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ABSTRACT
Recently, to improve the unsupervised image retrieval performance,
plenty of unsupervised hashing methods have been proposed by
designing a semantic similarity matrix, which is based on the sim-
ilarities between image features extracted by a pre-trained CNN
model. However, most of these methods tend to ignore high-level
abstract semantic concepts contained in images. Intuitively, con-
cepts play an important role in calculating the similarity among
images. In real-world scenarios, each image is associated with some
concepts, and the similarity between two images will be larger if
they share more identical concepts. Inspired by the above intuition,
in this work, we propose a novel Unsupervised Hashing with Se-
mantic Concept Mining, called UHSCM, which leverages a VLP
model to construct a high-quality similarity matrix. Specifically, a
set of randomly chosen concepts is first collected. Then, by employ-
ing a vision-language pretraining (VLP) model with the prompt
engineering which has shown strong power in visual representation
learning, the set of concepts is denoised according to the training
images. Next, the proposed method UHSCM applies the VLP model
with prompting again to mine the concept distribution of each im-
age and construct a high-quality semantic similarity matrix based
on the mined concept distributions. Finally, with the semantic sim-
ilarity matrix as guiding information, a novel hashing loss with
a modified contrastive loss based regularization item is proposed
to optimize the hashing network. Extensive experiments on three
benchmark datasets show that the proposed method outperforms
the state-of-the-art baselines in the image retrieval task. The source
codes are available 1.

1https://github.com/rongchengtu1/UHSCM
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1 INTRODUCTION
Recently, with tremendous amounts of image data being gener-
ated, image retrieval techniques with fast retrieval speed have at-
tracted much more attention. Among the existing image retrieval
techniques, the hashing methods [11, 18, 29, 30, 45, 57, 59, 64] are
advantageous due to their high retrieval efficiency and low storage
cost. The core idea of image hashing is to map images into compact
hash codes while preserving original semantic similarity.

According to whether the training data contains labelling in-
formation, existing hashing methods can be roughly divided into
two categories: supervised and unsupervised hashing. The super-
vised ones [7, 27, 33, 38, 49, 53, 55] use the label information of
the images to supervise the training of hashing models. Therefore,
such methods usually achieve high retrieval performance. Never-
theless, it is time-consuming and expensive to annotate the images.
Hence, recently, more and more researchers pay attention to the
unsupervised hashing methods [13, 23, 39, 46, 47, 63] which train
the hashing models with unlabeled images.

As there is no label information in the unsupervised setting,
to improve the retrieval performance, one of the key points is to
define a kind of guiding information which sufficiently contains the
original similarity of images. Hence, many unsupervised hashing
methods focus on defining similarity matrices as guiding informa-
tion based on the image features extracted usually by a pre-trained
CNN model, such as VGG19 [40] or Alexnet [17]. For example, Se-
mantic Structure-based unsupervised Deep Hashing (SSDH) [58]
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utilizes the cosine similarity distribution of pairs based on the Gauss-
ian estimation to construct the similarity structure. Furthermore,
MLS3RDUH [46] constructs the similarity matrix by utilizing mani-
fold and cosine similarity between image features to reconstruct
the local similarity structure.

However, most of these methods define the similarity matrix
only depending on the cosine similarity between image features
but ignore the high-level abstract semantic concepts contained in
the images. Intuitively, the concepts play an important role in calcu-
lating the similarity between images. In real-world scenarios, each
image is associated with some concepts, and the similarity between
two images will be larger if they share more identical concepts.
Hence, the semantic concept information is useful to define the sim-
ilarities between images to further improve the quality of semantic
similarity matrix. Moreover, how can the concepts contained in the
images be mined? Fortunately, we can leverage vision-language
pre-training (VLP) models to mine the concept information con-
tained in the images. By exploiting contrastive learning, these VLP
models are directly pre-trained with large-scale noisy image-text
pairs which are easily collected from the Internet. With such a
broader and cheaper source of data while benefiting from the se-
mantic lever supervision from texts, the VLP models are trained
to align the semantic relationships between the images and their
corresponding texts. Therefore, by transforming the concepts into
texts through a prompt template, the VLP models can be used to
align the semantic relationship between images and concept based
texts, and then we can obtain the concept information contained in
the images.

Therefore, inspired by the above intuition, we propose a novel
Unsupervised Hashing with Semantic Concept Mining (UHSCM),
which leverages a VLP model CLIP [36] to construct a high-quality
similarity matrix through the prompt engineering. Specifically, UH-
SCM first randomly collects a set of concepts, such as ’cat’, ’dog’,
and ’flower’. Then, by adopting the prompt engineering, UHSCM
leverages the CLIP model to denoise the set of randomly collected
concepts according to training images. Next, based on the denoised
concepts, we utilize the CLIP model with the prompt engineer-
ing again to mine the concept distributions of images to construct
a high-quality semantic similarity matrix. Finally, incorporating
with the semantic similarity matrix as guiding information, a novel
hashing loss function with a modified contrastive loss based reg-
ularization item is proposed to optimize the hashing network to
generate distinguished hash codes. Above all, the main contribu-
tions of UHSCM are summarized as follows:

• To the best of our knowledge, the proposed UHSCM is the
first work in deep unsupervised hashing, which utilizes a
VLP model to mine the concept distributions of images to
construct a high-quality semantic similarity matrix.

• A novel contrastive loss based regularization item is pro-
posed for hashing loss to take good use of the constructed
semantic similarity matrix to generate distinguished hash
codes.

• Extensive experiments on three widely used datasets show
that the proposed UHSCM outperforms state-of-the-art un-
supervised baselines on image retrieval tasks.

2 RELATEDWORK
2.1 Vision-Langue Pre-training Models
Due to the success of BERT [5] in NLP and ViT [6] in computer
vision, more and more researchers pay attention to exploring visual-
language pre-training (VLP) models [15, 19, 20, 36, 43, 44, 65]. With
the contrastive learning, these VLP models are trained to align the
semantic relationships between massive image-text pairs which are
easily collected from the Internet. Benefiting from such a broader
and cheaper source of data, the VLP models have shown strong
power in visual representation learning. For example, the recent
CLIP [36] and ALIGN [15] employ a contrastive learning strategy
on a huge amount of noisy image-text pairs, achieving surprising
results on a large number of vision tasks. VATT [1] extends the con-
trastive learning from the image domain to the video domain and
aligns the video frames, audios, and texts. ALBEF [19] proposes a
new framework for vision-language representation learning which
first aligns the unimodal image representation and text represen-
tation before fusing them with a multimodal encoder. Moreover,
motivated by CLIP, CoOp [65] further improves the training strat-
egy by proposing a continuous prompting optimization method to
achieve better performance on visual classification tasks.

