correction, which is typically used to
flexibly adjust the luminance or tristimulus in images [40]. Our novelty is to apply pixel-wise parameters
Γ(x) for fine-grained adjustment, which is learned from a neural network. In contrast, conventional Gamma
correction adopts the same coefficient Γ for the entire image, which tends to introduce artifacts and color
deviations to the enhanced images [29].

• One may want to design an iterative enhancement process by rewriting Equ.(2) as 𝐸𝑛 (x) = 𝐸𝑛−1 (x)Γ𝑛 (x) ,
where 𝐸0 (x) = 𝐼 (x). We exclude this option because our experiments show that the enhanced visual quality
does not notably increase with more iterations (see Sec. 5.4.1).

To summarize, the learned pixel-wise Gamma correction-based curve in Equ.(2) tends to deliver high-quality
visual enhancement while avoiding the long latency. We defer the quantitative comparisons with the traditional
iterative enhancement scheme to Sec. 5.4.

3.3 Incorporating Temporal Consistency Loss for Video Enhancement
As mentioned in Sec. 3.1, naively adopting image enhancement schemes to videos collected by mobile devices
causes flicking. A remedy is to account for temporal consistency between frames when designing the loss function
to train the enhancement curve i.e., Equ.(2). Given two enhanced frames 𝐸𝑡+1 (x) and 𝐸𝑡 (x) at timestamp 𝑡 + 1
and 𝑡 , we consider their temporal consistency with the following losses.

• Exposure Consistency Loss: We define the exposure consistency loss between two enhanced frames as

L𝑒𝑥𝑝,𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 =
∑︁
𝑥

������ ∑︁𝑖=𝑟,𝑔,𝑏 𝐸𝑖𝑡+1 (x) −
∑︁

𝑖=𝑟,𝑔,𝑏

𝐸𝑖𝑡 (x)

������ (3)
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• Color Consistency Loss: We define the color consistency loss between two enhanced frames as

L𝑐𝑜𝑙,𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 =
∑︁
𝑥

∑︁
𝑘=𝑟,𝑔,𝑏

����� 𝐸𝑘𝑡+1 (x) + 𝑐∑
𝑖=𝑟,𝑔,𝑏 𝐸

𝑖
𝑡+1 (x𝑖 ) + 𝑐

−
𝐸𝑘𝑡 (x) + 𝑐∑

𝑖=𝑟,𝑔,𝑏 𝐸
𝑖
𝑡 (x𝑖 ) + 𝑐

����� (4)

where 𝐸𝑖 (x) denotes the enhanced image of one channel, where 𝑖 = 𝑟, 𝑔, 𝑏, which represents the RGB channels. 𝑐
is a delta value empirically set to 0.0001 to avoid division by zero in case of dark pixels. The exposure consistency
loss sums over the RGB channels to avoid the impact of colors when calculating the temporal consistency. The
color consistency loss, in contrast, is divided by the exposure to mitigate the impact of pixel-wise exposure when
calculating the temporal consistency.

Note that to avoid the influence of motion between frames, we employ the Gunnar-Farneback optical flow [12],
a dense optical flow alignment method as a pre-processing step. Specifically, we calculate motions between the
two frames (frame 𝑡 + 1 and frame 𝑡 ) and get the motion data of each pixel of frame 𝑡 , denoted as (𝑑𝑥, 𝑑𝑦). Then
we modify the location of each pixel in frame 𝑡 as (𝑥 + 𝑑𝑥,𝑦 + 𝑑𝑦). The resulting fame as named as the aligned
frame 𝑡 . Finally, we calculate the absolute difference between the aligned frame 𝑡 and frame 𝑡 + 1.

3.4 Putting It Together
In short, our fast low-light video enhancement module is a deep curve-based enhancement scheme with a learned
pixel-wise Gamma correction based curve i.e., Equ.(2). The curve parameters are trained by considering both the
conventional image enhancement loss as well as the temporal consistency loss i.e., Equ.(3) and Equ.(4). Below we
explain the detailed model architecture, its training strategy and how it is designed to trade off between video
enhancement quality and platform-imposed requirements at runtime.

3.4.1 Model Architecture. We apply a U-Net [42] to learn the parameters Γ𝑛 (x) in Equ.(2). For lower latency, we
decrease the number of layers and the channels of the original U-Net. We also change the contracting paths in
the original U-Net to dense connections as DenseNet [16] for computation reuse (see Sec. 3.4.3). Fig. 6 shows
the model architecture. Tab. 1 lists the detailed hyperparameters. The hyperparameters are empirically tuned to
trade off between enhancement quality and latency. The ablation studies on hyperparameters are in Sec. 5.4.3.
We combine the loss function from Zero-DCE [14], i.e., image enhancement loss, with the two temporal

consistency losses defined in Equ.(3) and Equ.(4) as the final loss function.

L𝑡𝑜𝑡𝑎𝑙 = L𝑍𝑒𝑟𝑜−𝐷𝐶𝐸 + 𝛼L𝑒𝑥𝑝,𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 + 𝛽L𝑐𝑜𝑙,𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 (5)
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Table 1. Detailed hyperparameters of the neural network.
Layer Parameters Layer Parameters Layer Parameters

Conv_1 K=1, Cin=3, Cout=1, S=1, G=1, P=0
K=3, Cin=1, Cout=1, S=1, G=1, P=0 Conv_2 K=1, Cin=4, Cout=1, S=1, G=1, P=0

K=3, Cin=1, Cout=1, S=1, G=1, P=1 Conv_2 K=1, Cin=4, Cout=3
S=1, G=1, P=0
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Fig. 7. Illustrations of adjustable parameters of the video enhancement model: computation reuse as (a) frame level and (b)
layer level; (c) down-sample the resolution of input frames.

where 𝛼 and 𝛽 can be empirically tuned.

3.4.2 Training Strategy. Due to the lack of video datasets with evenly distributed exposure levels, it is challenging
to train a network that minimizes Equ.(5). Therefore, we propose to learn the curve by training the image
enhancement loss and the temporal consistency losses in a siamese mode as in [6, 59]. Fig. 6 shows the training
scheme. In each pass, we input one low-light image from the image dataset and two adjacent low-light video
frames from the video dataset into the neural network in a siamese way i.e., three neural networks share the
same weights. The low-light image will be used to calculate the image enhancement loss, whereas the two frames
will be used to compute the two temporal consistency losses.

At inference time, the model takes a low-light video frame as input, and generates an enhanced frame in
almost real-time (0.05 second delay or 20 frames per second for 270 × 480 RGB images on the Raspberry Pi 4
(4GB) platform. More quantitative evaluations on enhancement quality and latency are in Sec. 5.2.

3.4.3 Towards Runtime Adaptation. Although our low-light video enhancement module achieves near real-time
performance, there are other requirements e.g., energy, which the users may trade with enhancement quality.
Our video enhancement module supports such runtime adaptation by adjusting the parameters below.

