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Abstract

We consider the online minimum cost matching problem on the line. In this problem, there
are n servers and, at each of n time steps, a request arrives and must be irrevocably matched
to a server that has not yet been matched to, with the goal of minimizing the sum of the
distances between the matched pairs. Online minimum cost matching is a central problem in
applications such as ride-hailing platforms and food delivery services. Despite achieving a worst-
case competitive ratio that is exponential in n, the simple greedy algorithm, which matches each
request to its nearest available free server, performs very well in practice. A major question is
thus to explain greedy’s strong empirical performance. In this paper, we aim to understand the
performance of greedy over instances that are at least partially random.

When both the requests and the servers are drawn uniformly and independently from [0, 1],
we obtain a constant competitive ratio for greedy, which improves over the previously best-
known O(

√
n) bound for greedy in this setting. We extend this constant competitive ratio to

the excess supply setting where there is a linear excess of servers, which improves over the
previously best-known O(log3 n) bound for greedy in this setting.

We moreover show that in the semi-random model where the requests are still drawn uni-
formly and independently but where the servers are chosen adversarially, greedy achieves an
O(log n) competitive ratio. Even though this one-sided randomness allows a large improvement
in greedy’s competitive ratio compared to the model where the requests are adversarial and
arrive in a random order, we show that it is not sufficient to obtain a constant competitive
ratio by giving a tight Ω(log n) lower bound. These results invite further investigation about
how much randomness is necessary and sufficient to obtain strong theoretical guarantees for the
greedy algorithm for online minimum cost matching, on the line and beyond.
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1 Introduction

Matching problems form a core area of discrete optimization. In the 90s, a seminal paper by
Karp, Vazirani, and Vazirani [KVV90] introduced online bipartite maximum matching problems
and showed that, in the worst-case scenario, no deterministic algorithm can beat a simple greedy
procedure, and no randomized algorithm can beat ranking, which is a greedy procedure preceded
by a random shuffling of the order of the nodes. These elegant results and their natural application
to online advertising spurred much research, especially from the late 2000s on (see, e.g., [M+13] and
the references therein for a survey). While more complex algorithms have been devised for models
other than worst-case analysis, greedy techniques are often used as a competitive benchmark for
comparisons, see, e.g., [FHK+10, LFZ+20, XSC+19].

In the last few years, motivated by the surge of ride-sharing platforms, a second online matching
paradigm has received much attention: online (bipartite) minimum cost matching. In this class
of problems, one side of the market is composed of servers (sometimes called drivers) and is fully
known at time 0. Nodes from the other side, often called requests or customers, arrive one at a
time. When request i arrives, we must match it to one of the servers j, and incur a cost cij . Server
j is then removed from the list of available servers, and the procedure continues. The goal is to
minimize the total cost of the matching.

Given the motivating application to ride-sharing, it is natural to impose the condition that both
servers and requests belong to some metric space (e.g., [GK19, KP93, Kan21, Rag16, TTC94]).
Many algorithms in this area involve non-trivial procedures like randomized tree embeddings
[MNP06, BBGN07], iterative segmentation of the space [Kan21] or primal-dual arguments [Rag18],
or use randomization to bypass worst-case scenarios for deterministic algorithms [GL12].

Computational experiments suggest however that a simple greedy algorithm (sometimes also
called nearest neighbor) that matches each incoming request to the closest available server works
very well in practice. In particular, experiments have shown that greedy was more effective than
other existing algorithms in most tests and has outstanding scalability [TSD+16]. This performance
substantiates the choice of many ride-sharing platforms to actually implement greedy procedures,
in combination with other techniques [How, Lyf, Ubea, Ubeb]. In contrast, if we assume that n
servers and n requests are adversarially placed on a line, the greedy algorithm only achieves a 2n−1
competitive ratio [KP93, TTC94]. These results motivate the guiding question of this paper:

Can we find a theoretical justification for the strong practical performance of the greedy
algorithm for online minimum cost matching problems?

Understanding the strong practical performance of simple algorithms has motivated a lot of work
on beyond the worst-case analysis of algorithms. Some examples include using properties such as
curvature, stability, sharpness, and smoothness to obtain improved guarantees for greedy for sub-
modular maximization [CC84, CRV17, PST20, RZ22, BQS21] and different semi-random models
for analyzing local search for the traveling salesman problem [ERV14, KM15, ERV16, BFK22], k-
means for clustering [AMR09, MR13], and greedy for online maximum matching [GM08, DJSW11,
MJ13, Arn22]. In the context of online minimum cost matching, our understanding of the perfor-
mance of greedy is limited. Despite its simplicity, greedy is hard to analyze because a greedy match
at some time step can have complex consequences on the available servers in a different region at a
much later time step. In other words, “the state of the system under the standard greedy algorithm
is hard to keep track of analytically” [Kan21].
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In this paper, we aim to understand the performance of greedy over instances that are at least
partially random for online minimum cost matching on the line, which is a problem that has recently
received significant attention [AALS21, GL12, PS21, GKS20, MN20, Rag18, KN04, NR17, FHK03].
We first consider the fully random model, where the n servers and n requests are all drawn uniformly
and independently from [0, 1]. In this model, greedy achieves an O(

√
n) competitive ratio in the

plane [TTC94] and there are more sophisticated algorithms such as hierarchical greedy [Kan21] and
fair-bias [GGPW19] that are constant competitive in Euclidean spaces and on the line, respectively.
Our first main result settles the asymptotic performance of greedy for matching on the line in the
fully random model by showing that greedy achieves a constant competitive ratio in that setting.

Theorem 1. For online matching on the line in the fully random model, the greedy algorithm
achieves an O(1)-competitive ratio.

We show that this constant competitiveness of greedy also holds in the fully random ε−excess
model, for every constant ε > 0. This is the modification of the fully random model where there is a
linear excess of servers, i.e., (1 + ε)n servers. This results improves over the previously best-known
competitive ratio for greedy of O(log3 n) in this setting [AALS21].

Theorem 2. For any constant ε > 0, greedy is O(1)-competitive in the fully random ε-excess model.

It is widely acknowledged (see, e.g., [Fei21]) that i.i.d. instances often do not resemble “real”
instances. We next therefore consider whether strong guarantees for greedy can also be obtained
in a semi-random model. In particular, we consider a model that we call the random requests
model where the n servers are adversarially chosen and the requests are, as in the fully random
model, drawn uniformly and independently. In ride-sharing, this is motivated by the fact that
there have been examples of drivers that behave adversarially to increase the prices of the rides,
see, e.g., [Ubec]. Our next result shows that greedy is logarithmic competitive in the random
requests model.

Theorem 3. For online matching on the line in the random requests model, the greedy algorithm
achieves an O(log n)-competitive ratio.

In the model where the servers and requests are chosen adversarially but where the arrival
order is random, O(n) and Ω(n0.22) upper and lower bounds are known for the competitive ratio of
greedy [GK19]. Combined with this Ω(n0.22) lower bound, our result shows that the performance of
greedy improves exponentially when the locations of the requests are also random. Our last main
result shows that this competitive ratio of greedy in the random requests model is tight.

Theorem 4. For online matching on the line in the random requests model, the greedy algorithm
achieves an Ω(log n)-competitive ratio.

Combined with the previous result, we obtain that greedy is Θ(log n)-competitive in the random
requests model. Interestingly, this lower bound is obtained on an instance where the servers are
very close to being uniformly spread.

These results improve our understanding of why and when greedy performs well for online
minimum cost matching, but there remain many intriguing questions. In particular, we believe that
it would be interesting to study semi-random requests and/or semi-random servers, for example, in
a model where some fraction of the servers are adversarial and some fraction are random. Another
interesting model, especially in the context of ride-sharing, would be one where the location of
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a small number of servers can be chosen (i.e., a mix of best-case and worst-case). Considering
more general metric spaces beyond the line is of course also a direction for future work. Finally,
it would be interesting to explore empirically which semi-random models exhibit a structure that
most closely resembles the structure of real-world instances.

1.1 Technical overview

The main difficulty in analyzing the greedy algorithm is that there can be complex dependencies
between a greedy match that occurred at some time step in some region of the line and the set of
remaining servers that are available at a later time step in a completely different region of the line.
In other words, a single greedy match at some time step can have a butterfly effect on the servers
that will be available in the future in different regions. Algorithms such as hierarchical greedy that
partition the interval in different regions have been designed to prevent matching decisions in one
region from impacting the future available servers in another region, which does not necessarily
lead to algorithms that are better than greedy but does give algorithms that are simpler to analyze.

The starting point of our analysis, both for the upper and lower bounds, is to consider a hybrid
algorithm HmA that matches the first m requests according to an algorithm A and then greedily
matches each of the remaining requests to the closest available server. The algorithm A that is used
is different for each of our results. We show a hybrid lemma that upper bounds, for any algorithm
A that satisfies some fairly general properties, the difference cost(Hm−1

A )− cost(HmA ) (i.e., between
the total costs incurred by Hm−1

A and HmA ) as a function of the cost incurred by A to match the
mth request. This hybrid algorithm idea is similar to the path-coupling idea from [BD97] and was
also used in [GL12] to analyze online matching algorithms, but with two important differences: in
[GL12], their hybrid algorithm is used to analyze a randomized algorithm on a deterministic instance
(instead of a deterministic algorithm on a randomized instance), and in their hybrid algorithm, A
is an optimal offline algorithm (instead of an online algorithm).

In the fully random model, we consider the hybrid algorithm HmA where A is the hierarchical
greedy algorithm from [Kan21], which is known to be constant competitive in this model. We use
1) the hybrid lemma applied to this hybrid algorithm and 2) a bound on hierarchical greedy’s cost
for matching the mth request to show that the difference E[cost(G)− cost(AH)] (i.e., between the
total cost of greedy and the total cost of hierarchical greedy) is O(

√
n). Since the expected optimal

total cost is known to be Θ(
√
n) in the fully random model and since hierarchical greedy is constant

competitive, we get that greedy is also constant competitive. The analysis for the excess supply
setting is different and relies on concentration arguments. In the random requests model, we use
the hybrid lemma to show that the total cost of greedy is within an O(log n) factor of the total cost
of a simple modification of the fair-bias algorithm from [GGPW19] that is constant competitive in
the random requests model.

The most technical result of this paper is the Ω(log n) lower bound in the random requests
model. We consider an instance where there is a large number of servers at location 0, no servers
in (0, n−1/5], and the remaining 1 − o(1) servers uniformly spread in (n−1/5, 1]. We again analyze
the difference cost(Hm−1

A )−cost(HmA ), but with the hybrid algorithm HmA where A is the algorithm
that matches any request in [0, n−1/5] to a server at 0 and greedily matches any other request
to the closest available server. We show that at any time step t, the set of available servers for
Hm−1
A and HmA differ in at most one server. We then consider the distance δt at time t between

these two different servers that are available to only one of the algorithms and we show that
cost(Hm−1

A )− cost(HmA ) can be lower bounded as a function of maxt≥m δt. Due to the randomness
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of the requests, the main difficulty is to lower bound maxt≥m δt (e.g., the gap δt can either shrink or
expand at each time step), which we do by giving a careful partial characterization of the remaining
servers for HmA at each time t.

1.2 Additional related work

In general metric spaces with adversarial requests and servers, [KP93] gave a 2n − 1 determin-
istic competitive algorithm and proved that this competitive ratio is optimal for deterministic
algorithms, On the line, [KP93] showed that the competitive ratio of greedy is at least 2n − 1. A
deterministic algorithm with a sublinear competitive ratio was presented in [ABN+14]. A few years
later, [NR17] gave a O(log2 n) competitive deterministic algorithm, which was then shown to be
O(log n)-competitive in [Rag18]. Regarding lower bounds, [FHK03] showed that no deterministic
algorithm can achieve a competitive ratio strictly less than 9.001 on the line.

For randomized algorithms, still for adversarial requests and servers, [MNP06] and [CP07]
obtained a O(log3 n) competitive ratio in general metric spaces using randomized tree embeddings,
which was later improved to O(log2 n) by [BBGN07]. On the line, and for doubling metrics, [GL12]
showed that a randomized greedy algorithm is O(log n) competitive. Recently, [PS21] improved
the lower bound from [FHK03] to obtain an Ω(

√
log n) lower bound for the line that also holds for

randomized algorithms. For general metrics, it was previously known that no randomized algorithm
can achieve a competitive ratio better than Ω(log n) [MNP06].

When the arrival order of the requests is random, [GK19] showed that greedy is O(n) and
Ω(n0.22) competitive. [Rag16] gave a deterministic algorithm that achieves a O(log n) competitive
ratio, which is optimal even for randomized algorithms. When the requests are drawn i.i.d. from
any distribution over the set of servers, [GGPW19] gave a O((log log log n)2) competitive algorithm
in general metric spaces that is also constant competitive on the line and for tree metrics. When
the servers and requests are uniformly and independently distributed, [TTC94] showed that greedy
achieves an O(

√
n) competitive ratio on the unit disk and [Kan21] showed that an algorithm called

hierarchical greedy is constant competitive on the unit hypercube (and also analyzed the more
challenging fully dynamic setting where the servers also arrive online).

Empirical evaluations of different algorithms on real spatial data have shown that greedy per-
forms well in practice [TSD+16]. The excess supply setting was studied in [AALS21], who showed
that the total optimal cost is O(1) and the total cost of greedy is O(log3 n) when the number of
excess servers is linear and when the requests and servers are random (but the arrival order can
be adversarial). The results for hierarchical greedy from [Kan21] also extends to the excess supply
setting. Recourse, i.e. allowing matching decisions to be revoked to some extent, has been consid-
ered in [MN20, GKS20]. In the offline non-bipartite version of the problem with 2n point drawn
uniformly from [0, 1], [FMR90] showed that greedy achieves a Θ(log n) approximation.

2 Preliminaries

In the online matching on the line problem, there are ns servers S = {s1, . . . , sns} and n = nr
requests R = (r1, . . . , rn) such that si, ri ∈ [0, 1] for all i. Hence, an instance is given by a pair
(S,R). The servers are known to the algorithm at time t = 0. At each time step t ∈ [n], the
algorithm observes request rt and must irrevocably match it to a server that has not yet been
matched. We denote by sA(rt) the server that gets matched to request rt by (the current execution
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of) algorithm A and by SA,0 ⊇ · · · ⊇ SA,n the sets of free servers obtained through the execution of
A, where SA,0 is the initial set of servers, and for all t ∈ [n], SA,t is the set of remaining free servers
just after matching rt. The cost incurred from matching rt to sA(rt) is costt(A, rt) = |rt − sA(rt)|
and the total cost of the matching produced by A on instance I is cost(A, I) =

∑n
t=1 costt(A, rt).

We often abuse notation and write costt(A), cost(A), and St instead of costt(A, rt), cost(A, I), and
SA,t. We consider instances I = (Ir, Ia) that have a random component Ir ∼ D and an adversarial
component Ia ∈ IA. The performance of an algorithm A is measured by its competitive ratio:

All models studied in the paper can be represented by a triple (nu, nd, n). Here, nu (resp. n) is
the cardinality of the set Su of servers (resp. of the set R of requests) sampled independently from
the uniform distribution U[0,1]. n

d is the number of adversarily placed servers (hence, nu+nd = ns).
The performance of an algorithm A is measured by its competitive ratio:

max
Sd∈[0,1]nd

ESu,R∼U[0,1],A[cost(A, (Sd ∪ Su, R))]

ESu,R∼U[0,1] [cost(OPT, (Sd ∪ Su, R))]
.

where OPT is the offline optimal matching when the requests are known at time t = 0. Although
some papers in online optimization use a different notion of competitive ratio (see, e.g., survey
[Meh13]), in the context of online matching on the line, most literature we are aware of use the
same definition as ours. This is true, in particular, for papers over which we build [GGPW19,
Kan21, GK19] or whose results we improve [AALS21, TTC94].

More precisely, we study the three following models.

• In the fully random model, (nu, nd, n) = (n, 0, n), i.e., all servers S and requests R are drawn
uniformly and independently from [0, 1] and there is an equal number of servers and requests.

• For all constant ε > 0, we define the fully random ε−excess model, in which (nu, nd, n) =
((1 + ε)n, 0, n), i.e., all servers S and requests R are drawn uniformly and independently from
[0, 1] and there is a linear excess of εn servers.

• In the random requests model, (nu, nd, n) = (0, n, n), i.e., the requests R are still drawn
uniformly and independently from [0, 1] but the servers are now chosen adversarially over all
potential sequence of n requests in [0, 1].

The greedy algorithm, denoted by G, is the algorithm that matches each request rt to the closest
available server, i.e., sG(rt) = arg mins∈SG,t−1

|s−rt|. We say that an algorithm Amakes neighboring
matches if it matches every request rt either to the closest available server to its left or to its right.
For any algorithm A and m ∈ {0, . . . , n}, we define the hybrid algorithm HmA that matches the first
m requests according to A and then greedily matches the remaining requests to the closest available
server. The following key lemma (proved in Appendix B) bounds E

[
cost(Hm−1

A )− cost(HmA )] as a
function of costm(A) – that is, the cost for algorithm A to match the mth request.

Lemma 5. (The Hybrid Lemma). There exists a constant C > 0 such that for any online
algorithm A that makes neighboring matches, for any instance with n servers S = {s1, . . . , sn}
adversarially chosen, n requests R = (r1, . . . , rn) uniformly and independently drawn from [0, 1],
and for any event Em that depends only on Sm−1, rm, we have

E
[
cost(Hm−1

A )− cost(HmA )|Em] ≤ C · E[
(
1 + log

(
1

costm(A)

))
costm(A)

∣∣Em].
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Figure 1: Set of servers St (free servers at time t for HmA ) and S′t (free servers at time t for Hm−1
A )

in the case where St 6= S′t, where the squares are the servers in St and the circles the servers in S′t.

The idea of using hybrid algorithms for analyzing an online matching algorithm was used in
[GL12], which has a similar hybrid lemma (see Section 1.1 for additional discussion). The proof of
Lemma 5 relies on the following structural lemma (Lemma 6), in which, for a given realization R
of the sequence of requests and a fixed value of m ∈ [n], we consider a simultaneous execution of
HmA and Hm−1

A on the sequence R. To ease the exposition, we drop the reference to the algorithms
in the indices and write St and s(rt) instead of SHmA ,t and sHmA (rt) to denote, respectively, the set
of free server for HmA just after matching rt and the server to which HmA matches rt. Similarly, we
write S′t and s′(rt) instead of SHm−1

A ,t and sHm−1
A

(rt) for the equivalent objects for Hm−1
A . Finally,

to remove any ambiguity, we assume that all servers in S0 are distinct (even if it means moving
them an infinitesimal distance).

We now show that at all time steps t, the sets St and S′t of free servers for the two algorithms
are all identical except for at most one server in each of these sets and that, if they each have such
a unique server, there is no server in St ∪S′t that is in between the two unique servers (see Figure 1
for an illustration).

We let gLt < gRt denote these at most two servers in the symmetric difference of St and S′t, and
let δt := gRt − gLt be the distance between these two servers. If St = S′t, then we write gLt = gRt = ∅
and δt = 0. We also define sLt = max{s ∈ St : s < gLt } and sRt = min{s ∈ St : s > gRt } (with the
convention that sLt , s

R
t = ∅ when there are no such servers).

Lemma 6. Let A be any online algorithm, S0 be n arbitrary servers and R be n arbitrary requests.
Let (S0, . . . , Sn) and (S′0, . . . , S

′
n) denote the set of free servers for HmA and Hm−1

A at each time
steps. Then, the following propositions hold for all t ∈ {m, . . . , n}:

1. Differ in at most one server. |St \ S′t| = |S′t \ St| ≤ 1.

2. Consecutiveness of the different servers. If gLt , g
R
t 6= ∅, there is no server s ∈ St ∪ S′t

such that gLt < s < gRt .

3. The values. If t < n and St 6= S′t (and assuming without loss of generality that St =
S′t ∪ {gLt } \ {gRt }), then the values of s(rt+1), s′(rt+1), δt+1, g

L
t+1, g

R
t+1 and an upper bound on

∆costt+1 := |costt+1(Hm−1)− costt+1(Hm)| are given in Tables 2, 3 and 4 (in Appendix B):

• if sLt 6= ∅, sRt 6= ∅, the values are given in Table 2, where dLt = gLt −sLt and dRt = sRt −gRt ,

• if sLt = ∅, sRt 6= ∅, the values are given in Table 3, where dRt = sRt − gRt ,
• if sRt = ∅, sLt 6= ∅, the values are given in Table 4, where dLt = gLt − sLt ,

• if sLt = ∅, sRt = ∅, then St+1 = S′t+1 = ∅, δt+1 = 0, and |costt+1(Hm−1)− costt+1(Hm)| ≤
δt.
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4. Gap remains zero after disappearing. If δt = 0, then δt′ = 0 for all t′ ≥ t.

The proof is given in Appendix B.

3 Greedy is Constant Competitive in the Fully Random Model

In this section, we show that greedy achieves a constant competitive ratio in the fully random
model where both the servers and requests are drawn uniformly and independently from [0, 1]. In
addition, we show that this result also holds when there is a linear excess supply of servers.

The setting with n servers. We recall that in this setting, the competitive ratio of any algorithm
A is given by:

E(R,S)∼U(0,1)n×U(0,1)n,A[cost(A, (S,R))]

E(R,S)∼U(0,1)n×U(0,1)n [cost(OPT, (S,R))]
.

The main idea of the analysis is to consider a hybrid algorithm that first runs the hierarchical
greedy algorithm from [Kan21], and then greedily matches the remaining requests to the closest
available server.

We first present the hierarchical greedy algorithm introduced in [Kan21], which we denote
by AH . To describe it, we need to define the sequence I`0 , ..., I0, where `0 = log(n), which
are increasingly refined partitions of [0, 1]. More precisely, I`0 = {[0, 1]} and I` is the par-
tition obtained by dividing each interval in I`+1 into two intervals of equal length, i.e., I` =(
∪]x,y]∈I`+1

{]x, (x+ y)/2], ](x+ y)/2, y]}
)
∪
(
∪[0,y]∈I`+1

{[0, y/2], ]y/2, y]}
)
. The partitions obtained

through this process can be organized in a binary tree, where the nodes at level ` are the intervals
of I` and the leafs are the intervals of I0.

Given a request rt, let I(rt) be the leaf interval to which rt belongs and J(rt) be the lowest-level
ancestor interval of I(rt) in the tree such that J(rt) ∩ St−1 6= ∅, i.e., such that J(rt) contains some
free servers when request rt arrives. The hierarchical greedy algorithm matches rt to a free server in
J(rt). For our purposes, we assume that it matches rt to the closest free server in J(rt). A request
rt is said to be matched at level ` if J(rt) ∈ I`. There are two known results about hierarchical
greedy that are important for our analysis. The first one upper bounds the number of requests
matched at each level and the second one is its constant competitiveness.

Lemma 7 ([Kan21]). There is a constant C ′ > 0 such that, for all ` ∈ {0, . . . , `0}, E[|{rt : J(rt) ∈
I`}|] ≤ C ′

√
n2`−`02`0−`.

Theorem 8 ([Kan21]). In the fully random model, we have that E[cost(AH)] = O(
√
n).

Next, we show the following bound on the cost incurred by hierarchical greedy when matching
a request at level ` (proof deferred to Appendix C).

Lemma 9. For all t ∈ [n], if rt is matched at level `, then we have costt(AH) log(1/costt(AH)) ≤
2`−`0(log(2)(`0 − `) + 1).

The next lemma is the main lemma of this section and shows that the difference between the
total cost of greedy and hierarchical greedy is O(

√
n).

Lemma 10. In the fully random model, we have that E[cost(G)− cost(AH)] = O(
√
n).
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Proof. We first note that since the hierarchical greedy algorithm matches every request rt to the
closest free server in J(rt), and since rt ∈ J(rt) by definition of J(rt), hierarchical greedy makes
neighboring matches, which is the condition needed to apply the hybrid lemma to the hybrid
algorithm Hm. We get that

E[cost(G)− cost(AH)]

=
n∑

m=1

E[cost(Hm−1)− cost(Hm)] Hn = AH ,H0 = G

≤ C
n∑

m=1

E[
(
1 + log

(
1

costm(AH)

))
costm(AH)] Hybrid lemma

≤ C
n∑

m=1

E[log
(

1
costm(AH)

)
costm(AH)] + CE[cost(AH)]

≤ C
n∑

m=1

E[log
(

1
costm(AH)

)
costm(AH)] +O(

√
n) Theorem 8

= C
n∑

m=1

`0∑
`=0

P(J(rm) ∈ I`) · E[log
(

1
costm(AH)

)
costm(AH)|J(rm) ∈ I`] +O(

√
n)

≤ C
n∑

m=1

`0∑
`=0

P(J(rm) ∈ I`) · 2`−`0(log(2)(`0 − `) + 1) +O(
√
n) Lemma 9

= C

`0∑
`=0

2`−`0(log(2)(`0 − `) + 1) ·
n∑

m=1

P(J(rm) ∈ I`) +O(
√
n)

= C

`0∑
`=0

2`−`0(log(2)(`0 − `) + 1) · E[|{rt : J(rt) ∈ I`}|] +O(
√
n)

≤ CC ′
√
n

`0∑
`=0

2(`−`0)/2(log(2)(`0 − `) + 1) +O(
√
n) Lemma 7

= CC ′
√
n

`0∑
j=0

2−j/2(log(2)j + 1) +O(
√
n)

= CC ′
√
n

log(2)

`0∑
j=0

j

(
1√
2

)j
+

`0∑
j=0

(
1√
2

)j+O(
√
n)

= O(
√
n).

The last result needed is that the optimal cost in the fully random model is known to be Θ(
√
n).

Lemma 11 ([Kan21]). In the fully random model, we have that E[OPT] = Θ(
√
n).

By combining Theorem 8, Lemma 10, and Lemma 11, we obtain the main result of this section.

Theorem 1. For online matching on the line in the fully random model, the greedy algorithm
achieves an O(1)-competitive ratio.

9



The excess supply setting. We consider here an extension of the previous model where there
is a linear excess of servers. For any constant ε > 0, we define the fully random ε-excess model,
where an instance consist of n requests and n(1 + ε) servers all drawn uniformly and independently
from [0, 1]. The competitive ratio of any algorithm A is given by:

E(R,S)∼U(0,1)n×U(0,1)n(1+ε),A[cost(A, (S,R))]

E(R,S)∼U(0,1)n×U(0,1)n(1+ε) [cost(OPT, (S,R))]
.

In this setting, the hybrid approach with hierarchical greedy used above does not give a constant
competitive ratio. However, we are still able to prove that greedy is constant competitive with a
different argument. Unlike the model with n servers, the analysis for the excess supply setting does
not rely on the hybrid lemma but on concentration arguments. All proofs are in Appendix C.

