
Probabilistic Black-Box Checking via Active MDP Learning

JUNYA SHIJUBO, MASAKI WAGA, and KOHEI SUENAGA, Kyoto University, Japan

We introduce a novel methodology for testing stochastic black-box systems, frequently encountered in

embedded systems. Our approach enhances the established black-box checking (BBC) technique to address
stochastic behavior. Traditional BBC primarily involves iteratively identifying an input that breaches the

system’s specifications by executing the following three phases: the learning phase to construct an automaton

approximating the black box’s behavior, the synthesis phase to identify a candidate counterexample from

the learned automaton, and the validation phase to validate the obtained candidate counterexample and the

learned automaton against the original black-box system. Our method, ProbBBC, refines the conventional BBC

approach by (1) employing an active Markov Decision Process (MDP) learning method during the learning

phase, (2) incorporating probabilistic model checking in the synthesis phase, and (3) applying statistical

hypothesis testing in the validation phase. ProbBBC uniquely integrates these techniques rather than merely

substituting each method in the traditional BBC; for instance, the statistical hypothesis testing and the MDP

learning procedure exchange information regarding the black-box system’s observation with one another.

The experiment results suggest that ProbBBC outperforms an existing method, especially for systems with

limited observation.

CCS Concepts: • Theory of computation→ Verification by model checking; • Software and its engi-
neering→ Formal software verification; • Computer systems organization→ Embedded systems.

Additional KeyWords and Phrases: testing, stochastic systems, automata learning, probabilistic model checking

1 INTRODUCTION
Embedded systems (ESs), including cyber-physical systems (CPSs) and IoT systems, are often safety-

critical systems, making their safety assurance crucial. One of the characteristics of such systems is

that their behavior is governed by stochastic disturbances (e. g., due to communication error or

uncertainty in physical environments), not only by the external inputs (e. g., from a controller or

other agents). Another notable characteristic is that they are often black-box systems due to their

proprietary or machine-learned components. These characteristics make testing and verification of

such systems challenging.

Black-box checking (BBC) [29] is a technique to apply model checking to black-box systems via

model learning. Given a black-box systemM under test (SUT) and a temporal logic formula 𝜑 , it

tries to find an input sequence witnessingM ̸|= 𝜑 by iterating the following three phases:

Learning phase learns an automaton
ˆM that approximates the behavior ofM by using an

active learning procedure such as L
∗
[5].

Synthesis phase tries to synthesize an execution trace 𝜎 witnessing
ˆM ̸|= 𝜑 by model

checking.

Validation phase validates whether the found 𝜎 also witnessesM ̸|= 𝜑 . If 𝜎 does not witness

M ̸|= 𝜑 , 𝜎 is an evidence ofM ≠ ˆM, and BBC goes back to the learning phase using 𝜎 to

refine
ˆM. When no witness for

ˆM ̸|= 𝜑 is found in the synthesis phase, this phase tries to

find an evidence ofM ≠ ˆM, typically through random testing.

There have been various extensions of BBC [13, 15, 25], including the ones focusing on CPSs [31,

35]. However, these techniques are limited to deterministic systems because the learned automaton

is deterministic, e. g., a DFA or a Mealy machine.

This is the author version of the paper of the same name accepted to International Conference on Embedded Software

(EMSOFT), 2023.

Authors’ address: Junya Shijubo, shijubo@fos.kuis.kyoto-u.ac.jp; Masaki Waga, mwaga@fos.kuis.kyoto-u.ac.jp; Kohei

Suenaga, ksuenaga@gmail.com, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501, Japan.

ar
X

iv
:2

30
8.

