
HAL Id: hal-03890876
https://hal.science/hal-03890876v1

Submitted on 30 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Explicit or Implicit? On Feature Engineering for
ML-based Variability-intensive Systems

Paul Temple, Gilles Perrouin

To cite this version:
Paul Temple, Gilles Perrouin. Explicit or Implicit? On Feature Engineering for ML-based Variability-
intensive Systems. VaMoS 2023 - 17th International Working Conference on Variability Modelling of
Software-Intensive Systems, Jan 2023, Odense, Denmark. pp.1-3, �10.1145/3571788.3571804�. �hal-
03890876�

https://hal.science/hal-03890876v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Explicit or Implicit? On Feature Engineering for ML-based
Variability-intensive Systems

Paul Temple
paul.temple@irisa.fr

Univ Rennes, CNRS, Inria, IRISA
Rennes, France

Gilles Perrouin
gilles.perrouin@unamur.be

PReCISE, NaDI, University of Namur
Namur, Belgium

ABSTRACT
Software variability engineering benefits from Machine Learning
(ML) to learn e.g., variability-aware performance models, explore
variants of interest and minimize their energy impact. As the num-
ber of applications of combining variability with ML grows, we
would like to reflect on what is the core to the configuration pro-
cess in software variability and inference in ML: feature engineering.
These disciplines previously managed features explicitly, easing
graceful combinations. Now, deep learning techniques derive au-
tomatically obscure but efficient features from data. Shall we give
up explicit feature management in variability-intensive systems to
embrace machine learning advances?

KEYWORDS
feature, machine learning, software variability
ACM Reference Format:
Paul Temple and Gilles Perrouin. 2023. Explicit or Implicit? On Feature En-
gineering for ML-based Variability-intensive Systems. In 17th International
Working Conference on Variability Modelling of Software-Intensive Systems
(VaMoS 2023), January 25–27, 2023, Odense, Denmark. ACM, New York, NY,
USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
To deal with the inherent engineering complexity of variability-
intensive systems, machine learning (ML) techniques are helpful.
Applications include specifying software product lines [1, 20] and
predicting systems’ performance [18, 19]. Conversely, variability
management techniques can support the design ofmachine learning
models [8].

Core to the cross-fertilization of software variability and ML is
the process of feature engineering. While the term “feature” has
many meanings [4, 6] in the software variability and relates to vari-
ous types of data processed by ML algorithms, feature engineering
is essential for relevant configurations (variability) and accurate
decisions (ML). In this paper, we show that though variability man-
agement relies on explicit feature engineering, ML transitioned
from explicit to implicit feature engineering, notably enhancing the
performance of deep learning models. Embracing these advances

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

via implicit feature engineering may imply giving up the essence of
variability management by losing control over the features. Should
we go there?

Section 2 presents explicit feature engineering in ML and vari-
ability. Section 3 describes implicit feature management in deep
learning. Finally, Section 4 discusses the implications of implicit
feature management for software variability practice.

2 EXPLICIT FEATURE ENGINEERING
Software variability features. From a user-oriented perspective,

we find multiple definitions of “feature” in software product lines
textbooks: “a feature is a characteristic or end-user-visible behavior
of a software system” [3]; “a set of software-intensive systems that
share a common, managed set of features satisfying the specific
needs of a particular market segment or mission and that are de-
veloped from a common set of core assets in a prescribed way.” [7].
Rashid et al. define a feature as “characteristic of a product that is
visible to the end user in some way” [15]. Thus, from a user per-
spective, a feature can be anything (requirements, design element,
software artifact) as long as it helps distinguish one product from
another.

ML features for image processing. On the other hand, ML models
also try to distinguish products (i.e., data) based on their feature
descriptions. ML features are supposed observable characteristics
that, if appropriately selected, should help decide which group
data belong to. Their definition remains difficult and historically
relies on domain expertise. In image processing, Harris et al. [10]
defined corners as the most relevant parts of images helping to
differentiate them. Schmid et al. [16] improved this approach before
the introduction of the Scale Invariant Feature Transform (SIFT)
descriptors [13]. In this context, the literature defines features as
visually explicit elements: corners and boundaries.