The main technical contribution here lies in showing that, thanks to the excess of servers, there
is an exponentially small probability that there is a large area around the n-th request that contains
no available servers. More formally, for `,m ∈ [0, 1], we let x(`,m) = |{t ∈ [n− 1] : rt ∈ (`,m)}| be
the number of requests out of the n− 1 first requests that arrived in the interval (`,m), and we let
y(`,m) = |{t ∈ [n(1 + ε)] : st ∈ (`,m)}| be the total number of servers that lie in the interval (`,m).

Lemma 12. Let ε > 0 be a constant. There are constants Cε, C
′
ε such that, in the fully random

ε-excess model, we have that for all z ∈ [4+ε
εn , 1],

P(∃`,m ∈ [0, 1] : x(`,m) = y(`,m), (rn − ` ≥ z or ` = 0), (m− rn ≥ z or m = 1) | rn) ≤ C ′εe−nzCε .

Using Lemma 12, we then upper bound the expected cost incurred by greedy at the last step.

Lemma 13. Let ε > 0 be a constant. There is a constant C ′′ε such that, in the fully random ε-excess

model, we have E[costn(G)] ≤ C′′ε
n .

Last, we observe that, because of servers getting less and less dense as requests arrive, the
expected cost at each step of the greedy algorithm increases.

Lemma 14. Let ε > 0 be a constant. Then, in the fully random ε-excess model, we have that for
all i ∈ [n− 1], E[costi(G)] ≤ E[costi+1(G)].

Using Lemma 13 and Lemma 14, we conclude that E[cost(G)] =
∑n

i=1 E[costi(G)] ≤ n ·
E[costn(G)] ≤ C ′′ε . We have thus shown the following.

Lemma 15. Let ε > 0 be a constant. There exists a constant C ′′ε > 0 such that in the fully random
ε-excess model, we have E[cost(G)] ≤ C ′′ε .

In order to conclude the proof of Theorem 2, it suffices to lower bound the cost of the optimal
solution in the fully random ε-excess model.

Lemma 16 ([Kan21]). For any constant ε > 0, we have that in the fully random ε-excess model,
E[OPT] = Θ(1

ε ).

We can then conclude the following result on the performance of the greedy algorithm.

Theorem 2. For any constant ε > 0, greedy is O(1)-competitive in the fully random ε-excess model.

10



4 Greedy is Logarithmic Competitive in the Random Requests
Model

In this section, we show that greedy achieves an Θ(log n) competitive ratio in the random requests
model where the servers are chosen adversarially and the requests are drawn uniformly and indepen-
dently from [0, 1]. Thus, unlike in the fully random model, servers and requests can be distributed
in a significantly different manner in this model.

4.1 Greedy is O(log n)-competitive

We first show the O(log n) upper bound. We note that, even though hierarchical greedy and greedy
are both constant-competitive in the fully random model, hierarchical greedy is only Ω(n1/4)-
competitive in the random requests model (see Appendix E). The main lemma (Lemma 18) shows
that greedy is at most a logarithmic factor away from any online algorithm that makes neighboring
matches. To prove that lemma, we first need to lower bound the probability that the cost incurred
by any online algorithm at any time step is small. The proof is in Appendix D.

Lemma 17. In the random requests model, for any online algorithm A and any time step t ∈ [n],
we have that P(costt(A) ≥ 1/n4) ≥ 1− 2/n3 and E[costt(A)] ≥ 1

2(n+1) .

Next, to show that Lemma 18 holds for any online algorithm A that makes neighboring matches,
we use the hybrid lemma on the hybrid algorithm HmA , and we abuse notation with Hm.

Lemma 18. In the random requests model, there exists a constant C > 0 such that, for any instance
and for any online algorithm A that makes neighboring matches, E[cost(G)] ≤ C log(n)E[cost(A)].

Proof. Note that {costm(A) ≥ 1/n4} is an event that depends only on Sm−1 and rm and that A
makes neighboring matches; hence we can use the hybrid lemma to get

E[cost(Hm−1)− cost(Hm)]

= E[cost(Hm−1)− cost(Hm) | costm(A) ≥ 1/n4] · P(costm(A) ≥ 1/n4)

+ E[cost(Hm−1)− cost(Hm) | costm(A) < 1/n4] · P(costm(A) < 1/n4)

≤ E[cost(Hm−1)− cost(Hm) | costm(A) ≥ 1/n4] · P(costm(A) ≥ 1/n4) + n · 2/n3 Lemma 17

≤ CE[
(
1 + log

(
1

costm(A)

))
costm(A) | costm(A) ≥ 1/n4] · P(costm(A) ≥ 1/n4) + 2n−2 Hybrid lemma

≤ C(1 + 4 log(n))E[costm(A) | costm(A) ≥ 1/n4] · P(costm(A) ≥ 1/n4) + 2n−2

≤ C(1 + 4 log(n))E[costm(A)] + 2n−2

= C ′ log(n)E[costm(A)].

Since Hn = A and H0 = G, we conclude that

E[cost(G)− cost(A)] =
n∑

m=1

E[cost(Hm−1)− cost(Hm)] ≤ C ′ log(n)

n∑
m=1

E[costm(A)]

= C ′ log(n)E[cost(A)].

It remains to show the existence of a O(1)-competitive online algorithm that makes neighboring
matches in the random requests model, which is the case for a simple modification of the algorithm
fair-bias from [GGPW19]. The proof is deferred to Appendix D.
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Figure 2: Lower bound instance. There are n4/5 +4 log2(n)
√
n servers at 0, no server in the dashed

area, and n− (n
4
5 + 4 log2(n)

√
n) servers uniformly distributed in the gray area.

Lemma 19. In the random requests model, there exists a O(1)-competitive algorithm that makes
neighboring matches.

We are now ready to prove the main result of Section 4.1.

Theorem 3. For online matching on the line in the random requests model, the greedy algorithm
achieves an O(log n)-competitive ratio.

Proof. By Lemma 19, there exists A a O(1)-competitive algorithm in the random requests model
that makes neighboring matches. For such an algorithmA, we have, by Lemma 18, that E[cost(G)] ≤
C log(n)E[cost(A)]. We conclude that greedy is O(log n)-competitive.

4.2 Overview of the lower bound

The Ω(log n) lower bound is the main technical proof of this paper. It is obtained by analyzing
another hybrid algorithm to show that, on some instance, greedy makes mistakes that have an
intricate cascading effect on the cost of future requests. In this section, we give an overview of
the proof of the lower bound. A reader interested in the complete analysis can directly skip to
Section 4.3.

Description of the instance.
There are n4/5 + 4 log(n)2√n servers located at point 0, there are no servers in the interval

(0, n−1/5] and the remaining n− (n4/5 + 4 log(n)2√n) servers are uniformly spread in the interval
(n−1/5, 1]. More precisely, for all j ∈ [n4/5 + 4 log(n)2√n], we set sj = 0. Then, we let ñ := n −
4 log(n)2√n/(1−n−1/5), and for all j ∈ {1, . . . , n−n4/5−4 log(n)2√n)}, we set s(n4/5+4 log(n)2

√
n)+j =

n−1/5 + j
ñ (see Figure 2 for an illustration of the instance). We note that, interestingly, the servers

are almost uniform since a 1 − o(1) fraction of the servers are uniformly spread in an interval
(o(1), 1].

Analysis of the instance. We compare the greedy algorithm to the algorithm A that, for
all t ∈ [n], matches rt to a free server at location 0 if rt ∈ [0, n−1/5] and SA,t−1 ∩ {0} 6= ∅, and,
otherwise, matches rt greedily. Note that for the instance defined above, A is a better algorithm
than greedy since the expected total number of requests in [0, n−1/5] is n−1/5 · n = n4/5, which
is less than the number of servers at position 0. The main part of the proof is to lower bound
E[cost(Hm−1

A )− cost(HmA )], i.e., the increase in cost from switching from algorithm A to the greedy
algorithm G one step earlier in hybrid algorithm Hm−1

A compared to HmA . As we will show, matching
a request in [0, n−1/5] greedily at time t = m instead of matching it to a server at location 0 causes
a cascading increase in costs at future time steps for Hm−1

A compared to HmA due to the different
available servers, even though these two algorithms both match requests greedily at time steps
t > m.

12



Figure 3: Sets of free servers for Hm and Hm−1 at all time steps (with the circles for St and the
squares for S′t).

The first lemma shows that at every time step t, there are at most two servers in the symmetric
difference between the sets of free servers SHmA ,t and SHm−1

A ,t, and that the potential extra free server

in SHm−1
A ,t is always located at 0 whereas the potential extra free server in SHmA ,t is the leftmost free

server that is not at location 0 (see Figure 3). To ease notation, we write Hm and Hm−1 instead
of HmA and Hm−1

A and St and S′t instead of SHm,t and SHm−1,t.

Lemma 20. Let R be n arbitrary requests and S0 be n arbitrary servers. Then, for all t ∈
{0, . . . ,m− 1}, we have St = S′t, and for all t ≥ m, either St = S′t or S′t = St ∪ {0} \ {min{s ∈ St :
s > 0}} (and {s ∈ St : s > 0} 6= ∅).

To bound E[cost(Hm−1)− cost(Hm)], we analyze the gap δt := min{s ∈ St : s > 0} between the
unique available server in S′t \ St = {0} and the unique available server in St \ S′t = {min{s ∈ St :
s > 0}}. If St = S′t, then there is no gap and we define δt = 0. The next lemma formally bounds
E[
∑n

t=m+1(costt(Hm−1)− costt(Hm)|δm, Sm] as a function of the gap δt.

Lemma 21. For all m ∈ [n], we have that

E
[ n∑
t=m+1

(costt(Hm−1)− costt(Hm)|δm, Sm
]
≥ 1

2
E
[

max
t∈{0,...,min(t{0},tw)−m}

δt+m − δm|δm, Sm
]

− P(td > t{0}|δm, Sm),

where st,1 = min{s > 0 : s ∈ St} and st,2 = min{s > st,1 : s ∈ St}; tw := min{t ≥ m : st,2 − st,1 >
st,1, or st,2 = ∅}, td = min{t ≥ m : δt = 0} and t{0} := min{t ≥ m| St ∩ {0} = ∅}.

To prove Lemma 21, we first show some structural properties of the process {(δt, St)}t≥0. In
particular, we partially characterize the transitions from (δt, St) to (δt+1, St+1) (Lemma 41), and
show that if at some time step t, there remains servers at 0 and the gap s2,t− s1,t between the two
first servers with positive location in St is smaller than the gap δt, then the expected difference in
cost E[costt(Hm−1)− costt(Hm)] at step t is lower bounded by (δt − δt−1)/2.

By Lemma 21, it remains to lower bound the maximum gap δt, for t ≥ m. To analyze this gap, we
first need to introduce some additional notation and terminology. We consider a partition I0, I1, . . .
of (0, 1] into intervals of geometrically increasing size, where Ii = (yi−1, yi] and yi = (3/2)in−1/5

(with the convention y−1 = 0). In addition, we say that a sequence of requests is regular if, for any
i ∈ [n], the number of requests between any time steps t and t′ that are in the interval [(i−1)/n, i/n]
sufficiently concentrates (Definition 29). By concentration bounds, a sequence of requests is regular
with high probability.
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Lemma 22. With probability at least 1− n−Ω(log(n)), the sequence of requests is regular.

When a sequence of requests is regular, we can bound, for algorithm Hm, the gap st,j+1 − st,j
between the jth and j+1th free servers st,j and st,j+1 with positive location at time t ∈ [(1−o(1))n]
(Lemma 30).

The main technical lemma of the proof is to lower bound the maximum gap δt over all t ≥ m,
which we do in the next lemma, where c1, d1, c3 are positive constants.

Lemma 23. For all i ∈ [d1 log(n)] and m ≤ c1n,

P
(

max
t∈{m,...,min(n−nc3 ,t{0})}

δt ≥ yi−1|R is regular, δm, Sm

)
≥ δm

yi
− n−Ω(log(n)).

Challenges to prove Lemma 23. The main difficulty in proving Lemma 23 is that the value
of δt at each time step t is dependent on the value of St. However, St lies in an exponentially-sized
state space and it is difficult to compute the exact distribution of St at all time steps. The key idea
is to separate the analysis of (δ1, . . . , δn) and (S1, . . . , Sn). We first show that with high probability,
the servers in (S1, . . . , Sn) become globally unavailable from left to right (see below an overview of
the proof for a more precise statement). Then, we lower bound the probability that for any y and
any arbitrary sequence of sets (S1 ⊇ . . . ⊇ Sn), δ = 0 before all servers in the interval (0, y] have
become unavailable. Combining these two properties leads to the desired result.

Overview of the proof of Lemma 23. The first part of the proof analyzes the sets of free
servers S0 ⊇ . . . ⊇ Sn obtained with algorithm Hm. We say that an interval I is depleted at time
t if St ∩ I = ∅. We let tI := min{t ≥ 0|St ∩ I = ∅}, i.e., tI is the time at which I is depleted.
For simplicity, we write ti instead of tIi . We first show in Lemma 34 that for some constant
c2 ∈ (1/2, 1), if ti−1 ≤ n − (1 − c2)i−1n, then, ti−1 < ti. Then, we show in Lemma 37 that if
t0 < . . . < ti−1 ≤ n− (1− c2)i−1n and ti−1 < ti, then, ti ≤ n− (1− c2)in. To show this last result,
we lower bound the number of requests matched in Ii until time ti = min(ti, ti−1 + c2(n − ti−1)).
We first show that

|{j ∈ [ti] |sHm(rj) ∈ Ii}| ≥
[
|{j ∈ [ti] : rj ∈ Ii}| − |{j ∈ [ti] : rj ∈ Ii, sHm(rj) /∈ Ii}|

]
+ |{j ∈ {ti−1 + 1 + c1(n− ti−1), . . . , ti} : rj ∈ [3

4yi−1, yi−1], sHm(rj) ∈ Ii}|.

We then lower bound each of these terms separately using Lemma 35, Lemma 36, Lemma 30, and
the regularity of the requests sequence. We deduce from this lower bound that if ti > n−(1−c2)in,
then the number of requests matched in Ii exceeds the initial number of free servers in Ii, which is
a contradiction. Hence the bound ti ≤ n− (1− c2)in. Finally, by combining the above inequalities
shown in Lemma 34 and Lemma 37, we show inductively that there is a constant d1 > 0 such that the
intervals {Ii}i∈[d1 log(n)] are depleted in increasing order, i.e. that m < t1 < . . . < td1 log(n) ≤ n−nc3
and that m < t{0}, (Lemma 32), which is the main lemma of this first part.

In the second part of the proof of Lemma 23, we use the characterization from Lemma 41 to
prove the following in Lemma 43: conditioning on the gap δm and available servers Sm, and for all
y ∈ [δm, 1], we have

P
(

min(t(0,y], t{0}) ≤ min(td, t{0})
∣∣∣δm, Sm) ≥ δm

y
.
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In other words, starting from a gap δm, the probability that the gap has not yet disappeared at the
time all the servers in (0, y] have been depleted, or that all the servers at location 0 are depleted
before either of these events occurs, is lower bounded by δm

y .
The third and last part combines the first two parts to obtain Lemma 23. Since we have shown

in the first part that the intervals {Ij} are depleted in increasing order of j, we have that just
before the time tyi where (0, yi] = ∪j≤iIj is depleted, none of the intervals Ij for j < i have free
servers left, hence min{s > 0 : s ∈ Styi−1} ∈ Ii. Hence, if δtyi−1 6= 0, we have by the definition of δt
that δtyi−1 = min{s > 0 : s ∈ Styi−1} ∈ Ii = (yi−1, yi], which, in particular, implies δtyi−1 ≥ yi−1.
Thus, to prove the desired result, it suffices to lower bound the probability that δtyi−1 6= 0 and
that tyi ≤ t{0} and tyi ≤ n − nc3 . By using the second part, we show that it is lower bounded by
δm
yi
− n−Ω(log(n)).

Concluding the proof. By combining the main lemma (Lemma 23) with Lemma 21, we can
show the following bounds on E[cost(Hm−1)− cost(Hm)].

Lemma 24.

1. For any m > c1n, we have: E[cost(Hm−1)− cost(Hm)|rm ∈ [0, y0]] = −O(n−1/5).

2. for any m ≤ c1n, we have: E[cost(Hm−1)− cost(Hm)|rm ∈ [0, y0]] = Ω(log(n)n−1/5).

3. For any m ∈ [n], we have: E[cost(Hm−1)− cost(Hm)|rm ∈ (y0, 1]] = 0.

The last lemma needed is the following bound on OPT.

Lemma 25. For any n ∈ N, the expected cost OPT of the optimal offline matching for our lower
bound instance satisfies: E[OPT] = O(n3/5).

By doing a telescoping sum over all m ∈ [n] and using that Hn = A and H0 = G, we obtain
from Lemma 24 and 25 the lower bound.

Theorem 4. For online matching on the line in the random requests model, the greedy algorithm
achieves an Ω(log n)-competitive ratio.

4.3 Greedy is Ω(log n)-competitive

In this section, we give a more detailed proof of our lower bound result. All omitted proofs can be
found in Appendix E.

4.3.1 Preliminaries

Description of the instance.
There are n4/5 + 4 log(n)2√n servers located at point 0, there are no servers in the interval

(0, n−1/5] and the remaining n− (n4/5 + 4 log(n)2√n) servers are uniformly spread in the interval
(n−1/5, 1]. More precisely, for all j ∈ [n4/5 + 4 log(n)2√n], we set sj = 0. Then, we let ñ := n −
4 log(n)2√n/(1−n−1/5), and for all j ∈ {1, . . . , n−n4/5−4 log(n)2√n)}, we set s(n4/5+4 log(n)2

√
n)+j =

n−1/5 + j
ñ (see Figure 2 for an illustration of the instance). We note that, interestingly, the servers

are almost uniform since a 1 − o(1) fraction of the servers are uniformly spread in an interval
(o(1), 1].

We now give bounds on the number of servers contained in each subinterval of [n−1/5, 1].

15



Fact 26. Let ñ := n − 4 log(n)2√n/(1 − n−1/5). For any I ⊆ [n−1/5, 1], we have |S0 ∩ I| ∈
[ñ|I| − 1, ñ|I|+ 3]

Basic definitions and notations. We first introduce some notation and terminology.

Definition 27. We consider a partition I0, I1, . . . of (0, 1] into intervals of geometrically increasing
size, where Ii = (yi−1, yi] and yi = (3/2)in−1/5 (with the convention y−1 = 0).

We now define an algorithm A to which we will compare the greedy algorithm.

Definition 28. We let A be the algorithm that, for all t ∈ [n], matches rt to a free server at location
0 if rt ∈ [0, n−1/5] and SA,t−1 ∩ {0} 6= ∅, and, otherwise, matches rt greedily. For all m ≥ 0, we
recall that Hm denotes the hybrid algorithm that matches the first m requests according to A, then,
matches greedily the remaining requests to the remaining free servers.

A useful tool: regularity of the requests sequence. Informally, we define a sequence of
requests R regular if in every time interval, its realized density is not much different from its
expected density. We now give some intuition about why we define such a notion. Throughout the
proof, many random events can be shown to occur with high probability by successive applications
of simple Chernoff bounds. Once the sequence of requests is assumed to be regular, these events
become deterministic events, which greatly simplifies the analysis.

More formally, we start by discretizing the interval [0, 1] as D = { in : i ∈ {0, . . . , n}}. For any
interval I = [iL, iR] ⊆ [0, 1], we also consider d+(I), the smallest interval with end points in D that
contains I, and d−(I), the largest interval with end points in D contained in I.

1. d+(I) := [d+
L , d

+
R], with d+

L = max{x ∈ D|x ≤ iL} and d+
R = min{x ∈ D|x ≥ iR}

2. d−(I) := [d−L , d
−
R], with d−L = min{x ∈ D|x ≥ iL} and d−R = max{x ∈ D|x ≤ iR}.

Definition 29. We say that a realization R of the sequence of requests is regular if for all d, d′ ∈ D
such that d < d′, and for all t, t′ ∈ [n] such that t < t′,

1. |{j ∈ {t, . . . , t′}| rj ∈ [d, d′]}| ≥ (d′ − d)(t′ − t)− log(n)2
√

(d′ − d)(t′ − t),

2. and if (d′ − d)(t′ − t) = Ω(1), then

|{j ∈ {t, . . . , t′}| rj ∈ [d, d′]}| ≤ (d′ − d)(t′ − t) + log(n)2
√

(d′ − d)(t′ − t).

We now show that R is regular with high probability.

Lemma 22. With probability at least 1− n−Ω(log(n)), the sequence of requests is regular.

Proof. Note that for all d, d′ ∈ D such that d < d′ and t, t′ ∈ [n] such that t < t′, |{j ∈
{t, . . . , t′}| rj ∈ [d, d′]}| follows a binomial distribution B(t′ − t, d′ − d). Hence the lemma results
from a direct application of Chernoff Bounds (Lemma 48) and a union bound over all d, d′ ∈ D
and t, t′ ∈ [n].

We now show a property that is implied by the regularity of a sequence R of requests. We
define mt = |St ∩ (0, 1]|, and we denote by 0 < st,1 < . . . < st,mt ≤ 1 the locations of the mt free
servers with positive location in St. For some small ε > 0, we define c3 = 4

5 + ε. The following
lemma upper bounds the distance between two consecutive free servers with positive location in St
at time t ∈ [n− o(n)] for algorithm Hm assuming that R is regular.
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Lemma 30. Assume that the sequence of requests is regular. Then, for n large enough and for all
t ∈ [n− nc3 ] and j ∈ [mt − 1], we have st,j+1 − st,j ≤ 2 log(n)4n1−2c3.

4.3.2 Upper bound on the cost of the optimal offline matching

We first introduce a useful lemma.

Lemma 31. Let m ≥ 0 and R = {r1, . . . , r|R|} be a set of at most m requests uniformly drawn
from the interval (0, 1] and Z = {z1, . . . , zm} be a set of m servers such that for all i ∈ {1, . . . ,m},
zi = i

m . Then, the optimal matching M∗ between Z and R satisfies E(cost(M∗)) = O(
√
m).

Proof. We assume without loss of generality that R contains exactly m requests and we let r(1) <
. . . < r(m) denote the ordered statistics of R. In this case, we claim that an optimal matching M∗

between R and Z is to match each r(i) to zi for all i ∈ {1, . . . ,m} (see the proof of Theorem 2.5 in
[AALS21] for a proof of this fact).

Now, it is a known fact that for all i ∈ {1, . . . ,m}, r(i) follows a Beta distribution B(i,m+1− i)
(see [Sin10]). In particular, we have that E[r(i)] = i

m+1 and std(r(i)) =
√

i(m−i+1)
(m+1)2(m+2)

≤ 1√
m

. We

thus obtain

E(cost(M∗)) =
m∑
i=1

E(|r(i) − zi|)

≤
m∑
i=1

E(|r(i) − E(r(i))|) + E(|E(r(i))− zi|)

≤
m∑
i=1

std(r(i)) +
m∑
i=1

E(|E(r(i))− zi|) (lemma 49)

≤
m∑
i=1

1√
m

+
m∑
i=1

| i
m+1 −

i
m |

= O(
√
m).

We now give an upper bound on the cost of the optimal offline matching for our lower bound
instance.

Lemma 25. For any n ∈ N, the expected cost OPT of the optimal offline matching for our lower
bound instance satisfies: E[OPT] = O(n3/5).

Proof. For a given realization R of the requests sequence, we partition the requests into R1 = {r ∈
R : r ∈ [0, n−1/5]} and R2 = {r ∈ R : r ∈ (n−1/5, 1]}. We also let R1 be the n4/5 requests of R1

that arrived first, or R1 = R1 if |R1| < n4/5, and let R2 be the n − (n4/5 + 4 log(n)2√n) requests
of R2 that arrived first, or R2 = R2 if |R2| < n− (n4/5 + 4 log(n)2√n).

We now define the following matching M , where for all r ∈ R, sM (r) denotes the server to
which r is matched, and for any subset R̃ of the requests, M |R̃ denote the restriction of M to R̃:

• For all r ∈ R1, sM (r) = 0.
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• M |R2
is an optimal matching between R2 and S0 ∩ (n−1/5, 1].

• The remaining requests are matched arbitrarily to the remaining free servers.

Note that M is well defined since |R1| ≤ n4/5 ≤ |S0 ∩ {0}| and |R2| ≤ n− (n4/5 + 4 log(n)2√n) ≤
|S0 ∩ (n−1/5, 1]|.

Now, for all r ∈ R1, since r ∈ [0, n−1/5], we have |r − sM (r)| = |r − 0| ≤ n−1/5, hence

E[cost(M |R1
)] = E[

∑
r∈R1

|sM (r)− r|] ≤ E[|R1|] · n−1/5 ≤ n4/5 · n−1/5 = n3/5. (1)

Next, note that the requests in R2 are uniform i.i.d. in (n−1/5, 1] and the servers in S0∩(n−1/5, 1]
are uniformly spread in (y0, 1], hence by using Lemma 31 and a simple scaling argument, we get

E[cost(M |R2
)] = O(

√
|R2|) = O(

√
n). (2)

Now, note that |R1| = |{r ∈ R : r ∈ [0, n−1/5]}| follows a binomial distribution B(n, n−1/5) with
mean n4/5 and standard deviation

√
n4/5(1− n−1/5), thus by Lemma 49, we have E[max(0, |R1| −

n4/5)] ≤ E[||R1| − n4/5|] ≤
√
n4/5(1− n−1/5) ≤

√
n. Since by definition, R1 \ R1 contains

max(0, |R1| − n4/5) elements, we thus have

E[|R1 \R1|] = E[max(0, |R1| − n4/5)] ≤
√
n.

We also have that |R2| = |{r ∈ R : r ∈ (n−1/5, 1]}| follows a binomial distribution B(n, 1−n−1/5)
with mean n − n4/5 and standard deviation

√
(n− n4/5)n−1/5). Hence, by Lemma 49, we have

E[max(0, |R2| − (n−n4/5))] ≤ E[|R2| − (n−n4/5)|] ≤
√

(n− n4/5)n−1/5 ≤
√
n. Since by definition,

R2 \R2 contains max(0, |R2| − (n− n4/5 − 4 log(n)2√n)) elements, we thus have

E[|R2 \R2|] = E[max(0, |R2| − (n− n4/5 − 4 log(n)2√n))]

≤ E[max(0, |R2| − (n− n4/5))] + 4 log(n)2√n
= Õ(

√
n).

Since for all r ∈ R, we have |sM (r)− r| ≤ 1, we get

E[cost(M |(R1\R1)∪(R2\R2))] ≤ E[|R1 \R1|] + E[|R2 \R2|] = Õ(
√
n). (3)

Combining (1), (2) and (3), we finally get

E[OPT] ≤ E[cost(M)] = E[cost(M |(R1\R1)∪(R2\R2))] +E[cost(M |R1
)] +E[cost(M |R2

)] = O(n3/5).

