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ABSTRACT
Evaluating the performance of heuristic optimisation algorithms is
essential to determine how well they perform under various con-
ditions. Recently, the BIAS toolbox was introduced as a behaviour
benchmark to detect structural bias (SB) in search algorithms. The
toolbox can be used to identify biases in existing algorithms, as well
as to test for bias in newly developed algorithms. In this article, we
introduce a novel and explainable deep-learning expansion of the
BIAS toolbox, called Deep-BIAS. Where the original toolbox uses 39
statistical tests and a Random Forest model to predict the existence
and type of SB, the Deep-BIAS method uses a trained deep-learning
model to immediately detect the strength and type of SB based on
the raw performance distributions. Through a series of experiments
with a variety of structurally biased scenarios, we demonstrate the
effectiveness of Deep-BIAS. We also present the results of using
the toolbox on 336 state-of-the-art optimisation algorithms, which
showed the presence of various types of structural bias, particularly
towards the centre of the objective space or exhibiting discreti-
sation behaviour. The Deep-BIAS method outperforms the BIAS
toolbox both in detecting bias and for classifying the type of SB.
Furthermore, explanations can be derived using XAI techniques.

CCS CONCEPTS
• Computing methodologies → Continuous space search; •
Theory of computation→ Design and analysis of algorithms.
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1 INTRODUCTION
As the amount of data and complexity of the optimisation problems
continue to increase, the demand for effective heuristic optimisation
algorithms also increases. Since no single heuristic algorithm is
universally best [16], it is necessary to benchmark these algorithms
to understand which performs best under specific conditions. Most
continuous optimisation benchmarks are performance-based, such
as the Black-Box Optimisation Benchmark (BBOB) [3] test suite.
These benchmarks provide information on the performance of an
algorithm and how it compareswith others in various situations. For
example, one algorithmmay excel at optimising separable functions
while another performs well on uni-modal, highly conditioned
functions. Resource-based benchmarks measure the number of
resources (computation power, memory, and energy) required under
certain conditions, but do not offer much insight into the behaviour
of the algorithms under different circumstances. Behaviour-based
benchmarks, on the other hand, provide additional information
about how an algorithm behaves under different conditions, such
as the movement of a population of candidate solutions in a swarm-
based optimisation algorithm.

The previously proposed BIAS toolbox [14] is such a behaviour-
based benchmarking tool. It can be used to analyse whether al-
gorithms or components of an algorithm induce structural bias
(SB). SB is a type of bias inherent in iterative heuristic optimisation
algorithms that affects their performance in the objective space. By
detecting the presence, strength, and type of SB in a heuristic opti-
misation algorithm, it is possible to identify areas for improvement
and understand under which conditions SB is less likely to occur.
This information can be used to optimise the performance of these
algorithms.

In this work, we propose an improved methodology for the BIAS
toolbox for both the detection of structural bias and the classifica-
tion of the type of SB. Instead of using 39 statistical tests and their
p-values, we propose using a single convolutional deep learning
model to predict the presence and type of SB in the raw final-point
distributions of various optimisation runs on a special test function
𝑓0. In this work, we propose a deep learning approach on raw algo-
rithm performance data (on a special test function) to identify which
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SB type (if any) is most likely to occur in a given optimiser. The com-
plete SB benchmark deep learning test suite (Deep-BIAS) and data
generators for different SB scenarios are made open-source [12].
In addition, we propose to use explainable artificial intelligence
techniques adapted for the proposed deep learning approach to
visualise and analyse the SB results. We evaluate both the proposed
deep learning approach and the previous statistical test approach
using a large set of 189 different artificially generated parameterised
distributions containing 11 different scenarios of structural bias. In
addition, we compare the results of both methods on a wide set of
state-of-the-art optimisers.