07
93

0v
1

 [
cs

.S
E

]
 1

5
Ju

l 2
02

3

HTTPS://ORCID.ORG/0000-0002-2853-1159
HTTPS://ORCID.ORG/0000-0001-9360-7490
HTTPS://ORCID.ORG/0000-0002-7466-8789
https://orcid.org/0000-0002-2853-1159
https://orcid.org/0000-0001-9360-7490
https://orcid.org/0000-0002-7466-8789
https://orcid.org/0000-0002-7466-8789

2 Junya Shijubo, Masaki Waga, and Kohei Suenaga

Learning Phase
Learn an MDP

ˆM approximating

M using L
∗

MDP

Synthesis Phase
Synthesize strategy

𝑠 maximizing sat.

prob. of 𝜑 using PMC

Validation Phase
Test if 𝑠 maximizes

sat. prob. of M
using statistical

hypothesis testing

SUTM
Spec. 𝜑 MDP

ˆM strategy 𝑠

probability 𝑝M𝑠 ,𝜑

strategy 𝑠

trace 𝜎 witnessingM ≠ ˆM

Fig. 1. Outline of probabilistic black-box checking. Given a black-box SUTM and an LTL formula 𝜑 , it
estimates the maximum satisfaction probability 𝑝M𝑠 ,𝜑 of 𝜑 onM as well as a strategy 𝑠 to realize it.

Markov decision processes (MDP), an extension of Markov chains so that external inputs control the

transition distribution, are widely used to formalize systems with external inputs and probabilistic

branching, By fixing a strategy 𝑠 , a function to decide the input to be fed to the system, a Markov

chain
ˆM𝑠 can be constructed from an MDP

ˆM.

Given an MDP
ˆM modeling a system and a temporal logic formula 𝜑 representing the specifica-

tion, (quantitative) probabilistic model checking (PMC) [7] computes the maximum (or minimum)

satisfaction probability 𝑝 ˆM𝑠 ,𝜑
of 𝜑 on

ˆM as well as a strategy 𝑠 to realize it. Such probability can

be used as a safety measure of the system under verification. Although PMC returns the exact

probability, it is challenging to apply it to real-world ESs because they are rarely white-box, and

modeling the system under verification as an MDP is a non-trivial task.

In this paper, we propose probabilistic black-box checking (ProbBBC), a quantitative extension
of BBC for stochastic systems. Given a black-box SUTM and a linear temporal logic (LTL) [34]
formula 𝜑 , ProbBBC returns an estimation of the maximum satisfaction probability 𝑝M𝑠 ,𝜑 of 𝜑 with

a strategy 𝑠 to realize it. ProbBBC can be used, for example, for the following purposes.

Example 1.1 (ProbBBC for debugging). Consider an IoT systemM that uses theMQTT protocol [1]

for communication. Due to the wireless network’s instability, software bugs, or an unstable power

supply, communication may not always be stable. For debugging such an issue, it is helpful to

synthesize adversarial inputs leading to a communication error with a high probability. ProbBBC

can synthesize such inputs by estimating the strategy that maximizes the probability of causing a

communication error. If the probability returned by ProbBBC is small after a sufficiently long time,

one can deem that the systemM is working well by the convergence of ProbBBC.

Example 1.2 (ProbBBC for controller synthesis). Consider a robotM moving on a field with various

conditions, e. g., concrete, grass, and mud. Our task is to create a controller for the robot to reach

a specific goal. Due to sensing noise or slipping depending on the field’s condition, the robot’s

movement may be probabilistic. Furthermore, it is highly challenging to formally model all the

system and environmental details. ProbBBC can synthesize a near-optimal controller by estimating

the strategy that maximizes the probability of reaching the goal within certain time steps. If it fails

to synthesize a controller satisfying the specification after a sufficiently long time, it suggests that

the task may be highly challenging by the convergence of ProbBBC.

Fig. 1 outlines ProbBBC, which, like conventional BBC, consists of the learning, synthesis, and

validation phases. In the learning phase, ProbBBC learns a deterministic MDP
ˆM, i. e., an MDP

such that the current state is uniquely identified from a sequence of inputs and outputs, from the

SUTM based on an active MDP learning algorithm L
∗

MDP [33]. L
∗

MDP systematically feeds input

sequences to the SUTM, estimates the probabilistic distribution of the output observations, and

identifies the discrete structure and transition probabilities ofM. ProbBBC uses the resulting MDP

ˆM as an approximation ofM.