ML features for tabular data. The Iris dataset 1 is a toy example
for pedagogical purposes. It contains only 150 instances separated
into three classes, all described by four features (or attributes). They
are the length and width of the sepals and petals. TheMLmodel task
is to analyze the attributes of the sepals and petals to understand
what makes one instance belongs to a class or another. According
to domain knowledge, these four characteristics should be sufficient
to classify irises. Taking a different example, the Postoperative
dataset 2 tries to determine where patients in a postoperative re-
covery area should go next (home, intensive care unit, or general
hospital floor). Domain knowledge informs us that hypothermia is
an important risk after surgery. Thus, the identified features that
1https://archive.ics.uci.edu/ml/datasets/iris
2https://archive.ics.uci.edu/ml/datasets/Post-Operative+Patient

https://orcid.org/0000-0002-8276-0593
https://orcid.org/0000-0002-8431-0377
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Paul Temple and Gilles Perrouin

describe the situation (i.e., overall state of patients) focus on body
temperature.
All these examples have defined their features according to domain
knowledge that documents how experts analyze data to decide.
Because of this human and somewhat manual aspect, features carry
some explicit, explainable semantics. It allows direct mapping from
the decisions to a combination of these features.

Using software variability features as ML features. Regarding soft-
ware variability and feature models, concrete features (abstract
features help structure information) also relate to the decisions
users make when building their products. Here again, the seman-
tics of features is explicit, allowing users to understand the impact
of their choices on the resulting products. However, despite us-
ing software variability features as directly as ML features (e.g.,
[1, 2, 9, 20, 21]), some difficulties arise. For instance, ML models
often require homogeneous features (i.e., over the same range of
values and preventing the use of a list of elements in a single string).
It demands changing the representation of enumerations. Usually,
one turns literals into integers. Yet, ML models consider a spurious
order between literals. One thus flattens enumerations into a set of
Boolean features, for example: “is choice X selected?”. The Pandas
framework, in Python, calls this decomposition “dummification”3.
While this causes the number of features artificially increase (which
may cause other problems for ML, e.g., the curse of dimensional-
ity [11]) and makes them independent, the enumeration semantics
remains.

3 IMPLICIT FEATURE ENGINEERING
The rise of deep learning (DL) has forcedmodels to learn themselves
which features are relevant to their tasks. Doing so, DL models have
shown incredible performances that continue to be improved every
day.

Embedding in Deep Learning. A first step (called embedding)
transforms data into an intermediate homogeneous representa-
tion that accounts for relations between elements of input data
(e.g., close meaning or frequent co-occurrences). One turns raw
input data into vectors of real-value numbers. This vector defines
a high-dimension space that groups data points of close meaning
or frequent co-occurrence. Conversely, there is a greater distance
among points having different meanings or infrequent occurrences.
While this transformation may take as input the previously men-
tioned characteristics, the fact that dimensions are now a non-trivial
combination of these different elements renders the interpretation
of each dimension difficult, if not impossible. However, the new
representation is prone to define a continuous space allowing the
use of, for instance, gradient-based methods for optimization (and
especially to converge when learning the task of the DL model).
The creation and selection of such dimensions is fully automatic.
Hence, embedding and feature extraction do not have to rely on the
knowledge of domain experts to guide the selection or definition of
such features. Yet, there is no guarantee of meeting all the expected
properties of the resulting encoding space.

3https://pandas.pydata.org/docs/reference/api/pandas.get_dummies.html

Interpretation and control over DL features. Automated embed-
ding and feature extraction techniques raise the problem of building
humanly understandable models (i.e., explainable AI), in which we
seek to understand why the model took a decision. Also, multiple
software engineering tasks rely on a deep understanding of the
system’s behavior. For instance, trying to debug a system because
of unexpected behavior is facilitated by clear code structures. With
DL models, understanding the model decision or why it did not
activate the expected neuron is much more difficult because the
features do not have concrete meaning. As an example of an appli-
cation, Pierazzi et al. [14] used some gradient-based techniques to
modify programs such that they become malicious. Yet, the goal of
the transformation is to insert a malicious behavior in the program
while retaining its basic functionality (i.e., the program still behaves
correctly, in addition, it retrieves and leaks information about the
system). This work first transforms the code of the application into
an intermediate representation. This representation supports an
optimal introduction of malicious behavior. Yet, the transforma-
tion needs to be bidirectional since we need to produce back the
modified source code to run tests. Such a property is desirable for
domain expert intervention and control.