2 STRUCTURAL BIAS AND RELATED WORK
In many complex optimisation problems, there is no a priori infor-
mation about which regions of the space contain good solutions.
In such a setting, the search has to start “from scratch”, within
the defined domain boundaries. The search should then be able to
identify and progress towards promising regions with good values
of objective function. Only points sampled thus far should steer al-
gorithm’s logic and operators in the subsequent steps of the search.
This means that the algorithm does not inherently favour one re-
gion of the space over others. In other words, if the algorithm is
to be deployed in a general situation, it should be able to find high-
quality solutions regardless of where they are located inside the
feasible domain of the problem. The degree to which an algorithm
exhibits such flexibility in locating optima is clearly among the
reasons for its success.

Unfortunately, detecting the propensity of an iterative algorithm
towards some parts of the domain is difficult due to the interplay
between the sampled landscape of the function and the internal
workings of the algorithm [6]. In order to disentangle these two
components, the test function 𝑓0 has been defined as follows:

𝑓0 : [0, 1]𝑛 → [0, 1], where ∀𝑥, 𝑓0 (𝑥) ∼ U(0, 1). (1)

For this function, the optimum is located uniformly at random
throughout the domain. As such, an unbiased search is expected to
return a uniform distribution of final best solutions. If the distribu-
tion of these points is non-uniform, this indicates a structural bias of
the algorithm. Structural bias thus represents an algorithm’s inflexi-
bility. Because of this, we consider structural bias to be an undesired
behaviour which potentially limits the algorithm’s performance in
a generic setting. The exact relation between the operators of an
algorithm and its structural bias and the way it might influence
performance on different function landscapes is poorly understood.
However, through testing on 𝑓0, SB can be identified and thus po-
tentially removed via a prudent choice of operators.

Visual inspection of the distributions of the final solutions found
in 𝑓0, collected in multiple independent runs of the method under
investigation, and displayed component-wise is the most intuitive
approach to detecting SB. However, such a procedure can be subject
to personal interpretations and is time-consuming when a large
number of images need to be generated and inspected (see [2, 6, 9]
and repositories [1, 10]). Moreover, it is unable to provide reliable
results in the presence of mild SB or figure-rendering artefacts.

The use of statistical testingmethods removes the subjective com-
ponent of SB inspection and leads to an automated decision-making

process over a large data set of results, where the distributions of
the final solutions obtained with multiple runs in 𝑓0 are tested for
uniformity. The best results are obtained with 𝑁 = 600, which helps
to detect SB more often, but does not guarantee the detection of
all different types of SB at any significance level [9] - even higher
values of 𝑁 are needed for smaller levels of significance and higher
statistical power [5]. Using multiple statistical tests to detect SB
and its type reliably can be complex and laborious. From the point
of view of a practitioner or an algorithm designer, these processes
should be automated.

BIAS [15] is an open-source Python package, available from [13],
to benchmark SB in the continuous domain. The toolbox provides
an SB detection mechanism based on the aggregation of the results
of 39 statistical tests and a Random Forest model to identify the
type of structural bias. It furthermore contains a data generator to
sample data from a set of scenarios producing synthetic results;
a component producing the parallel coordinate plots of the final
best positions to display SB and those reporting the outcome of the
decisions made with statistical analysis while detecting SB.

3 METHODOLOGY
The method proposed here extends the functionality of BIAS. It
uses a deep learning-based model to predict the presence and type
of structural bias. The model is trained on a large portfolio of bias
scenarios and is optimised using AutoKeras [4]. In this section, we
first provide an overview of the scenarios and the generator used
to train the model. Then, the model training and testing procedures
are explained in detail.

Portfolio of scenarios. The proposed Deep-BIAS method is based
on the parameterised SB scenarios proposed in [14]. This portfolio
of scenarios includes the most common types of structural bias as
observed in previous studies, including

• bias towards the centre of the search space,
• bias towards the bounds of the search space,
• bias towards certain parts of the search space forming clus-
ters,

• bias towards avoiding certain parts of the search space, cre-
ating gaps and

• strong discretisation.
In the original paper, there are 11 different scenarios with dif-

ferent parameter settings, giving a total set of 194 parameterized
scenarios. After visual and analytical analysis of the parameters
of these scenarios, we removed 5 of these parameter settings, as
they frequently generated distributions visually and statistically
equivalent to random uniform distributions using only 600 samples.
This leaves a total of 189 parameterized distribution generators
(still 11 scenarios), which we use to generate train and test data
sets.

