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ABSTRACT
State-of-the-art empirical work has shown that visual representations
learned by deep neural networks are robust in nature and capable
of performing classification tasks on diverse datasets. For exam-
ple, CLIP demonstrated zero-shot transfer performance on multiple
datasets for classification tasks in a joint embedding space of image
and text pairs. However, it showed negative transfer performance
on standard datasets, e.g., BirdsNAP, RESISC45, and MNIST. In
this paper, we propose ContextCLIP, a contextual and contrastive
learning framework for the contextual alignment of image-text pairs
by learning robust visual representations on Conceptual Captions
dataset. Our framework was observed to improve the image-text
alignment by aligning text and image representations contextually
in the joint embedding space. ContextCLIP showed good qualitative
performance for text-to-image retrieval tasks and enhanced classifica-
tion accuracy. We evaluated our model quantitatively with zero-shot
transfer and fine-tuning experiments on CIFAR-10, CIFAR-100,
Birdsnap, RESISC45, and MNIST datasets for classification task.
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1 INTRODUCTION
Learning robust image representations is an enduring problem in
computer vision, as is the related question of making those represen-
tations transferable to some other dataset. Image representations also
contain linguistic context, making a transfer to other domains a rea-
sonable problem to pursue. No other benchmarks have been pursued
as religiously as the ImageNet [10, 40] network architectures for a
broad array of computer vision problems like transferring to new
datasets [14, 39], object detection [20], image segmentation [4] etc.
Recently, natural language-based supervision has been extensively
researched for learning robust image representations, e.g., CLIP [37],
ALIGN [21], and BASIC [36] have enjoyed great success in extend-
ing contrastive learning to paired image-text data, with impressive
zero-shot classification and robustness. Visual self-supervision [35]
and use of unpaired data [45] have been included in achieving such
robust visual representations. Although these methods have achieved
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good performance in terms of positive zero-shot transfer on multi-
ple datasets, they have shown negative zero-shot transfer on some
datasets like MNIST, RESISC45, and BirdsNap.
Contrastive learning only exploits the high-level image-text pair
similarity information but does not exploit semantic-level image-text
pair similarity; it does not capture the contextual alignment of image
and text pairs. Our work identifies contextual learning complements
the contrastive learning objective for image-text alignment. Fig. 2
depicts the addition of contextual information to image-text pairs.
As shown in Fig. 2a, CLIP enables the alignment of image-text pairs
through contrastive learning. It only aligns 𝐼1 with 𝑇1 and not with
𝑇2 and so on. Somewhat more formally, the image-text alignment
problem can be described as follows: given a set of images and
captions, determine the relation between image-text pairs based on
the contextual similarity. The standard contrastive learning objective
aims to identify the matched image text pairs (”positives”) against
the mismatched (”negatives”) image-text pairs. [5, 46]. This, how-
ever, does not make the alignment of 𝐼1 and 𝑇1 at the semantic level.
For example, Fig. 2b illustrates words such as orange and mango of
captions 𝑇1 are matched with regions corresponding to mango and
orange in image 𝐼1.

In this paper, we aim to learn robust image representation by
studying image-text contextual alignment, i.e., given valid image-
text pairs, we compute the image and text embedding that can be
contextually aligned in the embedding space. Such an objective
can be fulfilled when one can align the learned image and text
embeddings at the context level. We hypothesize that because of
the contextual non-alignment of the embeddings (of true image-text
pairs), CLIP showed negative zero-shot transfer on standard datasets,
e.g., BirdsNAP, RESISC45, and MNIST. To fix this, we propose
ContextCLIP, a framework for the contextual alignment of image-
text pairs based on the robust visual representation of CLIP using
contextual loss [33]. Contextual loss aligns image-text pairs at the
semantic level; specifically, given an image-text pair learned through
contrastive learning, we augment the contrastive learning objective
with a contextual learning objective at the feature level. The latter
uses the nearest neighbor field to measure the similarity between
images and texts. It considers a particular feature of one modality and
identifies the “most similar” of the other. These features are matched
in a projected space of image and text modalities (low-dimensional)
and introduces contextual alignment at the feature level by reducing
the distance between the image and text embeddings. We show that
explicit formulation of contextual alignment objective improves the
overall alignment between image-text pairs, as shown in Tables 1
and 2. In all cases, we pre-train our models on a small fraction of the
Conceptual Captions 3M dataset [41] (around 6K image-text pairs)
and evaluate them on CIFAR-10, CIFAR-100, MNIST, RESISC45,
BirdsNap with zero-shot transfer and fine-tuning experiments on
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Text Description (a) CLIP [37] (b) ContextCLIP (ours)

A little girl climbing
on red roping

A small boy putting
something in his
mouth with both hands

Figure 1: The figure shows the output comparison between (a) CLIP [37] and (b) ContextCLIP (ours) for text-to-image retrieval task.

standard datasets. For qualitative performance evaluation, we per-
formed text-to-image retrieval experiments; Fig. 1 and Fig. 5 show
text-based image retrieval results for CLIP and ContextCLIP. The
results of our proposed framework are visually better in terms of
consistency with the textual descriptions.