2.2 Image Hashing
Depending on whether supervised information is needed in the
training phase, the hashing can be roughly divided into two cate-
gories: supervised and unsupervised hashing methods. Please refer
to [31, 54] for a comprehensive survey.

Supervised hashing methods [2, 3, 12, 21, 48, 49, 62] learn hash
functions by using not only the data representation but also the
label information in the training phase. A mass of methods in this
category have been proposed, such as Central Similarity Quanti-
zation (CSQ) [62] and Partial-Softmax Loss based Deep Hashing
(PSLDH) [48]. CSQ first utilizes the Hadamard matrix to generate
hash centers for each label, and then pushes the hash codes of
images to be close around their hash centers. PSLDH first uses cate-
gory information with a bit-balance constraint to generate semantic
hash codes for each category, and then it leverages the category
hash codes as supervision information to guide the learning of
the image hashing network by minimizing a Partial-SoftMax loss
function.

The unsupervised hashing methods can be divided into tra-
ditional unsupervised hashing methods and deep unsupervised
hashing methods. The traditional unsupervised hashing methods
[10, 26, 28, 29, 56, 61] use hand-crafted features and shallow hash
functions to obtain binary hash codes. For example, Anchor Graph
Hashing (AGH) [28] proposes a sparse low-rank graph by introduc-
ing a set of anchors to speed up the construction of the graph to
learn hash codes. Limited by the hand-crafted features and shal-
low hash functions, it is hard for the traditional shallow hashing
methods to generate high-quality hash codes for complex and high
dimensional real-world data. Hence, plenty of deep unsupervised
hashing methods [22, 24, 32, 46, 47, 58, 60] are recently proposed,
which learn deep hashing networks to generate hash codes for
images. For example, Semantic structure-based unsupervised deep
hashing (SSDH) [58] constructs semantic structures based on a
Gaussian estimation to guide hashing network learning. Object



Detection based Deep Unsupervised Hashing (ODDUH) [47] first
utilizes an object detection model which is pre-trained on a la-
beled dataset to obtain the pseudo label information of images, then
based on the pseudo label information, it construct a similarity
matrix for the training set to guide the learning of hashing network.
MLS3RDUH [46] learns the hashing network by utilizing manifold
and cosine similarity between image features to reconstruct the
local similarity structure.

Although lots of unsupervised hashing methods have been pro-
posed to improve the quality of similarity matrix of the training set,
these constructed matrices are still not good enough because they
only depend on the cosine similarity between the image features
but ignore the high-level abstract semantic concepts contained in
images. Hence, in this paper we propose UHSCM which leverages
a VLP model with strong a generalization ability to mine the con-
cept information for images to construct a high-quality similarity
matrix.

3 PROPOSED METHOD
3.1 Problem Definition
Suppose that a dataset has𝑛 images𝑿 = {𝒙𝑖 }𝑛𝑖=1, and 𝒙𝑖 denotes the
𝑖𝑡ℎ image. The goal of unsupervised hashing is to learn a hashing
network which maps an image 𝒙𝑖 into a similarity-preserving hash
code 𝒃𝑖 ∈ {−1, 1}𝑘 where 𝑘 is the length of hash codes.

3.2 Design Overview
As shown in Figure 1, UHSCM mainly consists of a semantic simi-
larity generator and a hashing network. In the semantic similarity
generator, a VLP model is first used to denoise the set of randomly
collected concepts according to the training images. Next, the VLP
model is used again to mine the concept distributions of images, and
then according to the mined concept distributions, a high-quality
semantic similarity matrix of the training set is generated.

Moreover, for the hashing network, it is a VGG19 model with
the last layer replaced by a 𝑘-dimensional fully-connection layer
and 𝑡𝑎𝑛ℎ(·) is used as the activation function for the last layer. 𝑘 is
the length of hash codes. In the training phase, with the generated
similarity matrix as guiding information, the hashing network will
be optimized by a novel hashing loss to map the images𝑿 = {𝒙𝑖 }𝑛𝑖=1
into hash codes 𝒁 = {H (𝒙𝑖 ;𝑾 )}𝑛

𝑖=1 = {𝒛𝑖 }𝑛𝑖=1 ∈ [−1, 1]𝑘×𝑛 , where
H = (·;𝑾 ) denotes the hashing network, and 𝑾 is the set of
parameters of the hashing network. Then, followed by a 𝑠𝑔𝑛(·)
function, the binary hash codes of images can be obtained as 𝑩 =

{𝑠𝑔𝑛(𝒛𝑖 )}𝑛𝑖=1 = {𝒃𝑖 }𝑛𝑖=1 ∈ {−1, 1}𝑘×𝑛 . 𝑠𝑔𝑛(·) is an element-wise
sign function which returns 1 if the input is positive and returns
−1 otherwise.

3.3 Semantic Similarity Matrix Generator
3.3.1 Semantic Concept Mining. First, we randomly collect a set
of concepts 𝑪 = {𝒄𝑖 }𝑚𝑖 , where 𝒄𝑖 denotes the 𝑖𝑡ℎ concept, and𝑚 is
the total number of concepts. For example, we can directly use the
81 classes defined in NUS-WIDE as the set of concepts. Next, for
each concept, we use the following prompt template "a photo of
the 𝒄𝑖 " to construct its corresponding text 𝒕𝑖 . Then, for an image 𝒙𝑖 ,
we use the VLP model to calculate an image-text similarity score

vector 𝒔𝑖 ∈ [0, 1]𝑚 , where the 𝑗𝑡ℎ item of 𝑠𝑖 𝑗 denotes the similarity
score between 𝒙𝑖 and the 𝑗𝑡ℎ concept based text 𝒕 𝑗 :

𝑠𝑖 𝑗 = F𝑉𝐿𝑃 (𝒙𝑖 , 𝒕 𝑗 ;𝚯), (1)
where F𝑉𝐿𝑃 denotes the pre-trained VLP model, and 𝚯 is the set of
well-learned parameters of the VLP model. Based on the similarity
score vector 𝒔𝑖 , the concept distribution of image 𝒙𝑖 can be defined
as 𝒅𝑖 :

𝑑𝑖 𝑗 =
𝑒𝜏𝑠𝑖 𝑗

𝑚∑
𝑘=1

𝑒𝜏𝑠𝑖𝑘

,
(2)

where 𝜏 represents the temperature parameter, and how to set
its value will be described in detail in Subsection 4.6; 𝑑𝑖 𝑗 , the 𝑗𝑡ℎ

item of 𝒅𝑖 , denotes the probability of image 𝒙𝑖 containing the 𝑗𝑡ℎ

concept 𝒄 𝑗 . The larger value of 𝑑𝑖 𝑗 , the higher probability of image
𝒙𝑖 containing the 𝑗𝑡ℎ concept 𝒄 𝑗 .