4.3.3 Analysis of (S1, . . . , Sn).

We first introduce a few constants that will be used thoughout the proof. We recall that c3 = 4
5+ε for

some small ε > 0. We also define the following constants: c1 = 2
9(1− ε), c2 = 2

3

(
(1 + ε) + 1

9(1− ε)
)
.

Note that in particular, we have 1 > c2 > 1/2 > c1 > 0. In addition, we define d1 := (1 −
c3)/ log(1/(1− c2)).

In this section, we consider a fixed value m ≤ c1n and we give some global property of the
sequence (S1, . . . , Sn) of sets of free servers for Hm. More precisely, we first define for all interval I
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the time tI := min{t ≥ 0|St ∩ I = ∅} at which the last free server of I is matched to some request
(we say that I is depleted at time tI). The objective is to show that during the execution of Hm,
and for all i < j, the interval Ii is depleted at an earlier time step than Ij , and that all intervals
{Ii}i∈[d1 log(n)] are depleted between times m and n − nc3 (which is formally stated in the next
lemma, whose proof is given at the end of the section).

Lemma 32. Let m ≤ c1n and consider algorithm Hm. Then, assuming that the sequence of requests
R is regular, we have that c1n < t1 < . . . < td1 log(n) ≤ n− nc3 . In addition, we have c1n ≤ t{0}.

Before presenting the proof of Lemma 32, we introduce a few technical properties. We first
show a simple but useful lemma.

Lemma 33. For all i ∈ {0, . . . , d1 log(n)}, we have (1− c2)in ≥ nc3.

Proof. Let i ∈ {0, . . . , d1 log(n)}. Then,

(1− c2)in = e−i log(1/(1−c2))+log(n) ≥ e−
(1−c3) log(n)
log(1/(1−c2))

log(1/(1−c2))+log(n)
= e−(1−c3) log(n)+log(n) = nc3 ,

where the inequality is by definition of d1 and since i ≤ d1 log(n).

We now show a number of properties that are satisfied for all i ∈ [d1 log(n)] under the assumption
that the sequence of requests R is regular.

We first show that if the depletion time ti−1 of interval Ii−1 is small enough, then Ii−1 is depleted
before Ii.

Lemma 34. Let m ≤ c1n and i ∈ [d1 log(n)]. Assume that R is regular and that ti−1 ≤ n − (1 −
c2)i−1n. Then, ti−1 < ti.

Next, we show that if the intervals I1, . . . , Ii−1 are depleted in increasing order of i and that
ti−1 is small enough, then ti is also small enough. To this end, we first introduce a couple lemmas.
The first one upper bounds the number of requests that arrived in Ii and were matched outside of
Ii until time min(ti, ti−1 + c2(n− ti−1)).

Lemma 35. Let m ≤ c1n and i ∈ [d1 log(n)]. Assume that R is regular, that t0 < . . . < ti−1 ≤
n− (1− c2)i−1n and that ti−1 < ti. Let ti := min(ti, ti−1 + c2(n− ti−1)). Then,

|{j ∈ [ti] : rj ∈ Ii, sHm(rj) /∈ Ii}| = Õ(
√
n).

The next lemma lower bounds the number of requests that arrived in the interval [3
4yi−1, yi−1]

and were matched inside Ii from time ti−1 + 1 + c1(n− ti−1) to time min(ti, ti−1 + c2(n− ti−1)).

Lemma 36. Let m ≤ c1n and i ∈ [d1 log(n)]. Assume that R is regular, that t0 < . . . < ti−1 and
that ti−1 < ti. Let ti := min(ti, ti−1 + c2(n− ti−1)). Then,

|{j ∈ {ti−1 + 1 + c1(n− ti−1), . . . , ti} : rj ∈ [3
4yi−1, yi−1], sHm(rj) ∈ Ii}|

≥ 1

2
(ti − ti−1 − c1(n− ti−1))|Ii| − Õ(

√
n).

Using the two above lemmas, we show that if the intervals I1, . . . , Ii−1 are depleted in increasing
order of i and ti−1 is small enough, then ti ≤ n− (1− c2)in.
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Figure 4: Requests in and out of Ii up to time ti = min(ti, ti−1 + c2(n− ti−1)), with (A) the total
number of requests that arrived in Ii from time 0 to ti, (B) the total number of requests that
arrived in Ii and were matched outside Ii from time 0 to ti, and (C) the total number of requests
that arrived in [3

4yi−1, yi−1] and were matched inside Ii from time ti−1 + 1 + c1(n− ti−1) to time ti
(note that there are no free servers in the dashed area for times t ≥ ti−1).

Lemma 37. Let m ≤ c1n and i ∈ [d1 log(n)]. Assume that R is regular, that t0 < . . . < ti−1 ≤
n− (1− c2)i−1n, and that ti−1 < ti. Then, ti ≤ n− (1− c2)in.

Proof. Fix i ∈ [d1 log(n)]. We start by lower bounding the number of requests that were matched
to servers inside Ii until time ti := min(ti, ti−1 + c2(n− ti−1)) included. First, we have (see Figure
4):

|{j ∈ [ti] |sHm(rj) ∈ Ii}|
= |{j ∈ [ti] |rj ∈ Ii, sHm(rj) ∈ Ii}|+ |{j ∈ [ti] |rj /∈ Ii, sHm(rj) ∈ Ii}|

≥
[
|{j ∈ [ti] : rj ∈ Ii}| (A)

− |{j ∈ [ti] : rj ∈ Ii, sHm(rj) /∈ Ii}|
]

(B)

+ |{j ∈ {ti−1 + 1 + c1(n− ti−1), . . . , ti} : rj ∈ [3
4yi−1, yi−1], sHm(rj) ∈ Ii}| (C)

where the lower bound in (C) is since Ii = (yi−1, yi]; hence [3
4yi−1, yi−1] ⊆ [0, 1] \ Ii.

We now bound each of these three terms separately. Since we assumed that the sequence of
requests is regular, by applying the first regularity condition with t = 0, t′ = ti, [d, d′] = d−(Ii)),
we have that

|{j ∈ [ti] : rj ∈ Ii}| ≥ |{j ∈ [ti] : rj ∈ d−(Ii)}| ≥ d−(Ii)ti − log(n)2
√
d−(Ii)ti = |Ii|ti − Õ(

√
n).

By Lemma 35, we have that

|{j ∈ [ti] : rj ∈ Ii, sHm(rj) /∈ Ii}| = Õ(
√
n),
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and by Lemma 36, we have that

|{j ∈ {ti−1 + 1 + c1(n− ti−1), . . . , ti} : rj ∈ [3
4yi−1, yi−1], sHm(rj) ∈ Ii}|

≥ 1

2
(ti − ti−1 − c1(n− ti−1)|Ii| − Õ(

√
n).

Combining the four previous inequalities gives

|{j ∈ [ti] : sHm(rj) ∈ Ii}| ≥ |Ii|
[
ti +

1

2
(ti − ti−1 − c1(n− ti−1))

]
− Õ(

√
n).

Now, |{j ∈ [ti] : sHm(rj) ∈ Ii}| is trivially upper bounded by the initial number of servers
available in Ii, which, by Fact 26, is at most |Ii|ñ+ 1 < |Ii|(n+ 1). By combining this upper bound
with the above lower bound and by simplifying the |Ii| on both sides, we obtain

n+1 > ti+
1

2
(ti− ti−1− c1(n− ti−1))− Õ(

√
n/|Ii|) = ti+

1

2
(ti− ti−1− c1(n− ti−1)− Õ(n7/10), (4)

where the equality is since |Ii| = Ω(n−1/5) for all i ≥ 0.
Next, we show that the previous inequality implies that ti = ti. Assume by contradiction that

ti = ti−1 + c2(n− ti−1). We get

ti−1 + c2(n− ti−1) +
1

2
(ti−1 + c2(n− ti−1)− ti−1 − c1(n− ti−1))− Õ(n7/10)

= ti−1 + (n− ti−1)(c2(1 + 1/2)− c1/2)− Õ(n7/10)

= ti−1 + (n− ti−1)(1 + ε)− Õ(n7/10)

= n+ ε(n− ti−1)− Õ(n7/10)

≥ n+ εnc3 − Õ(n7/10)

> n+ 1,

where the second equality is since c2(1 + 1/2)− c1/2 = 3
2 ·

2
3

(
(1 + ε) + 1

9(1− ε)
)
− 1

2 ·
2
9(1− ε) =

(1 + ε). The first inequality is since ti−1 ≤ n− (1− c2)i−1n ≤ n− nc3 (by using the assumption of
the lemma and from Lemma 30), and the last inequality is since we set c3 > 3/4 and assumed n
large enough.

Hence, by (4), we cannot have ti = ti−1 + c2(n− ti−1), thus ti = min(ti−1 + c2(n− ti−1), ti) = ti.
Using the assumption that ti−1 ≤ n− (1− c2)i−1n, we conclude that

ti ≤ ti−1 + c2(n− ti−1) = c2n+ (1− c2)ti−1 ≤ c2n+ (1− c2)(n− (1− c2)i−1n) = n− (1− c2)in.

Finally, we show in the two following lemmas that I1 is not yet depleted at time c1n, and that
if it is the case, we also have that {0} is not yet depleted at time c1n.

Lemma 38. Let m ≤ c1n and i ∈ [d1 log(n)]. Assume that R is regular and that t1 < t2. Then,
c1n < t1.

Lemma 39. Let m ≤ c1n and i ∈ [d1 log(n)]. Assume that R is regular and that c1n < t1, then
c1n < t{0}.
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We are now ready to present the proof of Lemma 32, that we restate below for convenience.

Lemma 32. Let m ≤ c1n and consider algorithm Hm. Then, assuming that the sequence of requests
R is regular, we have that c1n < t1 < . . . < td1 log(n) ≤ n− nc3 . In addition, we have c1n ≤ t{0}.

Proof. Fixm ∈ [c1n] and assume that the sequence of requests is regular. We first show by induction
on i that, for n sufficiently large, we have t0 < . . . < ti ≤ n− (1−c2)in for all i ∈ {0, . . . , d1 log(n)}.

The base case is immediate since by construction of the instance, I0 ∩ S0 = (0, n−1/5]∩ S0 = ∅,
which implies that t0 = 0 = n− (1− c2)0n.

Now, for n large enough, let i ∈ [d1 log(n)] and assume that t0 < . . . < ti−1 ≤ n− (1− c2)i−1n.
Then, in particular, we have that ti−1 ≤ n − (1 − c2)i−1n, hence ti−1 < ti by Lemma 34. By
combining this with the assumption that t0 < . . . < ti−1 ≤ n − (1 − c2)i−1n, we obtain that
ti ≤ n − (1 − c2)in by Lemma 37. Hence, we get t0 < . . . < ti ≤ n − (1 − c2)in, which concludes
the inductive case.

By applying the previous inequalities with i = d1 log(n), and by Lemma 33, we thus have
t1 < . . . < td1 log(n) ≤ n−(1−c2)d1 log(n)n ≤ n−nc3 . In addition, since t1 < t2 and since we assumed
m ≤ c1n, we have that m ≤ c1n < t1 by Lemma 38, which also implies that m ≤ c1n < t{0} by
Lemma 39. We conclude that m < t1 < . . . < td1 log(n) ≤ n− nc3 and that m < t{0}.

4.3.4 Lower bound on E[cost(Hm−1)− cost(Hm)].

The objective of this section is to use the characterization of the remaining servers (S1, . . . , Sn)
from Lemma 32 in Section 4.3.3 to prove the following lemma, in which we lower bound the total
difference of cost between algorithms Hm−1 and Hm conditioned on the location of request rm.
The proof is given at the end of the section.

Lemma 24.

1. For any m > c1n, we have: E[cost(Hm−1)− cost(Hm)|rm ∈ [0, y0]] = −O(n−1/5).

2. for any m ≤ c1n, we have: E[cost(Hm−1)− cost(Hm)|rm ∈ [0, y0]] = Ω(log(n)n−1/5).

3. For any m ∈ [n], we have: E[cost(Hm−1)− cost(Hm)|rm ∈ (y0, 1]] = 0.

Structural properties. In order to prove Lemma 24, we first introduce a few structural prop-
erties about the sets (S0, . . . , St) and (S′0, . . . , S

′
t) of free servers for Hm−1 and Hm. We first show

that at every time step t, there are at most two servers in the symmetric difference between St and
S′t, and that the potential extra free server in S′t is always located at 0 whereas the potential extra
free server in St is the leftmost free server in St that is not at location 0 (see Figure 3).

Lemma 20. Let R be n arbitrary requests and S0 be n arbitrary servers. Then, for all t ∈
{0, . . . ,m− 1}, we have St = S′t, and for all t ≥ m, either St = S′t or S′t = St ∪ {0} \ {min{s ∈ St :
s > 0}} (and {s ∈ St : s > 0} 6= ∅).

Armed with the previous lemma, we define the gap δt := min{s ∈ St : s > 0} between the unique
available server in S′t \ St = {0} and the unique available server in St \ S′t = {min{s ∈ St : s > 0}}.
In the following, we let st,1 = min{s > 0 : s ∈ St} and st,2 = min{s > st,1 : s ∈ St} denote the first
two servers with positive location for Hm just after matching rt.
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rt+1 ∈ . . . [0, δt2 ] [ δt2 ,
δt+wt

2 ] [ δt+wt2 , δt + wt
2 ] [δt + wt

2 , δt + wt] [δt + wt, 1]

St+1 St \ {0} St \ {δt} St \ {δt} St \ {δt + wt} ∃s ∈ [δt + wt, 1] ∩ St :

St \ {s}

δt+1 δt 0 δt + wt δt δt

E[∆costt+1| . . .] ≥ 0 ≥ 0 ≥

{
wt
2 if wt ≤ δt

0 otherwise.
≥ 0 ≥ 0

Table 1: Values of (δt+1, St+1) and expected value of ∆costt+1 conditioning on (δt, St) and on rt+1,
assuming that St ∩ {0} 6= ∅, δt 6= 0 and |St ∩ (δt, 1]| ≥ 1, and where wt := st,2 − st,1.

Definition 40. For all t ∈ [n], we let δt :=

{
0 if St = S′t.

st,1 otherwise.

We now present a few properties satisfied by {(δt, St)}t≥m. We start by a partial characterization
of the value of (δt, St) and of the difference of cost ∆costt+1 := costt+1(Hm−1) − costt+1(Hm)
between the costs incurred by Hm−1 and Hm at time step t as a function of δt and St.

Lemma 41. All following properties hold at any time t ∈ {m, . . . , n− 1}:

1. if δt = 0, then for all t′ ≥ t, we have δt′ = 0 and ∆costt+1 = 0,

2. if St ∩ {0} 6= ∅, then ∆costt+1 ≥ 0.

3. if St ∩ {0} 6= ∅, δt 6= 0 and |St ∩ (δt, 1]| ≥ 1, then the values of (δt+1, St+1) and the expected
value of ∆costt+1 conditioning on (δt, St) and on rt+1 are as given in Table 1, where wt :=
st,2−st,1 and where we write E[∆costt+1|...] instead of E[∆costt+1|(δt, St), St∩{0} 6= ∅, δt 6= 0,
|St ∩ (δt, 1]| ≥ 1, rt+1 ∈ . . .].

4. if δt+1 6= δt, then St+1 = St \ {δt}.

5. 1St∩{0}=∅,δt 6=0 · E[∆costt+1|(δt, St)] ≥ −1St∩{0}=∅,δt 6=0 · P(δt+1 = 0|(δt, St)).

In Lemma 43, we use the properties given in Lemma 41 to lower bound the probability that the
gap δ has not yet disappeared at the time all servers in (0, y] have been depleted, or that all the
servers at location 0 are depleted before either of these events occurs. We first recall that for any
interval I ⊆ [0, 1], tI := min{t ≥ m| St ∩ I = ∅} is the time at which I is depleted. We also define
a couple additional stopping times for {(δt, St)}.

Definition 42.

• Distance between st,2 and st,1 becomes large or st,2 = ∅. Let tw := min{t ≥ m :
st,2 − st,1 > st,1, or st,2 = ∅}.

• δ disappears. Let td := min{t ≥ m : δt = 0}.
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Lemma 43. Conditioning on the gap δm and available servers Sm, and for all y ∈ [δm, 1], we have

P
(

min(t(0,y], t{0}) ≤ min(td, t{0})
∣∣∣δm, Sm) ≥ δm

y
,

We conclude this part by two simple properties. The first is about the initial gap δm just after
matching request rm.

Lemma 44.

1. If δm > 0, then rm ∈ [0, y0].

2. For all m ∈ [n], δm ∈ [0, 2n−1/5].

3. For all m ∈ [c1n], E[δm|rm ∈ [0, y0]] ≥ n−1/5

4 − n−Ω(log(n)).

Finally, we show that if R is regular, then for all i ∈ [d1 log(n)], the interval (0, yi] is depleted
before all servers at location 0 are depleted, and we upper bound the probability that all servers at
location 0 are depleted before δ disappears.

Lemma 45. For all m ∈ [n] and i ∈ [d1 log n],

1. if R is regular, then t(0,yi] ≤ t{0}.

2. P(td > t{0}|rm ∈ [0, y0]) = O(n−1/5).

Lower bound on E[cost(Hm−1)− cost(Hm)] as a function of the gap δ. Using the structural
properties stated above, we lower bound the expected difference of cost for matching requests
rm+1, . . . , rn.

Lemma 21. For all m ∈ [n], we have that

E
[ n∑
t=m+1

(costt(Hm−1)− costt(Hm)|δm, Sm
]
≥ 1

2
E
[

max
t∈{0,...,min(t{0},tw)−m}

δt+m − δm|δm, Sm
]

− P(td > t{0}|δm, Sm),

where st,1 = min{s > 0 : s ∈ St} and st,2 = min{s > st,1 : s ∈ St}; tw := min{t ≥ m : st,2 − st,1 >
st,1, or st,2 = ∅}, td = min{t ≥ m : δt = 0} and t{0} := min{t ≥ m| St ∩ {0} = ∅}.

The full proof is in Appendix 4.3 and we only present here the main steps: by the second
property of Lemma 41, we have that while there still are some free servers at location 0, the
difference of cost ∆costt+1 is always nonnegative. Moreover, we also have, by the third property of
Lemma 41 (and the values given in Table 1) that as long as δt 6= 0, |St ∩ (δt, 1]| ≥ 1, |St ∩ {0}| 6= ∅
and wt ≥ δt, the expected value of ∆costt+1 is at least the increase in δ. A telescoping sum over
all time steps yields the result.

We also give a simple lower bound on the expected difference of cost for matching requests
r1, . . . , rm.

Lemma 46. For all m ∈ [n], E
[∑m

t=1(costt(Hm−1)− costt(Hm))|rm ∈ [0, y0]
]
≥ −n−1/5.
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Main technical lemma. We are now ready to present the main technical lemma of this part,
which is a lower bound on the probability that the gap δ ever exceeds yi−1 for all i sufficiently
small.

Lemma 23. For all i ∈ [d1 log(n)] and m ≤ c1n,

P
(

max
t∈{m,...,min(n−nc3 ,t{0})}

δt ≥ yi−1|R is regular, δm, Sm

)
≥ δm

yi
− n−Ω(log(n)).

Proof. Fix m ∈ {1, . . . , c1n} and i ∈ [d1 log(n)]. For simplicity, we write ti to denote tIi , the time
at which Ii is depleted during the execution of Hm, and we write tyi to denote t(0,yi], the time at
which (0, yi] is depleted.

In the remainder of the proof, we condition on the fact that the sequence of requests is regular.
In particular, by Lemma 32, we have that

m < t1 < . . . < td1 log(n) ≤ n− nc3 . (5)

We start by lower bounding the probability that δtyi−1 > 0 conditioning on the variables δm, Sm.

First, note that if m < tyi ≤ td, then by definition of td, we have that δtyi−1 > 0. In addition, by
definition of ti, tyi , and since Ii = (yi−1, yi] ⊆ (0, yi], we have ti ≤ tyi . Since by (5), we have m < ti,
we get that m < tyi . Finally, since R is regular, we also have, by Lemma 45, that min(tyi , t{0}) = tyi .

Hence, if min(tyi , t{0}) ≤ min(td, t{0}), then tyi = min(tyi , t{0}) ≤ min(td, t{0}) ≤ td. Therefore, we
have

P(δtyi−1 > 0|R is regular, δm, Sm)

≥ P(m < tyi ≤ td|R is regular, δm, Sm)

= P(tyi ≤ td|R is regular, δm, Sm)

≥ P
(

min(tyi , t{0}) ≤ min(td, t{0})|R is regular, δm, Sm

)
≥ P

(
min(tyi , t{0}) ≤ min(td, t{0})|δm, Sm

)
− n−Ω(log(n)) R is regular w.h.p. by Lemma 22

≥ δm
yi
− n−Ω(log(n)). Lemma 43 (6)

Next, we assume that δtyi−1 > 0 and we lower bound maxt∈{m,...,min(n−nc3 ,t{0})} δt. By definition

of δ, we have that for all t ≥ 0, either δt = 0 or δt = min{x > 0|x ∈ St}. Since we assumed
δtyi−1 > 0, we thus have

δtyi−1 = min{x > 0|x ∈ Styi−1}. (7)

Now, by (5), we have that for all j ≤ i− 1, tj < ti (i.e., (yj−1, yj ] is depleted before (yi−1, yi]).
Recalling that ti = min{t ≥ m : St ∩ (yi−1, yi] = ∅} and that tyi = min{t ≥ m : St ∩ (0, yi] = ∅}, we

get that ti = tyi and that (0, yi−1] ∩ Styi−1 =
(⊔i−1

j=0(yj−1, yj ]
)
∩ Styi−1 = ∅. Hence,

min{x > 0|x ∈ Styi−1} ≥ yi−1. (8)

Combining (8) and (7), we get that δtyi−1 ≥ yi−1. In addition, since m < ti ≤ n − nc3 by (5)
and tyi = ti as argued above, we have that m < tyi ≤ n − nc3 . Since R is regular, we also have,
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by Lemma 45, that tyi ≤ t{0}. We deduce that maxt∈{m,...,min(n−nc3 ,t{0})} δt ≥ δtyi−1 ≥ yi−1. As a
result,

P
(

max
t∈{m,...,min(n−nc3 ,t{0})}

δt ≥ yi−1|R is regular, δm, Sm

)
≥ P(δtyi−1 > 0|R is regular, δm, Sm).

Combining this with (6), we finally obtain

P
(

max
t∈{m,...,min(n−nc3 ,t{0})}

δt ≥ yi−1|R is regular, δm, Sm

)
≥ δm

yi
− n−Ω(log(n)).

Concluding the proof. We now present the proof of Lemma 24, that we restate below for
convenience.

Lemma 24.

1. For any m > c1n, we have: E[cost(Hm−1)− cost(Hm)|rm ∈ [0, y0]] = −O(n−1/5).

2. for any m ≤ c1n, we have: E[cost(Hm−1)− cost(Hm)|rm ∈ [0, y0]] = Ω(log(n)n−1/5).

3. For any m ∈ [n], we have: E[cost(Hm−1)− cost(Hm)|rm ∈ (y0, 1]] = 0.

Proof. Let m ∈ [n]. Since Hm and Hm−1 make the same decisions at all time steps when rm ∈
(y0, 1], it is immediate that E[cost(Hm−1)−cost(Hm)|rm ∈ (y0, 1]] = 0, which shows the third point
of the lemma.

We now show the first two points. By Lemma 21, we have that

E
[ n∑
t=m+1

(costt(Hm−1)− costt(Hm))|δm, Sm
]
≥ 1

2
E
[

max
t∈{0,...,min(t{0},tw)−m}

δt+m − δm|δm, Sm
]

− P(td > t{0}|δm, Sm).

(9)

Thus, we first get

E[cost(Hm−1)− cost(Hm)|rm ∈ [0, y0]]

= E
[ n∑
t=m+1

(costt(Hm−1)− costt(Hm))|rm ∈ [0, y0]
]

+ E
[ m∑
t=1

(costt(Hm−1)− costt(Hm))|rm ∈ [0, y0]
]

≥ E
[ n∑
t=m+1

(costt(Hm−1)− costt(Hm))|rm ∈ [0, y0]
]
− n−1/5

=

∫
(x,S)∈X

E
[ n∑
t=m+1

(costt(Hm−1)− costt(Hm))|(δm, Sm) = (x, S), rm ∈ [0, y0]
]

· dP((x, S)|rm ∈ [0, y0])− n−1/5

=

∫
(x,S)∈X

E
[ n∑
t=m+1

(costt(Hm−1)− costt(Hm))|(δm, Sm) = (x, S)
]
· dP((x, S)|rm ∈ [0, y0])− n−1/5
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≥
∫

(x,S)∈X
[0− P(td > t{0}|(δm, Sm) = (x, S))] · dP((x, S)|rm ∈ [0, y0])− n−1/5

=

∫
(x,S)∈X

[0− P(td > t{0}|(δm, Sm) = (x, S)), rm ∈ [0, y0]] · dP((x, S)|rm ∈ [0, y0])− n−1/5

= −P(td > t{0}|rm ∈ [0, y0])− n−1/5

= −O(n−1/5),

where the first inequality is by Lemma 46, the second and fourth equalities are since conditioned
on (δm, Sm), {(costt(Hm), costt(Hm−1))}t≥m+1 is independent on rm, the second inequality is by
(9) and the last equality by Lemma 45. This completes the proof of the first point of Lemma 24.

Next, we prove the second point of the lemma by providing a tighter lower bound on (9) when
m ≤ c1n. In the remainder of the proof, we consider a fixed m ∈ {1, . . . , c1n}.

First, we show that tw ≥ n − nc3 . Note that if R is regular, then by Lemma 30, we have that
for all t ∈ [n − nc3 ], st,2 − st,1 ≤ 2 log(n)4n1−2c3 . Thus, for n large enough (and since we chose
c3 > 4/5), we have that st,2− st,1 < n−1/5. Since by definition of the instance, it is always the case
that st,1 > y0 = n−1/5, we thus have st,2−st,1 < st,1. In addition, since t ≤ n−nc3 and c3 > 4/5, we
have that for n large enough, St∩(0, 1] ≥ S0∩(0, 1]−(n−nc3) = n−(n4/5+4 log(n)2√n)−(n−nc3) =
nc3 − n4/5 − 4 log(n)2√n > 2, thus st,2 6= ∅. Since tw = min{t ≥ m : st,2 − st,1 > st,1, or st,2 = ∅},
we thus have t ≤ tw. Hence tw ≥ n− nc3 .