• Computation Reuse. Recall that our video enhancement model consists of three convolutional layers. Due
to temporal similarities between adjacent frames, we can further reduce the computations by enforcing
computation reuse during frame enhancement. We allow reuse at both the frame level (see Fig. 7a), i.e., reuse
the enhanced output of frame 𝑡 for frame 𝑡 + 1, and the layer level (see Fig. 7b), i.e., reuse the intermediate
results and skip some layers during enhancement.

• Frame Resolution. Down-sampling the resolution of the input frame naturally reduces the computation of
the video enhancement process (see Fig. 7c).

We utilize these parameters to trade off between enhancement quality and energy at runtime, as explained next.

4 ENERGY-AWARE ADAPTATION CONTROLLER
This section presents the AdaEnlight’s energy-aware adaptation controller to dynamically adjust the above
mentioned video enhancement model’s behaviors for energy conservation. The focus of this controller is to
optimize the trade-off between energy and the video quality, because the above design (Sec. 3.2) has already
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Fig. 8. Workflow of the optimizer in the energy-aware adaption controller.

guaranteed the near real-time video processing. We first introduce the design of the overall controller (Sec. 4.1),
then the runtime energy profiler (Sec. 4.2), and finally the auxiliary modules to automate the control loop (Sec. 4.3).

4.1 Controller Design
At a high level, the energy-aware adaptation controller of AdaEnlight is a runtime heuristic optimizer for a
multi-objective optimization problem, as formulated below.

4.1.1 Formulation. Mathematically, the controller aims to continuously optimize two metrics, i.e., the visual
quality 𝑄𝑣𝑖𝑑𝑒𝑜 of the output video, and the energy consumption 𝐸𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑟 of the video enhancement model. We
formulate it as the following time-varying optimization problem.

𝑎𝑟𝑔𝑚𝑎𝑥
𝜃𝑙 ,𝜃 𝑓 ,𝜃𝑑

𝑄𝑣𝑖𝑑𝑒𝑜 = 𝑞(𝜃𝑙 , 𝜃 𝑓 , 𝜃𝑑 , 𝑣𝑖𝑑𝑒𝑜 (𝑡)), 𝑎𝑟𝑔𝑚𝑖𝑛
𝜃𝑙 ,𝜃 𝑓 ,𝜃𝑑

𝐸𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑟 = 𝑒 (𝜃𝑙 , 𝜃 𝑓 , 𝜃𝑑 , 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 (𝑡)) (6)

where 𝜃𝑙 , 𝜃 𝑓 , and 𝜃𝑑 are three dynamically adjustable parameters of the video enhancement model, i.e., the
amount of layer-level computation reuse, the amount of frame-level computation reuse, and the down-sampled
video frame resolution (see Sec. 3.4.3). It is intractable to obtain a closed-form solution to the above dynamic
multi-objective optimization problems because dealing with two distinct yet related spaces, i.e., objective space
and variable space, is challenging. Specifically, the objective space consisting of the visual metric 𝑄𝑣𝑖𝑑𝑒𝑜 and the
energy metric 𝐸𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑟 . Regarding the variable space related to the objective performance, some variables (i.e., 𝜃𝑙 ,
𝜃 𝑓 , and 𝜃𝑑 ) are available for objective optimization, we regard them as decision variables. Other variables (e.g., the
available execution resource 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 (𝑡), the video stream 𝑣𝑖𝑑𝑒𝑜 (𝑡)) are imposed by the external context, which
are time-varying but independent from the optimization objective variables.

4.1.2 Optimizer. To solve the above problem, we propose a heuristic optimizer. Specifically, we solve the original
optimization problem in two stages, which correspond to two typical dynamic optimization problems [11]. In the
offline stage, we regard this problem as a static optimization problem and adopt existing evolutionary algorithm to
find a widely distributed set of solutions and derive the Pareto-optimal front. When looking for the Pareto frontier,
we do not set any relative importance coefficients for multiple optimization objectives (i.e., 𝑄 and 𝐸), because we
need to get the unbiased opinion from this set of solutions. In the online stage, the optimal decision variables (i.e.,
𝜃𝑙 , 𝜃 𝑓 , 𝜃𝑑 ) changes, whereas the optimal objective space (i.e., 𝑄, 𝐸) does not change, which is the Type 2 dynamic
multiple-objective optimization problem [11]. Therefore, we leverage an analytical hierarchy process to set the
dynamic importance coefficients 𝜆 of the different criteria. Then we multiply the respective performance of each
solution with that coefficients, to get a total score for each solution, i.e., 𝜆𝐸𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑟 + (1 − 𝜆)𝑄𝑣𝑖𝑑𝑒𝑜 , indicating
which suits best the current wishes. For example, if the the enhancement model’s demand stray beyond resource
levels, the controller re-selects the dynamic importance coefficients to pick a sole optimal solution (i.e., 𝜃𝑙 , 𝜃 𝑓 , 𝜃𝑑 )
from the Pareto frontier at runtime.
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Fig. 9. (a) Memory access and (b) energy cost of a convolutional operation on a mobile device with 45nm CMOS chip.

4.2 Runtime Energy Profiler
For the controller to function properly, it is essential to provide an accurate and timely estimate of 𝐸𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑟 to
the controller. In AdaEnlight, we propose an energy model for the video enhancement model that estimates its
energy consumption given the adjustable parameters 𝜃𝑙 , 𝜃 𝑓 , and 𝜃𝑑 at runtime.

However, the neighbor solutions on the Pareto frontier in the objective space are not always neighbors in the
decision variable space, which makes the search of decision variable time-consuming. In view of this challenge, we
design an extra parametric neural network based regression module for building the map between the state (i.e.,
the input video frame and the previous reference frame), decision variables (i.e., 𝐷𝑂, 𝐹𝑂, 𝐷𝑅), and the objective
outcomes (i.e., 𝑄, 𝐸). The network consists of two fully-connected layers. The input of the neural network is the
splicing matrix containing the pixel matrix of the input frame and the previous reference frame. The output is
the vector of 𝜃𝑙 , 𝜃 𝑓 , 𝜃𝑑 as well as the objective outcomes (i.e.,𝑄, 𝐸). We collect 400 samples to train this regression
network. At run-time, the network outputs all the optional parameters 𝜃 𝑓 , 𝜃𝑑 , 𝜃𝑙 and the corresponding 𝑄, 𝐸.
The decision space built by 𝜃 𝑓 ∈ {0, 1, 2...10}, 𝜃𝑑 ∈ {1, 1/2, 1/3}, 𝜃𝑙 ∈ {0, 1, 2, 3} is limited. Therefore, together
with the dynamic importance coefficient 𝜆, it is easy to get best computation reuse parameters by calculating
𝜆𝐸𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑟 + (1 − 𝜆)𝑄𝑣𝑖𝑑𝑒𝑜 . Fig. 8 briefly describes the optimizer workflow.