Roughly, the semantic similarity𝑎𝑖 𝑗 between image 𝒙𝑖 and 𝒙 𝑗 can
be directly calculated by their corresponding concept distributions
𝒅𝑖 and 𝒅 𝑗 :

𝑎𝑖 𝑗 =
𝒅𝑇
𝑖
𝒅 𝑗

∥𝒅𝑖 ∥2
𝒅 𝑗 2 , (3)

where ∥·∥2 denotes 𝑙2 norm.
However, such a way of constructing semantic similarity is not

a good choice for the following reason. Since the set of concepts is
randomly collected, some of them may not be appropriate for the
image dataset, making these concepts useless for distinguishing
the images. If we do not eliminate these concepts, they will become
noisy and harm the quality of the similarities constructed based
on the concept distributions. For example, suppose that a concept
𝒄𝑖 is such a noise that all the images in the dataset do not contain
it. But the VLP model may misjudge two dissimilar images both
containing the concept 𝒄𝑖 on a high probability, so the two dissim-
ilar images will be mistaken for similar which will misguide the
training of the hashing model and harm the retrieval performance.
Hence, we propose a way to denoise the set of concepts to make
the constructed semantic similarities more high-quality.

3.3.2 Semantic Concept Denoising. With the above calculated con-
cept distributions 𝑫 = {𝒅𝑖 }𝑛𝑖=1 of all the images 𝑿 , then for a
concept 𝒄𝑖 , we can calculate its frequency 𝑓 (𝒄𝑖 ) where it denotes
the number of images containing the concept 𝒄𝑖 in the highest
probability:

𝑓 (𝒄𝑖 ) =
𝑛∑︁

𝑘=1
𝐼 ( 𝑗 = 𝑖 | argmax

𝑗

𝒅𝑘 𝑗 ), (4)

where 𝐼 (·) is a conditional function which returns 1 when the
condition is true otherwise returns 0.

Intuitively, for the concept 𝒄𝑖 , if its frequency 𝑓𝑖 is very large or
small, i.e., most or only a little bit of images contain it in the highest
probability, the concept is a noise, which is useless for distinguish-
ing these images and even will harm the quality of the constructed
similarities. Hence, it will be better to discard this concept. Based
on that, we define a conditional function to determine whether the
concept 𝒄𝑖 needs to be discarded:

𝐷𝑖𝑠𝑐𝑎𝑟𝑑 (𝒄𝑖 ) =
0, 𝑖 𝑓 0.5 𝑛

𝑚
≤ 𝑓 (𝒄𝑖 ) ≤ 0.5𝑛;

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
(5)
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Figure 1: The architecture of UHSCM. The solid arrows indicate forward-propagation, and the dotted arrows indicate back-
propagation.

where 𝑛 is the number of training images, and𝑚 is the total number
of concepts. When the frequency 𝑓 (𝒄𝑖 ) is larger than 0.5𝑛, more
than half of images contain the concept 𝒄𝑖 with the highest proba-
bility. It means that more than half of images are defined as similar
to each other which will compromise the distinguishability of the
generated hash codes; when 𝑓 (𝒄𝑖 ) is smaller than 0.5 𝑛

𝑚 , the number
of images containing the concept 𝒄𝑖 is even smaller than half of
the average number of images each concept contained, which is
too small then such a concept may not be suitable for this dataset.
Hence, in these two cases, the concept 𝒄𝑖 should be discarded, i.e.,
𝐷𝑖𝑠𝑐𝑎𝑟𝑑 (𝒄𝑖 ) = 1; in the other cases, i.e., 0.5 𝑛

𝑚 ≤ 𝑓 (𝒄𝑖 ) ≤ 0.5𝑛, it
means that the concept may be useful for distinguishing the images,
then 𝐷𝑖𝑠𝑐𝑎𝑟𝑑 (𝒄𝑖 ) = 0.

By keeping the concept 𝒄𝑖 whose𝐷𝑖𝑠𝑐𝑎𝑟𝑑 (𝒄𝑖 ) = 0 and discarding
the one whose 𝐷𝑖𝑠𝑐𝑎𝑟𝑑 (𝒄𝑖 ) = 1, we can denoise the original set of
concepts 𝑪 to obtain a cleaner concept set 𝑪 ′ = {𝒄 ′𝑖 }𝑚

′
𝑖

, where𝑚′

denotes the number of retained useful concepts.
Similar to the calculation of 𝑫 = {𝒅}𝑛

𝑗=1, with the set of concepts
𝑪 ′ = {𝒄 ′𝑖 }𝑚

′
𝑖

, we use the VLP model through prompt engineering
again to calculate the denoised concept distributions 𝑫 ′ = {𝒅 ′}𝑛

𝑗=1
for the images 𝑿 . Finally, we can calculate the high-quality similar-
ity matrix 𝑸 :

𝑞𝑖 𝑗 =
𝒅 ′𝑇𝑖 𝒅

′
𝑗𝒅 ′

𝑖


2

𝒅 ′𝑗 2 , (6)

where 𝑞𝑖 𝑗 is the 𝑖𝑡ℎ row 𝑗𝑡ℎ column of 𝑸 and denotes the semantic
similarity between image 𝒙𝑖 and image 𝒙 𝑗 .

3.4 Learning to Hash
Now, by taking the semantic similarity matrix 𝑸 as guiding infor-
mation, we will train the hashing model to map the images into
hash codes with the constructed semantic similarity preserved, i.e.,
when 𝑞𝑖 𝑗 is so large that image 𝒙𝑖 and image 𝒙 𝑗 are similar, the
Hamming distance between their corresponding hashing codes 𝒃𝑖
and 𝒃 𝑗 , which is defined as 𝐻𝑑 (𝒃𝑖 , 𝒃 𝑗 ) = 1

2 (𝑘 − 𝒃𝑇
𝑖
𝒃 𝑗 ), should be

small, otherwise 𝐻𝑑 (𝒃𝑖 , 𝒃 𝑗 ) should be large. To achieve this goal,
the objective function L of our hash model is defined as follows:

L𝑠 =
1
𝑛2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

(ℎ𝑖 𝑗 − 𝑞𝑖 𝑗 )2, (7)

L𝑐 =
1
𝑛

𝑛∑︁
𝑖=1

∑︁
𝑗 ∈Ψ𝑖

1
|Ψ𝑖 |

𝑒ℎ𝑖 𝑗 /𝛾

𝑒ℎ𝑖 𝑗 /𝛾 + ∑
𝑙 ∈Φ𝑖

𝑒ℎ𝑖𝑙 /𝛾
, (8)