Balancing performance and control. Deep learning can achieve
far better performances in various tasks than older ML models and
relies on techniques that demand fewer human actions to optimize
the data representation. The current trend is to use embedding to
provide an efficient intermediate representation to employ gradient-
based optimization techniques. Unfortunately, this prevents domain
experts from controlling how the model behaves and, if necessary,
modifying it accordingly. On the other hand, their intuitions on
which characteristics to consider to solve a problem may be wrong,
leading to ML models of lower performance. In the end, it seems
that there is a trade-off to find between the level of control and un-
derstanding experts need to have to pursue their different activities,
such as model debugging, and the performance of the models.

4 EXPLICIT OR IMPLICIT?
So the dilemma in this paper is the following: either we acknowledge
that explicit feature engineering promoted by the variability modeling
community is crucial, implying non-deepmodels of lower performance,
or we do fully embrace the deep learning advances, allowing ML
models to transform the variability space of our systems automatically
in ways that domain experts may not understand.

Giving up on three decades of feature management research
since the definition of feature models [12] for performance is not
easy. First, it means denying in part the achievements members
of the variability management community contributed to, in this
conference or other venues. They successfully offered techniques
to model, design, test, and verify variability-intensive systems with
myriad options. Second, there are categories of critical systems
where features need to be interpretable by humans, should they be
involved in medical decisions or justice ones. On the other hand, it
leads to missing automation and performance opportunities that
only deep learning can bring. Thus, our community have to explore
trade-offs between explicit and implicit feature engineering. We

Explicit or Implicit? On Feature Engineering for ML-based Variability-intensive Systems Conference’17, July 2017, Washington, DC, USA

also think that this exploration could lead to a new notion of syn-
thetic feature, issued from reversible transformations of the original
feature space.

Such a graceful combination is required to address complex chal-
lenges such as predicting the performance or energy consumption
of variability-intensive systems [17]. We think now is the time
to do it, as prompt-enabled language models generate code and
documentation for features automatically [5].

ACKNOWLEDGMENTS
Gilles Perrouin is an FNRS Research Associate. This work was
partly funded by the EOS-VeriLearn, project number 30992574 of
the Fonds de la Recherche Scientifique (F.R.S-FNRS) in Belgium.

REFERENCES
[1] Mathieu Acher, Paul Temple, Jean-Marc Jézéquel, José A Galindo, Jabier Martinez,

and Tewfik Ziadi. 2018. Varylatex: Learning paper variants that meet constraints.
In Proceedings of the 12th International Workshop on Variability Modelling of
Software-Intensive Systems. 83–88.

[2] Benoit Amand, Maxime Cordy, Patrick Heymans, Mathieu Acher, Paul Temple,
and Jean-Marc Jézéquel. 2019. Towards learning-aided configuration in 3D
printing: Feasibility study and application to defect prediction. In Proceedings
of the 13th International Workshop on Variability Modelling of Software-Intensive
Systems. 1–9.

[3] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2016. Feature-
oriented software product lines. Springer.

[4] Thorsten Berger, Daniela Lettner, Julia Rubin, Paul Grünbacher, Adeline Silva,
Martin Becker, Marsha Chechik, and Krzysztof Czarnecki. 2015. What is a Fea-
ture? A Qualitative Study of Features in Industrial Software Product Lines. In Pro-
ceedings of the 19th International Conference on Software Product Line (Nashville,
Tennessee) (SPLC ’15). Association for Computing Machinery, New York, NY,
USA, 16–25. https://doi.org/10.1145/2791060.2791108

[5] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish
Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov,
Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe
Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam,
Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage,
Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam
McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. https://doi.org/10.48550/ARXIV.2107.03374

[6] Andreas Classen, Patrick Heymans, and Pierre-Yves Schobbens. 2008. What’s in
a Feature: A Requirements Engineering Perspective. In Fundamental Approaches
to Software Engineering, José Luiz Fiadeiro and Paola Inverardi (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 16–30.