In the synthesis phase, ProbBBC computes a strategy 𝑠 of the approximateMDP
ˆM thatmaximizes

the satisfaction probability 𝑝 ˆM𝑠 ,𝜑
of 𝜑 on

ˆM using PMC. We note that the strategy 𝑠 may not

Probabilistic Black-Box Checking via Active MDP Learning 3

maximize the satisfaction probability 𝑝M𝑠 ,𝜑 of 𝜑 on the SUTM due to the potential deviation of

the approximate MDP
ˆM from the SUTM.

In the validation phase, ProbBBC conducts statistical hypothesis testing to check whether the

obtained 𝑠 also gives 𝑝M𝑠 ,𝜑 of 𝜑 forM. ProbBBC obtains execution traces by executing the SUTM
with 𝑠 multiple times. By calculating how many traces satisfy 𝜑 , ProbBBC obtains an estimation 𝑝

of 𝑝M𝑠 ,𝜑 .
1
Using this estimated value 𝑝 of 𝑝M𝑠 ,𝜑 , ProbBBC conducts statistical hypothesis testing

with the null hypothesis 𝑝M𝑠 ,𝜑 = 𝑝 ˆM𝑠 ,𝜑
. If 𝑝M𝑠 ,𝜑 ≠ 𝑝 ˆM𝑠 ,𝜑

is established through the hypothesis

test, ProbBBC tries to construct an execution trace 𝜎 witnessing the deviation of the approximate

MDP
ˆM fromM; if such 𝜎 is found, ProbBBC feeds it back to the learning phase to refine the

approximate MDP
ˆM.

If ProbBBC fails to find such 𝜎 , it resorts to random sampling in an attempt to detect a deviation

between the approximate MDP
ˆM and the SUTM. ProbBBC randomly synthesizes input sequences,

feeds them to both the approximate MDP
ˆM and the SUTM, and compares the probabilistic

distribution of their outputs. If ProbBBC finds a witness of their deviation, it feeds the witness back

to the learning phase. Otherwise, ProbBBC deems the approximate MDP
ˆM converged to the SUT

M and returns the satisfaction probability 𝑝M𝑠 ,𝜑 of the specification 𝜑 on the SUTM, which is

already obtained in the previous phase.

Moreover, we optimized the validation phase using the information used for MDP learning. For

example, we immediately terminate the validation phase and return to the learning phase when

some assumptions regarding the estimation of transition probabilities prove to be incorrect.

We implemented a prototype tool of ProbBBC. We conducted experiments to evaluate the

performance of ProbBBC using benchmarks related to CPS or IoT scenarios, which are also used in

previous papers on MDP learning [33] or MDP testing via learning [4]. Results from our experiment

indicate that the satisfaction probability 𝑝M𝑠 ,𝜑 estimated by ProbBBC is usually close to the true

value. Moreover, ProbBBC tends to estimate a better probability than an existing approach [4],

especially when the observability in the SUTM is limited.

Summary of the contributions. Our contributions are summarized as follows.

• We propose probabilistic black-box checking (ProbBBC) by combining active MDP learning,

probabilistic model checking, and statistical hypothesis testing.

• We optimized the validation phase using the information for MDP learning.

• Our experiment results suggest that our approach outperforms an existing approach.

Outline. We show some related approaches in Section 2. After recalling the preliminaries in

Section 3, we introduce probabilistic black-box checking (ProbBBC) in Section 4. We show the

experimental evaluation in Section 5, and conclude in Section 6.

2 RELATEDWORK
Table 1 summarizes testing methods for black-box systems with external inputs and probabilistic

branching. These methods are categorized into two approaches: PMC-based and SMC-based ap-

proaches. ProbBBC is categorized as the PMC-based approach. In the PMC-based approach, we

learn an MDP
ˆM that approximates the SUTM, then compute an optimal strategy 𝑠 for the learned

MDP
ˆM along with its corresponding probability using PMC. When the learned MDP

ˆM closely

approximates the SUTM, we can expect the strategy 𝑠 to be near-optimal for the SUTM as well.