4.2.1 Principles. As discussed in Sec. 6.2, it is challenging to model the energy consumption of a neural network
because the energy cost is tightly coupled with the available execution resources of the given platform. The
principles of our runtime energy profiler are two-fold.

• To estimate the energy cost of a neural network with dynamically adjustable hyperparameters, we de-
compose the network into layers and strive to model the energy cost on a layer basis. The layer-wise
decomposition is reasonable because mobile devices with CPU/GPU tend to execute a neural network
layer-by-layer due to limited resources [27].

• To estimate the energy cost in presence of time-varying execution resources, we convert the resource
dynamics into a single parameter, the cache-hit-rate, which is directly measurable at runtime. This is
because we empirically observe that the energy cost of memory accesses is dominated by the off-chip
memory accesses, which can be estimated by the cache-hit-rate. Fig. 9 shows an example of to execute a
convolution operation on a mobile platform (e.g., with a 45nm CMOS ARM chip). There are three types of
memory accesses for loading the weights and activations of a neural network and writing back results (see
Fig. 9a), and the DRAM access dominates the energy cost (see Fig. 9b). Since DRAM (off-chip) accesses are
only necessary when the on-chip cache misses, we can use the cache-hit-rate as the multiplier to estimate
the energy cost when executing a layer.

These principles reduce the overhead to estimate the energy cost to execute a neural network on a platform.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 4, Article 172. Publication date: December 2022.



172:12 • Liu et al.

(1) Convolution

(2) Activation

(3) Pooling

(4) Batch norm

Architecture Operation-loop Data flow

Fig. 10. Counting the memory accesses from the underlying operation loops and data flow of different layers.

4.2.2 Energy Model. We first propose the energy model to execute a single layer 𝑙 on mobile CPU/GPU platforms.

𝐸𝑙 = 𝛿𝐶 ×𝐶𝑙 + 𝜖 × 𝛿𝑐𝑎𝑐ℎ𝑒 ×𝑀𝑙 + (1 − 𝜖) × 𝛿𝐷𝑅𝐴𝑀 ×𝑀𝑙 +𝑀𝑙 × 𝛿𝑆𝑀 (7)

where 𝛿𝐶 , 𝛿𝑐𝑎𝑐ℎ𝑒 , 𝛿𝐷𝑅𝐴𝑀 , and 𝛿𝑆𝑀 are the unit energy cost of MAC computation, cache access, DRAM access, and
the shared memory access; 𝐶𝑙 and𝑀𝑙 are the total number of MAC and memory access of layer 𝑙 , respectively;
and 𝜖 is the runtime cache-hit-rate. For a given hardware platform, these parameters can be derived as follows.

• Unit Energy Cost 𝛿𝐶 , 𝛿𝑐𝑎𝑐ℎ𝑒 , 𝛿𝐷𝑅𝐴𝑀 , and 𝛿𝑆𝑀 . These parameters can be measured offline. We empirically set
𝛿𝐶 : 𝛿𝑐𝑎𝑐ℎ𝑒 : 𝛿𝐷𝑅𝐴𝑀 : 𝛿𝑆𝑀 = 1 : 6 : 200 : 2 for mobile GPU platforms. As for mobile CPU platforms, 𝛿𝑆𝑀 = 0
since they do not have such shared memory space, and thus 𝛿𝐶 : 𝛿𝑐𝑎𝑐ℎ𝑒 : 𝛿𝐷𝑅𝐴𝑀 = 1 : 6 : 200. According to
our evaluations, these parameters work with different DNN inference frameworks, e.g., Raspberry Pi 4B
(CPU) + NCNN, Hornor 9 (CPU) + Pytorch Mobile, and Nvidia Jetson Nano (GPU).

• Number of MAC Computation 𝐶𝑙 . The amount of MAC can be directly derived from the layer architecture
of layer 𝑙 , e.g., 𝐶𝑐𝑜𝑛𝑣𝑙 = 𝐾

2 ∗𝐶𝑜 ∗𝐶𝑖 ∗ 𝐻 ∗𝑊 .
• Number of Memory Accesses𝑀𝑙 . The memory access during the tensor computation consists of the accesses
of layer parameters, input feature maps, and intermediate iterations. We compute 𝑀𝑙 for a given layer
type according to the data flow mapping to the given hardware platform. Fig. 10 illustrates the data flow
operations of different layer types used by our video enhancement model. For example, the total amount
of memory accesses 𝑀𝑙 for a convolution layer 𝑙 can be calculated by the six-fold operation loops, i.e.,
𝑀𝑐𝑜𝑛𝑣𝑙 = 2 ∗𝐶𝑜 ∗𝐶𝑖 ∗ 𝐻 ∗𝑊 ∗ 𝐾2 +𝐶𝑜 ∗ 𝐻 ∗𝑊 .

• Runtime Cache-Hit-Rate 𝜖 . It accounts for the dynamics of the execution resources and thus is measured at
runtime. We measure 𝜖 as the ratio of the actual MAC execution amount per unit time (i.e.,𝑚𝑠) to the MAC
amount with the simulated 100% cache-hit-rate. The amount of MAC executed with a 100% cache-hit-rate
is profiled offline for the given platform. Observing that framework/compiler-level optimization such as
operator fusion may affect the cache hit rate 𝜖 even for the same model [7, 60], we measured the amount of
MAC executed with a 100% cache-hit-rate for multiple mainstream frameworks.
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Fig. 11. Energy-aware adaptation controller workflow.

Given the energy model for a single layer 𝑙 as in Equ.(7), we can estimate the total energy consumption of
𝑛𝑓 𝑟𝑎𝑚𝑒 video frames, with adjustable parameters 𝜃𝑙 , 𝜃 𝑓 , and 𝜃𝑑 as follows.

𝐸𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑟 =

𝑛𝑓 𝑟𝑎𝑚𝑒∑︁
𝑓 =1

𝐿∑︁
𝑙=1

𝜃 𝑓(𝑖𝑛𝑑𝑒𝑥𝑓 )𝜃𝑙 (𝑖𝑛𝑑𝑒𝑥𝑙 )
𝐸𝑙𝜃𝑑𝑓

(8)

where 𝜃 𝑓(𝑖𝑛𝑑𝑒𝑥𝑓 ) and 𝜃𝑙 (𝑖𝑛𝑑𝑒𝑥𝑗 ) are Boolean value, and 0 means skipping the computation of frame 𝑓 or layer 𝑙 . And
𝜃𝑑 is the down-sampling rate (%) that affects the resolution of the input frame 𝑓 by 𝜃𝑑𝑓

∗ 𝐻 ∗𝑊 .