[7] Paul Clements and Linda M. Northrop. 2001. Software Product Lines : Practices
and Patterns. Addison-Wesley Professional, Boston, USA.

[8] Salah Ghamizi, Maxime Cordy, Mike Papadakis, and Yves Le Traon. 2019. Au-
tomated Search for Configurations of Convolutional Neural Network Architec-
tures. In Proceedings of the 23rd International Systems and Software Product Line
Conference-Volume A. 119–130.

[9] Jianmei Guo, Krzysztof Czarnecki, Sven Apel, Norbert Siegmund, and Andrzej
Wąsowski. 2013. Variability-aware performance prediction: A statistical learning
approach. In 2013 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 301–311.

[10] Chris Harris, Mike Stephens, et al. 1988. A combined corner and edge detector.
In Alvey vision conference, Vol. 15. Manchester, UK, 10–5244.

[11] Piotr Indyk and Rajeev Motwani. 1998. Approximate nearest neighbors: towards
removing the curse of dimensionality. In Proceedings of the thirtieth annual ACM
symposium on Theory of computing. 604–613.

[12] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and A Spencer Pe-
terson. 1990. Feature-oriented domain analysis (FODA) feasibility study. Technical
Report. Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst.

[13] David G Lowe. 2004. Distinctive image features from scale-invariant keypoints.
International journal of computer vision 60, 2 (2004), 91–110.

[14] Fabio Pierazzi, Feargus Pendlebury, Jacopo Cortellazzi, and Lorenzo Cavallaro.
2020. Intriguing Properties of Adversarial ML Attacks in the Problem Space. In
2020 IEEE Symposium on Security and Privacy (SP). 1332–1349. https://doi.org/10.
1109/SP40000.2020.00073

[15] Awais Rashid, Jean-Claude Royer, and Andreas Rummler. 2011. Aspect-Oriented,
Model-Driven Software Product Lines The AMPLE Way. Cambridge Univer-
sity Press. 470 pages. https://hal.archives-ouvertes.fr/hal-00620981 ISBN:
9780521767224.

[16] Cordelia Schmid, Roger Mohr, and Christian Bauckhage. 2000. Evaluation of
interest point detectors. International Journal of computer vision 37, 2 (2000),
151–172.

[17] Norbert Siegmund, Johannes Dorn, Max Weber, Christian Kaltenecker, and Sven
Apel. 2022. Green Configuration: Can Artificial Intelligence Help Reduce Energy
Consumption of Configurable Software Systems? Computer 55, 3 (2022), 74–81.

[18] Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian Kästner. 2015.
Performance-influence models for highly configurable systems. In Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering. 284–294.

[19] Norbert Siegmund, Sergiy S Kolesnikov, Christian Kästner, Sven Apel, Don Ba-
tory, Marko Rosenmüller, and Gunter Saake. 2012. Predicting performance via
automated feature-interaction detection. In 2012 34th International Conference on
Software Engineering (ICSE). IEEE, 167–177.

[20] Paul Temple, José A Galindo, Mathieu Acher, and Jean-Marc Jézéquel. 2016. Using
machine learning to infer constraints for product lines. In Proceedings of the 20th
International Systems and Software Product Line Conference. 209–218.

[21] Paul Temple, Gilles Perrouin, Mathieu Acher, Battista Biggio, Jean-Marc Jézéquel,
and Fabio Roli. 2021. Empirical assessment of generating adversarial configu-
rations for software product lines. Empirical Software Engineering 26, 1 (2021),
1–49.

https://doi.org/10.1145/2791060.2791108
https://doi.org/10.48550/ARXIV.2107.03374
https://doi.org/10.1109/SP40000.2020.00073
https://doi.org/10.1109/SP40000.2020.00073
https://hal.archives-ouvertes.fr/hal-00620981

	Abstract
	1 Introduction
	2 Explicit Feature Engineering
	3 Implicit Feature Engineering
	4 Explicit or Implicit?
	Acknowledgments
	References