L = L𝑠+𝛼L𝑐 , (9)

where 𝛼 and 𝛾 are the hyper-parameters; ℎ𝑖 𝑗 denotes the Hamming
similarity between the hash codes 𝒃𝑖 and 𝒃 𝑗 which is defined as
ℎ𝑖 𝑗 =

𝒃𝑇
𝑖
𝒃 𝑗

∥𝒃𝑖 ∥2∥𝒃 𝑗 ∥2
= 1

𝑘
𝒃𝑇
𝑖
𝒃 𝑗 . Moreover, Ψ𝑖 = { 𝑗 |𝑞𝑖 𝑗 ≥ 𝜆} is the set of

indexes of images to which the image 𝒙𝑖 should be similar, and 𝜆 is



a hyper-parameter. Φ𝑖 = { 𝑗 |𝑞𝑖 𝑗 < 𝜆} is the set of indexes of images
which are not in Ψ𝑖

Specifically, the first item L𝑠 is a widely used 𝑙2 loss, which is
used to make the learned hash codes preserve the constructed se-
mantic similarity matrix 𝑸 well. It can be found that by minimizing
the L𝑠 , when 𝑞𝑖 𝑗 is large, the value of ℎ𝑖 𝑗 , i.e., 1

𝑘
𝒃𝑇
𝑖
𝒃 𝑗 will be large,

then the Hamming distance 𝐻𝑑 (𝒃𝑖 , 𝒃 𝑗 ) will be small; otherwise,
𝐻𝑑 (𝒃𝑖 , 𝒃 𝑗 ) will be large.

Moreover, the second item L𝑐 is a modified contrastive loss
proposed by us. It can help our hash model further exploit the se-
mantic similarity matrix 𝑸 to generate distinguished hash codes.
The proposition of L𝑐 is inspired by the tremendous success of
contrastive learning. Although the contrastive loss has been intro-
duced to optimize the hashing model by the CIB [35], it only treats
the different views of the same image as similar pairs but does
not leverage the constructed semantic similarities to find useful
similar data pairs to further improve the retrieval performance. The
contrastive loss J𝑐 defined in the CIB [35] is as follows:

J𝑐 =
1
𝑛

𝑛∑︁
𝑖=1

𝑒𝑠𝑖𝑚 (𝒃 (1)
𝑖

,𝒃 (2)
𝑖

)/𝛾

𝑒𝑠𝑖𝑚 (𝒃 (1)
𝑖

,𝒃 (2)
𝑖

)/𝛾 + ∑
𝑙 ∈1,2

∑
𝑘≠𝑖

𝑒𝑒
𝑠𝑖𝑚 (𝒃 (1)

𝑖
,𝒃
(𝑙 )
𝑘

)/𝛾
, (10)

where 𝒃 (1)
𝑖

and 𝒃 (2)
𝑖

denote the hash codes of different views of
𝒙𝑖 ; 𝑠𝑖𝑚(𝒃 (1)

𝑖
, 𝒃 (2)

𝑖
) denotes the Hamming similarity between hash

codes. By minimizing the loss J𝑐 , it just only makes the Hamming
similarity between hash codes of different views of the same im-
ages higher than that between hash codes of any two different
images, no matter whether the two images are similar. It means
that the contrastive loss J𝑐 ignores an amount of useful similarity
information between different images. Hence, in our paper, we pro-
pose a novel modified contrastive loss L𝑐 defined as Formula (8).
Different from J𝑐 , without generating different views of images
through data augmentation, our modified contrastive loss L𝑐 di-
rectly leverages the semantic similarity matrix 𝑸 to construct the
similar data pairs. Specifically, in L𝑐 , when 𝒒𝑖 𝑗 ≥ 𝜆, the image 𝒙 𝑗 is
treated similar to image 𝒙𝑖 , i.e., the index 𝑗 belongs to the set Ψ𝑖 of
image 𝒙𝑖 . Then, after minimizing 𝑳𝑐 , for each 𝑗 in Ψ𝑖 , the Hamming
similarity between 𝒃𝑖 and 𝒃 𝑗 will be larger than that between 𝒃𝑖
and 𝒃𝑘 where 𝑘 ∉ Ψ𝑖 , Hence, it makes the generated hash codes
more distinguished.

Furthermore, as the each hash code 𝒃𝑖 = 𝑠𝑖𝑔𝑛(H (𝒙𝑖 ;Θ)) and the
𝑠𝑖𝑔𝑛(·) function is in-differentiable at zero and the derivation of
it will be zeros for a non-zero input. It means that the parameters
of hashing model will not be updated with the back-propagation
algorithm when minimizing the loss function L. Thus, to ensure
the parameters of our hashing model are updated, we directly uti-
lize tanh(·) to approximate the 𝑠𝑖𝑔𝑛(·) function, Then, similar to
previous works [41, 48], we further add a quantization loss to make
each element of outputs of the hashing network close to “+1" or

Algorithm 1 Learning algorithm for UHSCM
Input: Images 𝑿 , the length of hash codes 𝑘 , a set of randomly

selected concepts 𝑪 .
Output: Parameters of hashing network𝑾 , hash codes 𝑩.
1: Initialize parameters:𝑾 , 𝛼 , 𝛽 𝛾 , 𝜆, 𝑘 , 𝑜 . learning rate: 𝑙𝑟 , itera-

tion number: 𝑇 , mini-batch size 𝑡 (see Section 4.1).
2: Calculate the concept distributions 𝑫 of images 𝑿 over the set

of concepts 𝑪 by the VLP model through prompting.
3: Obtain the clean concept set 𝑪 ′ by denoising 𝑪 with the For-

mula (4) and Formula (5).
4: Generate the concept distributions 𝑫 ′ through the prompt

engineering.
5: Calculate the semantic similarity matrix 𝑄 .
6: repeat
7: for 𝑗 = 1 : 𝑛𝑡 do
8: Randomly sample 𝑡 images from database as a mini-batch.

9: Generate hash code 𝒛𝑖 with image 𝒙𝑖 as input by the hash
network.

10: Update parameters of the hash network𝑾 by minimizing
Formula (11).

11: end for
12: until Convergence
13: Generate binary image hash codes 𝑩.

