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ABSTRACT
In recent studies on gaze tracking systems using 3D model-based
methods, the optical axis of the eye was estimated without user
calibration. The remaining challenge in achieving implicit user
calibration is estimating the difference between the optical and
visual axes of the eye (angle 𝜅). In this study, we propose two
methods that improve the implicit user calibration method using
saliency maps, focusing on eye movement to reduce calculation
costs while maintaining accuracy.
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1 INTRODUCTION
Gaze tracking technology is not only used as a user interface for
research purposes (e.g. entertainment, usability of mobile devices)..
However, conventional gaze tracking systems necessitate user cali-
bration, which requires the user to gaze at specific points on the
display before the system can be utilized. Calibration is one of
the most challenging obstacles to achieving seamless interactions
with gaze-based systems. Although some gaze tracking systems are
head-mounted, this paper deals with a desktop video-based gaze
tracking system that is non-invasive and can be easily replaced by
the user.

Methods that use binocular geometric constraints to perform
implicit calibration have been proposed [Model and Eizenman 2010;
Nagamatsu et al. 2009]. Nagamatsu et al. proposed a method in
which the intersection between the optical axis of the eye and the
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display was calculated for both eyes and calibration was performed
by assuming that the eyes were gazing at their midpoint [Naga-
matsu et al. 2009]. Although this method was able to stably estimate
the gaze point, it could not reliably measure the gaze point with
high accuracy because of individual differences in the accuracy
of gaze estimation. Model et al. proposed a calibration method to
determine the displacement between the optical and visual axes of
the two eyes, using the constraint that the measured visual axes of
the two eyes intersect on the display [Model and Eizenman 2010].
However, this method is sensitive to the accuracy of the optical axis
estimation and uses a pyramid-shaped display for stable estima-
tion. Therefore, it is currently difficult to perform an accurate and
stable calibration using an approach based on binocular geometric
constraints.

Implicit calibration methods using on-screen information have
been proposed [Chen and Ji 2011; Hiroe et al. 2018; Sugano et al.
2013; Wang et al. 2016]. Chen et al. proposed a method for applying
saliency map-based calibration to model-based eye tracking [Chen
and Ji 2011]. They formulated a model based on Bayesian estimation
that expresses the correlation between ocular parameters, including
the optical and visual axes of the eye, and developed a method for
probabilistic estimation of individual parameters. Extending the
work of Chen et al., Wang et al. proposed a method to create a
fixation map trained with a regression based deep convolutional
neural network and calibrated it by focusing on the distribution of
gaze points [Wang et al. 2016]. To compute the distribution of gaze
points, each image in the experiment was examined for 4 s. The
accuracy of gaze estimation was high, but the user was required
to look at the still image for a certain amount of time and complex
calculations were required. Hiroe et al. proposed implicit user cali-
bration for gaze-tracking systems using an averaged saliency map
around the optical axis of the eye [Hiroe et al. 2018]. The assumption
underlying this method is that individuals are more likely to gaze
at salient regions near the optical axis of the eyes. In this method,
single-point calibration was performed using the peak of the aver-
age of Itti’s saliency maps [Itti et al. 1998] around the optical axis
of the eye. Hiroe et al. improved the above method by utilizing a
machine-learning-based saliency map [Hiroe et al. 2021], achieving
an accuracy of approximately 1.5◦. While the above methods use
an infrared camera, Sugano et al. proposed an appearance-based
method to estimate the gaze point by matching learning from pairs
of eye images obtained from a visible-light camera and a screen
saliency map [Sugano et al. 2013]. Although this method has the
advantage of being able to measure gaze with a commonly used
RGB camera, it is not as accurate as the model-based method.

Hiroe’s method has advantages in that it can be applied to a
situation in which the user is watching a video, and the method
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is performed with a simple calculation of averaging the saliency
maps. However, because this method calculates saliency maps for
all frames, the computational cost is high. In this paper, we propose
two methods to reduce the computational cost in Hiroe’s method.