4.2.3 Profiler Workflow. The energy profiler in AdaEnlight works in two stages, offline and online.
• Offline Stage. The unit energy cost 𝛿𝐶 , 𝛿𝑐𝑎𝑐ℎ𝑒 , 𝛿𝐷𝑅𝐴𝑀 , 𝛿𝑆𝑀 , as well as the MAC throughput of the simulated
100% cache-hit-rate are measured offline for the given platform. Specifically, during the offline data collection
stage, we use a digital power monitor, i.e., Monsoon AAA10F, to sample the ground truth of power
consumption by profiling the device through its external power input. The energy cost of accessing the
Cache, DRAM, and shared memory normalized to that of a MAC operation is determined by the platform
based on the ground truth. The MAC execution amount per second in the simulated 100% cache-hit-rate
is the hardware-specified computation frequency times the computational parallelism (e.g., 16 bits). The
result is an energy profile with a sequence samples {𝑐𝑎𝑡𝑐ℎ − ℎ𝑖𝑡 − 𝑟𝑎𝑡𝑒/𝑝𝑜𝑤𝑒𝑟 𝑑𝑟𝑎𝑤𝑛}.

• Online Stage. During the online profiling stage, the profiler takes the current model hyperparameters and
the runtime cache-hit-rate 𝜖 as input, and predicts the energy demand using the energy model in Equ.(8).

Note that the primary goal of the profiler is to ensure consistent ranking between the estimated and the actual
energy cost tested on the mobile device. The consistency in ranking suffices to provide accurate feedback to
dynamically adjust the video enhancement model’s hyperparameters for energy conservation.

4.3 Automated Adaptation Loop
Fig. 11 shows the overall workflow of the energy-aware adaptation controller. The adaptation loop consists of
the resource monitor, the runtime energy profiler, the analyzer, and the optimizer. The resource monitor tracks
the energy supply of the platform, while the energy profiler (Sec. 4.2) predicts the energy demand of the video
enhancement process with the current configurations. If the energy demand exceeds the supply, the analyzer
notifies the optimizer, which then re-selects 𝜃𝑙 , 𝜃 𝑓 , 𝜃𝑑 as in Sec. 4.1.2. The control loop routinely checks for changes
in the system and performs adaptations at a pre-defined frequency (e.g., 1 second).

5 EVALUATION

5.1 Experiment Setups
5.1.1 Datasets. We experiment with seven datasets, six open low-light image/video enhancement benchmark
datasets (SCIE [5], Loli-Phone [29], LOL [50], VV [47], LIME [15], NightOwls [38]) and one self-collected dataset
(MobileScene). Tab. 2 lists the details of these datasets.
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Table 2. Overview of low-light image and video datasets.
Datasets Data type Sample number Description

1. SCIE [5] Images 2002 pieces Diverse exposure levels
2. Loli-Phone [29] Videos 300 frames Taken by real-world smartphones
3. VV [47] Unpaired images 24 pieces Low-light images
4. LIME [15] Unpaired images 10 pieces Low-light images
5. NightOwls [38] Unpaired videos 500 piece Low-light videos
6. LOL [50] Paired images 500 pairs Low-light images with the corresponding high-light images
7. MobiScene Unpaired low-light videos 40 pieces Self-collected videos with moving/static cameras and moving/static objects

We use SICE [5] and Loli-Phone [29] for training. SCIE contains images of different exposure levels. We use it
to train the single-frame image’s enhancement performance of exposure level, smoothness, neighborhood, and
color balance. Loli-Phone contains multiple video clips taken by smartphones, and we adopt it for training the
exposure and color consistency of the video enhancement model. Specifically, we use SICE as the image training
dataset as Zero-DCE [14], and Loli-Phone as the video training dataset for the fast low-light video enhancement
model of AdaEnlight. All the images and video frames are resized as 256 × 256 × 3. We use Adam as the optimizer
and train the model for 100 epochs. The learning rate is set to 0.0001 with the batch size of 4.

The remaining datasets are for testing. We consider datasets with both paired and unpaired samples. VV [47]
and LIME [15] are unpaired low-light image datasets, NightOwls [38] is an unpaired low-light video dataset, and
LOL [50] is a paired low-light image dataset. MobiScene is a self-collected dataset including four scenarios (i.e.,
moving/static cameras with moving/static objects), which is used to measure the enhanced video’s temporal
stability. The concrete performance metrics of each dataset are explained in the setups of each experiment below.

5.1.2 Baselines. We compare the performance of AdaEnlight with the following baselines.

• Zero-DCE [14]. It is a lightweight low-light image enhancement scheme which adopts zero-shot learning
to avoid training with paired data and employs an iterative curve-based architecture to map a low-light
image to its enhanced version.

• Zero-DCE++ [28]. It is the more resource-efficient version of Zero-DCE by compressing the neural network
to learn the curve parameters by depth-wise separable convolutions and curve parameter map reuse.

• MELLEN [36]. It is a recent low-light image enhancement method that achieves high enhancement quality.
It extracts rich features via multiple sub-networks and generates the output with multi-branch fusion.

• StableLLVE [59]. It is a state-of-the-art low-light video enhancement model which enforces the temporal
stability among frames.

• AdaEnlight Basic. It is the variant of AdaEnlight without incorporating the temporal consistency loss.
• AdaEnlightW/O_Align. It is the variant of AdaEnlight without the optical flow alignment pre-process.

5.1.3 Implementation. We implement all the compared methods in Pytorch. Training of the algorithms is
performed on a server with NVIDIA GeForce RTX 2070 GPU and Intel Core i5-10400F CPU at 2.90GHz and CUDA
10.0. We deploy each method to mobile devices for low-light enhancement. Specifically, we test three commercial
mobile camera-embedded platforms, including a personal smartphone, i.e., Honor 9 with Octa-core CPU processor
(device 1), an embedded development board, i.e., raspberry Pi 4B with Quad-core CPU (device 2), and a mobile
platform, i.e., NVIDIA Jetson Nano with 128-core NVIDIA Maxwell GPU (device 3). For mobile deployment
of AdaEnlight, we use the Pytorch Mobile on the Android 12.0 platform (device 1) the NCNN framework on
Raspberry Pi OS (device 2), and Pytorch 1.4 on Ubuntu 18.04 platform (device 3). For platforms with both mobile
CPU and GPU, we configure the computing tasks to execute on either the GPU or CPU to avoid excessive
GPU-CPU communication. We use OpenCV to invoke the embedded camera for video shooting at a rate of 20
frames per second. The video frames are resized to 270 × 480 and fed into each algorithm for enhancement.
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Table 3. Performance comparison of AdaEnlight with four baselines in terms of parameter size, latency, and visual quality.
Output visual quality

NIQE ↓ SSIM ↑ PSNR ↑ MAE ↓Methods Parameter
size

Average latency
per frame (s) VV (task3) LIME (task4) NightOwls (task5) LOL (task6)

Zero-DCE [14] 308.6KB 11.743 2.751 3.812 3.541 0.846 14.132 52.172
Zero-DCE++ [28] 39.1KB 0.193 2.547 3.82 3.159 0.864 14.596 49.871
StableLLVE [59] 15.8MB 1.2 2.224 3.725 3.793 0.864 17.142 34.921
MBLLEN [36] 1.7MB 6.225 2.76 3.763 3.333 0.899 17.229 34.296
AdaEnlight 0.17KB 0.05 2.57 3.723 2.882 0.854 17.232 33.784

5.2 Low-light Video Enhancement Performance
This section presents the results on low-light enhancement compared with the baselines.