Contributions. The contributions are summarized as follows.

• We analyze contrastive learning for representation learning jointly
over image and text modalities and identify non-alignment be-
tween the representation space of image and text modalities of
CLIP (Fig. 6 and Fig. 7).

• We propose ContextCLIP, a framework for contextual alignment
of image-text space by employing contextual loss between non-
aligned feature space of text and image embeddings (Sec. 3).

• We show that our approach learns a more robust visual representa-
tion than CLIP and shows positive zero-shot transfer on standard
datasets where CLIP had negative zero-shot transfer performance.
To show better representations obtained, we also performed fine-
tuning experiments. (Table 1 and 2).

2 RELATED WORK
Multimodal data is learned in a way that can represent and sum-
marize the complementary information of all modalities and re-
move redundant information. It can be achieved either through
joint representations or coordinated representations. Collective rep-
resentations have been used in state-of-the-art vision-language pre-
training models [48]. Further, to identify the direct relations between
sub(elements) from two or more different modalities, two types of
alignments have been used i.e., implicit and explicit. We have used
both types of alignment, implicit (i.e., contrastive) as well as explicit
(i.e., contextual), to find the relation between sub(elements) of two
modalities.

Contrastive representation learning. It was originally proposed

(a) Image-Text Alignment
through CLIP [37]

(b) Image-Text Contextual
Alignment (ContextCLIP)

Figure 2: The figure (a) illustrate the contrastive alignment of
the image-text pairs as performed by CLIP [37]. (b) shows the
contextual alignment of the image-text pair as performed by
ContextCLIP.

for self-supervised representation learning in the unimodal con-
text where the embeddings of a sample are brought closer to an
augmented version of the sample. In contrast, the embeddings are
pushed away for other samples, and their augmentations [17] [5, 15,
16, 18, 46]. Some works like [51] impose additional constraints to
remove redundancies and prevent dimensional collapse in the visual
representations. Contrastive learning has also been used to learn
robust representations of the multimodal data [38, 50].

The image and text multimodal data is encoded separately with
their respective encoders, producing individual vision and language
vectors embedded into a joint space using a contrastive loss. Con-
trastive approaches have the capability to learn a highly generic
visual representation and have good strength to do classification
on downstream tasks. Moreover, when pre-trained on a large and
diverse dataset [21, 36] strong zero-shot vision-text retrieval and
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Figure 3: The figure shows the major components of ContextCLIP framework. It consists of image and text encoders with contextual
and contrastive alignment objectives. The key idea is that contextual and contrastive alignment at embedding space helps to perform
the image-Text alignment. The maroon arrow between the filled orange-colored circle (Text) and blue-colored triangle (Image) shows
the contrastive alignment. The green arrow indicates the contextual alignment between Image-Text Pair.

(a)

(b) (c)

(d)

Figure 4: The figure shows contextual learning of Image-Text pairs. (a) Contrastive alignment of image (triangle) and text pair
(circle) obtained through CLIP [37, 43, 49] (b) Many-to-One correspondence between text feature points (light orange colored circle
𝑣 𝑗 ) and image feature points (light cyan colored triangle 𝑢𝑖 ). 𝐶𝑋𝑖 𝑗 is the contextual similarity between 𝑢𝑖 and 𝑣 𝑗 . (c) Affinity matrix
of contextual similarity between 𝑢𝑖 and 𝑣 𝑗 . In each column, highlighted red color entry represents embedding 𝑢𝑖 with the highest
contextual similarity to the given 𝑣 𝑗 . (d) shows 𝑢𝑖 and 𝑣 𝑗 are aligned contextually in addition to the contrastive alignment.

classification performance have been obtained. Unfortunately, as
they are only trained to match visual data to text description, these
models can only be adapted to close-ended tasks. Finally, it is chal-
lenging to adapt contrastive models using a handful of examples.
In fact, Radford et al. (2021) indicated that using as few as two
training examples per class actually decreased the CLIP zero-shot
performance. But, Flamingo models have significantly improved
with as few as four examples. Many works use additional losses to
imbibe extra supervisory multimodal knowledge during the training
process [12, 27, 42, 52]. In this work, we focus on having contextual
loss[33] in addition to the contrastive loss to learn more robust and
aligned image-text representations.