“-1". The final objective function can be formulated as follows:

L =
1
𝑛2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

(ℎ̂𝑖 𝑗 − 𝑞𝑖 𝑗 )2 + 𝛽
1
𝑛

𝑛∑︁
𝑖=1

∥𝒛𝑖 − 𝒃𝑖 ∥2𝐹

+ 𝛼

𝑛

𝑛∑︁
𝑖=1

∑︁
𝑗 ∈Ψ𝑖

1
|Ψ|

𝑒ℎ̂𝑖 𝑗 /𝛾

𝑒ℎ̂𝑖 𝑗 /𝛾 + ∑
𝑙 ∈Φ𝑖

𝑒ℎ̂𝑖𝑙 /𝛾
,

(11)

where ℎ̂𝑖 𝑗 =
𝒛𝑇
𝑖
𝒛 𝑗

∥𝒛𝑖 ∥2∥𝒛 𝑗 ∥2
; 𝒛𝑖 denotes the hash codes of image 𝒙𝑖 , i.e.,

the output of hashing network with the input 𝒙𝑖 . The details of the
learning procedure are shown in Algorithm 1.

4 EXPERIMENTS
In this section, to evaluate the proposed method UHSCM, extensive
experiments are conducted on three commonly used datasets.

4.1 Datasets and Settings
The three datasets used for evaluation areCIFAR10 [16],MIRFlickr-
25K [14] and NUS-WIDE [4] which are described below.

CIFAR10 is a popular image dataset containing 60,000 images
in 10 classes, where each class contains 6,000 images with size 32 ×
32. We randomly sample 100 images for each class as the test set
and use the remaining images as the database, 1,000 images per
class from the database as the training set.

NUS-WIDE dataset contains 269,648 images crawled from Flickr.
Each image is annotated with one or multiple labels from 81 concept
labels. To ensure sufficient samples in each class, only 195,834
images that belong to the 21 most frequent classes are selected for
our experiments. Then, we randomly sample 5,000 images as the



Method CIFAR10 NUS-WIDE MIRFlickr-25K
32 bits 64 bits 96 bits 128 bits 32 bits 64 bits 96 bits 128 bits 32 bits 64 bits 96 bits 128 bits

LSH 0.257 0.286 0.346 0.375 0.538 0.579 0.636 0.666 0.642 0.685 0.701 0.702
SH 0.327 0.339 0.341 0.353 0.612 0.623 0.623 0.626 0.660 0.659 0.654 0.654
ITQ 0.442 0.474 0.479 0.492 0.719 0.743 0.751 0.753 0.763 0.769 0.776 0.776
AGH 0.495 0.491 0.485 0.481 0.727 0.733 0.734 0.732 0.798 0.786 0.777 0.771
SSDH 0.314 0.331 0.352 0.372 0.552 0.596 0.637 0.673 0.749 0.752 0.761 0.762
GH 0.456 0.469 0.500 0.504 0.684 0.720 0.737 0.743 0.744 0.766 0.782 0.791

BGAN 0.583 0.607 0.604 0.612 0.777 0.785 0.790 0.793 0.783 0.793 0.803 0.806
MLS3RDUH 0.540 0.550 0.559 0.569 0.776 0.788 0.793 0.796 0.814 0.818 0.817 0.816

CIB 0.580 0.599 0.606 0.611 0.774 0.782 0.782 0.783 0.796 0.808 0.813 0.812
UHSCM 0.831 0.850 0.857 0.853 0.796 0.810 0.813 0.815 0.827 0.834 0.835 0.834

Table 1: MAPs of Hamming ranking for different numbers of hash bits on the three image datasets.

test set and use the remaining images as the database, 10,500 images
from the database as the training set.

MIRFlickr-25K contains 25,000 images and each image is la-
beled with at least one of 24 classes labels. We randomly selected
1,000 images as the test set and the remaining images as the data-
base. In the database, we randomly sample 10,000 images as the
training set.

As our proposed method UHSCM is an unsupervised method,
we compare it with nine classical and state-of-the-art unsuper-
vised hashing methods: four traditional shallow unsupervised meth-
ods LSH [8], SH [56], ITQ [10] and AGH [28]; five deep unsuper-
vised hashing methods: UTH [13], SSDH [58], GH [42], BGAN
[41], MLS3RDUH [46], CIB [35]. For fair comparison, we adopt the
VGG19 architecture [40] for all the deep hashing methods, and the
inputs of the deep hashing methods are the raw images. Moreover,
we extract 4,096-dimensional deep features by VGG19 model which
is pre-trained on ImageNet [37] dataset as the inputs of the four
shallow hashing methods.

In our implementation of UHSCM, we utilize the VGG19 archi-
tecture [40] and implement it based on Pytorch framework. We
use all the 81 categories of NUS-WIDE directly as the original con-
cepts for all three experimental datasets CIFAR10, NUS-WIDE and
MIRFlickr-25k. Note that when conducting the hashing retrieval
experiments on the NUS-WIDE dataset, only the images belonging
to the 21 most frequent categories are selected. This means that the
collected original concepts for the hashing retrieval experiments on
the NUS-WIDE dataset still contain many noise concepts. Moreover,
the VLP model used in our method is the pre-trained CLIP2 model
[36]. The parameters in the first eighteen layers of hashing model
are initialized with the parameters of the first eighteen layers of
VGG19 model which is pre-trained on ImageNet, and the parame-
ters in the nineteen layer of hashing model are initialized by Xavier
initialization [9]. We use mini-batch stochastic gradient descent
(SGD) with 0.9 momentum and the learning rate is fixed to 0.006.
We fix the mini-batch size of images as 128 and the weight decay
parameter as 10−5.

2https://github.com/openai/CLIP

4.2 Evaluation Protocol
For hashing based retrieval tasks, Hamming ranking and hash
lookup are two widely used retrieval protocols to evaluate the per-
formance of hashing methods [35, 50, 51]. In our experiments, sim-
ilar to [48], we evaluate the retrieval quality based on three evalua-
tion metrics: Mean Average Precision (MAP), Precision curves with
respect to the number of top N returned results (P@n), Precision-
Recall curves (PR). MAP, P@n are used to measure the accuracy of
the Hamming ranking protocol. PR curve is used to evaluate the
accuracy of the hash lookup protocol. Moreover, for the MAP, P@n,
and PR curve, the image 𝒙𝑖 and image 𝒙 𝑗 will be defined as a similar
pair if 𝒙𝑖 and 𝒙 𝑗 share at least one common label. Otherwise, they
will be defined as a dissimilar pair.