2 IMPLICIT USER CALIBRATION FOR
GAZE-TRACKING SYSTEMS USING
SALIENCY MAPS AROUND OPTICAL AXIS
OF THE EYE

The implicit calibration method [Hiroe et al. 2018] is based on the
one-point calibration method [Nagamatsu et al. 2008] that is used
for estimating the offset between the visual and optical axes of the
eye. This offset is called angle 𝜅. The optical axis is defined as the
axis connecting the center of the corneal curvature and pupil center
of the eye, while the visual axis is defined as the axis connecting
the fixation point (explicit calibration point) and fovea of the eye
(Fig.1). Angle 𝜅 is estimated by calibration as a unique individual
parameter.

Figure 1: 3D eye model

The implicit calibration method estimates the position of the
visual axis of the eye using saliency maps. The saliency maps
generated for the entire display images are cropped around the
optical axis of the eye; the optical axis can be estimated without
user calibration [Guestrin and Eizenman 2006; Nagamatsu et al.
2010; Shih and Liu 2004]. The cropping range was 7◦, 3◦, and ±3◦
on the nose side, ear side, and vertical direction, respectively. The
cropped saliency maps (Fig. 2 (a), (b)) were transformed to the coor-
dinate system based on the optical axis of the eye by homography
transformation; the range became a rectangular area (Fig. 2 (a’),
(b’)). Next, all the saliency maps around the optical axis of the eye
were averaged. The peak of the averaged saliency map provides the
gaze point in the coordinate system based on the optical axis of the
eye, as shown in Fig. 2 (c). The visual axis was estimated by the line
connecting the corneal center and gaze point. After the visual axis
was estimated, a conventional one-point calibration was performed
to obtain angle 𝜅.

A breakthrough in Hiroe’s method [Hiroe et al. 2021] is the use
of state-of-the-art machine-learning-based saliency maps (UNISAL
[Droste et al. 2020], MSI-Net [Kroner et al. 2020], DeepGazeII [Küm-
merer et al. 2017]), which achieves high accuracy. The best accuracy
was 1.54◦ when using UNISAL. Saliency maps were computed over
all frames and were aggregated to obtain a position that was more
likely to be the visual axis, thus enhancing the robustness and
accuracy.
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Figure 2: Average of Saliency Map around the Optical Axis
of the Eye.

3 FILTERING OF DATA BY ESTIMATING EYE
MOVEMENT FROM THE OPTICAL AXIS

In the method of Hiroe et al., the estimation of the optical axis and
the estimation of the gaze point with the transformation and aver-
aging of the saliency maps do not require as much computational
cost; however, the cost of generating the saliency map makes the
real-time calibration difficult. If the computational effort could be
reduced, it would be feasible to perform implicit calibration online
in the background.

In this study, we propose two methods for filtering gaze data in
order to reduce the number of saliency maps used in the estimation
of the gaze point. This is achieved by identifying the type of eye
movement based on the movement of the optical axis and selecting
the frames to be used in the estimation. Eye movements can be
categorized into several types; however, we focus on fixation, where
the user is definitely looking at an object.

3.1 Filtering method with focusing on the speed
of eye movement (Velocity Filter)

This method filters saliency maps when the user’s eyes produce
saccades. During saccades, the user might not be looking at a partic-
ular object but might be searching for objects of interest. Excluding
data from this time reduces the number of saliency maps to be
generated. We defined a saccade as a movement of the optical axis
by 30◦/𝑠 or more. An image diagram of this method is shown in
Fig. 3. The top graph shows the relationship between the velocity
of movement of the optical axis and time. The lower bar represents
the frames of the saliency maps used for calibration. The time when
the optical axis moves more than 30◦/𝑠 , represented by the blue
dotted lines, are considered as saccades and the saliency maps for
these frames (shown as grey parts of the lower bar) are excluded
from the calibration calculation.
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Figure 3: Velocity filter