Contextual Learning. Contextual learning is useful for various
applications such as image-to-image transformation tasks [33], style

transfer [9, 31] and image restoration [29, 32]. Mastan et al. have
shown contextual learning is also useful for image enhancement
when training with limited training samples [7, 8, 28, 30]. The key
challenge in image-to-image transformation tasks comes in the pres-
ence of non-aligned image data, where employing a pixel-based loss
function will be less effective. Contextual learning on images first
extracts contextual features using a pre-trained feature extractor and
then compares the extracted representations using the contextual
loss. The critical observation here is that similar features will be
closer in the embedding space. Therefore, the contextual loss will be
able to match the feature even in the presence of the non-alignment
of the image data. We employ contextual loss on the pre-trained
embeddings of the image and text pair captured from the feature
extractor.
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Image-Text alignment Models. In recent years rapid progress has
been made in vision-language pre-training (VLP), which aims to
jointly encode vision and language in a fusion model. Image-Text
alignment models subsume the vision-language pre-training. CLIP
[37] and ALIGN [21] demonstrate that dual encoder models pre-
trained with contrastive objectives on image-text pairs can learn the
strong image and text representations for cross-modal alignment
task and zero-shot classification. Contrastive dual approaches [22]
rely on a relatively similar procedure with the steps as follows i)
Extract discriminative image features using a deep neural network ii)
Extract text features using another deep neural network iii) use a loss
function that measures as accurately as possible the distance between
two embedding. These models align image-text pairs only at the data
point level but not at the level of semantics of image and text. In
this paper, we align the context of image and text by incorporating
contextual loss at the joint image-text embedding space.

3 OUR APPROACH
We propose ContextCLIP framework for the alignment of contextual
features extracted from image-text pair to enhance the alignment
between image and text pair. The overview of our proposed frame-
work is illustrated in Fig. 3. We start with feeding an image and its
corresponding text description to image encoder and text encoder
respectively to get their encoded representations. These joint image-
text representations are then projected to low-dimensional space
through the projection head. There, we represent each image and
text having the same size subspace. We then measure the similarity
between the image and text pairs as a similarity measure between
these point sets. Contextual loss is computed at this point, which
makes contrastively aligned image-text pairs to be aligned at the
feature level.

3.1 Model Architecture
Our models use the same architecture as the original CLIP model
presented in [37]. In addition to CLIP architecture, we have intro-
duced a projection head for image (𝑊𝐼 ) after image and text (𝑊𝑇 ) as
shown in Fig. 3 to bring different dimensional representational sizes
of image and text to be of the same sizes.

Image Encoder. We used ResNet-50 architecture [19] as the im-
age encoder (R) for learning image representations as shown in
Fig. 3. We considered image representations of 2048 size. All im-
ages are resized to 224 × 224.
Text Encoder. It learns the feature representations from natural lan-
guage description, which is input to the text encoder as shown in
Fig. 3. For the text encoder (B), we used the pre-trained BERT model
[13]. It is a deep language model that leverages Transformer archi-
tecture to learn the contextual relations between words in a textual
description. During training, it also uses a word masking mechanism
that masks 15% of the words with a token and enables BERT to
learn the robust embeddings. We considered text representations of
768 size.
Projection Head. Once image and text representations of 2048 and
768 dimensions respectively are obtained, we projected them to the
same subspace of size 256 through the projection head. The incor-
poration of contextual loss on top of contrastive loss requires the

two non-aligned sub-spaces to be on the same embedding subspace.
Therefore, we have used the Projection Head for these represen-
tations to project them onto the space. We used image and text
projection layers as𝑊𝐼 and𝑊𝑇 respectively, as shown in Fig. 3 with
an output dimension d = 256. We followed a change introduced
by [1] i.e., not to use the non-linear projection between the repre-
sentation and the contrastive embedding space, instead use only a
linear projection to map from each encoder’s representation to the
multi-modal embedding space.

3.2 Loss Function
This section describes the loss function used in ContextCLIP. The
total loss is calculated as:

L = L𝐶𝐿𝐼𝑃 + 𝛼 × L𝐶𝑋 (1)

Here, 𝛼 is a constant with value of 0.5. L𝐶𝐿𝐼𝑃 is the contrastive loss
computed on image and text representations of size 2048 and 768,
respectively, to bring similar image-text pairs together and dissimilar
image-text pairs farther apart. L𝐶𝑋 is the contextual loss calculated
through contextual similarity defined in Sec. 3.2.2 and is applied at
the individual features of contrastive aligned image-text pair.

3.2.1 CLIP Loss (L𝐶𝐿𝐼𝑃 ): Our work is most closely related to
Contrtastive Language-Image pre-training (CLIP) [37]. While stan-
dard image models jointly train an image feature extractor and a
linear classifier to predict some label, CLIP jointly trains an image
encoder and a text encoder to predict the correct pairings of a batch
of (image, text) training examples. An overview of our method is
illustrated in Fig. 3. At a high-level view, our method first converts
each of the images and text to its equivalent representations u and v
by passing them through pre-trained image and text encoders. Image
representations (v) are of dimension 2048, and the text representa-
tions (u) are of dimension 768. Image and text representation are
connected through two contrastive losses at the data point level. The
first loss function is an image-to-text contrastive loss [53] for the i𝑡ℎ

pair:

ℓ
(𝑣−→𝑢)
𝑖

= log
exp ⟨v𝑖 , u𝑖 ⟩/𝜏∑𝑁

𝑘=1 exp ⟨v𝑖 , u𝑘 ⟩/𝜏
(2)

where, ⟨v𝑖 , u𝑖 ⟩ represents the cosine similarity between image and
text representations, i.e., ⟨v, u⟩ = v⊤u/| |v| | | |u| |; and 𝜏 ∈ R+ repre-
sents a temperature parameter. This loss is InfoNCE [46] that tries
to predict ⟨v𝑖 , u𝑖 ⟩ as the true pairs and maximizes the mutual in-
formation between image and text representations. Hence, similar
image-text pairs are put together, and the dissimilar image-text rep-
resentations are put apart farther from each other. Here, contrastive
loss is used between inputs of different modalities. Therefore, a
similar text-to-image contrastive loss [53] is defined as follows:

ℓ
(𝑢−→𝑣)
𝑖

= log
exp ⟨u𝑖 , v𝑖 ⟩/𝜏∑𝑁

𝑘=1 exp ⟨u𝑖 , v𝑘 ⟩/𝜏
(3)

Thus, final training loss is a weighted average of image-to-text
and text-to-image loss over all positive image-text pairs in each
minibatch:

L𝐶𝐿𝐼𝑃 =
1
𝑁

𝑁∑︁
𝑖=1

(
𝜆ℓ

(𝑣−→𝑢)
𝑖

+ (1 − 𝜆)ℓ (𝑢−→𝑣)
𝑖

)
(4)
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where 𝜆 ∈ [0, 1] is a scalar weight. The maroon arrow in Fig. 4a
shows the contrastive alignment between the image and text pair.

3.2.2 Contextual loss L𝐶𝑋 . The connected representations
learned through CLIP [37] loss are projected to 256-dimensional
space, where they are brought closer together at the feature level.
Contextual loss is the loss function targeted at non-aligned data. i.e.,
it does not require the two domains to be spatially aligned. It is
based on both context and semantics and compares the regions of
image and text with similar meanings while considering the context
of the entire image. Our idea is to consider a batch of images and
texts as a collection of features and measure the contextual similarity
between image and text features based on the similarity between
their features.

Contextual Similarity: We define a measure of similarity between a
pair of text and image. To accomplish this, we represent each image
𝑈 encoded by ResNet [19] and each text 𝑉 encoded by BERT [13]
as a set of low-dimensional feature points in the same subspace via
their projection heads𝑊𝐼 and𝑊𝑇 , as shown in Fig. 3. Feature points
of image and text are represented as 𝑈 = {𝑢𝑖 } and 𝑉 = {𝑣𝑖 } as
shown in Fig. 3. We assume |𝑈 | = |𝑉 | = 256 in a batch of image-text
pairs. To calculate the similarity between the images and texts, we
find for each 𝑣 𝑗 , the feature 𝑢𝑖 that is most similar to it, and then sum
the corresponding feature similarity values overall 𝑣 𝑗 . Formally, the
contextual similarity 𝐶𝑋𝑖 𝑗 between U and V is defined as follows.

𝐶𝑋 (𝑈 ,𝑉 ) = 1
𝑁

∑︁
𝑗

max
𝑗

𝐶𝑋𝑖 𝑗 (5)

where, 𝐶𝑋𝑖 𝑗 is the similarity between features 𝑢𝑖 and 𝑣 𝑗 .
The contextual similarity 𝐶𝑋𝑖 𝑗 between points at the embedding

space of image-text modalities helps for contextual cross-modal
alignment by encouraging the distance between the image and text
embedding to be close. Specifically, we consider feature𝑢𝑖 as contex-
tually similar to feature 𝑣 𝑗 , if it is significantly closer to it than to all
other features in U. If this is not the case, i.e., 𝑢𝑖 is not more similar
to any specific 𝑣 𝑗 , then its contextual similarity to all 𝑦 𝑗 should be
low. This method is resistant to distance scales, i.e., if 𝑢𝑖 is far from
all 𝑣 𝑗 , then 𝐶𝑋𝑖 𝑗 will be low for all 𝑗 .

On Image-Text latent space: When the image and text pairs are
similar, a one-to-one mapping exists between all the feature points.
When they are dissimilar, a many-to-one mapping exists between
text and image. A many-to-one mapping exists between the image
and text pair, as shown in Fig. 4b. This indicates the image-text
pair are dissimilar in nature. We measure contextual similarity and
aim to find a one-to-one mapping between image and text pairs to
make them similar at the feature level to make them similar. The
distance between image and text is a function of the near field.
Contextual learning objectives use the nearest neighbor field in order
to measure the similarity between images and texts. To avoid the
need for geometric alignment between two modalities, it considers
a particular feature of one modality and identifies the most similar
features of the other modality. This yields the nearest neighbor field
of matches between two modalities. The green arrow represents the
nearest neighboring field. The loss function will use the green arrows
and their associated weights. We start by computing a full affinity

matrix between the point sets representing the images and texts, as
shown in Fig. 2b. Taking the maximum over each affinity yields the
nearest neighbor field. To incorporate the context of each point, we
use contextual affinity. We consider the context by normalizing the
affinities in a softmax manner. The normalization is done in each
row of the affinity matrix. Thus, we measure the similarity between
two points representing an image and text using contextual affinity.