Therefore,

E
(

max
t∈{0,...,min(t{0},tw)−m}

δt+m|δm, Sm,R is regular
)

≥ E
(

max
t∈{0,...,min(t{0},n−nc3 )−m}

δt+m|δm, Sm,R is regular
)
. (10)

Next,

E
(

max
t∈{0,...,min(t{0},n−nc3 )−m}

δt+m|δm, Sm,R is regular
)

=

∫ 1

0
P
(

max
t∈{0,...,min(t{0},n−nc3 )−m}

δt+m ≥ x|δm, Sm,R is regular
)
dx

≥
d1 log(n)∑
i=0

∫
x∈Ii

P
(

max
t∈{0,...,min(t{0},n−nc3 )−m}

δt+m ≥ x|δm, Sm,R is regular
)
dx

≥
d1 log(n)∑
i=0

(yi − yi−1) · P
(

max
t∈{0,...,min(t{0},n−nc3 )−m}

δt+m ≥ yi|δm, Sm,R is regular
)

≥
d1 log(n)∑
i=0

(yi − yi−1) · δm
yi+1

− n−Ω(log(n))

= n−1/5 · δm

(3/2)n−1/5
+

d1 log(n)∑
i=1

(3/2)i−1n−1/5

2
· δm

(3/2)i+1n−1/5
− n−Ω(log(n))

= Cδm log(n)− n−Ω(log(n)), (11)
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for some constant C > 0. The first inequality is since
⊔d1 log(n)
i=1 Ii ⊆ [0, 1], the second inequality is

since Ii = (yi−1, yi] and the third inequality results from Lemma 23. Finally, the second equality is
since yi = (3/2)in−1/5 for all i ∈ {0, . . . , d1 log(n)} and since y−1 = 0.

Thus, we get

E
(

max
t∈{0,...,min(t{0},tw)−m}

δt+m|δm, Sm
)

≥ E
(

max
t∈{0,...,min(t{0},tw)−m}

δt+m|δm, Sm,R is regular
)
P(R is regular)

≥ E
(

max
t∈{0,...,min(t{0},n−nc3 )−m}

δt+m|δm, Sm,R is regular
)
P(R is regular)

≥ (Cδm log(n)− n−Ω(log(n)))(1− n−Ω(log(n)))

= Cδm log(n)− n−Ω(log(n)),

where the second inequality is by (10) and the third one by (11) and the fact that R is regular with
high probability by Lemma 22.

Combining this with (9) gives:

E
[ n∑
t=m+1

(costt(Hm−1)− costt(Hm))|δm, Sm
]
≥ 1

2
[Cδm log(n)− n−Ω(log(n)) − δm]− P(td > t{0}|δm, Sm).

Finally, similarly as for the first point, we get

E[cost(Hm−1)− cost(Hm)|rm ∈ [0, y0]]

≥
∫

(x,S)∈X
E
[ n∑
t=m+1

(costt(Hm−1)− costt(Hm))|δm, Sm
]
· dP((x, S)|rm ∈ [0, y0])− n−1/5

≥
∫

(x,S)∈X

(
1

2
[Cx log(n)− n−Ω(log(n)) − x]− P(td > t{0}|(δm, Sm) = (x, S)))

)
· dP((x, S)|rm ∈ [0, y0])− n−1/5

≥ E[δm|rm ∈ [0, y0]] · (1
2C log(n)− 1)− n−Ω(log(n)) − P(td > t{0}|rm ∈ [0, y0])− n−1/5

≥ E[δm|rm ∈ [0, y0]] · (1
2C log(n)− 1)− n−Ω(log(n)) −O(n−1/5)

≥
(n−1/5

4
− n−Ω(log(n))

)
· (1

2C log(n)− 1)− n−Ω(log(n)) −O(n−1/5)

= Ω(log(n)n−1/5),

where the fourth inequality is by Lemma 45 and the fifth one by Lemma 44. This concludes the
proof of the second point and the proof of the lemma.

4.3.5 Proof of Theorem 4

We are now ready to conclude the proof of our lower bound result.
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Proof. Since A0 = G and An = A, we have that

E[cost(G)]− E[cost(A)]

=

n∑
m=1

E[cost(Hm−1)− cost(Hm)]

=
n∑

m=1

E[cost(Hm−1)− cost(Hm)|rm ∈ (y0, 1]]P(rm ∈ (y0, 1])

+

c1n∑
m=1

E[cost(Hm−1)− cost(Hm)|rm ∈ [0, y0]]P(rm ∈ [0, y0])

+
n∑

m=c1n+1

E[cost(Hm−1)− cost(Hm)|rm ∈ [0, y0]]P(rm ∈ [0, y0])

≥ 0 +

c1n∑
m=1

C ′ log(n)n−1/5n−1/5 −
n∑

m=c1n+1

Cn−1/5n−1/5 (for some constants C,C ′ > 0)

= n3/5
(
C ′(log(n)(c1 − 1

n)− C(1− c1 − 1
n)
)

= Ω(log(n)n3/5),

where the inequality is by Lemma 24 and since P(rm ∈ [0, y0]) = P(rm ∈ [0, n−1/5]) = n−1/5.
Thus, E[cost(G)] ≥ E[cost(A)] + Ω(log(n)n3/5) = Ω(log(n)n3/5). Since by Lemma 25 we have

E[OPT ] = O(n3/5), we conclude that E[cost(G)]
E[OPT ] = Ω(log(n)).
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Appendix

A Auxiliary Lemmas

Throughout the paper, we will use the following version of Chernoff bounds.

Lemma 47. (Chernoff Bounds) Let X =
∑n

i=1Xi, where Xi = 1 with probability pi and Xi = 0
with probability 1− pi, and all Xi are independent. Let µ = E[X] =

∑n
i=1 pi. Then

• Upper tail: P (X ≥ (1 + δ)µ) ≤ e−δ2µ/(2+δ) for all δ > 0.

• Lower tail: P (X ≤ (1− δ)µ) ≤ e−δ2µ/2 for all δ ∈ [0, 1].

In particular, we will repeatedly use the following lemma, which immediately follows from
Chernoff bounds.

Lemma 48. Let X ∼ B(n, p) be a binomially distributed random variable with parameters n and
p. Then,

P
(
X ≥ E[X]− log(n)2

√
E[X]

)
≥ 1− n−Ω(log(n)),

and if np = Ω(1),
P
(
X ≤ E[X] + log(n)2

√
E[X]

)
≥ 1− n−Ω(log(n)).

Proof. This results from a direct application of Chernoff bounds as stated in Lemma 47 with
δ = log(n)2/

√
E[X]:

P(X ≤ E[X](1− log(n)2/
√
E[X])) ≤ e− log(n)4/2 = n−Ω(log(n)),

and if np = Ω(1),

P(X ≥ E[X](1 + log(n)2/
√
E[X]) ≤ e− log(n)4/(2+log(n)2/

√
E[X])) = n−Ω(log(n))

(since 1/
√
E[X] = 1/

√
np = O(1)).

Finally, we recall the following classical inequality, which follows immediately from Jensen’s
inequality.

Lemma 49. For any random variable Y : E[|Y − E[Y ]|] ≤ std(Y ).

B Proof of the Hybrid Lemma (Lemma 5)

The objective of this section is to prove Lemma 5, that we restate below.

Lemma 5. (The Hybrid Lemma). There exists a constant C > 0 such that for any online
algorithm A that makes neighboring matches, for any instance with n servers S = {s1, . . . , sn}
adversarially chosen, n requests R = (r1, . . . , rn) uniformly and independently drawn from [0, 1],
and for any event Em that depends only on Sm−1, rm, we have

E
[
cost(Hm−1

A )− cost(HmA )|Em] ≤ C · E[
(
1 + log

(
1

costm(A)

))
costm(A)

∣∣Em].
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Note that the proof globally follows the proof of the hybrid lemma (Lemma 5.1) in [GL12].
However, [GL12] considers a fixed deterministic sequence of requests and uses a coupling argument
between a randomized greedy algorithm and an optimal offline matching, whereas we directly
leverage the randomness of the input sequence to analyze the performance of hybrid algorithms
between an online algorithm A and the standard deterministic greedy algorithm.

In the remainder of this section, for a given realization R of the sequence of requests and a fixed
value of m ∈ [n], we consider a simultaneous execution of HmA and Hm−1

A on the sequence R. To
ease the exposition, we drop the reference to the algorithms in the indices. In particular, we write
St, s(rt),N (rt) instead of SHmA ,t, sH

m
A

(rt),NHmA (rt) to denote, respectively, the set of free server for
HmA just after matching rt, the server to which HmA matches rt, and the set of servers neighboring
rt when rt arrives. Similarly, we write S′t, s

′(rt),N ′(rt) instead of SHm−1
A ,t, sHm−1

A
(rt),NHm−1

A
(rt) for

the equivalent objects for Hm−1
A . Finally, to remove any ambiguity, we assume that all servers in

S0 are distinct (even if it means moving them an infinitesimal distance).
Before presenting the proof of Lemma 5, we introduce some useful lemmas. The first lemma

holds for an arbitrary sequence of requests and first shows that at all time steps t, the sets St and
S′t of free servers for the two algorithms are all identical except for at most one server in each of
these sets and that, if they each have such a unique server, there is no server in St ∪ S′t that is in
between the two unique servers (see Figure 1 for an illustration).

We let gLt < gRt denote these at most two servers in the symmetric difference of St and S′t, and
let δt := gRt − gLt be the distance between these two servers. If St = S′t, then we write gLt = gRt = ∅
and δt = 0. We also define sLt = max{s ∈ St : s < gLt } and sRt = min{s ∈ St : s > gRt } (with the
convention that sLt , s

R
t = ∅ when there are no such servers).

Lemma 6. Let A be any online algorithm, S0 be n arbitrary servers and R be n arbitrary requests.
Let (S0, . . . , Sn) and (S′0, . . . , S

′
n) denote the set of free servers for HmA and Hm−1

A at each time
steps. Then, the following propositions hold for all t ∈ {m, . . . , n}:

1. Differ in at most one server. |St \ S′t| = |S′t \ St| ≤ 1.

2. Consecutiveness of the different servers. If gLt , g
R
t 6= ∅, there is no server s ∈ St ∪ S′t

such that gLt < s < gRt .

3. The values. If t < n and St 6= S′t (and assuming without loss of generality that St =
S′t ∪ {gLt } \ {gRt }), then the values of s(rt+1), s′(rt+1), δt+1, g

L
t+1, g

R
t+1 and an upper bound on

∆costt+1 := |costt+1(Hm−1)− costt+1(Hm)| are given in Tables 2, 3 and 4 (in Appendix B):

• if sLt 6= ∅, sRt 6= ∅, the values are given in Table 2, where dLt = gLt −sLt and dRt = sRt −gRt ,

• if sLt = ∅, sRt 6= ∅, the values are given in Table 3, where dRt = sRt − gRt ,
• if sRt = ∅, sLt 6= ∅, the values are given in Table 4, where dLt = gLt − sLt ,

• if sLt = ∅, sRt = ∅, then St+1 = S′t+1 = ∅, δt+1 = 0, and |costt+1(Hm−1)− costt+1(Hm)| ≤
δt.

4. Gap remains zero after disappearing. If δt = 0, then δt′ = 0 for all t′ ≥ t.

Proof. First, note that since Hm and Hm−1 both match r1, . . . , rm−1 to exactly the same servers
that A matches them to, we have that St = S′t for all t ∈ [m− 1].

We now show propositions 1, 2, 3 by induction for t ∈ {m, . . . , n}.
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Figure 5: Illustration of Case 1 in the proof of Lemma 6

For t = m, first recall that Hm matches rm to the same server as A, while Hm−1 matches
rm greedily. Let sLm−1 = max{s ∈ SA,m−1 : s ≤ rm} and sRm−1 = min{s ∈ SA,m−1 : s ≥ rm}.
Since both A and greedy make neighboring matches, we have s(rm), s(rm)′ ∈ {sLm−1, s

R
m−1}. Hence

either Hm and Hm−1 make the same matching decision for rm, in which case we are done, or one
algorithm matches rm to sLm−1 whereas the other matches it to sRm−1. In this last case, proposition
1 is satisfied, and by definition of gLm and gRm, we have gLm = sLm−1 and gRm = sRm−1. Now, by
definition of sLm−1, s

R
m−1, there is no server s ∈ Sm ∪ S′m such that gLm < s < gRm, which shows that

proposition 2 is satisfied at time m.
Next, let t ∈ {m, . . . , n− 1} and assume that propositions 1, 2 are satisfied at time t. We now

show that proposition 3 is satisfied at time t and that propositions 1, 2 are satisfied at time t+ 1.
Recall that both algorithms match rt+1 by following the greedy criterion; hence, if St = S′t, the
result follows immediately. We now assume that St 6= S′t. By the inductive hypothesis, we thus
have that |St \ S′t| = |St \ S′t| = 1, with St∆S

′
t = {gLt , gRt }, and that there is no server s ∈ St ∪ S′t

such that gLt < s < gRt . We assume without loss of generality that St = S′t ∪ {gLt } \ {gRt }. We
will consider different cases depending on whether or not there is a free server sLt on the left of gLt
and a free server sRt on the right of gRt . Recall that we defined dLt = gLt − sLt when sLt 6= ∅ and
dRt = sRt − gRt when sRt 6= ∅.

sLt , s
R
t 6= ∅ : We consider all possibles cases depending on the location of request rt+1 (see Figures

5,6,7,8,9,10)

• Case 1: rt+1 ∈ sLt + [0,
dLt
2 ]. In this case, we have N (rt+1) = {sLt , gLt }, N (rt+1) = {sLt , gRt },

and it is immediate that |rt+1 − sLt | ≤ |gLt − rt+1| and that |rt+1 − sLt | ≤ |gRt − rt+1|. Hence
we get s(rt+1) = s′(rt+1) = sLt .

Combining this with the induction hypothesis, we get: St+1 = St \ {sLt } = (S′t ∪ {gLt } \
{gRt }) \ {sLt } = (S′t \ {sLt }) ∪ {gLt } \ {gRt } = S′t+1 ∪ {gLt } \ {gRt }, which immediately implies
that gLt+1 = gLt , gRt+1 = gRt and δt+1 = δt. In addition, since s(rt+1) = s′(rt+1), we have
∆costt+1 = 0.

• Case 2: rt+1 ∈ sLt +[
dLt
2 ,

dLt +δt
2 ]. In this case, we haveN (rt+1) = {sLt , gLt }, N ′(rt+1) = {sLt , gRt }.

Since rt+1 ≥ sLt +
dLt
2 , we have |rt+1 − sLt | ≥ |gLt − rt+1|, thus we get s(rt+1) = gLt , and since

rt+1 ≤ sLt +
dLt +δt

2 , we have |rt+1 − sLt | ≤ |gRt − rt+1|, thus we get s′(rt) = sLt .

Combining this with the induction hypothesis, we get: St+1 = St \ {gLt } = (S′t ∪ {gLt } \
{gRt }) \ {gLt } = S′t \ {gRt } = S′t+1 ∪ {sLt } \ {gRt }, which implies that gLt+1 = sLt , gRt+1 = gRt , and
δt+1 = gRt − sLt = (gRt − gLt ) + (gLt − sLt ) = δt + dLt . In addition, ∆costt+1 = ||rt+1 − gLt | −
|rt+1 − sLt || ≤ |gLt − sLt | = dLt .
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Figure 6: Illustration of Case 2 in the proof of Lemma 6

Figure 7: Illustration of Case 3 in the proof of Lemma 6

• Case 3: rt+1 ∈ sLt + [
dLt +δt

2 , dLt +
dRt +δt

2 ]. In this case, we have N (rt+1) ⊆ {sLt , gLt , sRt },
N ′(rt+1) ⊆ {sLt , gRt , sRt }, with gLt ∈ N (rt+1) and gRt ∈ N ′(rt+1). since rt+1 ≥ sLt +

dLt +δt
2 ≥

sLt +
dLt
2 , we have |rt+1 − sLt | ≥ |gLt − rt+1|, and since rt+1 ≤ sLt + dLt +

dRt +δt
2 , we have

|sRt − rt+1| ≥ |gLt − rt+1|, thus we get s(rt+1) = gLt . Similarly, since rt+1 ≤ sLt + dLt +
dRt +δt

2 ≤
sLt + dLt + δt +

dRt
2 , we have |sRt − rt+1| ≥ |gRt − rt+1|, and since rt+1 ≥ sLt +

dLt +δt
2 , we have

|sLt − rt+1| ≥ |gRt − rt+1|, thus we get s′(rt+1) = gRt .

Combining this with the induction hypothesis, we get: St+1 = St \{gLt } = (S′t∪{gLt }\{gRt })\
{gLt } = S′t \ {gRt } = S′t+1, which implies that gLt+1 = gRt+1 = ∅ and δt+1 = 0. In addition,
∆costt+1 = ||rt+1 − gLt | − |rt+1 − gRt || ≤ |gRt − gLt | = δt.

• Case 4: rt+1 ∈ sLt + [dLt +
dRt +δt

2 , dLt + δt+
dRt
2 ]. This case is symmetric to Case 2 by noting the

one to one correspondence between 0, dLt , s
L
t , g

L
t and 1, dRt , s

R
t , g

R
t . We get that s(rt+1) = sRt

s′(rt+1) = gRt , which implies gLt+1 = gLt , gRt+1 = sRt and δt+1 = sRt −gLt = (sRt −gRt )+(gRt −gLt ) =
dRt + δt. In addition, ∆costt+1 ≤ |sRt − gRt | = dRt .

• Case 5: rt+1 ∈ sLt + [dLt + δt +
dRt
2 , d

L
t + δt + dRt ]. This case is symmetric to Case 1 by

noting the one to one correspondence between 0, dLt , s
L
t , g

L
t and 1, dRt , s

R
t , g

R
t . We get that

s(rt+1) = s′(rt+1) = sRt , which implies ∆costt+1 = 0, gLt+1 = gLt , gRt+1 = gRt and δt+1 = δt.

Figure 8: Illustration of Case 4 in the proof of Lemma 6
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Figure 9: Illustration of Case 5 in the proof of Lemma 6

Figure 10: Illustration of Case 6 in the proof of Lemma 6

• Case 6: rt+1 ∈ [0, sLt )∪ (sRt , 1]. In this case, the free servers neighboring rt+1 are identical for
Hm and Hm−1, thus s(rt+1) = s′(rt+1). By using the assumption that |St \S′t| = |St \S′t| = 1,
we get that |St+1 \ S′t+1| = |S′t+1 \ St+1| = 1 and that gLt+1 = gLt , gRt+1 = gRt , δt+1 = δt. In
addition, since s(rt+1) = s′(rt+1), we have ∆costt+1 = 0.

Hence, in all cases, we have that propositions 1, 2 hold at time t + 1 and that the values of
gLt+1, g

R
t+1, δt+1 given in Table 2 hold.

sLt = ∅, sRt 6= ∅ : We again consider all possibles cases depending on the location of request rt+1.
Note that the exact same argument as above shows that the value of gLt+1, g

R
t+1, δt+1, and the upper

bound on ∆costt+1 given in the last three columns of Table 3 are identical to those in the last three
columns of Table 2, and that propositions 1, 2 hold at time t+ 1 in these cases. We thus only need

to show the result in the case rt+1 ∈ [0, gLt +
dRt +δt

2 ].
In this case (see Figure 11), we have N (rt+1) = {gLt }, N ′(rt+1) = {gRt }, hence we immediately

get s(rt+1) = gLt , s
′(rt+1) = gRt . Combining this with the induction hypothesis, we get: St+1 =

St \ {gLt } = (S′t ∪ {gLt } \ {gRt }) \ {gLt } = S′t \ {gRt } = S′t+1, which implies that gLt+1 = gRt+1 = ∅ and
δt+1 = 0. In addition, ∆costt+1 ≤ |gRt − gLt | = δt. Hence, we have that propositions 1, 2 hold at
time t+ 1 and that the values of gLt+1, g

R
t+1, δt+1 given in Table 3 hold.

Figure 11: Illustration of the case sLt = ∅, sRt 6= ∅ : and rt+1 ∈ [0, gLt +
dRt +δt

2 ] in the proof of Lemma
6
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rt+1 − sLt ∈ . . . [0,
dLt
2

] [
dLt
2
,
dLt +δt

2
] [

dLt +δt
2

, dLt +
dRt +δt

2
] [dLt +

dRt +δt
2

, [dLt + δt +
dRt
2
, [−sLt , 0) ∪ (sRt − sLt , 1− sLt ]

dLt + δt +
dRt
2

] dLt + δt + dRt ]

s(rt+1) sLt gLt gLt sRt sRt ∈ [0, sLt ) ∪ (sRt , 1]

s′(rt+1) sLt sLt gRt gRt sRt ∈ [0, sLt ) ∪ (sRt , 1]

gLt+1 gLt sLt ∅ gLt gLt gLt

gRt+1 gRt gRt ∅ sRt gRt gRt

δt+1 δt δt + dLt 0 δt + dRt δt δt

∆costt+1 ≤ 0 dLt δt dRt 0 0

Table 2: Values of δt+1, g
L
t+1, g

R
t+1, and upper bound on ∆costt+1 when sLt , s

R
t 6= ∅.

rt+1 ∈ . . . [0, gLt +
dRt +δt

2
] [gLt +

dRt +δt
2

, gLt + δt +
dRt
2

] [gLt + δt +
dRt
2
, gLt + δt + dRt ] (sRt , 1]

s(rt+1) gLt sRt sRt ∈ (sRt , 1]

s′(rt+1) gRt gRt sRt ∈ (sRt , 1]

gLt+1 ∅ gLt gLt gLt

gRt+1 ∅ sRt gRt gRt

δt+1 0 δt + dRt δt δt

∆costt+1 ≤ δt dRt 0 0

Table 3: Values of δt+1, g
L
t+1, g

R
t+1, and upper bound on ∆costt+1 when sLt = ∅, sRt 6= ∅.

sRt = ∅, sLt 6= ∅ : This case is symmetric to the case sRt = ∅, sLt 6= ∅, by noting the one to one
correspondence between 0, dLt , s

L
t , g

L
t and 1, dRt , s

R
t , g

R
t .

sLt = ∅, sRt = ∅: In this case, we have St = {gLt } and S′t = {gRt }. Hence, whatever the value of rt+1,
we get that St+1 = S′t+1 = ∅ and δt+1 = 0. In addition, we have ∆costt+1 ≤ |gRt − gLt | = δt.

This concludes the proof that proposition 3 is satisfied at time t and that propositions 1, 2 are
satisfied at time t+ 1. Hence the three first propositions of the lemma hold for all t ∈ {m, . . . , n}.

Finally, we show proposition 4. Note that if δt = 0 for some t ∈ {m, . . . , n}, then by definition
of δt, we have St = S′t. Since both Hm and Hm−1 match greedily rt+1, . . . , rn, we get Sj = S′j for
all j ∈ {t, . . . , n}, which shows that δj = 0 for j ∈ {t, . . . , n}.
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rt+1 ∈ . . . [0, sLt ) [gRt − (δt + dLt ), gRt − (δt +
dLt
2

)] [gRt − (δt +
dLt
2

), gRt −
dLt +δt

2
] [gRt −

dLt +δt
2

, 1]

s(rt+1) ∈ [0, sLt ) sLt gLt gLt

s′(rt+1) ∈ [0, sLt ) sLt sLt gRt

gLt+1 gLt gLt sLt ∅

gRt+1 gRt gRt gRt ∅

δt+1 δt δt δt + dLt 0

∆costt+1 ≤ 0 0 dLt δt

Table 4: Values of δt+1, g
L
t+1, g

R
t+1, and upper bound on ∆costt+1 when sRt = ∅, sLt 6= ∅

In the remainder of this section, we assume that the structural properties proved in Lemma
6 hold. By using the third and fourth propositions of Lemma 6, we now upper bound the total
difference of cost incurred during the simultaneous execution of Hm and Hm−1 for an arbitrary
sequence of requests R.

Lemma 50. For any arbitrary sequence of n requests in [0, 1], we have

cost(Hm−1)− cost(Hm) ≤ 2 max
t∈{m,...,n−1}

δt.

Proof. Since Hm and Hm−1 both match r1, . . . , rm−1 to exactly the same servers as A, we first
have that costt(Hm−1) − costt(Hm) = 0 for all t ∈ [m − 1]. Then, since Hm matches rm to the
same server as A while Hm−1 matches rm greedily, we have that |rm− s′(rm)| = min{|rm− s| : s ∈
SA,m−1} ≤ |rm − s(rm)|. Thus, costm(Hm−1)− costm(Hm) ≤ 0.

Next, we define t0 := min{t ≥ m : δt = 0}, i.e., the first time step where the two sets of free
servers become identical again. Note that by the fourth point of Lemma 6, we have that δt = 0
for any t ≥ t0, which, by definition of δ, implies that St = S′t for any t ≥ t0. We deduce that
costt(Hm−1)− costt(Hm) = 0 for any t ∈ [t0 + 1, . . . , n].

Finally, by a direct inspection of all possible cases enumerated in the third point of Lemma
6, we get that for all t ∈ {m, . . . , t0 − 1}, costt(Hm−1) − costt(Hm) ≤ δt − δt−1, and we get that
costt0(Hm−1)− costt0(Hm) ≤ δt0−1.

Putting everything together, we obtain

cost(Hm−1)− cost(Hm) =

n∑
t=1

(costt(Hm−1)− costt(Hm))

≤ 0 +

t0−1∑
t=m+1

(δt − δt−1) + δt0−1 + 0 = 2δt0−1 − δm ≤ 2 max
t∈{m,...,n−1}

δt.

In the remainder of the section, we consider the more specific case where the requests in R are
sampled uniformly at random in [0, 1]. In the following lemma, we show that for any initial set of
servers, if we have at time m that δm = x, then the probability that the distance δt between the
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(potential) extra server of Hm and the (potential) extra server of Hm−1 will ever exceed y at any
time t ∈ {m, . . . , n− 1} is upper bounded by x

y .

Lemma 51. Let x ∈ (0, 1] and y ∈ [x, 1]. Then, for any initial set S of n−m arbitrary servers in
[0, 1], we have

PR
(

max
{m,...,n−1}

δt ≥ y|δm = x, Sm = S
)
≤ x

y
.

Proof. We show by downward induction on j that for any j ∈ {m, . . . , n − 1}, any x ∈ (0, 1],
y ∈ [x, 1], and any arbitrary set S of n− j arbitrary servers in [0, 1],

PR
(

max
t∈{j,...,n−1}

δt ≥ y|δj = x, Sj = S
)
≤ x

y
.

We first show the base case, which is for j = n − 1. For any x ∈ (0, 1], y ∈ [x, 1], and any
arbitrary server s in [0, 1], it is immediate that

PR
(
δn−1 ≥ y|δn−1 = x, Sn−1 = {s}

)
=

{
1 if x = y

0 otherwise
≤ x

y
.