5.2.1 Performance on Open Benchmarks. This experiment compares the performance of AdaEnlight and different
baseline methods on open low-light enhancement datasets.
Setups. We use three low-light image datasets, i.e., VV (task3), LIME (task4), and LOL (task6) to assess the

enhancement performance on a single frame, and 10 video streams from the low-light video dataset NightOwls
(task5). We compare the visual quality of the enhanced images or videos and the latency to process each image or
video frame. We use four visual quality metrics, i.e., structural similarity (SSIM)[49], peak signal-to-noise ratio
(PSNR), mean absolute error (MAE), and natural image quality evaluator (NIQE)[37]. SSIM, PSNR, and MAE
measure the visual disparity of low-light images/videos from the labeled high-quality ones, while NIQE is a
no-reference metric to measure the deviations from statistical regularities observed in natural images, without
training on paired data. The experiments are conducted on Raspberry Pi 4B (with CPU, device 2). We run the
measurements for six times and report the average values.
Results. Tab. 3 summarizes the results. AdaEnlight outperforms the baselines in execution latency. In fact,

only AdaEnlight achieves real-time low-light enhancement. The average delay of AdaEnlight is about 0.05𝑠 per
frame, which is smaller than the input streaming speed (i.e., 0.1s per frame for the 10FPS video stream from
NightOwls [38]). In comparison, the delays of StableLIVE, MBLLEN, Zero-DCE, and Zero-DCE++ are 1.2, 6.225𝑠 ,
11.743𝑠 , and 0.193𝑠 per frame. The low latency of AdaEnlight attributes to the non-iterative enhancement with
Gamma correction-based curve design (see Sec. 3.2). Despite its low latency, AdaEnlight achieves competitive
visual quality. Specifically, AdaEnlight achieves the best NIQE on NightOwls (video) and LIME (image), and is at
least as good as Zero-DCE++ in the NIQE metric for the VV task [47]. Also, AdaEnlight achieves the best PSNR
and MAE on LOL [15]. These outcomes validate the effectiveness of the proposed curve-based enhancement.

5.2.2 Performance on Real-world Mobile Scenarios. This experiment assesses the temporal stability of the videos
enhanced by AdaEnlight and different baseline methods across four typical real-world mobile scenarios. Note that
both the camera and the objects in videos may be in motion in mobile shooting scenarios, making it challenging
for a low-light enhancement algorithm to deliver stable video streams.
Setups. We test four real-world mobile scenarios: Scenario A: a moving camera capturing videos of moving

objects, Scenario B: a moving camera capturing videos of static objects, Scenario C: a static camera capturing videos
of moving objects, and Scenario D: a static camera capturing videos of static objects. We use our self-collected
video dataset MobiScene and videos from NightOwls on Raspberry Pi 4B (with CPU, device 2). We quantify
the temporal stability of videos by temporal structural similarity index measure (TSSIM) and mean absolute
brightness differences (MADB). TSSIM is a common metric for the temporal structural similarity of adjacent
frames in the video stream, and MADB measures the pixel difference between adjacent frames.
Results. Fig. 12 compares TSSIM and MABD of different algorithms in all the four scenarios. Compared with

prior methods, AdaEnlight achieves the best results in (a), (b), (g) and the second best results in (c), (d), (e), (f).
Furthermore, AdaEnlight outperforms its Basic variant in all the four scenarios, which validates the necessity of
the temporal consistency loss. Compared with the variant W/O_align, AdaEnlight achieves better results in the
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(a) Moving cam, moving obj (b) Moving cam, static obj (c) Static cam, moving obj (d) Static cam, static obj

(e) Moving cam, moving obj (f) Moving cam, static obj (g) Static cam, moving obj (h) Static cam, static obj

Fig. 12. Temporal stability quantified by TSSIM and MABD, in four mobile scenarios. Scenario A: moving camera and moving
objects {(a),(e)}, Scenario B: moving camera and static objects {(b),(f)}, Scenario C: static camera and moving objects {(c),(g)},
and Scenario D: static camera and static objects {(d),(h)}. A high TSSIM and a low MABD mean good temporal stability.

Fig. 13. Performance comparison for the downstream on-device video application of mobile face detection.

TSSIM metric, although AdaEnlight is slightly worse thanW/O_align in the MABD metric. The results show
that AdaEnlight achieves a better structural-level stability due to the optical flow alignment.

5.2.3 Performance on Downstream On-device Tasks: Face Detection. This experiment shows the performance
gains of AdaEnlight for downstream vision tasks such as face detection.
Setups. We use the widely used face detection algorithm, DSFD [30], to detect human faces in the raw low-light

frames and those enhanced by Zero-DCE, Zero-DCE++, and AdaEnlight, respectively. We use the dark face [56]
dataset to simulate the raw low-light frames. The experiment was conducted on Raspberry Pi 4B (with CPU,
device 2) and we measure the precision and recall of face detection.
Results. Fig. 13 compares the precision-recall trade-off of different algorithms. AdaEnlight shows the highest

area under the precision-recall curve, representing the best recall and the highest precision. Specifically, the high
precision and recall relate to a low false-positive rate and a low false-negative rate. We can conclude that the
enhanced video frames can improve facial detection performance than the raw low-light frame AdaEnlight brings
better facial detection benefits than Zero-DCE and Zero-DCE++.
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Table 4. Comparison of AdaEnlight with other commercial solutions.
Solutions Special hardware Enhancement Internet Latency Usage shortcoming

Night vision camera Infrared camera On-device None Real-time Lost color
Adobe premiere pro None PC None 0.04s/frame Expert only

Baidu contrast enhance API None Cloud server Dependent 1.8s/frame Unstable
iPhone 13 camera None On-device None 1.3s/image No video support

AdaEnlight None On-device None 0.03s/frame None

Raw frame Enhanced frame

AdaEnlight

(a) On-device video enhancement

Raw frame

Video
en/decoding

Enhanced frame (noisy)

AdaEnlight

(b) Remote video enhancement after internet streaming

Fig. 14. Visual quality comparison of the enhanced frame before and after commercial video encoding technique.

Table 5. AdaEnlight’s performance with diverse mobile energy budgets on Honor 9 (with CPU, device 1).