Matches between features are formed by considering all the fea-
tures in the batch of images. This incorporates the cross-modal global
image context into the similarity measure. The similarity between
images and texts is then defined based on the similarity between
the matched features. This allows the aligned image to spatially
deform with respect to the text description. Let 𝑑𝑖 𝑗 represent the
cosine similarity of 𝑢𝑖 and 𝑣 𝑗 . When 𝑑𝑖 𝑗 << 𝑑𝑖𝑘 and for all 𝑘 ≠ 𝑗 ,
we consider features 𝑢𝑖 and 𝑣 𝑗 to be similar. To begin, we normalize
the distances, as done by [33]:

𝑑𝑖 𝑗 =
𝑑𝑖 𝑗

min𝑘 𝑑𝑖𝑘 + 𝜖
(6)

for a fixed 𝜖 = 1𝑒 − 5. We shift from distances to similarities by
exponentiation:

𝑤𝑖 𝑗 = exp

(
1 − ˜𝑑𝑖 𝑗

ℎ

)
(7)

where ℎ > 0 is a band-width parameter. Finally, the contextual simi-
larity between features is defined to be a scale invariant version of
the normalized similarities. In the extreme case, 𝐶𝑋 (𝑋,𝑌 ) is equiva-
lent to counting how many features in V are the nearest neighbors
of a feature in U, which is exactly the template matching measure
proposed by [44].

𝐶𝑋𝑖 𝑗 = 𝑤𝑖 𝑗/
∑︁
𝑘

𝑤𝑖𝑘 (8)

Therefore, contextual loss between image-text space is defined as

L𝐶𝑋 (𝑢, 𝑣, 𝑑) = − log
(
𝐶𝑋

(
𝑅𝑑 (𝑢), 𝐵𝑑 (𝑣)

))
(9)

The optimal solution to the contrastive loss formulation for CLIP
would push the similarity between the normalized embeddings of
the matched pairs towards one while forcing all other pairs of simi-
larities to zero. Thus, aligning the cross-modal similarity matrix and
minimizing the cross-modal alignement loss. However, this ideal-
ized scenario does not occur in practice, and we find that explicit
alignment via contextual loss in ContextCLIP facilitates improved
learning, as we show in our experiments. The pseudo-code for our
approach is present in the supplementary material.

4 EXPERIMENTAL RESULTS
We performed zero-shot transfer, fine-tuning, and text-to-image re-
trieval experiments on the CLIP and ContextCLIP methods. In a
zero-shot transfer experiment, we observe that ContextCLIP im-
proves top-1 accuracy over CLIP by 1 on CIFAR-10, by 0.5 on
CIFAR-100, and by 2 on the BirdsNap dataset. ContextCLIP also
outperforms CLIP in fine-tuning experiments, with an average rela-
tive gain of top-1 accuracy of +8 on CIFAR-10, +3 on RESISC45,
and +1.5 on BirdsNap datasets. We also observed improved structure
of embeddings on ContextXLIP in the representation space when
projected to 2 dimensional space with t-SNE [47] and discovered
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Text input. (a) CLIP [37] (b) ContextCLIP (ours)

A boy in a red suit
plays in the water

Two girls enjoy a ride
at an amusement park

A person riding a
skateboard jumps high
above the concrete
steps

People hold flags in a
crowded block

A pale dog is running
along a dirt path

Figure 5: Text-to-image Retrieval examples. (a) Represents the retrieval from CLIP [37] model. (b) Represents the retrieval from
ContextCLIP model.

that representations with contextual loss are more structured than
representations only with contrastive loss.

4.1 Evaluation
A zero-shot image classification task (Sec. 4.2) has been performed
for both CLIP [37] and ContextCLIP, i.e., classifying test images
into categories not seen at training time. We have used top-1 and
top-5 accuracy to report the accuracy of predictions of classes given
an image and a text template. We follow the evaluation strategy as
suggested by [37] for zero-shot classification using prompt engi-
neering. We used the following datasets for evaluating zero-shot
transfer and fine-tuning experiments : CIFAR-10 [25], CIFAR-100
[25], MNIST [11], RESISC45 [6], BirdsNap [2]. For each dataset,
we use the names of classes to form a set of natural sentences such
as ’a photo of the class name’, ’a sketch of the class name’ and
more. Then, the similarity of the test image to each text template is
computed (e.g., cosine distance), and the model predicts the category
for which the image-caption similarity is highest. For evaluation of

representations obtained, we performed fine-tuning experiments as
mentioned in Sec. 4.3