Specifically, given a query datapoint, the Average Precision (AP)
score of top n retrieved datapoints is defined as:

𝐴𝑃 =

𝑛∑︁
𝑖=1

𝐼 (𝑖)
𝑁

𝑖∑︁
𝑗=1

𝐼 ( 𝑗)
𝑖

, (12)

where 𝐼 (𝑖) is an indicator function, if the 𝑖𝑡ℎ retrieved image is
relevant to the query, 𝐼 (𝑖) = 1 ; otherwise 𝐼 (𝑖) = 0. 𝑁 represents
the number of relevant images in the returned top 𝑛 datapoints.
Then, the Mean Average Precision (MAP) is defined as the average
of APs for all queries. Moreover, for all the three datasets, we set n
as 5000.

4.3 Experimental Results
4.3.1 Hamming Ranking Protocol. Table 1 shows theMAP results of
all baselines and UHSCM on CIFAR10, NUS-WIDE, and MIRFlickr-
25K datasets, respectively. The P@N curves on 64 and 128bits over
the three datasets are shown in Figure 2 . From the table and figures,
it can be observed that our method outperforms all state-of-the-
art baselines on both the two evaluation metrics. For instance,
compared with the latest baseline CIB, the MAP results of our
proposed UHSCM have an average increase of 24.8%, 2.8% and 2.5%
on datasets CIFAR10, NUS-WIDE and MIRFlickr-25K, respectively.
Compared with the best competitor MLS3RDUH on the NUS-WIDE
dataset, the MAP results of UHSCM have an average increase of
2.0%.Moreover, as shown in Figure 2, the P@N curves of ourmethod
are the highest, and especially the results on CIFAR10 dataset, the
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Figure 2: Precision@N curves on the three datasets

Precision@N curves of our proposed UHSCM are greatly larger
than all the baselines. These results indicate that the hash codes
generated by our proposed method UHSCM can preserve more
semantic similarity information than state-of-the-art baselines.

In addition, our proposed UHSCM achieves a large performance
improvement on the CIFAR10 dataset compared to the baselines, but
the performance improvements on the other two datasets are not
as large as on the CIFAR10 dataset. There are two reasons for this:
1) The CIFAR10 is a single-label dataset where it is easy to mine the
concept to define high-quality semantic similarity matrix, while the
NUS-WIDE andMIRFlickr-25K datasets are multi-label datasets that
contain many objects in each image, thus it is difficult to mine the
comprehensive and accurate concepts. Therefore, our method can
achieve better performance improvement on the CIFAR10 dataset.
2) The performances of existing methods on CIFAR10 are very poor,
so it is easy for our method to improve the performance.

4.3.2 Hash Lookup Protocol. When considering the hash lookup
protocol, we compute the PR curve for the returned points given
any Hamming radius. The PR curve can be obtained by varying the
Hamming radius from 0 to 𝑘 with a step size of 1. The PR curves on
64 and 128bits over the three datasets are shown in Figure 3. It can
be found that UHSCM outperforms all the state-of-the-art baselines
over all three datasets. For example, as shown in Figure 3 (a) and
(d), over the CIFAR10 dataset, the precisions of UHSCM are greatly
higher than all the ones of baselines at different recall. Moreover, for
the experiments over the NUS-WIDE and MIRFlickr-25K datasets,
as shown in Figure 3 (b), (c), (e) and (f), the PR curves of UHSCM
are higher than the ones of baselines on the whole. These results
demonstrate that the proposed UHSCM can generate hash codes
for similar datapoints in a smaller Hamming radius, i.e., the hash

codes generated by the UHSCM are more distinguished than the
ones generated by the baselines.

4.4 Ablation Study
To demonstrate the contributions of different components in our
proposed model, we conduct several ablation studies on all the
three datasets and the results are shown in Table 2. Specifically,
the UHSCM in the ‘Ours’ row is the final version used in other
experiments. It uses the 81 categories of NUS-WIDE as the original
concepts and then uses the semantic concept denoising way pro-
posed in Subsection (3.3.2) to clean up the concepts and generate a
semantic similarity matrix, and finally learns the hashing network
by minimizing the Formula (11).

4.4.1 Semantic Concept Collection. To investigate the effect
of the randomly collected concept set, we design two variants of
UHSCM: (1) UHSCM𝑐𝑜𝑐𝑜 uses all 80 categories of MS COCO [25]
as the original concepts and with the other setting same as that
of UHSCM. (2) UHSCM𝑛𝑢𝑠&𝑐𝑜𝑐𝑜 combines all the categories of
NUS-WIDE and those of MS COCO and then obtains a total of 153
different categories as the original concepts.

Based on these results shown in ‘1’ and ‘2’ rows of Table 2, it can
be observed: (1) Compared with the UHSCM𝑐𝑜𝑐𝑜 , our proposed UH-
SCM using the 81 categories of NUS-WIDE as the original concepts
can achieve better retrieval performance on the NUS-WIDE and
MIRFlickr-25K datasets but UHSCM𝑐𝑜𝑐𝑜 performs better on the CI-
FAR10 dataset. This may be because the 80 categories of MS COCO
contain most of the classes of CIFAR10, but are very different with
the 21 classes of NUS-WIDE and the 24 classes of MIRFlickr-25K
used in our experimental settings. Moreover, the 81 categories of
NUS-WIDE contain most of the 21 classes of NUS-WIDE and the 24
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Figure 3: Precision-recall curves on the three datasets

Method CIFAR10 NUS-WIDE MIRFlickr-25K
32 bits 64 bits 96 bits 128 bits 32 bits 64 bits 96 bits 128 bits 32 bits 64 bits 96 bits 128 bits

1 UHSCM𝑐𝑜𝑐𝑜 0.860 0.866 0.863 0.864 0.771 0.785 0.787 0.786 0.801 0.809 0.810 0.812
2 UHSCM𝑛𝑢𝑠&𝑐𝑜𝑐𝑜 0.858 0.865 0.862 0.857 0.789 0.805 0.809 0.810 0.818 0.824 0.825 0.826
3 UHSCM𝐼𝐹 0.761 0.776 0.779 0.763 0.770 0.795 0.803 0.802 0.772 0.792 0.793 0.789
4 UHSCM𝑃1 0.823 0.841 0.843 0.849 0.779 0.798 0.805 0.801 0.801 0.815 0.815 0.814
5 UHSCM𝑃2 0.829 0.846 0.847 0.845 0.770 0.789 0.798 0.803 0.793 0.800 0.799 0.800
6 UHSCM𝑎𝑣𝑔 0.834 0.851 0.850 0.857 0.787 0.805 0.803 0.808 0.810 0.824 0.825 0.826
7 UHSCM𝑤/𝑜 𝑑𝑒 0.791 0.780 0.798 0.791 0.789 0.805 0.809 0.810 0.818 0.827 0.827 0.825
8 UHSCM𝑐20 0.438 0.456 0.469 0.477 0.743 0.764 0.778 0.775 0.769 0.773 0.774 0.777
9 UHSCM𝑐30 0.515 0.543 0.537 0.550 0.753 0.766 0.779 0.789 0.787 0.792 0.797 0.796
10 UHSCM𝑐40 0.601 0.620 0.622 0.637 0.783 0.803 0.806 0.809 0.796 0.798 0.802 0.799
11 UHSCM𝑐50 0.674 0.691 0.685 0.685 0.761 0.781 0.791 0.800 0.810 0.817 0.816 0.815
12 UHSCM𝑐60 0.695 0.697 0.696 0.702 0.771 0.780 0.788 0.792 0.802 0.806 0.807 0.801
13 UHSCM𝑤/𝑜 𝑀𝐶𝐿 0.730 0.715 0.700 0.680 0.791 0.801 0.800 0.793 0.813 0.819 0.816 0.814
14 UHSCM𝐶𝐿 0.765 0.800 0.813 0.821 0.783 0.801 0.808 0.810 0.808 0.826 0.830 0.832