1
We remark that estimation of 𝑝M𝑠 ,𝜑 by executingM𝑠 is not trivial sinceM is a black-box system, whereas 𝑠 requires

the information on the current state of the system in each step. To address this challenge, we executeM𝑠 using
ˆM as a

scaffold; we explain this technique in Section 4.2.1.

4 Junya Shijubo, Masaki Waga, and Kohei Suenaga

Table 1. Testing methods for black-box systems with external inputs and probabilistic branching. PMC stands
for probabilistic model checking, and SMC stands for statistical model checking.

(Near-) optimal strategy synthesis Probability computation MDP learning

Ours PMC PMC Active [33]

[4] PMC PMC Passive [24]

[10, 12] random sampling SMC N/A

[9] delayed Q-learning [32] SMC N/A

Aichernig and Tappler [4] propose another method of this approach, which we denote as Prob-
BlackReach. The main difference from ProbBBC is in the MDP learning algorithm: ProbBBC actively
learns an MDP with L

∗
MDP [33], whereas ProbBlackReach passively learns an MDP with Aaler-

gia [24]. An active MDP learning algorithm adaptively samples execution traces for learning

within the learning algorithm. In contrast, a passive MDP learning algorithm requires externally

constructed execution traces. In [4], they use an 𝜀-greedy algorithm to sample execution traces.

This algorithm primarily samples traces using the the best strategy at the time but also employs a

random input with probability 𝜀. Due to its greedy sampling approach, the method often gets stuck

in a suboptimal strategy, as we observe experimentally in Section 5. In contrast, ProbBBC tends

outperform in finding a near-optimal strategy because L
∗

MDP samples execution traces so that the

transition function from each state can be identified, and the obtained execution traces tend to cover

broader behavior. Another less significant difference lies in the properties each method supports:

ProbBBC supports safety LTL, whereas ProbBlackReach is limited to reachability properties.

Statistical model checking (SMC) [3] estimates the satisfaction probability of a specification

through random sampling of execution traces. Because of the sampling-based approach of SMC, it

can handle black-box systems. SMC is primarily for purely probabilistic systems with no external

inputs (e. g., Markov chains rather than MDPs), and when we apply SMC to systems with external

inputs, we need to synthesize a (near-) optimal strategy to determine inputs. In [12, 22], strategies

are constructed by random sampling with a concise encoding of each strategy. In [9], strategies are

constructed by delayed Q-learning [32]. These methods, which directly learn and apply a strategy

on the SUT, require the current state of the SUT to be observabile. In contrast, ProbBBC indirectly

uses a strategy via the approximate MDP, and the current state can be unobservable.

Schematically, ProbBBC is based on black-box checking (BBC) [29]. ProbBBC is a quantitative

extension of BBC in the following sense: i) It handles systems with probabilistic transitions, which
is more general than deterministic transitions supported by BBC; ii) It tries to return a strategy to

maximize the satisfaction probability of the given property 𝜑 , which is a quantitative generalization

of returning an input sequence violating 𝜑 . Furthermore, BBC for a deterministic systemM against

an LTL formula𝜑 is reducible to ProbBBC forM against¬𝜑 by checking if themaximum satisfaction

probability of ¬𝜑 is 1.

3 PRELIMINARIES
For a set 𝑆 , we denote its power set by P(𝑆), the set of finite sequences of 𝑆 elements by 𝑆∗, and
the set of the infinite sequence of 𝑆 by 𝑆𝜔 . For an infinite sequence 𝑠 = 𝑠0, 𝑠1, · · · ∈ 𝑆𝜔 and 𝑖, 𝑗 ∈ N
where 𝑖 ≤ 𝑗 , we denote the subsequence 𝑠𝑖 , 𝑠𝑖+1, . . . , 𝑠 𝑗 ∈ 𝑆∗ by 𝑠 [𝑖, 𝑗] and 𝑠𝑖 , 𝑠𝑖+1, · · · ∈ 𝑆𝜔 by 𝑠 [𝑖,∞].
We write 𝑠 · 𝑠′ for the concatenation of a finite sequence 𝑠 ∈ 𝑆∗ and an infinite sequence 𝑠′ ∈ 𝑆𝜔
of 𝑆 . A trace 𝜎 is an alternating sequence of inputs and outputs (i.e., 𝜎 ∈ Σout × (Σin × Σout)∗.)
We denote the set of probability distributions over 𝑆 by Dist (𝑆): for any 𝜇 : 𝑆 → [0, 1] in Dist (𝑆),∑