4.2 Zero-Shot Transfer
For this experiment, we have trained our model on the Conceptual
Captions [41] dataset. The complete details of the dataset and ex-
perimental setup are mentioned in Sec. 6. There is a pre-defined
text template corresponding to each dataset as adopted from [37].
These templates are passed through text encoder to get a set of text
embeddings for that class. To obtain a single text embedding for that
class, this set of text embeddings is 𝑒𝑙𝑙2-normalized, averaged, and
further 𝑒𝑙𝑙2-normalized. For a given image, the image embedding is
obtained by passing it through an image encoder as defined in Sec. 3.
The class whose text embedding is closest to the test image is taken
to be the predicted label. The top-1 and top-5 accuracies of zero-shot
performance are presented in Table 1.
CLIP [37] showed positive zero-shot transfer on CIFAR-10 and
CIFAR-100 but negative zero-shot transfer on BirdsNap, RESISC45,
and MNIST. Unlike CLIP, our method ContextCLIP showed positive
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zero-shot transfer performance on the BirdsNap (+1.91) and MNIST
(+6.16) datasets in addition to CIFAR-10 (+1.03) and CIFAR-100
(+0.23) but negative zero-shot transfer performance on RESISC45 (-
1.93). We reason that the positive zero-shot transfer of ContextCLIP
on BirdNap and MNIST is because of the contextual loss in addition
to the contrastive objective, which helps to align context (word)
information from text description to the style information of the im-
age. For RESISC45, ContextCLIP has shown negative zero transfer
because of not being able to capture the alignment information from
textual description and image. Among all of the evaluated datasets,
MNIST has shown the most positive zero-shot transfer. We reason
that this is because of the simple alignment relation between image
and text space, as opposed to BirdsNap, CIFAR-10, and CIFAR-100,
which have comparatively complex attributes and hence complex
alignment relations.

4.3 Fine-tuning
The representation capabilities of our model ContextCLIP are evalu-
ated through fine-tuning experiment. There are many ways to evalu-
ate the quality of representations, e.g., One approach involves fitting
a linear classifier on a representation extracted from the model and
measuring its performance on various datasets. An alternative to this
is measuring the performance of end-to-end fine-tuning the model.
We adopted fine-tuning of the model because it increases the flexi-
bility, and prior work has demonstrated that fine-tuning outperforms
linear classification on most image classification datasets [24]. We
conducted fine-tuning experiments of the pre-trained representations
obtained from the image encoder and text encoder i) only with con-
trastive loss and ii) contextual loss in addition to contrastive loss. The
results are shown in the Table 2. We observe that top-1 classification
accuracy improved on all datasets with the addition of contextual
loss.
We observe that the maximum improvement in this experiment
is obtained on CIFAR-10 (+7.94). Followed by this is RESISC45
(+2.55); CIFAR-100 (+.22); MNIST (+1.69); and BirdsNap (+1.64).
CIFAR-10 showed maximum improvement as compared to other
datasets because it has only 10 class categories. MNIST also has
the same number of classes, but because of the very simple dataset
and the complex formulation of the model, it is not able to learn
well. Improvement in the evaluated datasets is shown in below or-
der, i.e., CIFAR-10 RESISC45, which has 45 classes, followed by
CIFAR-100 (45 classes), and BirdNap (200 classes). We observed
that with the increase in the number of classes in datasets, the quality
of representations learned from the supervision of other modalities
reduces.

4.4 Text-to-Image Retrieval
For qualitative performance evaluation, we performed text-to-image
retrieval tasks, i.e., given a text description, we retrieved a set of
images with the CLIP and ContextCLIP methods, respectively. As
shown in Fig. 5, the figures present on the left hand side are the
images retrieved with the CLIP and on the right hand side are
the images retrieved from ContextCLIP. We found that with the
ContextCLIP method, the retrieved images are more semantically
matched with the text description as compared to the CLIP method.
e.g., corresponding to the text "A boy in red suit plays in the water,"

images retrieved with ContextCLIP contain either complete text
information or most parts of text in the image. In the CLIP output, it
does not show the boy in a red suit. In one of the retrievals, it shows
two kids playing in water. Such specific number and color informa-
tion is missing in the CLIP method, but ContextCLIP is capable of
capturing such minute details of the text. Similarly, considering the
other text examples like "People hold flags in a crowded block. Here,
CLIP has not retrieved any images where either people or a flag can
be seen in any image. As opposed to this, ContextCLIP has retrieved
somewhat relevant results here. In some of the images, we can see
people holding flags, a crowd somewhere, etc.

5 ABLATION STUDIES
We projected high-dimension representations of image and text em-
beddings (256) obtained from their respective encoders (R and B)
and followed by their projection heads (𝑊𝐼 and 𝑊𝑇 ) to reduced-
dimensional space. Low-dimensional projection is of size 2 and is
done with t-SNE [47] for CIFAR-10 and MNIST with and without
contextual loss as shown in Fig. 6 and Fig. 7. For both the datasets,
image embeddings are more structured as compared to text embed-
dings. This is because, through ContextCLIP, we only aim to modify
and learn robust image representations through natural language su-
pervision. Once the image and text representations are obtained from
the projection head, text representations do not get modified. With
the addition of contextual loss, only image embeddings are updated
with respect to the content and style of a given text description.