To train the deep learning model, we divide the 11 scenarios into
four classes, Center, Bounds, Gaps/Clusters and Discretisation. We
argue that gaps and cluster bias are highly overlapping, as you have
gaps in the search space when there are clusters and vice versa.
Therefore, they are added together under one class label. For each
class 20.000 distributions are generated, equally divided over the
parameter settings and scenarios that belong to each class label.
For the uniform (no bias) label, we generated 80.000 distributions
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to make the prediction task balanced between bias and non-bias
samples. In total, this gives a data set of 160.000 one-dimensional
distributions, of which 80% is used as training and 20% as final
validation (using stratified sampling).

Optimised Convolutional Neural Network. In the next step, a deep
one-dimensional convolutional neural network (1d CNN) is trained
and optimised using the AutoKeras [4] algorithm. Each distribu-
tion is first ordered in ascending order of the values and then used
as input for the 1d CNN. AutoKeras is set to run with an evalu-
ation budget of 100 trials and without image augmentation and
pre-processing (this would have no meaning in our situation since
we are not dealing with images). Each network is trained for 50
epochs and uses a small randomly selected validation set (from the
original training data) to compare different models with each other.
The best neural network instance is stored and used in this work.
The general architecture consists of two blocks, each containing
two convolutional layers followed by a max pooling layer. The
second block is half the size of the first. Followed by a dense layer
and a SoftMax classification head. In total, there are four models,
one for each sample size of 30, 50, 100 and 600.

Predicting SB and SB type. The optimised CNN models can now
be used to directly predict any distribution for the presence and
type of structural bias.

To analyse the misclassifications of each of the models, we
used the explainable artificial intelligence (XAI) method, SHAP
[8], which approximates Shapley values [7] based on a background
sample set from training data. Using the Shapley values for each
point in the distribution, it is possible to highlight regions of interest
for a particular prediction. In Figure 1, an example of a prediction is
shown that does not match the ground truth. This example comes
from the 600 sample size model. It is important to note that there
is a high level of randomness in many scenario generators. It can
therefore occur that clusters are very much overlapping, creating a
uniformly distributed sample, or that clusters can be located in the
centre or at the bounds, which deceives the classifier. Additional
examples can be seen in the full paper [11].

Figure 1: Example of (wrongly) classified samples due to over-
lap in classes. Clusters can be located by chance on the bounds
or in the centre of the space. Colours indicate Shapley values
where dark red indicates a positive contribution towards the
class label (either predicted (up) or ground truth (below)), and
dark blue indicates a negative contribution. Sample points
with similar values are stacked on top of each other.
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Figure 2: Comparison (with 𝛼 = 0.01) of the original BIAS
toolbox (blue) and the Deep-BIAS (teal) in terms of false
positives (left), false negatives (middle) and F1-score (right).
On all figures, markers identify the used sample size: ◦, ♦, △
and □ are 30, 50, 100 and 600, respectively.

Next, the Deep-BIAS method is compared to the original BIAS
toolbox. The comparison is done by transforming the problem into
a binary problem to detect SB. Since the original BIAS toolbox is
also validated in this way on a different number of dimensions
(not just one-dimensional distributions), the same experiment is
repeated here. The following dimensions are evaluated: 1, 10, 20 and
30. For each of these dimensionalities (𝑑), a test set of 1890 biased
and 1890 unbiased 𝑑-dimensional distributions is generated. These
distributions are then predicted by both the original BIAS toolbox
and the newly proposed Deep-BIAS method. For the proposed
method, the class probabilities are averaged over all dimensions to
give a final prediction per 𝑑-dimensional distribution. We define a
configuration as biased if at least 10% of its dimensions are classified
as non-uniform. This threshold is chosen to remain consistent with
the original BIAS toolbox [14].