No. Diverse
energy supply

Power
(W)

Energy per
frame(mJ)

Power cost
per video (mAh)

Visual quality
(VMAF)

Latency
per frame (ms)

Optimal Hyperparameters
𝜃 𝑓 𝜃𝑙 𝜃𝑑

1 89% 4.1 200 1.7 99.8 49 0 0 1
2 78% 3.8 191 1.5 93.2 47 1 1 1
3 69% 3.7 182 1.4 90.2 45 1 1 1/2
4 50% 3.5 175 1.3 86.2 42 2 2 1
5 48% 3.2 138 1.1 73.7 37 3 1 1/2
6 32% 3.2 93 0.8 72.1 30 3 3 1/3

Table 6. AdaEnlight’s performance with diverse mobile energy budgets on Jetson Nano (with GPU, device 3).

No. Diverse
energy supply

Power
(W)

Energy per
frame(mJ)

Power cost
per video (mAh)

Visual quality
(VMAF)

Latency
per frame (ms)

Optimal Hyperparameters
𝜃 𝑓 𝜃𝑙 𝜃𝑑

1 95% 3.3 82.3 0.68 100 25 0 0 1
2 81% 3.2 66.2 0.55 96.9 20 1 1 1
3 76% 3.2 57.6 0.48 94.2 18 4 1 1
4 40% 3.0 48.1 0.40 75.1 12 0 0 1/2

5.2.4 Comparison with Commercial Low-light Enhancement Solutions. Tab. 4 summarizes AdaEnlight’s main
characteristics compared with other commercial low-light enhancement solutions. AdaEnlight requires no special
devices, and conducts video enhancement without network dependency.

Fig. 14 illustrates that the output visual quality of locally enhanced video, before encoding (e.g., H.264 encoding),
is better than the remotely enhanced one, with the intermediate encoding/decoding interference. The video
encoding (e.g., H.264 encoding) technique is widely used to stream video over the internet. It verifies the visual
benefit of on-device video enhancement, demonstrating the need for on-device video enhancement. Specifically,
the natural image quality metric (NIQE) value of the locally enhanced and remotely enhanced video frame is 3.0
and 3.7, respectively. The smaller the NIQE score, the higher the quality.

5.3 System Performance
This subsection presents the evaluations of AdaEnlight in terms of various system performance metrics.

5.3.1 Adaptation to Dynamic Energy Budgets of Mobile Platforms. This experiment evaluates how AdaEnlight
optimizes visual quality under different energy budget. Given a specific energy budget, AdaEnlight’s controller
actively adjusts its behaviors (i.e., the frame-level computation reuse, the layer-level computation reuse, and the
frame resolution) by re-selecting the suitable hyperparameters 𝜃 𝑓 , 𝜃𝑙 , and 𝜃𝑑 .
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Fig. 15. AdaEnlight’s performance across diverse inputs with varying video frame rates (FPS), i.e., 10 FPS, 20FPS, and 30FPS.

Fig. 16. AdaEnlight’s performance on three typical camera-embedded platforms.

Setups. We leverage the NightOwls video dataset (task 5) for evaluation. We normalize the resolution of all
video frames into the same size, i.e., 270P, for fair comparison. And we sample diverse stations of energy supply
(i.e., the remaining battery) on Honor 9 (with CPU, device 1) and Jetson Nano (with GPU, device 3), to evaluate
AdaEnlight’s hyperparameter selection on computation reuse and down-sampling. The computation reuse and
down-sampling operations for energy conservation will bring about a decline in visual quality. Thus, we adopt a
full-reference video quality metric, i.e., video multimethod assessment fusion (VMAF) to quantify the quality
decrease of computation reuse in different levels.
Results. Tab. 5 and Tab. 6 summarize the performance and the corresponding hyperparameters with different

energy supply. We make the following observations. First, AdaEnlight can select suitable hyperparameters
with various energy budgets. For example, at 78% energy supply on Honor 9 (with CPU, device 1), the optimal
hyperparameter is to reuse 1 frame and 1 layer without down-sampling. At 48% energy supply, it becomes
reusing 3 frames and 3 layers and down-sampling by 1/3. Second, different hyperparameters setups of 𝜃 𝑓 , 𝜃𝑙 ,
and 𝜃𝑑 can dynamically tune the trade-off between the output video quality and the energy consumption. Third,
the computation reuse and down-sampling behaviors can further reduce the execution latency of the video
enhancement model, ranging from 49𝑚𝑠 to 30𝑚𝑠 per frame. Therefore, all these hyperparameters ensure real-
time constraints. Finally, for completeness, we run AdaEnlight on Honor 9 (device 1, with 3200 mAH battery)
with different computation reuse parameters to simulate diverse user preference on visual quality and energy
consumption. Experiments show that AdaEnlight will drain the battery in 2.5ℎ ∼ 4ℎ under these settings.

5.3.2 Adaptation to Input Video Frame Rates. We now test AdaEnlight’s performance over diverse video streams.
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(a) 𝐼𝑡𝑒 = 1, Zero-DCE++ (b) 𝐼𝑡𝑒 = 8, Zero-DCE++ (c) 𝐼𝑡𝑒 = 1, AdaEnlight (d) 𝐼𝑡𝑒 = 8, AdaEnlight
Fig. 17. Impact of iteration numbers 𝐼𝑡𝑒 on visual quality by Zero-DCE++ and our Gamma correction-based curve.

Setups. We use 20 video clips of 10𝑠 duration with three different video frame rates, i.e., 10 frame per second
(FPS), 20FPS, and 30 FPS. We test the AdaEnlight’s execution latency on Honor 9 (with CPU, device 1). We use
the digital power monitor of Monsoon AAA10F to power the smartphone and measure its energy cost.
Results. Fig. 15 shows the performance of AdaEnlight across diverse input video streams. First, AdaEnlight

achieves real-time processing for all frame rates. Specifically, for the 10FPS, 20FPS, and 30FPS input video streams,
the average processing latency per frame is 50𝑚𝑠 , 47𝑚𝑠 , and 31𝑚𝑠 , respectively. Furthermore, the average delay
of AdaEnlight to process the entire video clip with these three frame rates is ≤ 10𝑠 , which is smaller than the
streaming speed of the input video, thereby ensuring real-time video stream enhancement. Second, the energy
consumption of AdaEnlight on the Honor 9 platform is adjustable for diverse input videos with the same energy
budget. Specifically, the energy cost of AdaEnlight for the 10FPS, 20FPS, and 30FPS input videos is 227𝑚𝐽 , 158𝑚𝐽 ,
and 97𝑚𝐽 , respectively. For video streams over 30FPS, we can further reduce the execution latency and energy
consumption by adjusting the computation reuse and frame resolution hyperparameters.

5.3.3 Performance on Diverse Mobile Platforms. This experiment evaluates AdaEnlight on different devices.
Setups. We test three platforms: Honor 9 (using CPU, device 1), Raspberry Pi 4B (with CPU, device 2), and

NVIDIA Jetson Nano (with GPU, device 3). Different devices have diverse resource availability (e.g., computation
throughput and memory hierarchy) and frameworks (Pytorch mobile, NCNN, Pytorch), which lead to different
execution latency. We use the NightOwls dataset to extract video samples as the input of AdaEnlight. We use
nine input videos of 10s at 270P, and a frame rate of 10FPS for testing to obtain the overall processing delay.
Results. Fig. 16 compares the AdaEnlight performance on these three different platforms. On all three resource-

constrained mobile devices, AdaEnlight achieves real-time processing with 20𝑚𝑠 ∼ 51.5𝑚𝑠 execution latency.