Next, let j ∈ {m, . . . , n−2}, and assume that for all x ∈ (0, 1], y ∈ [x, 1], and any set S of n−(j+1)
arbitrary servers in [0, 1], we have

PR
(

max
t∈{j+1,...,n−1}

δt ≥ y|δj+1 = x, Sj+1 = S
)
≤ x

y
.

Now, consider some arbitrary x ∈ (0, 1], y ∈ [x, 1], and S some arbitrary set of n− j− 1 servers
in [0, 1], and assume that δj = x and Sj = S.

Since δj = x 6= 0, we have Sj 6= S′j . Furthermore, by Lemma 6, we have |Sj \S′j | = |S′j \Sj | = 1

with Sj∆S
′
j = {gLj , gRj }. We assume without loss of generality that S′j = Sj ∪ {gRj } \ {gLj }. Recall

that we defined sLj = max{s ∈ Sj : s ≤ gLj }, sRj = min{s ∈ Sj : s ≥ gRj }, and dLj = gLj − sLj ,

dRj = sRj − gRj .
First, we note the following proposition: for any r ∈ [0, 1], letting χ(x, S, r) and T (x, S, r) be

the value of δj+1 and Sj+1 assuming that δj = x, Sj = S and rj+1 = r, we have

PR
(

max
t∈{j,...,n−1}

δt ≥ y|δj = x, Sj = S, rj+1 = r
)

= PR
(

max
t∈{j,...,n−1}

δt ≥ y|δj = x, Sj = S, δj+1 = χ(x, S, r), Sj+1 = T (x, S, r), rj+1 = r
)

= PR
(

max
t∈{j+1,...,n−1}

δt ≥ y|δj = x, Sj = S, δj+1 = χ(x, S, r), Sj+1 = T (x, S, r), rj+1 = r
)

= PR
(

max
t∈{j+1,...,n−1}

δt ≥ y|δj+1 = χ(x, S, r), Sj+1 = T (x, S, r)
)

≤ χ(x, S, r)

y
, (12)

where the second equality is since we conditioned on δj = x < y, the third equality is since
conditioned on Sj+1, δj+1, we have that {δt}t∈{j+1,...,n} is independent on rj+1, Sj , δj , and the
inequality is by the induction hypothesis.

We now enumerate all possible cases depending on request rj+1. We start by the case where
sLj , s

R
j 6= ∅. By Lemma 6, the values of χ(x, S, rj+1) are the one given in Table 2.
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• Case 1: rj+1 ∈ sLj + [0,
dLj
2 ]. We have, by Table 2, that χ(x, S, rj+1) = δj = x. Thus, by (12),

we get

PR
(

max
t∈{j,...,n}

δt ≥ y|δj = x, Sj = S, rj+1 ∈ sLj + [0,
dLj
2 ]
)
≤ x

y
.

• Case 2: rj+1 ∈ sLj + [
dLj
2 ,

dLj +δj
2 ]. We have χ(x, S, rj+1) = δj + dLj = x+ dLj . Thus, by (12), we

get

PR
(

max
t∈{j,...,n}

δt ≥ y|δj = x, Sj = S, rj+1 ∈ sLj + [
dLj
2 ,

dLj +δj
2 ]

)
≤
x+ dLj
y

.

• Case 3: rj+1 ∈ sLj + [
dLj +δj

2 , dLj +
dRj +δj

2 ]. We have that χ(x, S, rj+1) = 0. Thus, by (12), we
get

PR
(

max
t∈{j,...,n}

δt ≥ y|δj = x, Sj = S, rj+1 ∈ sLj + [
dLj +δj

2 , dLj +
dRj +δj

2 ]
)
≤ 0.

• Case 4: rj+1 ∈ sLj + [dLj +
dRj +δj

2 , dLj + δj +
dRj
2 ]. We have χ(x, S, rj+1) = δj + dRj = x + dRj .

Thus, by (12), we get

PR
(

max
t∈{j,...,n}

δt ≥ y|δj = x, Sj = S, rj+1 ∈ sLj + [dLj +
dRj +δj

2 , dLj + δj +
dRj
2 ]
)
≤
x+ dRj
y

.

• Case 5: rj+1 ∈ sLj + [dLj + δj +
dRj
2 , d

L
j + δj + dRj ]. We have χ(x, S, rj+1) = δj = x. Thus, by

(12), we get

PR
(

max
t∈{j,...,n}

δt ≥ y|δj = x, Sj = S, rj+1 ∈ sLj + [dLj + δj +
dRj
2 , d

L
j + δj + dRj ]

)
≤ x

y
.

• Case 6: rj+1 ∈ [0, sLj ) ∪ (sRj , 1]. We have χ(x, S, rj+1) = δj = x. Thus, by (12), we get

PR
(

max
t∈{j,...,n}

δt ≥ y|δj = x, Sj = S, rj+1 ∈ [0, sLj ) ∪ (sRj , 1]
)
≤ x

y
.

By combining the six cases above and using that δj = x, we get

PR
(

max
t∈{j,...,n−1}

δt ≥ y|δj = x, Sj = S
)

≤ P(rj+1 ∈ sLj + [0,
dLj
2 ]) · x

y
+ P(rj+1 ∈ sLj + [

dLj
2 ,

dLj +δj
2 ]) ·

x+ dLj
y

+ 0

+ P(rj+1 ∈ sLj + [dLj +
dRj +δj

2 , dLj + δj +
dRj
2 ]) ·

x+ dRj
y

+ P(rj+1 ∈ sLj + [dLj + δj +
dRj
2 , d

L
j + δj + dRj ]) · x

y
+ P(rj+1 ∈ [0, sLj ) ∪ (sRj , 1]) · x

y

=
dLj
2
· x
y

+
x

2
·
x+ dLj
y

+
x

2
·
x+ dRj
y

+
dRj
2
· x
y

+ (1− (dLj + dRj + x)) · x
y

=
x

y
·
(dLj

2
+
x+ dLj

2
+
x+ dRj

2
+
dRj
2

+ (1− (dLj + dRj + x))
)

=
x

y
.
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We now consider the case where sLj = ∅, sRj 6= ∅. By Lemma 6, the values of χ(x, S, rj+1) and
T (x, S, rj+1) are the one given in Table 3. We consider four different cases.

• Case 1: rj+1 ∈ [0, gLj +
dRj +δj

2 ]. We have, by Table 3 that χ(x, S, rj+1) = 0. Thus, by (12), we
get

PR
(

max
t∈{j,...,n}

δj ≥ y|δj = x, Sj = S, rj+1 ∈ [0, gLj +
dRj +δj

2 ]
)
≤ 0.

• Cases 2,3,4: the upper bounds we get in the cases rj+1 ∈ [gLj +
dRj +δj

2 , dLj + δj +
dRj
2 ], rj+1 ∈

[gLj + δj +
dRj
2 , g

L
j + δj + dRj ] and rj+1 ∈ (sRj , 1] are identical as the ones in Cases 4,5,6 when

sLj , s
R
j 6= ∅.

By combining the four cases above, we get

PR
(

max
t∈{j,...,n−1}

δj ≥ y|δj = x, Sj = S
)

≤ 0 + P(rj+1 ∈ [gLj +
dRj +δj

2 , dLj + δj +
dRj
2 ]) ·

x+ dRj
y

+ P(rj+1 ∈ [gLj + δj +
dRj
2 , g

L
j + δj + dRj ]) · x

y
+ P(rj+1 ∈ (sRj , 1]) · x

y

=
x

2
·
x+ dRj
y

+
dRj
2
· x
y

+ (1− (dLj + dRj + x)) · x
y

=
x

y
·
(x+ dRj

2
+
dRj
2

+ (1− (dLj + dRj + x))
)

≤ x

y
.

The case sLj 6= ∅, sRj = ∅ is similar to the case above and we conclude in the same way. Finally, in

the case sLj , s
R
j = ∅, we have by Lemma 6 that for any rj+1, we have δj+1 = 0. Thus, by (12), we

get

PR
(

max
t∈{j,...,n−1}

δt ≥ y|δt = x, Sj = S
)
≤ 0.

Hence, in all cases, we have shown that

PR
(

max
t∈{j,...,n−1}

δj ≥ y|δj = x, Sj = S
)
≤ x

y
,

which concludes the inductive case and the proof of the lemma.

Lemma 52. Let Em any event that depends only on Sm−1, rm. Then, for a constant C > 0:

ER
[
δm(1 + log(1/δm))|Em, δm > 0

]
· P(δm > 0) ≤ CER

[(
1 + log

(
1

costm(A)

))
costm(A)

∣∣Em]
Proof. We first condition on Em and on {δm > 0}.

Recall that Hm and Hm−1 both match r1, . . . , rm−1 to the same servers as A, and that Hm
matches rm to the same server as A, while Hm−1 matches rm greedily. Hence, we have that
|rm−s(rm)| = costm(A) and that |rm−s′(rm)| = min{|rm−s| : s ∈ SA,m−1} ≤ |rm−s(rm)|. Thus,

δm = |s(rm)− s′(rm)| ≤ |rm − s(rm)|+ |rm − s′(rm)| ≤ 2|rm − s(rm)| = 2costm(A).
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Note that x 7−→ x log( 1
x) reaches its maximum value over (0, 1] at x = 1/e (with 1

e log( 1
1/e) = 1

e )

and is non-decreasing on (0, 1/e]. Since δm ∈ (0, 1], we thus have

δm(1 + log(1/δm)) ≤ 2costm(A) +

{
2costm(A) log(1/(2costm(A))) if 2costm(A) ∈ (0, 1/e]

1/e ≤ 2costm(A) if 2costm(A) ∈ [1/e, 1].

≤ 2costm(A)
(
1 + log(1/(2costm(A))) + 1

)
.

As a result, we get that for some C > 0,

ER
[
δm(1 + log(1/δm))|Em, δm > 0

]
· P(δm > 0)

≤ CER
[(

1 + log
(

1
costm(A)

))
costm(A)

∣∣Em, δm > 0
]
· P(δm > 0)

≤ CER
[(

1 + log
(

1
costm(A)

))
costm(A)

∣∣Em].
We are now ready to present the proof of the hybrid lemma.

Proof of Lemma 5.

Proof. Let S be an arbitrary set of n servers in [0, 1] and R a sequence of n requests drawn uniformly
at random from [0, 1]. In the remainder of the proof, we consider a simultaneous execution of Hm
and Hm−1 with initial set of servers S and requests R. Let Em be any event that depends only on
rm and Sm−1.

Conditioning on event Em and on the variables δm, Sm, we have

ER[cost(Hm−1)− cost(Hm)|Em, δm, Sm]

≤ 2ER
[

max
t∈{m,...,n−1}

δt|Em, δm, Sm
]

Lemma 50

= 1δm>0 · 2ER
[

max
t∈{m,...,n−1}

δt|Em, δm, Sm
]

Lemma 6 (proposition 4)

≤ 1δm>0 · 2
(
δm +

∫ 1

δm

PR
[

max
t∈{m,...,n−1}

δt ≥ y|Em, δm, Sm
]
dy
)

= 1δm>0 · 2
(
δm +

∫ 1

δm

PR
[

max
t∈{m,...,n−1}

δt ≥ y|δm, Sm
]
dy
)

max
t≥m

δt ⊥⊥ (Sm−1, rm) when |δm, Sm

≤ 1δm>0 · 2
(
δm +

∫ 1

δm

δm
y

dy
)

Lemma 51

= 1δm>0 · 2δm(1 + log(1/δm)). (13)

(14)

By the tower rule, we conclude that

ER[cost(Hm−1)− cost(Hm)|Em]

= ER[ER[cost(Hm−1)− cost(Hm)|Em, δm, Sm]|Em]

≤ ER[1δm>0 · 2δm(1 + log(1/δm))|Em] by (13)

= 2ER[δm(1 + log(1/δm))|Em, δm > 0] · P(δm > 0)

≤ 2CER[
(
1 + log

(
1

costm(A)

))
costm(A)

∣∣Em]. Lemma 52
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C Missing Analysis from Section 3

Lemma 9. For all t ∈ [n], if rt is matched at level `, then we have costt(AH) log(1/costt(AH)) ≤
2`−`0(log(2)(`0 − `) + 1).

Proof. Let ` ∈ {0, . . . , `0}. Since by construction, the intervals of I` have length at most 2`−`0 , the
cost incurred by AH when matching a request rt at level ` satisfies: costt(AH) ≤ 2`−`0 .

Since x 7−→ x log(1/x) reaches its maximum value over (0, 1] at x = 1/e (with 1
e log( 1

1/e) = 1
e )

and is non-decreasing on (0, 1/e], we conclude that if rt is matched at level `,

costt(AH) log(1/costt(AH)) ≤

{
2`−`0 log(1/2`−`0) if 2`−`0 ∈ (0, 1/e]

1/e ≤ 2`−`0 if 2`−`0 ∈ [1/e, 1]

≤ 2`−`0 log(1/2`−`0) + 2`−`0

= 2`−`0(log(2)(`0 − `) + 1).

The excess supply setting. In the remainder of this section, we present the proof that for any
constant ε > 0,in the fully random ε-excess model, the expected cost of greedy is upper bounded
by a constant. We restate below the main lemma of this section, and we give the proof at the end
of the section.

Lemma 15. Let ε > 0 be a constant. There exists a constant C ′′ε > 0 such that in the fully random
ε-excess model, we have E[cost(G)] ≤ C ′′ε .

We first introduce some notations that will be used through this section.

• For any `,m ∈ [0, 1], we let x(`,m) = |{t ∈ [n− 1] : rt ∈ (`,m)}| be the number of requests out
of the n− 1 first requests that arrived in the interval (`,m).

• For any `,m ∈ [0, 1], we let y(`,m) = |{t ∈ [n(1 + ε)] : st ∈ (`,m)}| be the total number of
servers that lie in the interval (`,m).

We now prove a couple of lemmas. The first one upper bounds the probability that for some
given z ∈ [4(1+ε/4)

εn , 1], there exists an interval of length large enough w.r.t. z such that rn ∈ I and
such that when rn arrives, the number of servers and of requests that arrived strictly before rn and
lying in I are equal.

Lemma 12. Let ε > 0 be a constant. There are constants Cε, C
′
ε such that, in the fully random

ε-excess model, we have that for all z ∈ [4+ε
εn , 1],

P(∃`,m ∈ [0, 1] : x(`,m) = y(`,m), (rn − ` ≥ z or ` = 0), (m− rn ≥ z or m = 1) | rn) ≤ C ′εe−nzCε .
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Proof. In the remainder of the proof, we condition on the random variable rn. We start by dis-
cretizing the interval [0, 1], and first let

j0 =

{
max{j ∈ Z≥0 : rn − z − j

n ≥ 0} if rn ≥ z
−1 otherwise.

and

k0 =

{
min{k ∈ Z≥0, rn + z + k

n ≤ 1} if 1− rn ≥ z
−1 otherwise.

Consider the case j0, k0 6= −1. For all j ∈ {0, . . . , j0}, we let `j := rn − z − j
n , and for all

k ∈ {0, . . . , k0}, we let mk := rn + z + k
n . We also let `j0+1 = 0, and mk0+1 = 1.

Now, consider any pair (j, k) ∈ {0, . . . , j0} × {0, . . . , k0}. First, note that for any realization R
of the sequence of requests, and for any ` ∈ [`j+1, `j ],m ∈ [mk,mk+1], we have

x(`,m) ≤ x(`j+1,mk+1) and y(`,m) ≥ y(`j ,mk). (15)

Then, note that x(`j+1,mk+1) follows a binomial distribution B(n − 1,mk+1 − `j+1) and that
y(`j ,mk) follows a binomial distribution B(n(1 + ε),mk− `j). Thus, by Chernoff bounds, we get that
for some Cε > 0,

P(x(`j+1,mk+1) ≥ (n− 1)(mk+1 − `j+1)(1 + ε/4)) ≤ e
−(n−1)(mk+1−`j+1)

(ε/4)2

(2+ε/4)

≤ e−(n−1)(mk−`j)Cε , (16)

and

P(y(`j ,mk) ≤ n(1 + ε)(mk − `j)
(
1− ε

4(1+ε)

)
) ≤ e−

n(1+ε)(mk−`j))(
ε

4(1+ε)
)2

2

≤ e−(n−1)(mk−`j)Cε . (17)

Next, since z ≥ 4(1+ε/4)
εn , we have that

n(1 + ε)(mk − `j)(1− ε
4(1+ε)))− (n− 1)(mk+1 − `j+1)(1 + ε/4)

≥ n(1 + ε)(mk − `j)(1− ε
4(1+ε)))− n(mk+1 − `j+1)(1 + ε/4)

= n(mk − `j)(1 + 3ε/4))− n(mk − `j + 2
n)(1 + ε/4)

= n(mk − `j)ε/2− 2(1 + ε/4)

≥ nzε/2− 2(1 + ε/4)

≥ 0. (18)

Hence, if we have that x(`j ,mk) < (n−1)(mk+1−`j+1)(1+ε/4) and that y(`j ,mk) > n(1+ε)(mk−
`j)
(
1− ε

4(1+ε)

)
, then, we obtain by (15) and (18) that for all ` ∈ [`j+1, `j ],m ∈ [mk,mk+1]:

x(`,m) ≤ x(`j+1,mk+1
) < (n−1)(mk+1−`j+1)(1+ε/4) ≤ n(1+ε)(mk−`j)

(
1− ε

4(1+ε)

)
< y(`j ,mk) ≤ y(`,m).
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Thus, we have:

P(∃` ∈ [`j+1, `j ],m ∈ [mk,mk+1] : x(`,m) = y(`,m)| rn)

≤ P(x(`j+1,mk+1) ≥ (n− 1)(mk+1 − `j+1)(1 + ε/4)| rn)

+ P(y(`j ,mk) ≤ n(1 + ε)(mk − `j)(1− ε
4(1+ε))| rn)

≤ 2e−(n−1)(mk−`j)Cε ,

where the last inequality is by (16) and (17), and since x(`j ,mk) and y(`j ,mk) are independent of rn.
By union bound over all (j, k) ∈ {0, . . . , j0} × {0, . . . , k0}, we obtain that for some constant

C ′ε > 0:

P(∃`,m ∈ [0, 1] : x(`,m) = y(`,m), (rn − ` ≥ z or ` = 0), (m− rn ≥ z or m = 1) | rn)

= P
( ⋃
j,k∈{0,...,j0}×{0,...,k0}

{∃` ∈ [`j+1, `j ],m ∈ [mk,mk+1] : x(`,m) = y(`,m)}| rn
)

≤
∑

j,k∈{0,...,j0}×{0,...,k0}

P(∃` ∈ [`j+1, `j ],m ∈ [mk,mk+1] : x(`,m) = y(`,m)| rn)

≤
∑

j,k∈{0,...,j0}×{0,...,k0}

2e−(n−1)(mk−`j)Cε

= 2e−2(n−1)zCε
∑

j,k∈{0,...,j0}×{0,...,k0}

e−(n−1)( j+k
n

)Cε

= C ′εe
−2nzCε , (19)

where the last inequality holds since for any Cε > 0,
∑

j=1,...,+∞,k=1,...,+∞ e
−(j+k)Cε converges.

Next, we consider the case where k0 = −1 or j0 = −1. Now, by a similar argument as above,
we have that if j0 = −1 and k0 6= −1, then for all k ∈ {0, . . . , k0},

P(∃m ∈ [mk,mk+1] : x(0,m) = y(0,m)| rn) ≤ 2e−n(mk−0)Cε ,

and if k0 = −1 and j0 6= −1, then for all j ∈ {0, . . . , j0},

P(∃` ∈ [`j+1, `j ] : x(`,1) = y(`,1)| rn) ≤ 2e−n(1−`j)Cε .

We conclude in a similar way as in (19) that there are Cε, C
′
ε > 0 such that

P(∃`,m ∈ [0, 1] : x(`,m) = y(`,m), (rn − ` ≥ z or ` = 0), (m− rn ≥ z or m = 1) | rn) ≤ C ′εe−nzCε .

Finally, if j0 = −1 and k0 = −1, note that 1 − z < rn < z. In this case, since x(0,1) = n − 1 and
y(0,1) = n(1 + ε), we simply have

P(∃`,m ∈ [0, 1] : x(`,m) = y(`,m), (rn − ` ≥ z or ` = 0), (m− rn ≥ z or m = 1) | rn)

= P(x(0,1) = y(0,1)| rn) = 0 ≤ C ′εe−nzCε .

Next, we upper bound the expected cost incurred by G while matching the nth request.
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Lemma 13. Let ε > 0 be a constant. There is a constant C ′′ε such that, in the fully random ε-excess

model, we have E[costn(G)] ≤ C′′ε
n .

Proof. To exclude any ambiguity, we condition on the event that all servers are distinct and that
no server or requests are at positions 0 and 1, which occurs almost surely.

In the remainder of the proof, we condition on the variable rn and let sLn = max{s ∈ Sn−1 :
s ≤ rn} and sRn = min{s ∈ Sn−1 : s ≥ rn} denote the nearest available servers on the left and on
the right of rn when rn arrives; with the convention that sLn = 0 and sLn = 1 if there are no such
servers.

Now, let z ∈ [4(1+ε/4)
εn , 1] and assume that costn(G) ≥ z. Since G matches rn to the closest

available server, we must have rn − sLn ≥ z or sLn = 0, and sRn − rn ≥ z or sRn = 1. In addition, by
definition of sLn and sRn , we have that (sLn , s

R
n )∩Sn−1 = ∅. Now, recall that all requests r1, . . . , rn−1

have been matched each time to the closest available server. Moreover, sLn was either available when
rj arrives, but rj was not matched to it, or sLn = 0; similarly for sRn . Hence, for all j ∈ [n − 1], if
rj /∈ (sLn , s

R
n ), then sG(rj) /∈ (sLn , s

R
n ). Similarly, if rj ∈ (sLn , s

R
n ), then sG(rj) ∈ (sLn , s

R
n ). Therefore,

|{j ∈ [n− 1] : sG(rj) ∈ (sLn , s
R
n )}| = |{j ∈ [n− 1] : rj ∈ (sLn , s

R
n )}|.

In addition, since (sLn , s
R
n )∩ Sn−1 = ∅, all servers in (sLn , s

R
n )∩ S0 must have been matched to some

request before time n− 1, hence

|{j ∈ [n− 1] : sG(rj) ∈ (sLn , s
R
n )}| = |{j ∈ [n(1 + ε)] : sj ∈ (sLn , s

R
n )}|.

By combining the two previous equalities and by definition of x(sLn ,s
R
n ), and y(sLn ,s

R
n ), we get that

x(sLn ,s
R
n ) = |{j ∈ [n− 1] : rj ∈ (sLn , s

R
n )}| = |{j ∈ [n(1 + ε)] : sj ∈ (sLn , s

R
n )}| = y(sLn ,s

R
n ).

Since we have that rn − sLn ≥ z or sLn = 0, and sRn − rn ≥ z or sRn = 1, we thus have that

P(costn(G) ≥ z | rn)

≤ P(∃`,m ∈ [0, 1] : x(`,m) = y(`,m), (rn − ` ≥ z or ` = 0), (m− rn ≥ z or m = 1) | rn).

(20)

Now, by Lemma 12, we have that for some constants Cε, C
′
ε > 0:

P(∃`,m ∈ [0, 1] : x(`,m) = y(`,m), (rn − ` ≥ z or ` = 0), (m− rn ≥ z or m = 1) | rn) ≤ C ′εe−nzCε .

Combining this with (20) and by the law of total probability, we get P(costn(G) ≥ z) ≤ C ′εe
−nzCε .

Hence, we obtain

E[costn(G)] ≤ 4(1+ε/4)
εn +

∫ 1

z=
4(1+ε/4)

εn

P(costn(G) ≥ z)dz

≤ 4(1+ε/4)
εn +

∫ 1

z=
4(1+ε/4)

εn

C ′εe
−nzCεdz

≤ 4(1+ε/4)
εn +

C ′ε
Cεn

(for some Cε > 0).

=
C ′′ε
n

(for some C ′′ε > 0).
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We would like to underscore that a simple application of Chernoff bounds between all initial
pairs of servers locations would only lead to a weaker version of the above lemma, involving poly-
logarithmic terms. Since our objective was to present a sharp analysis of greedy, we introduced the
more refined analysis presented above.

We next show that, because of servers getting less and less dense as requests arrive, the expected
cost at each step of the greedy algorithm is nondecreasing.

Lemma 14. Let ε > 0 be a constant. Then, in the fully random ε-excess model, we have that for
all i ∈ [n− 1], E[costi(G)] ≤ E[costi+1(G)].

Proof. Recall that S0 ⊇ . . . ⊇ Sn denote the sequence of set of free servers obtained during the
execution of G. Since for all i ∈ [n−1], Si ⊆ Si−1, we have that for all S ⊆ [0, 1] with |S| = n−(i−1)
and S′ ⊆ S such that |S′| = |S| − 1:

E[costi(G)|Si−1 = S] = Eri∼U [0,1][min
s∈S
|ri − s|]

≤ Eri+1∼U [0,1][min
s∈S′
|ri+1 − s|]

= E[costi+1(G)|Si = S′]

= E[costi+1(G)|Si = S′, Si−1 = S],

where the last equation holds since conditioning on Si, the matching decision for ri+1 is inde-
pendent of Si−1.

Hence, by applying a first time the tower rule over Si−1, we get E[costi(G)] ≤ E[costi+1(G)|Si =
S′], and by applying it a second time over Si, we get

E[costi(G)] ≤ E[costi+1(G)].

We are now ready to prove the main lemma of this section.

Lemma 15. Let ε > 0 be a constant. There exists a constant C ′′ε > 0 such that in the fully random
ε-excess model, we have E[cost(G)] ≤ C ′′ε .

Proof. Using Lemma 13 and Lemma 14, we conclude that

E[cost(G)] =

n∑
i=1

E[costi(G)] ≤ n · E[costn(G)] ≤ C ′′ε .

D Missing Analysis from Section 4.1

Lemma 17. In the random requests model, for any online algorithm A and any time step t ∈ [n],
we have that P(costt(A) ≥ 1/n4) ≥ 1− 2/n3 and E[costt(A)] ≥ 1

2(n+1) .
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Proof. We first lower bound the probability that costt(A) ≥ 1/n4. Conditioning on St−1, we have

P(costt(A) < 1/n4 | St−1) ≤ P(∃s ∈ St−1 : |rt − s| < 1/n4 | St−1)

= P
( ⋃
s∈St−1

{rt ∈ [max(0, s− 1/n4),min(1, s+ 1/n4)]} | St−1

)
≤

∑
s∈St−1

P(rt ∈ [max(0, s− 1/n4),min(1, s+ 1/n4)] | St−1)

≤
∑

s∈St−1

2/n4

≤ 2/n3.