Dataset (a) CLIP [37] (b) ContextCLIP

CIFAR-10

MNIST

Figure 6: Image Embeddings. The top and bottom rows are the
embeddings of CIFAR-10 and MNIST, respectively. a) The im-
age embeddings without contextual loss are shown in the left col-
umn; b) The image embeddings with contextual loss are shown
in the right column.

As shown in Fig. 6, image embeddings clearly visualises all of
the classes for both the datasets with the different colours. Image
embedings of all classes are more clustered with ContextCLIP than
CLIP. As opposed to image embeddings, there is no structured infor-
mation in text embeddings 7, neither in CLIP nor in ContextCLIP,
but still comparatively better clustering information is available with
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Table 1: The table shows quantitative performance for Zero-shot Transfer on standard datasets.

Dataset
Top-1 Accuracy Top-5 Accuracy

CLIP [37] ContextCLIP (ours) CLIP [37] ContextCLIP (ours)

CIFAR-10 9.37 10.40 49.77 50.14

CIFAR-100 0.92 1.15 4.34 5.32

RESISC45 3.41 1.48 12.19 11.05

BirdsNap 8.5 10.41 41.11 46.86

MNIST 12.26 18.42 50.90 59.82

Table 2: The table shows quantitative performance for Fine-Tuning on standard datasets.

Dataset
Top-1 Accuracy Top-5 Accuracy

CLIP [37] ContextCLIP (ours) CLIP [37] ContextCLIP (ours)

CIFAR-10 2.46 10.40 60.78 68.14

CIFAR-100 1.00 1.22 5.37 7.24

RESISC45 82.83 85.38 98.30 98.37

BirdsNap 14.25 15.89 35.9 43.85

MNIST 92.78 94.47 99.12 99.64

Dataset a) CLIP [37] b) ContextCLIP

CIFAR-10

MNIST

Figure 7: Text Embeddings. The top and bottom rows are the
embeddings of CIFAR-10 and MNIST, respectively. a) The left
column shows text embeddings that have no contextual loss; b)
the right column shows image embeddings that have contextual
loss.

ContextCLIP than CLIP. We tested text embeddings though BERT
[13] as well as SimCSE[15]. In the figure 7, we have shown the
results with SimCSE. In SimCSE, text representations are learned in
an unsupervised way.

6 EXPERIMENTAL SETUP
Training Details. We have used [34] code for producing all tables
and figures of our work. For contrastive learning, we used a temper-
ature value of 𝜏 = 1.0 and a loss weight of 𝜆 = 0.75. We used the
Adam optimizer [23] with a weight decay of 1e-3. A learning rate
of 1e-4 and 1e-6 was used for the image encoder and text encoder
respectively. We use a fixed batch size of 32. We train the model for
30 epochs. The network is trained jointly to minimise the distance
between the modality-specific embeddings.

Datasets. We used Conceptual Captions 1M [41] (CC1M) image-
caption pairs as the source of image and text pre-training data for
zero-shot transfer experiments. Although this dataset is smaller than
the custom dataset (400 million pairs) used in the original work on
CLIP [37], it is suitable for our available data and compute. Many
subsequent works on language-image pre-training have used CC1M
for benchmark evaluations[3, 26, 35, 45].
Fine-tuning: For fine-tuning purposes, we trained variants of the
ContextCLIP model end-to-end with the CIFAR-10 [25], CIFAR-
100 [25], MNIST [11], RESISC45 [6], and BirdsNap [2] datasets.
We considered 80–20–10% as the training, validation, and testing
configurations. We considered the same datasets for evaluating the
results of zero-shot transfer experiments.