5.4 Ablation Studies
This section evaluates the impact of various setups on the AdaEnlight’s performance.

5.4.1 Iteration Number in Gamma Correction-based Curve. As discussed in Sec. 3.2, we propose the non-iterative
enhancement method to break the latency bottleneck of traditional curve-based image enhancement. As shown
in Fig. 17, the visual quality enhanced by AdaEnlight does not notably increase with more iterations. Thus, we set
the iteration number as 1, which is equivalent to a non-iterative model. Fig. 18a compares the execution latency
of AdaEnlight’s enhancement model and Zero-DCE with different iteration numbers in their curve functions.
AdaEnlight avoids the long latency due to the iterative enhancement process in Zero-DCE.

5.4.2 Layer and Channel Number. To tune the architecture hyperparameters (i.e., the number of layer and
channel) of AdaEnlight’s enhancement model, we compare the performance of different architecture settings. We
randomly selected six video segmentations from NightOwls dataset with the frame resolution of 270 × 480 for
testing, each video has a duration of 10S, a frame rate of 10FPS, and a frame resolution of 270 × 480. Fig. 18b
illustrates the model’s execution latency with four settings. All the settings result in the competitive visual quality,
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Fig. 18. Benchmark of various parameters, i.e., (a) iteration number, (b) layer and channel number, (c) frame-level and
layer-level computation reuse, and (d) frame resolution, on AdaEnlight’s performance.

Table 7. Cross-time and cross-model energy profiler measurement on Honor 9 (with CPU, device 1).
Cross-time evaluation

Prediction at time 1
(resource state 1)

Measurement at time 1
(resource state 1) Error Prediction at time 2

(resource state 2)
Measurement at time 2

(resource state 2) Error

0.192mJ 0.2mJ 4% 0.141mJ 0.138mJ 1.4%
Cross-model evaluation

Prediction for model 1
(4 layers )

Measurement for model 1
(4 layers) Error Prediction for model 2

(5 layers)
Measurement for model 2

(5 layers) Error

0.285mJ 0.27mJ 5.6% 0.368mJ 0.38mJ 3.2%

while 3 layers with 4 channels has the lowest latency on Raspberry Pi 4B (with CPU, device 2). Thus, we set the
layer number as 3 and the channel number as 6 in AdaEnlight’s enhancement model by default.

5.4.3 Impact of Computation Reuse. As discussed in Sec. 3.4.3, due to temporal similarities between adjacent
video frames, we can dynamically adjust the model complexity by enforcing computation reuse. Fig. 18c illustrates
the energy consumption of AdaEnlight’s video enhancement model on Honor 9 (with CPU, device 1), under
different frame and layer reuse settings. We compare five options, i.e., reuse#1 (frame = 1 layer = 1), reuse#2
(frame = 1, layer = 2), reuse#3 (frame = 1, layer = 3), and reuse#4 (frame = 2, layer = 2), and reuse#5 (frame = 2,
layer = 3). The outcomes verify that these computation reuse hyperparameters can effectively tune the model’s
energy cost. It is worth mentioning that such computation reuse also reduces the overall latency by 10% ∼ 50%.
For example, given a fixed frame-level computation reuse parameter 5, if we set layer-level computation reuse
parameter as 1,2 and 3, the latency decreases by 12.5%, 35.1% and 57.6%, respectively. However, since AdaEnlight
without computation reuse already achieves near real-time processing i.e., 50ms per frame (shown in Tab. 3), a
reduction of 50% in delay does not introduce perceivable improvement in user experience. Therefore, we mainly
focus on the improvement in energy consumption due to computation reuse.

5.4.4 Impact of Frame Resolution. This experiment verifies the effect of input frame resolution on the energy
consumption of AdaEnlight’s video enhancement, on Honor 9 (with CPU, device 1). Fig. 18d compares the energy
cost of three down-sampling levels (i.e., 1 ∼ 3), representing the full resolution, down to 1/2 resolution, and
down to 1/3 resolution, respectively. The energy consumption increases linearly with the frame resolution. Thus,
down-sampling the resolution of the input video frame can naturally tune the model’s energy demand.

5.4.5 Generalization of Energy Profiler. This experiment demonstrates the cross-time and cross-model gener-
alization performance. We refer to the evaluation methodology in nn-Meter [60]. We use the existing energy
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Table 8. Cross-time and cross-model energy profiler measurement on Jetson Nano (with GPU, device 3).
Cross-time evaluation

Prediction at time 3
(resource state 1)

Measurement at time 3
(resource state 1) Error Prediction at time 4

(resource state 2)
Measurement at time 4

(resource state 2) Error

0.36mJ 0.38mJ 5.6% 0.541mJ 0.574mJ 6.1%
Cross-model evaluation

Prediction for model 1
(4 layers )

Measurement for model 1
(4 layers) Error Prediction for model 3

(3 layers)
Measurement for model 3

(3 layers) Error

0.129mJ 0.128mJ 0.8% 0.090mJ 0.093mJ 3.3%

profiler trained for Honor 9 (with CPU, device 1) and Jetson Nano (with GPU, device 3) to predict model energy
consumption for four different times and three models. We evaluate our energy profiling for CPU at time 1 and
time 2 with model 1 and model 2; while for GPU at time 3 and time 4 with model 1 and model 3. At different
times, the available execution resources of the platform differ, which will affect the cache hit rate and thus the
energy demand. The three models have different architectures: model 1 has 3 Conv and activation layers, model
2 has 4 Conv and activation layers, and model 3 has 2 Conv and activation layers. As shown in Tab. 7 and Tab. 8,
the energy profiler achieves ≥ 93.9% accuracy for cross-time prediction, and ≥ 94.4% for cross-model prediction.
Importantly, the results show that our energy profiler ensures consistent ranking between the estimated and the
actual energy cost, which is crucial for the controller to adapt the hyperparameters to the energy demand.

5.5 Summary of Main Experimental Results
We summarize the main results of our evaluations as follows.
• Near real-time processing on diverse mobile devices. AdaEnlight’s enhancement model achieves near real-time
video enhancement on different mobile devices, e.g., 51 ms per frame on Raspberry Pi 4B, 47 ms per frame
on Honor 9, and 20 ms per frame on NVIDIA Jetson Nano. This is because the proposed non-iterative
model breaks the latency bottleneck of the state-of-the-art enhancement schemes.