The results of this experiment are shown in Figure 2, where false
positives, false negatives, and F1 scores are compared for different
dimensions and sample sizes. We can see that, while Deep-BIAS
has a slightly higher rate of false positives, this is compensated by
a significantly lower false negative rate. In general, the F1 score for
Deep-BIAS is slightly higher, indicating that it slightly outperforms
the statistical approach.

4 BENCHMARKING STRUCTURAL BIAS
This section benchmarks a large set of heuristic optimisation algo-
rithms by applying the BIAS toolbox.

We use data from a heterogeneous pool of heuristics executed
on 𝑓0 at dimensionality 𝑛 = 30 for a maximum of 10000 · 𝑛 fitness
functional calls. In total, we consider 336 optimisation heuristics
that fall into the following categories (all use 𝑁 = 100):

• Variants of Differential Evolution (195 configurations), See
the full paper [11].

• Compact optimisation algorithms (81 configurations),
• Single-solution algorithms (60 configurations),

For the sake of clarity and reproducibility, the exact composition
and setup of these algorithmic configurations are fully described in
a dedicated document available from [13].

First, we compare the decisions made by the Deep-BIAS method
with those of the original toolbox on the set of single-solution
algorithms. This is done by showing the class probabilities of both
methods for each algorithm in Figure 3. From this figure, we see
that, in most cases, both methods give the same biased/non-biased
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Figure 3: Predictions of types of non-uniformity made by
the Deep-BIAS on single solution algorithms where the two
methods give a different biased / non-biased outcome. For
the original method, the probabilities are determined by the
random forest model when the configuration is considered
biased and set to 0 otherwise. For Deep-BIAS, the predictions
are the average of the per-dimension predictions.

outcome. However, the type of bias detected varies for most of the
algorithms. This often occurs when the random forest (RF) model
of the original toolbox predicts ‘clusters’. This might be due in part
to the differences in training data for the two models, combined
with the fact that for some cluster settings, the clusters might be
located near the bounds, making the distinction between these two
classes somewhat fuzzy.

For Figure 3, it is also important to note that for the RF model,
the probabilities of the class sum up to 1 by design, which is not the
case for the deep model, as the uniform class still gets some of the
probability mass. Thus, the outcome of Deep-BIAS gives indirectly
a measure of the strength of the bias.

5 CONCLUSION
In light of the analysis performed in this study, we conclude that
the use of deep learning is a viable option to detect SB with sat-
isfactory results. With only 50 samples, we can correctly detect
most uniformly distributed points, and performances increase with
larger sample sizes. We find that the optimal network architecture
for detecting SB is not as complex as those often designed in other
deep learning applications in the literature, and yet it behaves simi-
larly to the original BIAS toolbox, which is based on statistical tests,
and performs very well in terms of the F1 score evaluation metric.

Compared to BIAS, the proposed Deep-BIAS alternative displays
some interesting features and advantageous behaviours.

• It outperforms the statistical test-based approach in classify-
ing the type of SB.

• It gives a better measure of strength of the SB by using the
class probabilities.

• It provides additional insights by using XAI, where regions
of interest in distributions can be further analysed to under-
stand the mechanism behind the classifications.

A disadvantage of using a neural model is that the resulting SB
detection system is less generalisable than that obtained with a
statistical test approach, where the network might miss SB types
that are not considered in the training data. However, the training

data set prepared for Deep-BIAS appears to be adequate, and the
network fails to find bias mainly when the saturate constraint
handling method is used. This is not a problem for BIAS. For these
reasons, the overarching conclusion of this study envisages the joint
use of the 2 systems for optimal SB detection. We recommend using
BIAS as the primary method for binary bias/non-bias classification
and Deep-BIAS to inspect the type of SB and determine its strength.
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