Thus, P(costt(A) < 1/n4) ≤ 2/n3.
Next, we lower bound E[costt(A)]. We condition on St−1 and let 0 ≤ st,1 ≤ . . . ≤ st,n ≤ 1

denote the ordered servers of St−1. By convention, we also write st,0 = 0, st,n+1 = 1. Then,

E[costt(A)|St−1] =

n∑
i=0

P(rt ∈ [st,i, st,i+1])E[costt(A)|rt ∈ [st,i, st,i+1]]

=

n∑
i=0

(st,i+1 − st,i)2

2
.

Since
∑n

i=0(st,i+1−st,i) = st,n+1−st,0 = 1, the above sum is minimized when st,i+1−st,i = 1/(n+1)
for all i, and the minimum value is 1

2(n+1) . By the tower law, we deduce that E[costt(A]) ≥
1

2(n+1) .

In the remainder of this section, we demonstrate the existence of a O(1)-competitive algorithm
for the random requests model that makes neighboring matches. We first show that we can always
transform any algorithm into an algorithm which satisfies this last property without increasing the
total cost.

Lemma 53. For any online algorithm A, there exists an algorithm A′ that makes neighboring
matches such that E[cost(A)′] ≤ E[cost(A)].

Proof. We show the result by induction on t. Let t0 ≥ 0 and suppose that A is an online algorithm
that makes neighboring matches for all t ≤ t0, but does not necessarily make neighboring matches
when t > t0. Without loss of generality, assume that rt0+1 is matched by A to an available server
s ∈ SA,t0 such that rt0+1 ≤ s. Now, let s′ = min{z ∈ SA,t0 : z ≥ rt0+1} denote the closest available
server on the right of rt0+1, and let j ∈ {t0 + 1, . . . n} be such that A matches request rj to s′. We
define the algorithm A′ that matches all requests rt to exactly the same servers A matches them
to for all t 6= j, t0 + 1, matches rt0+1 to s′ and matches rj to s (this is a valid construction since s′

is available when rt0+1 arrives and s is available when rj arrives). Then by construction, A′ makes
neighboring matches for all t ≤ t0 + 1.

We now analyse the cost of A′. Since A and A′ match all requests other than rt0+1 and rj
to the same servers, they incur the same cost for these requests. Now, we consider three cases: if
rj ≤ s′, then

costt0+1(A) + costj(A) = |rt0+1 − s|+ |rj − s′| = (s− rt0+1) + (s′ − rj)
= (s′ − rt0+1) + (s− rj) = |rt0+1 − s′|+ |rj − s| = costt0+1(A′) + costj(A′),
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if s′ ≤ rj ≤ s, then

costt0+1(A) + costj(A) = |rt0+1 − s|+ |rj − s′|
= (s− rt0+1) + (rj − s′)| = (s′ − rt0+1) + (s− rj) + 2(rj − s′)
≥ (s′ − rt0+1) + (s− rj) = |rt0+1 − s′|+ |rj − s| = costt0+1(A′) + costj(A′),

and if rj ≥ s, then

costt0+1(A) + costj(A) = |rt0+1 − s|+ |rj − s′|
= (s− rt0+1) + (rj − s′)| = (s′ − rt0+1) + (rj − s) + 2(s− s′)
≥ (s′ − rt0+1) + (rj − s) = |rt0+1 − s′|+ |rj − s| = costt0+1(A′) + costj(A′),

Hence, in all cases, A′ achieves a lower cost than A for requests {rt0+1, rj}.
Therefore, A′ makes neighboring matches and is such that E[cost(A)′] ≤ E[cost(A)].

Next, we show that a simple adaptation of the algorithm Fair-Bias from [GGPW19] is a O(1)-
competitive algorithm for the random requests model. We first recall a result from [GGPW19].

Lemma 54 (Theorem 4.6. in [GGPW19]). Given a tree metric (S, d) with a server at each of
the n = |S| ≥ 2 points. Algorithm Fair-Bias is 9-competitive if the requests are drawn from a
distribution D over the servers’ locations.

Note that in the above lemma, the requests have support in the servers’ locations, whereas, in
the random requests model, we consider uniform requests in [0, 1]. We show in the following lemma
that we can nevertheless derive from Algorithm Fair-Bias a O(1)-competitive algorithm A in the
random requests model, and such that A makes neighboring matches.

Lemma 19. In the random requests model, there exists a O(1)-competitive algorithm that makes
neighboring matches.

Proof. To ease the notations, we write Fb to denote the algorithm Fair-bias in the remainder of the
proof.

Given an instance of the random requests model with set of servers S and a realization of
the requests sequence R = {r1, . . . , rn}, we let R̃ = {r̃1, . . . , r̃n} be such that for all i ∈ [n],
r̃i = arg mins∈S |ri − s| is the closest server location to ri. We consider the algorithm A that
matches the requests in R exactly to the same servers Fb matches the requests in R̃. In order to
analyze A, we now define a distribution D over the servers locations, such that for all s ∈ S,

Pr∼D(r = s) = Pr∼U([0,1])

(
arg min
s′∈S

|r − s′| = s
)
.

Note that since for all i ∈ [n], ri ∼ U([0, 1]), we have, by construction, that R̃ ∼ D when R ∼
U([0, 1]).

We now show that A has a constant competitive ratio. Let R be the realization of the requests
and R̃ the corresponding transformed requests. We let MR be an optimal offline matching for R and
OPTR be the cost of this matching. We also let sMR

(i) be the server M matches i to. In addition, let
OPTR̃ denote the cost of an optimal offline matching for R̃. Now, the cost of the matching returned
by A satisfies:

costR(A) =
n∑
i=1

|ri − sA(ri)| ≤
n∑
i=1

(|ri − r̃i|+ |r̃i − sA(ri)|) =
n∑
i=1

|ri − r̃i|+ costR̃(Fb). (21)
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Since for all i ∈ [n], we have that |ri − r̃i| = mins∈S |ri − s| ≤ |ri − sMR
(i)|, we immediately get

n∑
i=1

|ri − r̃i| ≤ OPTR. (22)

In addition, by considering the matching {(r̃i, sMR
(i))}i∈[n] for R̃, we get

OPTR̃ ≤
n∑
i=1

|r̃i − sMR
(i)| ≤

n∑
i=1

(|r̃i − ri|+ |ri − sMR
(i)|) ≤

n∑
i=1

2|ri − sMR
(i)| = 2OPTR.

Hence, ER∼U([0,1])[OPTR̃] ≤ 2 · ER∼U([0,1])[OPTR]. Combining this with the fact that fair-bias is
9-competitive by Lemma 54, and using the definition of the distribution D, we obtain

ER∼U([0,1])[costR̃(Fb)] = ER̃∼D[costR̃(Fb)] ≤ 9 · ER̃∼D[OPTR̃]

= 9 · ER∼U([0,1])[OPTR̃] ≤ 18 · ER∼U([0,1])[OPTR].

(23)

Hence, taking the expectation over R ∼ U([0, 1]) on both sides of (21) and combining it with
(22) and (23), we finally obtain

ER∼U([0,1])[costR(A)] ≤ (1 + 18) · ER∼U([0,1])[OPTR],

which shows that A is O(1)-competitive in the random requests model. Using Lemma 53, we can
then transform A into a O(1)-competitive algorithm A′ that makes neighboring matches, which
completes the proof of the lemma.

E Hierarchical Greedy is Ω(n1/4) in the Random Requests Model

In this section, we show that in the random requests model, the Hierarchical Greedy algorithm
proposed in [Kan21] is Ω(n1/4) competitive on the line. We first introduce the instance on which
this lower bound is achieved. To ease the presentation, we define an instance J2n with 2n servers
and 2n requests and where the servers and requests are in [0, 2]. Note that by as simple scaling
argument, this instance can be cast as an instance of the random requests model with n servers
and requests in [0, 1].

Description of the instance J2n. We define the set of servers S0 as follows: there are n−n3/4

servers uniformly spread in the interval [0, 1 − n−1/4], there are no servers in the interval (1 −
n−1/4, 1), there are n3/4 servers at position 1 + n−1/4, and the remaining n servers are uniformly
spread in the interval [1, 2]. More precisely, we let sj = j

n for all j ∈ [n− n3/4], sj = 1 + n−1/4 for

all j ∈ {n − n3/4 + 1, . . . , n} and sj = j
n for all j ∈ {n + 1, . . . , 2n}. The sequence of requests R

contains 2n requests sampled uniformly at random in [0, 2]. We note that, interestingly, the servers
are almost uniform since a 1 − o(1) fraction of the servers are uniformly spread in the interval
[0, 2]. In other words, the Hierarchical Greedy algorithm is not robust to a small perturbation of
the servers.

Lemma 55. The expected value of the optimal offline matching for the instance J2n satisfies:
E[OPT] = O(

√
n).
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Proof. For a given realization R of the requests sequence, we partition the requests into R1 = {r ∈
R : r ∈ [0, 1− n−1/4]}, R2 = {r ∈ R : r ∈ (1− n−1/4, 1)} and R3 = {r ∈ R : r ∈ [1, 2]}. We also let
R1 be the first n− n3/4 elements of R1, or R1 = R1 if |R1| < n− n3/4; we let R2 be the first n3/4

elements of R2, or R2 = R2 if |R2| < n3/4, and we let R3 be the first n elements of R3, or R3 = R3

if |R3| < n.
We now define the following matching M , where for all r ∈ R, sM (r) denotes the server to

which r is matched and for all R̃ ⊆ R, M |R̃ denotes the restriction of M to requests in R̃:

• M |R1
is an optimal matching between R1 and S0 ∩ [0, 1− n−1/4].

• For all r ∈ R2, sM (r) = 1 + n−1/4.

• M |R3
is an optimal matching between R3 and S0 ∩ [1, 2].

• The remaining requests are matched arbitrarily to the remaining free servers.

Note that M is well defined since |R1| ≤ n− n3/4 = |S0 ∩ [0, 1− n−1/4]|, |R2| ≤ n3/4 = |S0 ∩ {1 +
n−1/4}|, and |R3| ≤ n = |S0 ∩ [1, 2]|.

Now, for all r ∈ R2, since r ∈ (1 − n−1/4, 1), we have |r − sM (r)| = |1 + n−1/4 − r| ≤ 2n−1/4,
hence, letting cost(M) denote the cost of the matching M , we have

E[cost(M |R2
)] = E[

∑
r∈R2

|sM (r)− r|] ≤ E[|R2|] · 2n−1/4 ≤ n3/4 · 2n−1/4 = 2n1/2. (24)

Next, note that the requests in R1 are uniform i.i.d. in [0, 1− n−1/4] and the servers in S0 ∩ [0, 1−
n−1/4] are uniformly spread in [0, 1−n−1/4]. Similarly, the requests in R3 are uniform i.i.d. in [1, 2]
and the servers in S0 ∩ [1, 2] are uniformly spread in [1, 2]. Hence by Lemma 11, we have that

E[cost(M |R1
)] + E[cost(M |R3

)] = O(
√
n). (25)

Now, note that |R1| = |{r ∈ R : r ∈ [0, 1 − n−1/4]}| follows a binomial distribution B(2n, (1 −
n−1/4)/2), |R2| = |{r ∈ R : r ∈ (1− n−1/4, 1)}| follows a binomial distribution B(2n, n−1/4/2) and
|R3| = |{r ∈ R : r ∈ [1, 2]}| follows a binomial distribution B(2n, 1/2). Hence, by Lemma 49, we
get

E[|R1 \R1|] = E[max(0, |R1| − n− n3/4)] ≤ E[||R1| − n− n3/4|]

≤
√

(n− n3/4) · (1− (1− n−1/4)/2) = O(
√
n),

E[|R2 \R2|] = E[max(0, |R2| − n3/4)] ≤ E[||R2| − n3/4|] ≤
√
n3/4 · (1− n−1/4/2) = O(

√
n),

E[|R3 \R3|] = E[max(0, |R3| − n] ≤ E[||R3| − n|] ≤
√
n(1− 1/2) = O(

√
n).

Since for all r ∈ R, we have |sM (r)− r| ≤ 1, we get

E[cost(M |(R1\R1)∪(R2\R2))∪(R3\R3))] ≤ E[|R1 \R1|] + E[|R2 \R2|] + E[|R3 \R3|] = O(
√
n). (26)

Combining (24), (25) and (26), we get

E[OPT] ≤ E[cost(M)] = E[cost(M |(R1\R1)∪(R2\R2)∪(R3\R3)] + E[cost(M |R1
)]

+ E[cost(M |R2
)] + E[cost(M |R3

)] = O(
√
n).
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Lemma 56. The expected cost of the matching returned by algorithm AH on instance J2n satisfies:
E[cost(AH ,J2n)] = Ω(n3/4).

Proof. For a given realization R of the requests sequence, we let R1 = {r ∈ R : r ∈ [0, 1]}. We
also let R1 be the first n − n3/4 elements of R1, or R1 = R1 if |R1| < n − n3/4. Now, note that
|R1| = |{r ∈ R : r ∈ [0, 1]}| follows a binomial distribution B(2n, 1/2) with mean n. Hence,

E[|R1 \R1|] ≥ n3/4P(|R1 \R1| ≥ n3/4) = n3/4P(|R1| ≥ n) =
1

2
n3/4. (27)

Next, note that the Hierarchical Greedy algorithm matches a request r ∈ [0, 1] to a server in
(1, 2] only if [0, 1] has no more available servers. Hence, since R1 contains at most n−n3/4 requests
and there are initially n−n3/4 servers in [0, 1], all requests in R1 will be matched to servers in [0, 1].
Now, if |R1 \ R1| > 0, then |R1| = n − n3/4 = S0 ∩ [0, 1]; hence, when any request r ∈ |R1 \ R1|
arrives, all the servers in [0, 1] have already been matched to a request in R1. Therefore, r is
matched by AH to a server sAH (r) in (1, 2]. Noting that the requests in R1 \ R1 are uniform in
[0, 1], we thus have, for any t such that rt ∈ |R1 \R1|,

E[costt(AH , rt)|rt ∈ R1 \R1] = E[sAH (rt)− rt|rt ∈ R1 \R1] ≥ 1− E[rt|rt ∈ R1 \R1] =
1

2
. (28)

Thus,

E[cost(AH ,J2n)] =
∑
t∈[n]

E[costt(AH , rt)]

≥
∑
t∈[n]

E[costt(AH , rt)|rt ∈ R1 \R1]P(rt ∈ R1 \R1)

≥
∑
t∈[n]

1

2
P(rt ∈ R1 \R1) (by (28))

=
1

2
E[
∑
t∈[n]

1rt∈R1\R1
]

=
1

2
E[|R1 \R1|]

=
1

4
n3/4. (by (27))

By combining Lemmas 56 and 55, we get the following result.

Lemma 57. For online matching on the line in the random requests model, the Hierarchical Greedy
algorithm AH achieves an Ω(n1/4)-competitive ratio.

F Missing Analysis from Section 4.3

F.1 Missing analysis from Section 4.3.1

Fact 26. Let ñ := n − 4 log(n)2√n/(1 − n−1/5). For any I ⊆ [n−1/5, 1], we have |S0 ∩ I| ∈
[ñ|I| − 1, ñ|I|+ 3]
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Proof. Let x, y ∈ [0, 1] such that x ≤ y and let k, j ∈ N be such that k
ñ ≤ x ≤

k+1
ñ and j−1

ñ ≤ y ≤
j
ñ .

Then by construction of In, the number of servers in the interval [x, y] is in {j−k−1, j−k, j−k+1},
and by definition of k, j, we have j−k−2 ≤ ñ(y−x) ≤ j−k. Hence, for all z > ñ(y−x)+3 or z <
ñ(y−x)−1, we have z /∈ {j−k−1, j−k, j−k+1}; hence |S0∩[x, y]| ∈ [ñ(y−x)−1, ñ(y−x)+3].

Lemma 30. Assume that the sequence of requests is regular. Then, for n large enough and for all
t ∈ [n− nc3 ] and j ∈ [mt − 1], we have st,j+1 − st,j ≤ 2 log(n)4n1−2c3.

Proof. Note that if the statement of the lemma holds for t = n−nc3 , then it holds for all t ∈ [n−nc3 ]
since St ⊇ Sn−nc3 when t ≤ n− nc3 . Hence it suffices to consider the case t = n− nc3 .

Now, consider s, s′ ∈ Sn−nc3 ∩ (0, 1] such that s′− s > 2 log(n)4n1−2c3 . Note that if there exists
s′′ ∈ Sn−nc3 such that s < s′′ < s′, we are done. In the remainder of the proof, we show that there
is such an s′′. By definition of Hm, each request is either matched greedily, or it is matched to
0. Hence, for all j ∈ [n − nc3 ], if rj /∈ (s, s′), then sHm(rj) /∈ (s, s′) (since rj is closer to either s
or s′ than any point in (s, s′), and both s and s′ are available when rj arrives). Similarly, by the
greediness of Hm for requests r > y0 and since s > y0 (by definition of S0 and since Sn−nc3 ⊆ S0),
if rj ∈ (s, s′), then sHm(rj) ∈ (s, s′) for all j ≤ n− nc3 . Therefore,

|{j ∈ [n− nc3 ] : sHm(rj) ∈ (s, s′)}| = |{j ∈ [n− nc3 ] : rj ∈ (s, s′)}|.

Note that d+((s, s′)) · n1−2c3 ≥ (s′ − s)n1−2c3 ≥ 2 log(n)4n1−2c3(n − nc3) = Ω(1). Hence, by
applying the first regularity condition with t = 0, t′ = n− nc3 , and (d, d′) = d+((s, s′)), we have

|{j ∈ [n− nc3 ] : rj ∈ (s, s′)}| ≤ |{j ∈ [n− nc3 ] : rj ∈ d+((s, s′))}|

≤ (n− nc3) · |d+((s, s′))|+ log(n)2
√

(n− nc3) · |d+((s, s′))|

≤ (n− nc3)(s′ − s+ 2
n) + log(n)2

√
(n− nc3)(s′ − s+ 2

n)

≤ (n− nc3)(s′ − s) + log(n)2
√

(n− nc3)(s′ − s) + 4 log(n)2.

By combining the previous inequality with the previous equality, we obtain that

|{j ∈ [n−nc3 ] : sHm(rj) ∈ (s, s′)}| ≤ (n−nc3)(s′−s)+log(n)2
√

(n− nc3)(s′ − s)+4 log(n)2. (29)

Now, since we assumed s′ − s > 2 log(n)4n1−2c3 , we have, for n large enough and since c3 ∈
(4/5, 1), that

(
1− 4 log(n)2n1/2−c3/(1− n−1/5)− (4 log(n)2 + 1)/((s′ − s)nc3)

)−1 ≤ 2, thus we also
have

(s′ − s) > 2 log(n)4n1−2c3

≥ 2 log(n)4 (n− nc3)

n2c3

≥ log(n)4 (n− nc3)

n2c3(1− 4 log(n)2n1/2−c3/(1− n−1/5)− (4 log(n)2 + 1)/((s′ − s′)nc3)

= log(n)4 (n− nc3)

(nc3 − 4 log(n)2n1/2/(1− n−1/5)− (4 log(n)2 + 1)/(s′ − s))2

= log(n)4 (n− nc3)

((n− 4 log(n)2n1/2/(1− n−1/5)− (4 log(n)2 + 1)/(s′ − s))− (n− nc3))2

= log(n)4 (n− nc3)

(ñ− (4 log(n)2 + 1)/(s′ − s)− (n− nc3))2
,
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which implies that (s′− s)2(ñ− (4 log(n)2 + 1)/(s′− s)− (n−nc3))2 > log(n)4(n−nc3)(s′− s).
By taking the square root on both sides and reorganizing the terms, this gives

(s′ − s)ñ− 1 > (n− nc3)(s′ − s) + log(n)2
√

(n− nc3)(s′ − s) + 4 log(n)2.

Combining this with (29) and using that (s′ − s)ñ− 1 ≤ |S0 ∩ (s, s′)| by Fact 26, we obtain

|{j ∈ [n− nc3 ]|sHm(rj) ∈ (s, s′)}| < (s′ − s)ñ− 1 ≤ |S0 ∩ (s, s′)|,

Hence,

|Sn−nc3 ∩ (s, s′)| = |S0 ∩ (s, s′) \ {j ∈ [n− nc3 ]|sHm(rj) ∈ (s, s′)}| > 0.

Thus, there exists s′′ ∈ Sn−nc3 such that s < s′′ < s′, which concludes the proof.

F.2 Missing analysis from Section 4.3.3

Lemma 34. Let m ≤ c1n and i ∈ [d1 log(n)]. Assume that R is regular and that ti−1 ≤ n − (1 −
c2)i−1n. Then, ti−1 < ti.

Proof. We treat separately the cases i = 1 and i > 1. The case i = 1 is immediate since by
construction of the instance, I0∩S0 = (0, n−1/5]∩S0 = ∅ whereas I1∩S0 = (n−1/5, 3

2n
−1/5]∩S0 6= ∅,

which implies t0 = 0 < t1.
Next, assume i ∈ {2, . . . , d1 log(n)}. By definition of ti−1, we have that (yi−2, yi−1]∩Sti−1−1 6= ∅,

which implies that sti−1−1,1 ≤ yi−1. In addition, because of the assumptions and by Lemma 33, we
have ti−1− 1 < n− (1− c2)i−1n ≤ n−nc3 . Hence, by applying Lemma 30 with t = ti−1, we deduce
(yi−1, yi−1 +2 log(n)4n1−2c3 ]∩Sti−1−1 6= ∅. Then, since c3 > 3/4 and since we assumed n sufficiently

large, we have that yi−1 + 2 log(n)4n1−2c3 = (3/2)i−1n−1/5 + 2 log(n)4n1−2c3 ≤ (3/2)in−1/5 = yi.
Thus, we get that (yi−1, yi] ∩ Sti−1−1 6= ∅. By definition of ti, this implies that ti > ti−1 − 1. In
addition, since Ii−1 and Ii are disjoint, at most one of Ii−1 and Ii can be depleted at each time step
and we have that ti−1 6= ti. We conclude that ti > ti−1.

Lemma 35. Let m ≤ c1n and i ∈ [d1 log(n)]. Assume that R is regular, that t0 < . . . < ti−1 ≤
n− (1− c2)i−1n and that ti−1 < ti. Let ti := min(ti, ti−1 + c2(n− ti−1)). Then,

|{j ∈ [ti] : rj ∈ Ii, sHm(rj) /∈ Ii}| = Õ(
√
n).

Proof. Let i ∈ [d1 log(n)]. We first upper bound |{j ∈ [ti] : rj ∈ Ii, sHm(rj) > yi}|.
Since ti = min(ti, ti−1 + c2(n − ti−1)) ≤ ti, we have that (yi−1, yi] ∩ Sti−1 6= ∅ by definition

of ti, which implies that sti−1,1 ≤ yi. Now, using the definition of ti, the assumption that ti−1 ≤
n− (1− c2)i−1n, and Lemma 33, we have ti− 1 ≤ ti−1 + c2(n− ti−1)− 1 = c2n+ ti−1(1− c2)− 1 <
n − (1 − c2)in ≤ n − nc3 . Hence, by Lemma 30, applied with t = ti − 1, we obtain that there is
s ∈ (yi − 2 log(n)4n1−2c3 , yi] ∩ Sti−1. We let s be such a server. Then, by the greediness of Hm for
all requests r > y0, we have that for all j ∈ [ti], if rj ≤ yi − 2 log(n)4n1−2c3 , then sHm(rj) ≤ s ≤ yi
(since rj is closer to s than any point in (s, yi], and s is available when rj arrives).

Now, note that since we assumed c3 > 3/4 and n large enough, we have yi − 2 log(n)4n1−2c3 ≥
(3/2)in−1/5 − 2 log(n)4n−1/4 > (3/2)i−1n−1/5 = yi−1. Hence, we can write Ii = (yi−1, yi −
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2 log(n)4n1−2c3 ] ∪ (yi − 2 log(n)4n1−2c3 , yi]. Since we have shown that sHm(rj) ≤ yi for all j such
that rj ≤ yi − 2 log(n)4n1−2c3 , we thus obtain

|{j ∈ [ti] : rj ∈ Ii, sHm(rj) > yi}|
= |{j ∈ [ti] : rj ∈ (yi − 2 log(n)4n1−2c3 , yi], sHm(rj) > yi}|
≤ |{j ∈ [ti] : rj ∈ (yi − 2 log(n)4n1−2c3 , yi]}|
≤ |{j ∈ [n] : rj ∈ d+([yi − 2 log(n)4n1−2c3 , yi])}|

≤ |d+([yi − 2 log(n)4n1−2c3 , yi])| · n+ log2(n)
√
|d+([yi − 2 log(n)4n1−2c3 , yi])| · n

≤ (2 log(n)4n1−2c3 + 2/n) · n+ log2(n)
√

(2 log(n)4n1−2c3 + 2/n) · n
= Õ(

√
n). (30)

where the third inequality is by the second regularity condition, applied with t = 0, t′ = n, [d, d′] =
d+([yi−2 log(n)4n1−2c3 , yi]), which satisfy the condition (t− t′)(d−d′) = n ·2 log(n)4n1−2c3 = Ω(1)
since c3 < 1. The fourth inequality is by definition of d+(·), and the fifth is since c3 > 3/4.

Next, we upper bound |{j ∈ [ti] : rj ∈ Ii, sHm(rj) ≤ yi−1}|. We treat separately the cases where
j ∈ [ti−1] and j ∈ {ti−1 + 1, ti}.

First, consider the case j ∈ [ti−1]. If i = 1, then by construction of the instance, I0 ∩ S0 = ∅,
hence t0 = 0 and we have the trivial identity |{j ∈ [t0] : rj ∈ I1, sHm(rj) > y1}| = 0. Now, for i > 1,
by definition of ti−1, we have that (yi−2, yi−1] ∩ Sti−1−1 6= ∅, which implies that sti−1−1,1 ≤ yi−1.
Since by assumption and by Lemma 33, we have ti−1 − 1 < n− (1− c2)i−1n ≤ n− nc3 , we obtain,
by applying Lemma 30 at time t = ti−1 − 1 and by a similar argument as in (30):

|{j ∈ [ti−1] : rj ∈ Ii, sHm(rj) ≤ yi−1}| ≤ |{j ∈ [n] : rj ∈ d+([yi−1, yi−1 + 2 log(n)4n1−2c3 ])}| = Õ(
√
n)

(31)

Now, for all j ∈ {ti−1 + 1, ti}, since j ≥ ti−1 + 1 and t0 < . . . < ti−1 by assumption, we

have that (0, yi−1] ∩ Sj−1 =
(⋃

k∈[i−1](yk−1, yk]
)
∩ Sj−1 = ∅ by definition of t0, . . . , ti−1; and since

j ≤ ti ≤ ti, we have that (yi−1, yi] ∩ Sj−1 6= ∅ by definition of ti. Hence, if rj ∈ Ii, we either
have sHm(rj) > yi−1 or sHm(rj) = 0. By the greediness of Hm for all r > n−1/5 and since
|yi− rj | ≤ |yi− yi−1| = |(3/2)in−1/5− (3/2)i−1n−1/5| = 1/2(3/2)i−1n−1/5 ≤ |rj − 0| for any rj ∈ Ii,
we have that sHm(rj) > yi−1 for any rj ∈ Ii. Hence, we get that

|{j ∈ {ti−1 + 1, ti} : rj ∈ Ii, sHm(rj) ≤ yi−1}| = 0.