3.2 Filtering method with focusing on the
position and duration (Fixation Filter)

Explicit calibration calculates the 𝜅 angle from the difference be-
tween the presented gaze point and optical axis. Therefore, we
believe that implicit calibration could be performed efficiently by
collecting only the difference between the position of the optical
axis and the gaze objects as gaze points during fixation. Thus, we
proposed using for calibration only the saliency map of the first
frame for each fixation, assuming that the user was fixating if the
gaze point was within 1.0◦ for 0.3s or longer. An image diagram
of this method is shown in Fig. 4. The top graph shows the rela-
tionship between the rotation angle of the optical axis and time.
The lower bar represents the frame of the saliency map used for
calibration. The lines represented by the solid blue line are esti-
mated as fixations, and only the saliency map of the first frame of
each fixation (shown as red parts of the lower bar) is used in the
calibration calculation.
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Fixation

Saliency Maps
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Figure 4: Fixation filter

4 EVALUATION
4.1 System
A prototype was developed, as shown in Fig. 5, consisting of two
monochrome GigE digital cameras (HXG20NIR, Baumer GmbH),

three monitors, and a Windows-based PC (Windows 7). One moni-
tor was for the participant (19" LCD) and the remaining monitors
were for the experimenter. Each camera was equipped with a 2/3"
CMOS image sensor with a resolution of 2048 × 1088 pixels. A
16 mm lens and a visible light cut-off filter were attached to each
camera, which were positioned under the monitor. IR LEDs were
mounted on the left and right sides of the monitor. The software
was developed using OpenCV in C++. The pupil diameter in the cap-
tured image was approximately 30 pixels. The camera parameters
were determined beforehand.

LED1

LED0

Camera 1

camera 0

Figure 5: Eye tracking system used in experiment

4.2 Method
We conducted an experiment to compare and evaluate the two
filtering methods proposed in Section 3 with the method using all
frames of the saliency map and the single-point calibration method
[Nagamatsu et al. 2008] as the baseline.

The participants were seven adult men (participants A-G), with
only Participant A wearing soft contact lenses(six of whom were
in their 20s and one in his 40s). The stimuli comprised three videos
from the YouTube-8MDataset (https://research.google.com/youtube8m/)
in the order Video 1 to 3. Video 1 was a TV news program with
studio scenes and interviews lasting 198 s. Video 2 was a report
about a professional basketball team, including scenes from games,
with a duration of 150 s. Video 3 was a trailer of a fantasy film with
a duration of 235 s. Although the proposed method can work when
the head is moving, the participants’ heads were stabilized with
a chin rest during the experiment to minimize image-processing
errors. The participants’ eyes were positioned approximately 600
mm from the monitor. All three videos were presented to each
participant, who was instructed to view each video freely.

4.3 Result
Table 1 shows the error angles of gaze estimation when the par-
ticipants look at nine points on a screen calibrated with angle
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𝜅 calculated using each method and each saliency map. Except
for the single-point calibration, values are the mean of error an-
gle calculated in estimating the visual axis when calibrated with
three different stimuli (video 1-3). Looking at the averages across
all participants, the gaze estimation accuracy when implicit cali-
bration with saliency maps was performed for frames filtered by
the proposed methods were comparable to that when calibration
with saliency maps was performed for all frames. Focusing on the
individual values, it can be noted that the fixation filter method
increased the accuracy of six out of seven participants, while the
velocity filter method increased the accuracy of four out of seven
participants.

Table 2 lists the number of frames used for calibration reduced
by the proposed method. The number of frames after filtering with
the proposed method is shown as a percentage, with 100% for all
frames. Averaged over all participants, the velocity filter method
used approximately 90% of the saliency maps for calibration, i.e.
approximately 10% of the maps were reduced. The fixation filter
method used approximately 13% of the saliency maps for calibra-
tion, i.e. approximately 87% of the maps were reduced. Therefore,
significant computational savings can be achieved with the fixation
filter method.

5 DISCUSSION
The velocity filter method focused on reducing the amount of data
not needed for calibration, while maintaining as much data as
possible. On the other hand, The fixation filter method focused on
reducing the number of saliency maps as much as possible to reduce
computational cost. The results show that there is little difference
in accuracy between the two methods. The fixation filter method
used significantly fewer saliency maps in its computations. From
these results, we conclude that the fixation filter method was more
effective.