Ours UHSCM 0.831 0.850 0.857 0.853 0.796 0.810 0.813 0.815 0.827 0.834 0.835 0.834

Table 2: MAPs of UHSCM and its variants for different numbers of hash bits on the three image datasets.

classes of MIRFlickr-25K. Hence, UHSCM𝑐𝑜𝑐𝑜 achieves better per-
formance on CIFAR10 dataset and UHSCM performs better on the
NUS-WIDE andMIRFlickr-25K datasets. These results show that for
two randomly selected concept sets whose number of concepts is
almost equal, our proposed method can achieve better retrieval per-
formance when using the concept set with more concepts related
to the classes of the experimental dataset as the original concept

set. (2) Comparing the UHSCM𝑐𝑜𝑐𝑜 , UHSCM𝑛𝑢𝑠&𝑐𝑜𝑐𝑜 and UHSCM,
UHSCM𝑐𝑜𝑐𝑜 achieves the best performance on the CIFAR10 dataset,
and UHSCM achieves the best performance on the NUS-WIDE and
MIRFlickr-25K datasets. Although the 153 categories collected from
MS COCO and NUS-WIDE contain more concepts related to the
classes of the three experimental datasets, the UHSCM𝑛𝑢𝑠&𝑐𝑜𝑐𝑜 still
cannot achieves the best performance on the three datasets. This



may be because the 153 categories contain more useless concepts
that confuse the CLIP model and then reduce the quality of the
defined semantic similarity matrix. Hence, these results reveal that
when lots of useless concepts are contained in the original collected
concept set, they will harm the retrieval performance of our hash-
ing model, which also means that it is necessary to denoise the
concept set.

4.4.2 SemanticConceptMining. Wedesign a variant UHSCM𝐼𝐹

which directly uses the image features extracted by the CLIP model
to construct the semantic similarity matrix without mining the
concept semantic distributions through the prompt engineering.
As shown in the ‘3’ row of Table 2, compared with the UHSCM𝐼𝐹 ,
the MAP results of UHSCM achieve an average increase of 7.8%,
1.6% and 4.6% on the CIFAR10, NUS-WIDE and MIRFlickr-25K
datasets, respectively. It means that the semantic similarity matrix
constructed with the concept information is high-quality. These
results show that mining the concepts contained in images to con-
struct similarity will improve the retrieval performance of hashing
network.

4.4.3 Prompt Template. Here, we study the impact of prompt
template. Our proposed UHSCM uses "a photo of the 𝒄𝑖 " as the
prompt template to construct the corresponding text 𝒕𝑖 for 𝒄𝑖 , and
the UHSCM𝑃1 and UHSCM𝑃2 use "the 𝒄𝑖 " and "it contains the 𝒄𝑖 "
as the prompt template, respectively. The UHSCM𝑎𝑣𝑔 is a variant
whose semantic similarity matrix is the mean value of the similar-
ity matrices of UHSCM, UHSCM𝑃1 and UHSCM𝑃2. As the results
shown in the ‘4’ to ‘6’ rows of Table 2, it can be found that using the
template "a photo of the 𝒄𝑖 " will help our hashing model achieve
the best performance. These results show that the prompt template
also plays a key role in improving the retrieval performance of our
hashing model.

4.4.4 Semantic Concept Denoising. To investigate the effect of
our proposed semantic concept denoising component, we propose
some variants. First we design a UHSCM𝑤/𝑜 𝑑𝑒 whose semantic
similarity matrix is constructed without denoising the set of ran-
domly collected concepts, i.e., calculated by the Formula (3). Next,
we define a series of clustering based variants through clustering
the original randomly selected concepts into 𝑛 clusters by K-means
[34] and then using the 𝑛 clusters as the final concepts to generate
the semantic similarity matrix, and these variants are termed as
UHSCM𝑐𝑛 where 𝑛 denotes the number of clusters. Based on the
results shown in the ‘7’ to ‘12’ rows of Table 2, two observations
are obtained: (1) The semantic similarity matrix construct with
the denoised concepts is more high-quality than that constructed
with the randomly collected concepts. For example, compared with
the UHSCM𝑤/𝑜 𝑑𝑒 , the MAP results of UHSCM achieve an average
increase of 5.8%, 0.5% and 0.8% on the CIFAR10, NUS-WIDE and
MIRFlickr-25K datasets, respectively. These results demonstrate
that it is necessary to denoise the original randomly selected con-
cept set. (2) Our proposed semantic concept denoising component
is more useful than the clustering way. For instance, compared
with the best clustering based variant UHSCM𝑐50 on MIRFlickr-25K
dataset, the MAP results of UHSCM achieve an average increase of
1.8%.

Method CIFAR10 NUS-WIDE MIRFlickr-25K
SSDH 24.9 21.2 20.8
GH 25.7 28.4 21.3

BGAN 78.1 83.3 66.1
MLS3RDUH 132.7 126.5 114.7

CIB 31.5 34.6 18.5
UHSCM 27.3 35.7 20.2

Table 3: The time consumption (in minute) of our method
and baselines on the three image datasets.