Combining this with (31), we obtain:

|{j ∈ [ti] : rj ∈ Ii, sHm(rj) ≤ yi−1}| = Õ(
√
n). (32)

Finally, from (30) and (32), we get

|{j ∈ [ti] : rj ∈ Ii, sHm(rj) /∈ Ii}|
= |{j ∈ [ti] : rj ∈ Ii, sHm(rj) > yi}|+ |{j ∈ [ti] : rj ∈ Ii, sHm(rj) ≤ yi−1}| = Õ(

√
n).

Lemma 36. Let m ≤ c1n and i ∈ [d1 log(n)]. Assume that R is regular, that t0 < . . . < ti−1 and
that ti−1 < ti. Let ti := min(ti, ti−1 + c2(n− ti−1)). Then,

|{j ∈ {ti−1 + 1 + c1(n− ti−1), . . . , ti} : rj ∈ [3
4yi−1, yi−1], sHm(rj) ∈ Ii}|

≥ 1

2
(ti − ti−1 − c1(n− ti−1))|Ii| − Õ(

√
n).
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Proof. Consider j ∈ {ti−1 + 1 + c1(n − ti−1), . . . , ti} and assume that rj ∈ [3
4yi−1, yi−1]. Since

j ≥ ti−1 + 1 and t0 < . . . < ti−1 by assumption, we have j > t` for all ` ∈ [i − 1]. Thus,

by definition of t0, . . . , ti−1, we have that (0, yi−1] ∩ Sj−1 =
(⋃

k∈[i−1](yk−1, yk]
)
∩ Sj−1 = ∅. In

addition, since j ≤ ti ≤ ti, we have that (yi−1, yi] ∩ Sj−1 6= ∅ by definition of ti. Thus, by the
greediness of Hm for all j ≥ ti−1 + 1 + c1(n − ti−1) ≥ c1n ≥ m, and since rj ∈ [3

4yi−1, yi−1], we
either have sHm(rj) ∈ (yi−1, yi] or sHm(rj) = 0. Now, since (yi−1, yi] ∩ Sj−1 6= ∅, and since for any
s ∈ (yi−1, yi] ∩ Sj−1, we have

|s− rj | ≤ |yi − 3
4yi−1| = (3/2)i−1n−1/5[3

2 −
3
4 ] = |34yi−1| ≤ |rj − 0|,

we must have sHm(rj) ∈ (yi−1, yi]. Hence,

|{j ∈ {ti−1 + c1(n− ti−1), . . . , ti} : rj ∈ [3
4yi−1, yi−1]}|

= |{j ∈ {ti−1 + c1(n− ti−1), . . . , ti} : rj ∈ [3
4yi−1, yi−1], sHm(rj) ∈ (yi−1, yi]}|. (33)

Now, since we assumed that the sequence of requests is regular, by applying the first regularity
condition with t = ti−1 + c1(n− ti−1), t′ = ti and [d, d′] = d−([3

4yi−1, yi−1])), we have that

|{j ∈{ti−1 + 1 + c1(n− ti−1), . . . , ti} : rj ∈ [3
4yi−1, yi−1]}

≥ |{j ∈ {ti−1 + 1 + c1(n− ti−1), . . . , ti} : rj ∈ d−([3
4yi−1, yi−1])}|

≥ d−([3
4yi−1, yi−1]) · (ti − ti−1 − c1(n− ti−1)− 1) (34)

− log(n)2
√
d−([3

4yi−1, yi−1]) · (ti − ti−1 − c1(n− ti−1)− 1).

≥ (yi−1 − 3
4yi−1 − 2/n)(ti − ti−1 − c1(n− ti−1)− 1)

− log(n)2
√

(yi−1 − 3
4yi−1 − 2/n)(ti − ti−1 − c1(n− ti−1)− 1).

≥ (ti − ti−1 − c1(n− ti−1))
yi−1

4
− Õ(

√
n). (35)

By combining (35) and (33), and noting that |Ii| = (3/2)in−1/5−(3/2)i−1n−1/5 = (3/2)i−1n−1/5·12 =
yi−1

2 , we finally obtain that

|{j ∈ {ti−1 + c1(n− ti−1), . . . , ti} : rj ∈ [3
4yi−1, yi−1], sHm(rj) ∈ (yi−1, yi]}|

≥ 1

2
(ti − ti−1 − c1(n− ti−1))|Ii| − Õ(

√
n).

Lemma 38. Let m ≤ c1n and i ∈ [d1 log(n)]. Assume that R is regular and that t1 < t2. Then,
c1n < t1.

Proof. First, note that, since t1 is the time at which I1 is depleted, we have, using Fact 26, that

|{j ∈ [t1] : sHm(rj) ∈ I1}| = |S0 ∩ I1| ≥ |I1|ñ− 1. (36)

In particular, t1 ≥ |{j ∈ [t1] : sHm(rj) ∈ I1}| ≥ |I1|ñ− 1; thus for all i ≥ 0, we have

t1|Ii| = Ω(|I1||Ii|ñ) = Ω(1). (37)

Next, we upper bound |{j ∈ [t1] : sHm(rj) ∈ I1}|. Since t1 < t2 by assumption, for all j ∈ [t1],
we have that (y1, y2]∩Sj−1 6= ∅ by definition of t2. Hence, by the greediness of Hm for all requests
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r > y0, if rj > y2, we have sHm(rj) > y1 (since rj is closer to any s ∈ (y1, y2]∩Sj−1 than any point
in [0, y1]). We thus get

|{j ∈ [t1] |sHm(rj) ∈ I1}| ≤ |{j ∈ [t1] : rj ≤ y2}|

Now, note that by (37), we have t1|d+(Ii)| = Ω(1) for all i. Hence, by applying the second regularity
condition with t = 0, t′ = t1, and [d, d′] = d+(I0), d+(I1), d+(I2), respectively, we get

|{j ∈ [t1] : rj ≤ y2}|
≤ |{j ∈ [t1] : rj ∈ d+(I0)}|+ |{j ∈ [t1] : rj ∈ d+(I1)}|+ |{j ∈ [t1] : rj ∈ d+(I2)}|

≤ (d+(I0) + d+(I1) + d+(I2))t1 + log(n)2(
√
d+(I0)t1 +

√
d+(I1)t1 +

√
d+(I2)t1)

≤ (|I0|+ |I1|+ |I2|+ 6/n)t1 + log(n)2(
√
|I0|t1 + 2/n+

√
|I1|t1 + 2/n+

√
|I2|t1 + 2/n)

≤ (|I0|+ |I1|+ |I2|)t1 + Õ(
√
n)

=
9

2
|I1|t1 + Õ(

√
n),

where the first inequality is since (0, y2] = I0 ∪ I1 ∪ I2, and the equality is since |I1| = n−1/5

2 and

|I0 ∪ I1 ∪ I2| = (3/2)2n−1/5. Hence, by combining the two previous inequalities, we obtain

|{j ∈ [t1] |sHm(rj) ∈ I1}| ≤
9

2
|I1|t1 + Õ(

√
n). (38)

Combining (36) and (38), and reorganizing the terms, we get

t1 ≥
2ñ

9
− Õ(

√
n/|I1|) =

2(n− 4 log(n)2√n/(1− n−1/5))

9
− Õ(

√
n/n−1/5) =

2n

9
− Õ(n7/10).

Hence, since we chose c1 < 2/9, and since we assumed n sufficiently large, we have t1 > c1n.

Lemma 39. Let m ≤ c1n and i ∈ [d1 log(n)]. Assume that R is regular and that c1n < t1, then
c1n < t{0}.

Proof. Note that by definition of t1 and since we assumed c1n < t1, we have that for all j ∈ [c1n],
Sj∩I1 6= ∅. Hence, by the greediness of Hm for all requests r > y0, if rj > y1, we have sHm(rj) > y0

(since rj is closer to any s ∈ (y0, y1] ∩ Sj−1 than to the servers at location 0). We thus get

|{j ∈ [c1n] |sHm(rj) = 0}| ≤ |{j ∈ [c1n] |sHm(rj) ∈ [0, y0)}| ≤ |{j ∈ [c1n] : rj ≤ y1}|. (39)

Now, note that we have c1n|d+(Ij)| = Ω(1) for j = 0, 1. Hence, by applying the second
regularity condition with t = 0, t′ = c1n, and [d, d′] = d+(I0), d+(I1), respectively, we get

|{j ∈ [c1n] : rj ≤ y1}| ≤ |{j ∈ [c1n] : rj ∈ d+(I0)}|+ |{j ∈ [c1n] : rj ∈ d+(I1)}|

≤ (d+(I0) + d+(I1))c1n+ log(n)2(
√
d+(I0)c1n+

√
d+(I1)c1n)

≤ (|I0|+ |I1|)c1n+ Õ(
√
n)

= c1(3/2)n−1/5 · n+ Õ(
√
n),

< n4/5

≤ |S0 ∩ {0}|,

where the fourth inequality is since we set c1 < 2/3 and since we assumed n large enough and
the last one by definition of the instance. Hence, combining this with (39), we get |Sc1n ∩ {0}| =
|S0 ∩ {0}| − |{j ∈ [c1n] |sHm(rj) = 0}| > 0. By definition of t{0}, we deduce that t{0} > c1n.
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F.3 Missing analysis from Section 4.3.4

In the following, we write N (rt) = {max{z ∈ St−1 : z ≤ rt},min{z ∈ St−1 : z ≥ rt}} and
N (rt)

′ = {max{z ∈ S′t−1 : z ≤ rt},min{z ∈ S′t−1 : z ≥ rt}} to denote the servers in St and S′t which
are either closest on the left or closest on the right to rt. We also write s(rt) and s′(rt) to denote
the servers to which rt is matched by Hm and Hm−1, respectively.

Lemma 20. Let R be n arbitrary requests and S0 be n arbitrary servers. Then, for all t ∈
{0, . . . ,m− 1}, we have St = S′t, and for all t ≥ m, either St = S′t or S′t = St ∪ {0} \ {min{s ∈ St :
s > 0}} (and {s ∈ St : s > 0} 6= ∅).

Proof. It is immediate that St = S′t for all t ∈ {0, . . . ,m− 1} since Hm and Hm−1 make the same
matching decisions until time m− 1.

Next, we show that either Sm = S′m, or {s > 0|s ∈ Sm} 6= ∅ and S′m = Sm ∪ {0} \ {sm,1}. We
consider different cases depending on the location of request rm.

• Case 1: rm ∈ (n−1/5, 1] or (rm ∈ [0, n−1/5] and Sm−1 ∩ {0} = ∅). In this case, both Hm
and Hm−1 match rm greedily. Since we also have Sm−1 = S′m−1, we get Sm = S′m.

• Case 2: rm ∈ [0, n−1/5] and Sm−1∩{0} 6= ∅. In this case,Hm matches rm to 0, i.e. s(rm) = 0,
while Hm−1 matches rm greedily. Note that S′m−1 ∩ (0, n−1/5] ⊆ S′0 ∩ (0, n−1/5] = ∅, hence

s′m−1,1 = min{s > 0 : s ∈ Sm−1′} ≥ n−1/5 and we thus have N ′(rm) ⊆ {0, s′m−1,1}. Since

Hm−1 matches rm greedily, we get that s(rm)′ ∈ {0, s′m−1,1}.
We now consider two cases:
(1) s′(rm) = 0. In this case, we have s′(rm) = s(rm) = 0, hence Sm = S′m.

(2) s′(rm) = s′m−1,1. In this case, we have s(rm) = 0 and s′(rm) = s′m−1,1 = min{s > 0 : s ∈
S′m−1} = min{s > 0 : s ∈ Sm−1} = min{s > 0 : s ∈ Sm ∪ {0}} = min{s > 0 : s ∈ Sm} = sm,1.
Hence S′m = S′m−1 \ {s′(rm)} = S′m−1 \ {sm,1} = Sm−1 \ {sm,1} = Sm ∪ {0} \ {sm,1}.

Hence we either have that Sm = S′m or that S′m = Sm∪{0}\{sm,1}. Now, we show by induction
on t that for all t ∈ {m, . . . , n}, we either have that St = S′t or that S′t = St ∪ {0} \ {st,1}.

Fix t ∈ {m, . . . , n− 1}. If St = S′t, it is immediate that St+1 = S′t+1 and we are done. We now
assume that S′t = St ∪{0} \ {st,1}. We thus have that S′t = St ∪{gLt } \ {gRt } with gLt = 0, gRt = st,1.
To get the values of St+1, S

′
t+1, we apply the third point of Lemma 6, noting that we have here

gLt = 0, gRt = st,1, s
L
t = 0, sRt = st,2, d

L
t = |gLt − sLt | = 0, dRt = |sRt − gRt | = st2 − st1 . We enumerate

below all possible values of St+1, S
′
t+1 by reporting the values given in Tables 2, 3 and 4 (note that

the roles of St and S′t are reversed since S′t = St ∪{gLt } \ {gRt } here instead of St = S′t ∪{gLt } \ {gRt }
as in the statement of Lemma 6).

• Case 1: st,2 6= ∅ and St ∩ {0} 6= ∅. In this case, the values of St+1, S
′
t+1 are obtained by

using Table 2. There are three possible cases: (1) St+1 = S′t+1 (Column 4 of Table 2) (2)
S′t+1 = St+1 ∪ {0} \ {st,1} and st,1 ∈ St+1 (Column 2,3,6,7) (3) S′t+1 = St+1 ∪ {0} \ {st,2} and
st,1 /∈ St+1 (Column 5).

• Case 2: St ∩ {0} = ∅ and st,2 6= ∅. In this case, the values of St+1, S
′
t+1 are obtained

by using Table 3. There are three possible cases: (1) St+1 = S′t+1 (Column 2) (2) S′t+1 =
St+1 ∪ {0} \ {st,1} and st,1 ∈ St+1 (Column 4,5) (3) S′t+1 = St+1 ∪ {0} \ {st,2} and st,1 /∈ St+1

(Column 3).
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• Case 3: st,2 = ∅ and St∩{0} 6= ∅. In this case, the values of St+1, S
′
t+1 are obtained by using

Table 4. There are two possible cases: (1) St+1 = S′t+1 (Column 5) (2) S′t+1 = St+1∪{0}\{st,1}
and st,1 ∈ St+1 (Column 2,3,4).

• Case 4: st,2 = ∅ and St ∩ {0} = ∅. From Lemma 6, we get St+1 = S′t+1.

In all cases, we get that either (1) St+1 = S′t+1, (2) S′t+1 = St+1 ∪ {0} \ {st,1} and st,1 ∈ St+1

or (3) S′t+1 = St+1 ∪ {0} \ {st,2} and st,1 /∈ St+1. If case (2) holds, and since st,1 ∈ St+1, note
that st+1,1 = min{s ∈ St+1 : s > 0} = st,1, and if case (3) holds, since st,1 /∈ St+1, note that
st+1,1 = min{s ∈ St+1 : s > 0} = min{s ∈ St \ {st,1} : s > 0} = st,2. In all cases, we have that
either St+1 = S′t+1, or S′t+1 = St+1 ∪ {0} \ {st+1,1}, which concludes the inductive case and the
proof.

Lemma 41. All following properties hold at any time t ∈ {m, . . . , n− 1}:

1. if δt = 0, then for all t′ ≥ t, we have δt′ = 0 and ∆costt+1 = 0,

2. if St ∩ {0} 6= ∅, then ∆costt+1 ≥ 0.

3. if St ∩ {0} 6= ∅, δt 6= 0 and |St ∩ (δt, 1]| ≥ 1, then the values of (δt+1, St+1) and the expected
value of ∆costt+1 conditioning on (δt, St) and on rt+1 are as given in Table 1, where wt :=
st,2−st,1 and where we write E[∆costt+1|...] instead of E[∆costt+1|(δt, St), St∩{0} 6= ∅, δt 6= 0,
|St ∩ (δt, 1]| ≥ 1, rt+1 ∈ . . .].

4. if δt+1 6= δt, then St+1 = St \ {δt}.

5. 1St∩{0}=∅,δt 6=0 · E[∆costt+1|(δt, St)] ≥ −1St∩{0}=∅,δt 6=0 · P(δt+1 = 0|(δt, St)).

Proof. In the following, we consider a fixed t ∈ {m, . . . , n− 1}. We start by the proof of Point 1.

Proof of Point 1. By definition of δ, if δt = 0, then St = S′t. Since both Hm and Hm−1 match
all requests rt+1, . . . , rn greedily, it is immediate that Sj = S′j for all j ≥ t, which also implies that
δj = 0 and ∆costj+1 = 0 for all j ≥ t.

We now show points 2,3,4,5. First, note that by Lemma 20, we have that either St = S′t or
S′t = St ∪ {0} \ {st,1}. Since all properties follow immediately when St = S′t, we assume in the
following that S′t = St ∪ {0} \ {st,1}.

Proof of Point 2. Assume that St∩{0} 6= ∅. Then, S′t∩[0, 1] = (St∪{0}\{st,1})∩[0, 1] ⊆ St∩[0, 1],
hence, for any value of rt+1 ∈ [0, 1], we have, by definition of the process:

costt+1(Hm) = |rt+1 − s(rt+1)| = min
s∈St∩[0,1]

|rt+1 − s|

≤ min
s∈S′t∩[0,1]

|rt+1 − s| = |rt+1 − s′(rt+1)| = costt+1(Hm−1).

Thus, ∆costt+1 = costt(Hm−1)− costt(Hm) ≥ 0.
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Figure 12: Illustration of the different cases in Point 3 of Lemma 41.

Proof of point 3. In the remainder of this paragraph, we condition on the variables (δt, St) and
we assume that St ∩ {0} 6= ∅, δt 6= 0 and |St ∩ (δt, 1]| ≥ 1.

To get the values of (δt+1, St+1) depending on the location of rt+1, we apply the third point of
Lemma 6, by noting that we have in this case gLt = 0, gRt = st,1, s

L
t = 0, sRt = st,2, d

L
t = |gLt − sLt | =

0, dRt = |sRt − gRt | = st2 − st1 = wt. The values given in Table 1 are thus directly reported from
Table 2 (see Figure 12 for an illustration of the different cases).

Next, we give a lower bound on the expected value of ∆costt+1 depending on rt+1. Note
that, since St ∩ {0} 6= ∅, we already have that ∆costt+1 ≥ 0 from Point 2 and we can fill the
corresponding values in Table 1. We thus only need to refine the lower bound on ∆costt+1 in the case
rt+1 ∈ [ δt+wt2 , δt+

wt
2 ] and wt ≤ δt. To ease the exposition, we let Et be the set of all (δ, S) that satisfy

the assumptions of the third point of the lemma (i.e., Et = {(δ, S) ∈ [0, 1]× [0, 1]n−t : S ∩ {0} 6= ∅,
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δ 6= 0 and |S ∩ (δ, 1]| ≥ 1}). Since s′(rt+1) = δt + wt, we have

E[cost′t+1 |(δt, St), (δt, St) ∈ Et, wt ≤ δt, rt+1 ∈ [ δt+wt2 , δt + wt
2 ]]

= E[|(δt + wt)− rt+1| |(δt, St), (δt, St) ∈ Et, wt ≤ δt, rt+1 ∈ [ δt+wt2 , δt + wt
2 ]]

= E[(δt + wt)− rt+1|(δt, St), (δt, St) ∈ Et, wt ≤ δt, rt+1 ∈ [ δt+wt2 , δt + wt
2 ]]

=
wt
2

+ E[(δt + wt
2 )− rt+1|(δt, St), (δt, St) ∈ Et, wt ≤ δt, rt+1 ∈ [ δt+wt2 , δt + wt

2 ]]

=
wt
2

+
(δt + wt

2 −
δt+wt

2 )

2

=
wt
2

+
δt
4
,

and since since s(rt+1) = δt, we have

E[costt+1 |(δt, St), (δt, St) ∈ Et, wt ≤ δt, rt+1 ∈ [ δt+wt2 , δt + wt
2 ]]

= E[|δt − rt+1| |(δt, St), (δt, St) ∈ Et, wt ≤ δt, rt+1 ∈ [ δt+wt2 , δt + wt
2 ]]

≤
(δt + wt

2 )− δt+wt
2

2

=
δt
4
,

where the inequality is since δt ∈ [ δt+wt2 , δt + wt
2 ] when wt ≤ δt.

Hence,

E[∆costt+1|(δt, St), (δt, St) ∈ Et, wt ≤ δt, rt+1 ∈ [ δt+wt2 , δt + wt
2 ]] ≥

(
(
wt
2

+
δt
4

)− δt
4

)
≥ wt

2
.

Proof of point 4.
By assumption, we have δt = min{s > 0 : s ∈ St} ∈ St. Now, assume that s(rt+1) 6= δt.

Then, whatever the value of s′(rt+1), we have that δt /∈ (St ∪ {0} \ {δt}) \ {s′(rt+1)}, whereas
δt ∈ St \{s(rt+1)}. Thus, S′t+1 = (St∪{0}\{δt})\{s′(rt+1)} 6= St \{s(rt+1)} = St+1, and by defini-
tion of δ, we get δt+1 = min{s > 0 : s ∈ St+1} = min{s > 0 : s ∈ St \ {s(rt+1)}} = δt. By contrapo-
sition, if δt+1 6= δt, then we must have s(rt+1) = δt, and we thus get St+1 = St\{s(rt+1)} = St\{δt}.

Proof of point 5. We condition on the variables (δt, St) and assume that St∩{0} = ∅ and δt 6= 0.
We first show that δt+1 6= 0 if and only if s′(rt+1) 6= 0.

• ⇐: Assume that s′(rt+1) 6= 0. Since 0 ∈ (St ∪ {0} \ {st,1}) \ {s′(rt+1)}, and 0 /∈ St by
assumption, we have that whatever the value of s(rt+1), S′t+1 = (St∪{0}\{st,1})\{s′(rt+1)} 6=
St \ {s(rt+1)} = St+1. Thus, by construction of δ, we get δt+1 6= 0.

• ⇒: Assume, by contrapositive, that s′(rt+1) = 0. Since by assumption, St ∩{0} = ∅, we have
that St = {st,1, st,2} ∪ (St ∩ (st,2, 1]). Now, since s′(rt+1) = arg mins∈St∪{0}\{st,1} |s − rt+1|,
we have that for all s ∈ St ∩ [st,2, 1], |rt+1 − 0| ≤ |rt+1 − s|; thus, if rt+1 ≥ st,1, we have that
|rt+1−st,1| ≤ |rt+1−0| ≤ |rt+1−s|, and if rt+1 ≤ st,1, it is immediate that for all s ∈ St∩[st,2, 1],
|st,1 − rt+1| ≤ |s − rt+1|. Hence, we get that s(rt+1) = arg mins∈St |rt+1 − s| = st,1, which
immediately implies that St+1 = S′t+1, from which we deduce δt+1 = 0.
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We now show that ∆costt+1 ≥ 0 when s′(rt+1) 6= 0. Since s′(rt+1) ∈ St ∪ {0} \ {st,1} and
s′(rt+1) 6= 0, we have s′(rt+1) ∈ St. Thus, |s(rt+1) − rt+1| = mins∈St |s − rt+1| ≤ |s′(rt+1) − rt+1|,
and we deduce ∆costt+1 = |s′(rt+1)− rt+1| − |s(rt+1)− rt+1| ≥ 0.

Hence, we have shown that δt+1 6= 0 if and only if s′(rt+1) 6= 0, and that if s′(rt+1) 6= 0, then
∆costt+1 ≥ 0. Using that it is always the case that ∆costt+1 ∈ [−1, 1], we get:

1St∩{0}=∅,δt 6=0 · E[∆costt+1|(δt, St)]

= 1St∩{0}=∅,δt 6=0 ·
(
E[∆costt+1|(δt, St), δt+1 6= 0]P(δt+1 6= 0|(δt, St))

+ E[∆costt+1|(δt, St), δt+1 = 0]P(δt+1 = 0|(δt, St))
)

≥ 0− 1St∩{0}=∅,δt 6=0 · P(δt+1 = 0|(δt, St)),

which concludes the proof of the fifth point and the proof of Lemma 41.

Lemma 43. Conditioning on the gap δm and available servers Sm, and for all y ∈ [δm, 1], we have

P
(

min(t(0,y], t{0}) ≤ min(td, t{0})
∣∣∣δm, Sm) ≥ δm

y
,

Proof. For all j ∈ {m, . . . , n−1}, we define the auxiliary stopping times: tj,d = min{t ≥ j : δt = 0},
tj{0} = min{t ≥ j : St∩{0} = ∅} and tj(0,y] = min{t ≥ j : St∩{(0, y]} = ∅}. To ease the presentation,

we write tjy and tj,d instead of min(tj{0}, t
j
[0,y)) and min(tj{0}, t

j,d).

We now show by downward induction on j that for any j ∈ {m, . . . , n}, any pair (x, S) with
x ∈ [0, 1] and with S a set of n− j arbitrary servers in [0, 1] such that either x = 0 or x = min{s ∈
S : s > 0}, and any y ∈ (x, 1], we have:

PR
(
tjy ≤ tj,d|δj = x, Sj = S

)
≥ x

y
.

We first show the base case, which is for j = n. The only valid pair of (x, S) is (0, ∅), and it is
immediate that for any y ∈ (0, 1], we have

PR
(
tny ≤ tn,d|δn = 0, Sn = ∅

)
= 1 ≥ x

y
.

Next, let j ∈ {m, . . . , n − 1}, and assume that for any pair (x, S) with x ∈ [0, 1] and with S a
set of n− (j + 1) arbitrary servers in [0, 1] such that either x = 0 or x = min{s ∈ S : s > 0}, and
any y ∈ (x, 1], we have

PR
(
tj+1
y ≤ tj+1,d|δj+1 = x, Sj+1 = S

)
≥ x

y
.

Now, consider some arbitrary pair (x, S) with x ∈ [0, 1] and with S a set of n − j arbitrary
servers in [0, 1] such that either x = 0 or x = min{s ∈ S : s > 0}, and some arbitrary y ∈ (x, 1],
and assume that δj = x and Sj = S.