The proposed methods were expected to produce results close
to the accuracy of single-point calibration, but there was no clear
improvement in accuracy. The implicit calibration method is based
on the single-point calibration method, which is usually applied
when the user is gazing at an explicit point near the center of
the screen. The proposed method did not consider the position
of the object the user was gazing at. Accuracy could be improved
by prioritising data when the user is gazing close to the center.
Furthermore, accuracy could also be improved by balancing the use
of data when the user is looking in different directions when the
user’s eyes are rotating widely (not looking at the center). There is a
problem that the saliency map methods, which increase in accuracy
with the proposed method, differ from one participant to another.
In the future, we would like to solve this problem by developing
a method for generating saliency maps specifically for calibration,
rather than saliency maps for estimating gaze distribution.

In this study, evaluation experiments were carried out on a desk-
top video-based system with videoes on the screen, but the method
is applicable to any eye measurement system calibrated using the
difference between the optical and visual axes method. In head-
mounted systems, the video captured by the world camera corre-
sponds to the videoes.

6 CONCLUSION
The implicit calibration method proposed by Hiroe et al. could be
applied even when the user is watching a video, but it was difficult
to apply in real-time due to the problem of the high computational
cost of generating many saliency maps. In order to improve the
computational cost of the implicit calibration method proposed by
Hiroe et al, we proposed twomethods to filter the data by estimating
the type of eye movement from the movement of the optical axis,
reducing the number of saliency maps generated while maintaining
accuracy. We achieved a reduction of approximately 10% for the
velocity filter method and of approximately 87% for the fixation
filter method. Both filtering methods were able to estimate angle 𝜅
with the same level of accuracy as that when using saliency maps
for all frames.
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Table 1: Error angle of gaze estimation calibrated with angle 𝜅 calculated by method　and saliency map (The value in bold type
indicates the case where the accuracy is better than when all frames are used.).

Method Velocity filter Fixation filter All frames Single-
Saliency map UNISAL MSI-Net DeepGazeII UNISAL MSI-Net DeepGazeII UNISAL MSI-Net DeepGazeII point
ParticipantA 2.01◦ 1.99◦ 2.04◦ 1.89◦ 1.97◦ 1.90◦ 2.04◦ 2.02◦ 2.01◦ 1.83◦
ParticipantB 1.17◦ 1.35◦ 1.24◦ 1.19◦ 1.23◦ 1.23◦ 1.16◦ 1.09◦ 1.05◦ 0.96◦
ParticipantC 1.44◦ 1.61◦ 1.49◦ 1.45◦ 1.58◦ 1.43◦ 1.53◦ 1.51◦ 1.61◦ 0.87◦
ParticipantD 2.08◦ 2.06◦ 2.12◦ 2.19◦ 2.26◦ 2.28◦ 2.07◦ 2.15◦ 2.05◦ 2.03◦
ParticipantE 0.88◦ 0.93◦ 1.02◦ 1.06◦ 1.24◦ 1.06◦ 0.89◦ 0.96◦ 0.95◦ 0.91◦
ParticipantF 1.25◦ 1.24◦ 1.47◦ 1.33◦ 1.32◦ 1.34◦ 1.25◦ 1.35◦ 1.52◦ 1.11◦
ParticipantG 2.26◦ 1.96◦ 2.34◦ 2.19◦ 2.13◦ 2.01◦ 2.27◦ 2.03◦ 2.19◦ 1.26◦

Average 1.58◦ 1.59◦ 1.67◦ 1.62◦ 1.68◦ 1.61◦ 1.60◦ 1.59◦ 1.62◦ 1.28◦

Table 2: Percentage of the number of saliency maps used for
calibration.

Velocity filter Fixation filter
ParticipantA 87.7% 12.5%
ParticipantB 90.3% 12.0%
ParticipantC 90.1% 12.5%
ParticipantD 90.8% 11.3%
ParticipantE 90.8% 13.6%
ParticipantF 91.1% 12.6%
ParticipantG 88.3% 13.8%
Average 89.9% 12.6%
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