7 CONCLUSION
We presented ContextCLIP, a framework for contextual alignment of
image-text pairs on CLIP visual representations. We studied the mis-
alignment of image and text representations on CLIP representations.
The main benefit of our method comes from incorporating contextual
alignment into the joint image-text embedding space in addition to
contrastive alignment. Empirically, we showed that ContextCLIP
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performs better than CLIP on zero-shot classification on datasets like
MNIST, CIFAR-10, CIFAR-100, BirdsNap and RESISC45 where
CLIP had shown negative zero-shot transfer performance. For future
work, we aim to evaluate our proposed method on ImageNet and its
variants. We also showed that the representations learned by Con-
textCLIP are consistent with the concept-level knowledge of text
description, as evidenced by text-to-image retrieval tasks. Also, with
the fine-tuning experiments, we observed more robustness in visual
representations than CLIP. We believe this work can motivate further
studies on identifying conditions and regularization strategies under
which the learned representations are synergistic across the image-
text modalities for downstream applications. One significant future
direction for ContextCLIP is to extend the work from text-to-image
retrieval tasks to text-to-image style transfer and manipulation tasks.
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# Pseudo-code for ContextCLIP
1. 𝑒𝑛𝑐𝑜𝑑𝑒𝑟𝑖𝑚𝑎𝑔𝑒 - ResNet Model
2. 𝑒𝑛𝑐𝑜𝑑𝑒𝑟𝑡𝑒𝑥𝑡 - BERT Model
3. 𝐼 [𝑛,ℎ, 𝑤, 𝑐 ] - minibatch of images
4. 𝑇 [𝑛, 𝑙 ] - minibatch of texts
5. 𝑊𝐼 [𝑑𝑖 , 𝑑𝑒 ] - learned projection of image to embed
6. 𝑊𝑇 [𝑑𝑡 , 𝑑𝑒 ] - learned projection of text to embed
7. 𝑡 - learned temperature parameter
# extract feature representations of each modality
8. 𝐼𝑓 = 𝑒𝑛𝑐𝑜𝑑𝑒𝑟𝑖𝑚𝑎𝑔𝑒 (𝐼 ) - [𝑛,𝑑𝑖 ]
9. 𝑇𝑓 = 𝑒𝑛𝑐𝑜𝑑𝑒𝑟𝑡𝑒𝑥𝑡 (𝑇 ) - [𝑛,𝑑𝑡 ]

# joint multimodal embedding [n, d_e]
10. 𝐼𝑒 = 𝑙2𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (𝑛𝑝.𝑑𝑜𝑡 (𝐼𝑓 ,𝑊𝐼 ), 𝑎𝑥𝑖𝑠 = 1)
11. 𝑇𝑒 = 𝑙2𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (𝑛𝑝.𝑑𝑜𝑡 (𝑇𝑓 ,𝑊𝑇 ), 𝑎𝑥𝑖𝑠 = 1)

# scaled pairwise cosine similarities [n, n]
12. logits = 𝑛𝑝.𝑑𝑜𝑡 (𝐼𝑒 ,𝑇𝑒 .𝑇 ) ∗ 𝑛𝑝.𝑒𝑥𝑝 (𝑡 )

# contrastive loss function
13. labels = np.arange(n)
14. 𝑙𝑜𝑠𝑠𝑖= crossEntroLoss(logits, labels, axis=0)
15. 𝑙𝑜𝑠𝑠𝑡 = crossEntroLoss(logits, labels, axis=1)
16. 𝑙𝑜𝑠𝑠𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 = (𝑙𝑜𝑠𝑠𝑖 + 𝑙𝑜𝑠𝑠𝑡 )/2

# contextual loss function
17. 𝑙𝑜𝑠𝑠𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑢𝑎𝑙 = contextualLoss(𝐼𝑒 ,𝑇𝑒 )

18. loss = 𝑙𝑜𝑠𝑠𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 + 𝑙𝑎𝑚𝑏𝑑𝑎 × 𝑙𝑜𝑠𝑠𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑢𝑎𝑙

Algorithm 1. This describes sequence of steps taken to add contextual loss on CLIP joint image-text embedding space.

This details of Algorithm 1 for the proposed ContextCLIP is described as follows.
• Line 1 and 2 are the ResNet image encoder and BERT text encoder.
• Line 3 and 4 are the mini-batch of size n of images (I) and texts (T).
• Line 5 and 6 are the projection heads for image (𝑊𝐼 ) and text (𝑊𝑇 ) which projects the different size image (𝑑𝑖)

and text (𝑑𝑡 ) representations to the same size (𝑑𝑒).
• Line 7 is the temperature value used for calculating the contrastive loss between image and text pairs.
• Line 8 and 9 are the image (𝐼𝑓 ) and text (𝑇𝑓 ) representations obtained from the image-encoder and text-

encoder respectively.
• Line 10 and 11 are the normalised image (𝐼𝑒) and text (𝑇𝑒) embeddings of their representations obtained by

dot product of image and text representations with their projection heads.
• Line 12 calculates the logits of image and text embeddings i.e. it calculates the image and text similarity with

a specific temparture value.
• Line 13 defines the true labels of all images.
• Line 14 and 15 calculates the cross entropy loss 𝑙𝑜𝑠𝑠𝑖 and 𝑙𝑜𝑠𝑠𝑡 between image and text embeddings based on

true and predicted image-text pairs.
• Line 16 calculates the contrastive loss between image and text embeddings.
• Line 17 calculates the contextual loss at the semantic level of image and text embeddings.
• Line 18 calculates the sum of contrastive and contextual loss. This completes the total loss calculation for a

mini-batch of texts and images pair with the weightage of 𝜆 = [0 − 1].
The same sequence of steps is performed for another batch of images and so on. This code was iterated for 25
epochs on training datasets: Conceptual Captions for zero-shot transfer experiments; CIFAR-10, CIFAR-100,
MNIST, BirdsNap, RESISC45 for fine-tuning experiments; Flickr-8K for text-to-image retrieval experiments.
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