We first consider the case where x > 0, |(x, y] ∩ S| ≥ 1 and S ∩ {0} 6= ∅.
First, note that since Sj ∩ {0} 6= ∅, δj = x > 0 and Sj ∩ (0, y] ⊇ {x} 6= ∅, we have that

tjy, tj,d ≥ j + 1. We deduce the following proposition: for any r ∈ [0, 1], letting χ(x, S, r) and
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T (x, S, r) be the value of δj+1 and Sj+1 assuming that δj = x, Sj = S and rj+1 = r, we have

PR
(
tjy ≤ tj,d|δj = x, Sj = S, rj+1 = r

)
= PR

(
tjy ≤ tj,d|δj = x, Sj = S, δj+1 = χ(x, S, r), Sj+1 = T (x, S, r), rj+1 = r

)
= PR

(
tj+1
y ≤ tj+1,d|δj = x, Sj = S, δj+1 = χ(x, S, r), Sj+1 = T (x, S, r), rj+1 = r

)
= PR

(
tj+1
y ≤ tj+1,d|δj+1 = χ(x, S, r), Sj+1 = T (x, S, r)

)
≥ χ(x, S, r)

y
, (40)

where the second equality is since tjy, tj,d ≥ j + 1, the third equality is since conditioned on
Sj+1, δj+1, we have that {(δt, St)}t∈{j+1,...,n} is independent on rj+1, Sj , δj , and the inequality is by
the induction hypothesis.

We now enumerate five different cases depending on request rj+1. Since we assumed that
|(x, y] ∩ S| ≥ 1, S ∩ {0} 6= ∅ and δj = x 6= 0, we have by Lemma 41 that the values of χ(x, S, rj+1)
are the one given in Table 1, with sR = min{s ∈ S : s > x} and w = sR − x.

• Case 1: rj+1 ∈ [0, x2 ]. Then, from Table 1, we have χ(x, S, rj+1) = δj = x. Thus, by using
(40), we get

PR
(
tjy ≤ tj,d|δj = x, Sj = S, rj+1 ∈ [0, x2 ]

)
≥ x

y
.

• Case 2: rj+1 ∈ [x2 ,
x+w

2 ]. Trivially, we have

PR
(
tjy ≤ tj,d|δj = x, Sj = S, rj+1 ∈ [x2 ,

x+w
2 ]
)
≥ 0.

• Case 3: rj+1 ∈ [x+w
2 , x+ w

2 ]. Then, from Table 1, we have χ(x, S, rj+1) = sR. Thus, by using
(40), we get

PR
(
tjy ≤ tj,d|δj = x, Sj = S, rj+1 ∈ [x+w

2 , x+ w
2 ]
)
≥ sR

y
=
x+ w

2
.

• Case 4: rj+1 ∈ [x+ w
2 , x+ w]. Then, from Table 1, we have χ(x, S, rj+1) = x.

Thus, by using (40), we get

PR
(
tjy ≤ tj,d|δj = x, Sj = S, rj+1 ∈ [x+ w

2 , x+ w]
)
≥ x

y
.

• Case 5: rj+1 ∈ [x+w, 1]. Then, from Table 1, we have that χ(x, S, rj+1) = x. Thus, by using
(40), we get

PR
(
tjy ≤ tj,d|δj = x, Sj = S, rj+1 ∈ [x+ w, 1]

)
≥ x

y
.
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By combining the five cases above, we get

PR
(
tjy ≤ tj,d|δj = x, Sj = S

)
≥ P(rj+1 ∈ [0, x2 ]) · x

y
+ 0 + P(rj+1 ∈ [x+w

2 , x+ w
2 ]) · x+ w

y

+ P(rj+1 ∈ [x+ w
2 , x+ w]) · x

y
+ P(rj+1 ∈ [x+ w, 1]) · x

y

=
x

2
· x
y

+
x

2
· x+ w

y
+
w

2
· x
y

+ (1− (x+ w)) · x
y

=
x

y
·
(x

2
+
x+ w

2
+
w

2
+ (1− (x+ w))

)
=
x

y
.

It remains to show the inductive case when either x = 0, |(x, y] ∩ S| = 0, or S ∩ {0} = ∅. Note
that if x = 0, it is immediate that

PR
(
tjy ≤ tj,d|δj = x, Sj = S

)
≥ 0 =

x

y
,

and if S ∩ {0} = ∅, then tjy = tj,d = j and we have

PR
(
tjy ≤ tj,d|δj = x, Sj = S

)
= 1 ≥ x

y
.

Finally, if |(x, y] ∩ S| = 0 and x > 0, then

Sj ∩ (0, y] = (S ∩ (0, x]) ∪ (S ∩ (x, y]) = {x} ∪ ∅ = {δj},

where the second equality is since min{s > 0|s ∈ S} = x and the assumption that |S ∩ (x, y]| = 0.
Now, we have

tj,d := min{t ≥ j : δt = 0 or St ∩ {0} = ∅}
≥ min{t ≥ j : δt 6= δj or St ∩ {0} = ∅}
= min{t ≥ j : St = St−1 \ {δj} or St ∩ {0} = ∅}
= min{t ≥ j : St ∩ (0, y] = ∅ or St ∩ {0} = ∅}
=: tjy,

where the inequality is since δj = x > 0, the second equality is from the fourth point of Lemma 41,
and the third equality is since Sj ∩ (0, y] = {δj}. Hence we also get

PR
(
tjy ≤ tj,d|δj = x, Sj = S

)
= 1 ≥ x

y
.

Hence, in all possible cases, we have shown that

PR
(
tjy ≤ tj,d|δj = x, Sj = S

)
≥ x

y
,

which concludes the inductive case. We conclude the proof by applying the above inequality with
j = m.
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Lemma 44.

1. If δm > 0, then rm ∈ [0, y0].

2. For all m ∈ [n], δm ∈ [0, 2n−1/5].

3. For all m ∈ [c1n], E[δm|rm ∈ [0, y0]] ≥ n−1/5

4 − n−Ω(log(n)).

Proof. Point 1. By Lemma 20, we have that Sm−1 = S′m−1. Now, if rm ∈ (y0, 1], then both Hm
and Hm−1 match rm greedily. Hence, Sm = S′m, which, by definition of δ, implies that δm = 0. By
contraposition, if δm > 0, we must have rm ∈ [0, y0].

Point 2. It is immediate that δm = 0 when rm ∈ (y0, 1]. Now, if rm ∈ [0, y0], then either
Sm ∩ {0} = ∅ or Sm ∩ {0} 6= ∅. In the first case, rm is matched greedily by both Hm and Hm−1

and we get Sm = S′m and δm = 0. In the second case, we first have, by definition of Hm, that
s(rm) = 0. Then, by the greediness of Hm−1 for rm, we get |s(rm)′ − rm| ≤ |rm − 0|, which implies
s(rm)′ ≤ 2rm. Hence, δm = s(r′m) − 0 ≤ 2rm ≤ 2y0 = 2n−1/5. We conclude that for all m ∈ [n],
δm ∈ [0, 2n−1/5].

Point 3. Fix m ≤ c1n. We first show that if R is regular and rm ∈ [3
4y0, y0], we have that

δm = sm−1,1 ≥ n−1/5.
Assume that the sequence of requests is regular and consider rm ∈ [3

4y0, y0]. We start by showing
that s(rm)′ = sm−1,1 and s(rm) = 0. Since m ≤ c1n, we have by Lemma 32 that m < t1 = min{t ≥
0 : St∩I1 = ∅}. Hence, Sm−1∩ [n−1/5, (3/2)n−1/5] 6= ∅. Since Sm−1∩ [0, n−1/5] ⊆ S0∩ [0, n−1/5] = ∅,
we thus have s′m−1,1 = sm−1,1 ∈ [n−1/5, (3/2)n−1/5]. Since rm ∈ [3

4y0, y0] = [3
4n
−1/5, n−1/5], we

deduce that N ′(rm) ⊆ {0, sm−1,1}. Now, note that

|sm−1,1 − rm| ≤ |(3/2)n−1/5 − rm| ≤ |(3/2)n−1/5 − (3/4)n−1/5| = (3/4)n−1/5 ≤ |rm − 0|.

Since Hm−1 matches rm greedily, we get that s′(rm) = sm−1,1.
On the other hand, Hm follows A for matching rm. Note that by Lemma 32, we have that

m < t{0}, hence S′m−1 ∩ {0} = Sm−1 ∩ {0} 6= ∅. Since rm ∈ [0, n−1/5], we get by definition of A
that s(rm) = 0.

Since s(rm) = 0 and s(r′m) = sm−1,1, we deduce that Sm = Sm−1 \ {0} 6= Sm−1 \ {sm−1,1} =
S′m−1 \ {sm−1,1} = S′m, hence, by definition of δ, we get: δm = sm,1 = sm−1,1 ≥ n−1/5. We have

thus shown that if R is regular and rm ∈ [3
4y0, y0], then δm ≥ n−1/5. As a result,

E[δm|rm ∈ [0, y0]] ≥ n−1/5P(δm ≥ n−1/5|rm ∈ [0, y0])

≥ n−1/5P(rm ∈ [3
4y0, y0],R is regular|rm ∈ [0, y0])

= n−1/5(P(rm ∈ [3
4y0, y0]|rm ∈ [0, y0])− P(rm ∈ [3

4y0, y0],R is not regular|rm ∈ [0, y0]))

≥ n−1/5(P(rm ∈ [3
4y0, y0]|rm ∈ [0, y0])− P(R is not regular|rm ∈ [0, y0]))

= n−1/5(P(rm ∈ [3
4y0, y0]|rm ∈ [0, y0])− P(rm ∈ [0, y0],R is not regular)/P(rm ∈ [0, y0]))

≥ n−1/5(P(rm ∈ [3
4y0, y0]|rm ∈ [0, y0])− P(R is not regular)/P(rm ∈ [0, y0]))

=
1

4
n−1/5 − n−Ω(log(n)),

where the last equality holds since R is regular with high probability by Lemma 22.
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Lemma 45. For all m ∈ [n] and i ∈ [d1 log n],

1. if R is regular, then t(0,yi] ≤ t{0}.

2. P(td > t{0}|rm ∈ [0, y0]) = O(n−1/5).

Proof. We first assume that the requests sequence is regular, and we show that there is no t ∈ [n]
such that st,1 < 1/2 and St ∩ {0} = ∅.

Assume by contradiction that there is such a t. Since st,1 is available at time t, we have that
for all i ∈ [t], st,1 is available when request ri arrives. In addition, recall that Hm either matches
each request to 0, or matches it greedily, and it matches a request r to 0 only if r ≤ y0. Since by
definition of the instance, st,1 > y0, we get that there is no i ∈ [t] such that ri < st,1 and s(ri) ≥ st,1
(since ri is closer to st,1 than any other server s > st,1 and st,1 is available when ri arrives) and
there is no i ∈ [t] such that ri ≥ st,1 and s(ri) < st,1. Hence,

|{i ∈ [t] : ri ∈ [0, st,1]| = |i ∈ [t] : s(ri) ∈ [0, st,1]}|.

In addition, since st,1 = min{s > 0 : s ∈ St} and since we assumed that St ∩ {0} = ∅, we have
[0, st,1) ∩ St = St ∩ {0} = ∅, hence all servers in [0, st,1) have been matched to some request before
time t and we have |i ∈ [t] : s(ri) ∈ [0, st,1]| = |S0∩[0, st,1)|. Let d+ = min{j/n : j ∈ [n], j/n > st,1}.
We get

|{i ∈ [n] : ri ∈ [0, d+]}|
≥ |{i ∈ [t] : ri ∈ [0, d+]}|
≥ |{i ∈ [t] : ri ∈ [0, st,1]}|
= |S0 ∩ [0, st,1)|
≥ |S0 ∩ [0, n−1/5]|+ |S0 ∩ [n−1/5, d+ − 1/n)|
≥ [n4/5 + 4 log(n)2√n] + [(d+ − 1/n− n−1/5)ñ− 1]

= [n4/5 + 4 log(n)2√n] + [(d+ − 1/n− n−1/5)(n− 4 log(n)2√n/(1− n−1/5))− 1]

= d+n+ 4 log(n)2√n(1− (d+ − 1/n− n−1/5)/(1− n−1/5))− 2

= d+n+ 4 log(n)2√n(1− (1/2− n−1/5)/(1− n−1/5))− 2

> d+n+ log n2
√
d+n,

where the fourth inequality is by definition of the instance and by Fact 26, and the fourth equality
since d+ ≤ st,1 + 1/n ≤ 1/2 + 1/n and the last inequality since d+ ≤ 1/2. Hence, the second
regularity condition from Definition 29 is not satisfied for t = 0, t′ = n and d = 0, d′ = d+. Thus, if
R is regular, then there is no t ∈ [n] such that st,1 < 1/2 and St ∩ {0} = ∅.

On the way, we deduce the following equation, that will be used in the proof of the second part
of the lemma.

P(∃t ∈ [n] : st,1 < 1/2 and St ∩ {0} = ∅|rm ∈ [0, y0])

≤ P(R is not regular|rm ∈ [0, y0]) ≤ P(R is not regular)/P(rm ∈ [0, y0]) = n−Ω(log(n)),
(41)

where the last inequality holds since R is regular with high probability by Lemma 22.
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Now, we assume that R is regular and we show that for all i ∈ [d1 log(n)], t(0,yi] ≤ t{0}. Note
that if t(0,yi] > t{0}, then, by definition of t(0,yi], we have that St{0} ∩ (0, yi] 6= ∅, which implies that
st{0},1 ≤ yi < 1/2. By definition of t{0}, we also have St{0} ∩ {0} = ∅. This contradicts the fact
that there is no t ∈ [n] such that st,1 < 1/2 and St ∩ {0} = ∅. Hence, we have t(0,yi] ≤ t{0}, which
concludes the proof of the first part of the lemma.

Next, we show that td ≤ t{0} with high probability. First, note that by Lemma 51, we have

P(maxt∈[n] δt ≥ 1/2 | δm) ≤ 2δm. Since by Lemma 44, we have that for all m ∈ [n], δm ≤ 2n−1/5,
we get

P(max
t∈[n]

δt ≥ 1/2|rm ∈ [0, y0]) ≤ 4n−1/5. (42)

Hence, we have

P(td > t{0}|rm ∈ [0, y0])

= P(td > t{0}, δt{0} ≥ 1/2|rm ∈ [0, y0]) + P(td > t{0}, δt{0} < 1/2|rm ∈ [0, y0])

≤ P(δt{0} ≥ 1/2|rm ∈ [0, y0]) + P(δt{0} < 1/2, δt{0} > 0, St{0} ∩ {0} = ∅|rm ∈ [0, y0])

≤ P(δt{0} ≥ 1/2|rm ∈ [0, y0]) + P(st{0},1 < 1/2, St{0} ∩ {0} = ∅|rm ∈ [0, y0])

≤ P(max
t∈[n]

δt ≥ 1/2|rm ∈ [0, y0]) + P(∃t ∈ [n] : st,1 < 1/2 and St ∩ {0} = ∅|rm ∈ [0, y0])

≤ 4n−1/5 + n−Ω(log(n))

= O(n−1/5),

where the first inequality holds since by definition of td, if td > t{0}, then δt{0} > 0, and since we
always have St{0} ∩ {0} = ∅ by definition of t{0}. The second inequality holds since by definition of
δ, if δt{0} > 0, then δt{0} = st{0},1. The last inequality is by (42) and (41).

Lemma 21. For all m ∈ [n], we have that

E
[ n∑
t=m+1

(costt(Hm−1)− costt(Hm)|δm, Sm
]
≥ 1

2
E
[

max
t∈{0,...,min(t{0},tw)−m}

δt+m − δm|δm, Sm
]

− P(td > t{0}|δm, Sm),

where st,1 = min{s > 0 : s ∈ St} and st,2 = min{s > st,1 : s ∈ St}; tw := min{t ≥ m : st,2 − st,1 >
st,1, or st,2 = ∅}, td = min{t ≥ m : δt = 0} and t{0} := min{t ≥ m| St ∩ {0} = ∅}.

Proof. We analyse the difference of cost between Hm and Hm−1 for all requests rm+1, . . . , rn. We
consider in the following paragraphs some time steps t ≥ m and we omit to mention this condition
throughout the proof.

We start by some preliminary notational considerations. We first recall that wt = st,2 − st,1.
Also, note that for all t ∈ N, we have St+1 ⊆ St; thus if St ∩ {0} = ∅, then St+1 ∩ {0} = ∅.
Hence, by definition of t{0}, we first have that St ∩ {0} 6= ∅ if and only if t ≤ t{0} − 1. Then,
by definition, we have that if δt 6= 0, then δt = st,1. Thus, if δt 6= 0 and wt ≤ δt, we have that
|St ∩ (δt, 1]| = |St ∩ (st,1, 1]| and that st,2 − st,1 = wt ≤ δt = s1,t, hence we have that t ≤ tw − 1. In
addition, since δt 6= 0, by the first point of Lemma 41, we have that δ′t 6= 0 for all t′ ≤ t; hence we
have that t ≤ td− 1. Reciprocally, and by a similar argument, if t ≤ tw − 1 and t ≤ td− 1, then we
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have that δt 6= 0, |St ∩ (δt, 1]| ≥ 1 and wt ≤ δt. Hence, we have that δt 6= 0, |St ∩ (δt, 1]| ≥ 1 and
wt ≤ δt if and only if t ≤ tw − 1 and t ≤ td − 1. Therefore,

1St∩{0}6=∅,δt 6=0,|St∩(δt,1]|≥1,wt≤δt = 1t≤min(tw,td,t{0})−1 and 1St∩{0}6=∅ = 1t≤t{0}−1.

Lower bound on E[∆costt+1] in the case where t ≤ t{0} − 1. For all t ≤ t{0} − 1 we have
St ∩ {0} 6= ∅; thus, by the second point of Lemma 41, we have that ∆costt+1 ≥ 0. Hence,

E[1t≤t{0}−1 ·∆costt+1|(δt, St)] ≥ 0.

If we further have that t ≤ min(tw, td, t{0})−1, then, as argued above, we first have that St∩{0} 6= ∅,
δt 6= 0 and |St ∩ (δt, 1]| ≥ 1, thus the assumptions of the third point of Lemma 41 are satisfied. In
addition, we have that wt ≤ δt. Therefore, by inspecting all possible cases given in Table 1, we
obtain:

E[1t≤min(tw,td,t{0})−1 ·∆costt+1|(δt, St)]

≥ 0 + 1t≤min(tw,td,t{0})−1 · E[∆costt+1|(δt, St), rt+1 ∈ [ δt+wt2 , δt + wt
2 ]]

· P(rt+1 ∈ [ δt+wt2 , δt + wt
2 ]|(δt, St))

= 1t≤min(tw,td,t{0})−1 ·
wt
2
· P(rt+1 ∈ [ δt+wt2 , δt + wt

2 ]),

where the last equality is since wt ≤ δt and by inspecting the corresponding case in Table 1, and
since rt+1 is independent of (δt, St).

By combining the two previous inequalities, we get

E[1t≤t{0}−1 ·∆costt+1|(δt, St)]
= E[1t≤min(tw,td,t{0})−1 ·∆costt+1|(δt, St)] + E[1min(tw,td,t{0})−1≤t≤t{0}−1 ·∆costt+1|(δt, St)]

≥ 1t≤min(tw,td,t{0})−1 ·
wt
2
· P(rt+1 ∈ [ δt+wt2 , δt + wt

2 ]) + 0.

Note that conditioning on (δt, St), we have that ∆costt+1 is independent of (δm, Sm). Thus, for
any (x, S) ∈ X , first conditioning on (δm, Sm), then applying the tower law gives:

E[1t≤t{0}−1 ·∆costt+1|(δm, Sm)]

= E[E[1t≤t{0}−1 ·∆costt+1|(δt, St), (δm, Sm)] |(δm, Sm)]

= E[E[1t≤t{0}−1 ·∆costt+1|(δt, St)] |(δm, Sm)]

≥ E[1t≤min(tw,td,t{0})−1 ·
wt
2
|(δm, Sm)] · P(rt+1 ∈ [ δt+wt2 , δt + wt

2 ])

= E[1t≤min(tw,td,t{0})−1 ·
wt
2
|(δm, Sm)] · E[1

rt+1∈[
δt+wt

2 ,δt+
wt
2 ]
|(δm, Sm)]

= E[1
t≤min(tw,td,t{0})−1,rt+1∈[

δt+wt
2 ,δt+

wt
2 ]
· wt

2
|(δm, Sm)],

= E[1
t≤min(tw,td,t{0})−1,rt+1∈[

δt+wt
2 ,δt+

wt
2 ]
· δt+1 − δt

2
|(δm, Sm)], (43)
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where the third equality uses that rt+1 is independent of (δm, Sm), and the fourth equality holds
since rt+1 and (δt, St) are independent, which implies that rt+1 and {t ≤ min(tw, td, t{0})− 1} are

independent. To see the last equality, note that if t ≤ min(tw, td, t{0})−1, then, as argued above, the

assumptions of the third point of Lemma 41 are satisfied. Since we also have rt+1 ∈ [ δt+wt2 , δt+
wt
2 ],

we get from Table 1 that δt+1 = δt + wt.
Next, if the assumptions of the third point of Lemma 41 are satisfied, by inspecting all possible

cases given in Table 1, we have that rt+1 ∈ [ δt+wt2 , δt + wt
2 ] if and only if δt+1 6= δt and δt+1 6= 0.

Thus,
1
t≤min(tw,td,t{0})−1,rt+1∈[

δt+wt
2 ,δt+

wt
2 ]

= 1t≤min(tw,td,t{0})−1,δt+1 6=δt,δt+1 6=0. (44)

In addition, by definition of td and by the first point of Lemma 41, we have that δt+1 6= 0 if and
only if t ≤ td − 2, thus

1t≤min(tw,td,t{0})−1,δt+1 6=δt,δt+1 6=0 = 1t≤min(tw,td−1,t{0})−1,δt+1 6=δt . (45)

Hence, by combining (43), (44) and (45), we get that for all t ∈ N,

E[1t≤t{0}−1 ·∆costt+1|(δm, Sm)] ≥ E[1t≤min(tw,td−1,t{0})−1,δt+1 6=δt ·
δt+1 − δt

2
|(δm, Sm)]. (46)

Lower bound on E[∆costt+1] in the case where t ≥ t{0}. Note that from the first point of
Lemma 41, if δt = 0, then ∆costt+1 = 0. In addition, recall that St∩{0} = ∅ when t ≥ t{0}. Hence,
using the fifth point of Lemma 41, we get

E[1t≥t{0} ·∆costt+1|(δt, St)] = E[1t≥t{0},δt 6=0 ·∆costt+1|(δt, St)] + E[1t≥t{0},δt=0 ·∆costt+1|(δt, St)]
= E[1t≥t{0},δt 6=0 ·∆costt+1|(δt, St)]
≥ −1t≥t{0},δt 6=0 · P(δt+1 = 0|(δt, St))
= −1t≥t{0},δt 6=0 · E[1δt+1=0|(δt, St)]
= −E[1t≥t{0},δt 6=0,δt+1=0|(δt, St)].

Note that by the first point of Lemma 41 and by definition of td, we have that δt 6= 0, δt+1 = 0 if
and only if δt+1 = td. Thus, 1t≥t{0},δt 6=0,δt+1=0 = 1t≥t{0},δt+1=td . Finally, by the tower law, we get:

E[1t≥t{0} ·∆costt+1|(δm, Sm)] ≥ −E[1t≥t{0},δt+1=td |(δm, Sm)]. (47)

Concluding the proof of Lemma 21. We lower bound the difference of costs for matching
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requests rm+1, . . . , rn:

E

[
n∑

t=m+1

costt(Hm−1)− costt(Hm)|δm, Sm

]

= E

[
n−1∑
t=m

∆costt+1|(δm, Sm)

]

= E

[
n−1∑
t=m

1t≤t{0}−1 ·∆costt+1|(δm, Sm)

]
+ E

[
n−1∑
t=m

1t≥t{0} ·∆costt+1|(δm, Sm)

]

≥ E

[
n−1∑
t=m

1t≤min(tw,td−1,t{0})−1,δt+1 6=δt ·
δt+1 − δt

2

∣∣∣∣∣(δm, Sm)

]

− E

[
n−1∑
t=m

1t≥t{0}, δt+1=td |(δm, Sm)

]

= E

[min(tw,td−1,t{0})−1∑
t=m

1δt+1 6=δt ·
δt+1 − δt

2

∣∣∣∣∣(δm, Sm)

]
− P(td > t{0}|(δm, Sm))

=
1

2
E

[
δmin(tw,td−1,t{0})

− δm

∣∣∣∣∣(δm, Sm)

]
− P(td > t{0}|(δm, Sm)),

where the inequality is by (46) and (47).
In addition, note that by construction of the process, for all t ∈ N, we have that St+1 ⊆ St;

hence st,1 ≤ st+1,1. Then, for all t ≤ td−2, we have that δt, δt+1 6= 0, hence by construction, we have
δt = st,1 and δt+1 = st+1,1. Thus, we get that δt ≤ δt+1. Hence, we have that δmin(tw,td−1,t{0})

=
maxt∈{0,...,min(tw,td−1,t{0})} δt. In addition, since by the first point of Lemma 41, we have that δt = 0

for all t ≥ td, we get that maxt∈{0,...,min(tw,td−1,t{0})} δt = maxt∈{0,...,min(tw,t{0})} δt. Therefore,

E

[
n∑

t=m+1

costt(Hm−1)− costt(Hm)|δm, Sm

]
≥ 1

2
E

[
max

t∈{0,...,min(tw,t{0})}
δt − δm

∣∣∣∣∣(δm, Sm)

]
− P(td > t{0}|(δm, Sm)).

Lemma 46. For all m ∈ [n], E
[∑m

t=1(costt(Hm−1)− costt(Hm))|rm ∈ [0, y0]
]
≥ −n−1/5.

Proof. Since Hm and Hm−1 both follow A for the first m− 1 requests, it is immediate that

E

[
m−1∑
t=1

costt(Hm−1)− costt(Hm)|δm, Sm

]
= 0.

We now lower bound the cost of matching request rm. We consider two cases:
(1) If rm ∈ (y0, 1] or (rm ∈ [0, y0] and Sm ∩ {0} = ∅), then both Hm and Hm−1 match rm greedily.
Since Sm−1 = S′m−1, we get costm(Hm−1) = costm(Hm).
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(2) If (rm ∈ [0, y0] and Sm ∩ {0} 6= ∅), then s(rm) = 0, hence costm(Hm−1) − costm(Hm) ≥
−costm(Hm) = −|rm − 0| ≥ −y0 = −n−1/5.

In both cases,
E[costm(Hm−1)− costm(Hm)|δm, Sm] ≥ −n−1/5.

Combining the two above equations concludes the proof.
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