4.4.5 Modified Contrastive Loss. To investigate the effect of
our proposed modified contrastive loss, we proposed two variants:
(1) UHSCM𝑤/𝑜 𝑀𝐶𝐿 constructs the hashing loss function without
the modified contrastive loss L𝑐 as regularization item; UHSCM𝐶𝐿

replace the modified contrastive loss L𝑐 with the original con-
trastive loss J𝑐 to construct the hashing loss function. The corre-
sponding results are shown in the ‘13’ and ‘14’ rows of Table 2.
From these results, the following insight can be obtained: (1) With
the modified contrastive loss based regularization to optimize the
hashing model, it will improve the image retrieval performance.
For example, compared with the UHSCM𝑤/𝑜𝑀𝐶𝐿 , the MAP results
of UHSCM achieve an average increase of 14.4%, 1.2% and 1.7% on
the CIFAR10, NUS-WIDE and MIRFlickr-25K datasets, respectively.
These results demonstrate that the modified contrastive loss L𝑐

can further take a good use of the constructed semantic similarity
information to guide hashing model generate distinguished hash
codes. (2) Our modified contrastive loss L𝑐 is more useful than the
original one J𝑐 for the hashing model. For example, compared with
the UHSCM𝐶𝐿 , the MAP results of UHSCM achieve an average
increase of 4.8%, 0.8% and 0.9% on the CIFAR10, NUS-WIDE and
MIRFlickr-25K datasets, respectively.

4.5 Time Consumption
Here, we investigate the time consumption of our proposed method,
and the results are shown in Table 3. In this experiment settings, for
a method, its time consumption is the sum of the time spent on all its
preprocessing operations and the time spent on training its hashing
model to convergence. It can be found that the time consumptions
of our proposed method UHSCM are 27.3, 35.7 and 20.2 minutes on
the CIFAR10, NUS-WIDE and MIRFlickr-25K datasets, respectively,
which are comparable to those of existing methods and even much
lower than the ones of BGAN and MLS3RDUH.

4.6 Sensitivity to Hyper-parameters
Here, we investigate the influence of hyper-parameters 𝜏, 𝛼, 𝜆,𝛾 ,
and 𝛽 with the hash code length being 64 bits on the three datasets.

First, we study the influence of hyper-parameters 𝜏 over the three
dataset with its value changed from 1𝑚 to 4𝑚 and the other hyper-
parameters fixed, where𝑚 denotes the number of concepts. The
MAP results are shown in Figure 4 (a), (f) and (k). It can be found
that our proposed method can achieves great retrieval performance
on all the three datasets with 𝜏 being 1𝑚 or 3𝑚. Hence, in the other
experiments, we set 𝜏 as 3𝑚.
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Figure 4: A sensitivity analysis of the hyper-parameters
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Figure 5: t-SNE visualization on the CIFAR-10 dataset.

Then, to study the influence of hyper-parameter 𝛼 , we vary the
value of 𝛼 from 0.1 to 0.5 with the other hyper-parameters fixed.
As the results shown in Figure 4 (b), (g) and (l) for all the three
datasets, UHSCM achieves good performance when 𝛼 ∈ [0.1, 0.4].
Moreover, for the CIFAR10 dataset, the proposed UHSCM obtains
the best retrieval result when 𝛼 = 0.2; for the NUS-WIDE dataset,
the performance of UHSCM is the best when 𝛼 = 0.1; for the
MIRFlickr-25K dataset, when 𝛼 = 0.3, UHSCM achieves the best
retrieval performance.

Next, we investigate the influence of hyper-parameter 𝜆 over
the three dataset with its value changed from 0.5 to 1.0 and the
other hyper-parameters fixed, and the corresponding experimental

results shown in Figure 4 (c), (h) and (m). It can be found that when
𝜆 = 0.8, 0.5 and 0.6 our proposed method UHSCM can achieve the
best performance for the CIFAR10, NUS-WIDE and MIRFlickr-25K
datasets, respectively.

Moreover, to study the hyper-parameter 𝛾 on the three datasets,
we vary the value of𝛾 from 0.1 to 0.6with the other hyper-parameters
fixed, and the results are shown in Figure 4 (c), (g) and (k). It can be
seen that when 𝛾 = 0.2, our proposed method UHSCM can achieve
the best performance for the CIFAR10 and NUS-WIDE datasets, and
for the dataset MIRFlickr-25K, UHSCM obtains the best retrieval
performance when 𝛾 = 0.5.
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Furthermore, we investigate the effect of hyper-parameter 𝛽
with its value varied from 0 to 0.1 and the other hyper-parameters
fixed. The MAP results are shown in Figure 4 (d), (h) and (l). For
all the three datasets when the 𝑏𝑒𝑡𝑎 = 0.001, UHSCM achieves the
best performance.

Finally, based on the above experimental results, for the CIFAR10
dataset, we set 𝛼 = 0.2, 𝜆 = 0.8, 𝛾 = 0.2, and 𝛽 = 0.001; for the
NUS-WIDE dataset, the hyper-parameters 𝛼, 𝜆,𝛾 , and 𝛽 are set as
0.1, 0.5, 0.2 and 0.001, respectively; for the MIRFlickr-25K dataset,
we set hyper-parameters 𝛼, 𝜆,𝛾 , and 𝛽 as 0.3, 0.6, 0.5 and 0.001,
respectively.

4.7 Qualitative Results
4.7.1 t-SNE visualization. To better understand the manifold struc-
ture of learned hashing code, we compare the t-SNE visualiza-
tion [52] of hash codes generated by our proposed UHSCM, CIB,
MLS3RDUH, and BGAN for the datapoints in the database of CI-
FAR10 dataset, and the results are shown in Figure 5 where the
data points within the same colour belong to the same class. It can
be easily found that compared with the three baselines, our pro-
posed UHSCM shows a clearer structure, in which the clusters of
each class are separated from each other. There results demonstrate
that compared with the baselines, our proposed method UHSCM
can generate hash codes with more abundant semantic similar-
ity information preserved, i.e., the generated hash codes are more
distinguished.

4.7.2 Visualization of retrieval results. In Figure 6, we show the
top-10 retrieval results of the proposed UHSCM, CIB, MLS3RDUH
and BGAN on the CIFAR-10 dataset with the length of hash codes
being 64 bits. Specifically, the relevant results are framed by the
green border, and the irrelevant results are framed by the red border.
It can be seen that comparing to these baselines, our DSAH has
fewer fault images. These results show that the quality of hash
codes generated by our proposed UHSCM are higher.

5 CONCLUSION
In this paper, we proposed a novel Unsupervised Hashing with
Semantic Concept Mining, dubbed UHSCM. UHSCM first leverages
the CLIP model to denoise a set of randomly collected concepts
according to the available training images through the prompt en-
gineering. Next, based on the denoised concepts, UHSCM mines
the concept distribution of each image by the VLP model through
prompting again to constructs a high-quality semantic similarity

matrix. Finally, treating the constructed semantic similarity matrix
as guiding information, a novel hashing loss with a modified con-
trastive loss based regularization item was proposed to optimize
the hashing network. Extensive experiments on three benchmark
datasets have shown that the proposed method outperforms the
state-of-the-art baselines on the image retrieval task.
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