• Better trade-off between processing delay and visual quality. AdaEnlight’s enhancement model achieves
the lower video enhancement latency while retaining competitive visual quality. AdaEnlight’s latency
is only 1/4 of Zero-DCE++ [28], the fastest low-light enhancement scheme. Meanwhile, AdaEnlight still
yields high visual quality. For example, AdaEnlight achieves a PSNR of 17.232, which is almost the same
as MBLLEN [36], the state-of-the-art video enhancement solution (with a PSNR of 17.229). AdaEnlight
consistently outputs stable and high-quality videos on various datasets (LOL, NightOwls, LIME and VV),
and different scenarios (static/mobile camera, static/mobile objects). This is mainly due to the enforced
temporal consistency between video.

• Adaptive to diverse energy supply. AdaEnlight’s energy-aware controller is able to adapt the enhancement
quality according to the energy budget at runtime. As a concrete example, when the energy supply is
reduced from 95% to 40%, the power consumption of the AdaEnlight is reduced from 0.68mAh to 0.4mAh
(see Tab. 8). It proves the necessity of the energy-aware controller in mobile systems.

6 RELATED WORK

6.1 Low-light Image and Video Enhancement
Low-light enhancement improves the perception or interpretability of images and videos captured in dim
light [18, 29]. Most prior efforts focus on image enhancement [14, 15, 17, 20, 24, 28] while video enhancement
[6, 19, 36, 59] is regarded as an extension of image enhancement by avoiding the flicking problem between
frames. We refer readers to [29] for a comprehensive review. Of our particular interest is Zero-DCE [14] and its
follow-up, Zero-DCE++ [28], a state-of-the-art zero-shot learning based low-light image enhancement scheme.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 4, Article 172. Publication date: December 2022.



172:22 • Liu et al.

The reasons are two-fold. (i) There lacks paired training data i.e., low-light images or videos and the corresponding
well-illuminated versions, in real-world mobile video applications. Therefore, zero-shot learning based solutions
[14, 28] are preferable over supervised learning ones [6, 35] since the former requires neither paired nor unpaired
training data. (ii) Zero-DCE [14] and Zero-DCE++ [28] apply a model architecture that consists of a deep
neural network and an image-to-curve mapping, making it one of the most lightweight solution while achieving
competitive image enhancement performance.
The primary challenge to extend low-light enhancement from images to videos is the flicking problem [29].

Some studies implicitly solve the problem by substituting the 2D network architectures in image enhancement
models to the corresponding 3D versions [19, 36]. However, they require specialized equipment to collect video
datasets for training the new 3D architectures. A more practical strategy is to incorporate temporal consistency
into the loss function of image enhancementmodels [6, 59]. For example, Chen et al. [6] proposed a self-consistency
loss to tolerate minor differences between inputs while keeping the output stable. Zhang et al. [59] enforces
temporal consistency by ensuring stable optical flows estimated from the videos.

To this end, the low-light video enhancement module of AdaEnlight extends existing low-light enhancement
solutions from images to videos. And AdaEnlight advances the prior arts by introducing novel designs. (i) It
notably reduces the processing time of low-light enhancement schemes, by replacing the iterative image-curve
mapping using a non-iterative mapping function. For example, AdaEnlight dramatically outperforms Zero-DCE
[14] in terms of processing latency, one of the most lightweight low-light image enhancement method. (ii) It
designs the novel temporal consistency loss and its training scheme compatible to zero-shot learning based image
enhancement schemes without the need for large-scale paired video datasets.

6.2 Energy-awareness in DNNs
Existing DNN energy profiling methods couple with either the DNN topology (e.g., model structure, computation
path) [33] or the hardware platform (e.g., on-chip memory capability, memory bandwidth) [25, 55]. Tien-Ju et
al. [54] propose a layer-wise estimation method, which takes approximately 10 seconds to output the normalized
energy consumption of a DNN based on its architecture, sparsity, and bitwidth. Yannan et al. [53]present the
hardware architecture-dependent energy profiling method. Some other works generate the design-specific tables
with predefined attributes to estimate DNN energy cost [22, 39]. However, the above methods cannot profile the
DNN energy usage for providing exact runtime feedback on dynamic resource availability with agnostic DNN
topology, because the sampling for the specific DNN prototype or platform is costly.
Unlike existing methods, AdaEnlight builds the one-fits-all profiler for DNN energy usage based on the

following two observations: (i) despite the dynamic topology of video processing models, the underlying tensor
operation (i.e., the energy-dominating operation loops) and the data flow are stable. (ii) Despite the dynamic
hardware resource supply (e.g., on-chip memory capability, computation bandwidth), the hit ratio of on-chip
memory access shows up the stable rules and within a small sampling set.

6.3 Adaptive Vision Tasks on Mobile Devices
Adaptive vision tasks involve image/video delivery between distributed mobiles or between the mobile and cloud.
Examples include live video streaming [23], video-on-demand [3], and virtual reality [48]. The key challenge for
such tasks is the reliance on networking conditions. To tackle this challenge, researchers propose two categories
of solutions, i.e., adaptive bitrate [8, 44, 48], and super-resolution [26, 34, 58]. They co-design the task demands
(e.g., visual quality, latency, or inference accuracy) with the streaming process. In bitrate adaptation, each video is
split into segments. These segments are encoded using multiple bitrates and streamed with the suitable bitrate
based on the network conditions [48]. In super-resolution scheme, compact content with low resolution or
quality is transmitted, which is then enhanced at the receiver [26, 58]. For example, Yeo et al. [57] leverages the
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super-resolution DNNs to enable the content-aware video delivery. Lee et al. [26] present MobiSR to boost the
performance of on-device super-resolution.

Nevertheless, the concerns of these efforts are coupled with other edge or cloud devices. AdaEnlight serves as
a locally deployed middleware to directly provide video enhancement services for local applications.

7 CONCLUSION
This paper presents AdaEnlight, an energy-aware low-light video enhancement system that achieves near real-
time performance with competitive enhanced visual quality. It consists of a novel model for fast low-light video
enhancement as well as an agile energy-aware controller to dynamically adjust the enhancement behaviors for
energy conservation. And experimental results show that AdaEnlight outperforms existing image and video
enhancement methods in latency and temporal stability while retaining satisfactory system energy efficiency.

There are several limitations of our work that may need future exploration. (i) Although AdaEnlight achieves
near real-time processing for RGB videos, the frames are resized to 270 × 480 × 3. To support videos with higher
resolutions, a more lightweight and efficient video enhancement model is necessary. We plan to exploit the
fixed-point operations common on mobile platforms and explore quantization and other model compression
techniques to further accelerate the video enhancement model. An interesting follow-up is to extend AdaEnlight
to videos in raw format to handle extremely low-light conditions. (ii) The proposed energy profiler can be
integrated into other mobile systems. The energy profiler of AdaEnlight is built for mobile GPUs or CPUs only
for tractability. Also, more efforts are needed to design the modular and extensible energy profiler for devices
with heterogeneous computation resources, e.g., GPU-CPU co-execution.
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