𝑠∈𝑆 𝜇 (𝑠) = 1 holds. For sets 𝑋 and 𝑌 , we denote 𝑋 ⊆fin 𝑌 if 𝑋 ⊆ 𝑌 holds and 𝑋 is finite.

Probabilistic Black-Box Checking via Active MDP Learning 5

3.1 Model of systems and specification logic
Here, we briefly review some notions related to (probabilistic) model checking. See, e. g., [18] for a

more formal reasoning of probabilities using measure theory.

3.1.1 Mealy machine.

Definition 3.1 (Mealymachine). A (deterministic)Mealymachine is a 5-tuple
ˆM = (𝑄, Σin, Σout, 𝑞0,Δ),

where𝑄 is the finite set of states, Σin
and Σout

are the input and output alphabets,𝑞0 ∈ 𝑄 is the initial

state, and Δ : (𝑄 × Σin) → (𝑄 × Σout) is the transition function. We write L(M) ⊆ (Σin × Σout)𝜔
for the language of a Mealy machineM defined as follows:

L(M) B {(𝑎0, 𝑏0), (𝑎1, 𝑏1), · · · | ∃𝑞1, 𝑞2, . . . ∈ 𝑄𝜔 ,∀𝑖 ∈ N. Δ(𝑞𝑖 , 𝑎𝑖) = (𝑞𝑖+1, 𝑏𝑖)} .
For 𝜎 ∈ (Σin)𝜔 and a Mealy machineM, we writeM(𝜎) for the output obtained by feeding 𝜎

toM. More precisely,M(𝜎) for 𝜎 = 𝑎0, 𝑎1, · · · ∈ (Σin)𝜔 is defined as 𝑏0, 𝑏1, · · · ∈ (Σout)𝜔 such that

(𝑎0, 𝑏0), (𝑎1, 𝑏1), · · · ∈ L(M). Notice that this notation is well-defined sinceM is deterministic.

We write Lfin (M) for the finite language of M defined as the set of finite prefixes of L(M):
Lfin (M) B {𝜎 ∈ (Σin × Σout)∗ | ∃𝜎 ′ ∈ (Σin × Σout)𝜔 . 𝜎 · 𝜎 ′ ∈ L(M)}.

3.1.2 Markov decision process. We useMarkov decision processes (MDPs) for modeling systems that

exhibit stochastic behavior.

Definition 3.2 (Markov decision process). A Markov decision process (MDP) is a 6-tuple
ˆM =

(𝑄, Σin, Σout, 𝑞0,Δ, 𝐿), where 𝑄 is the finite set of states, Σin
and Σout

are input and output alphabet,

𝑞0 ∈ 𝑄 is the initial state, Δ : (𝑄 × Σin) →Dist (𝑄) is the probabilistic transition function, and

𝐿 : 𝑄 → Σout
is the labeling function. A path 𝜌 of

ˆM is an element of 𝑄 × (Σin × 𝑄)∗. We write

Path ˆM for the set of all paths of MDP
ˆM. We say MDP

ˆM is deterministic iff for any 𝑞 ∈ 𝑄 and for

any 𝑎 ∈ Σin, 𝑞′, 𝑞′′ ∈ 𝑄 , Δ(𝑞, 𝑎) (𝑞′) > 0 and Δ(𝑞, 𝑎) (𝑞′′) > 0 implies 𝑞′ = 𝑞′′ or 𝐿(𝑞′) ≠ 𝐿(𝑞′′).
In this paper, we let Σout = P(AP) where AP is a set of relevant atomic propositions, and the

labeling function 𝐿 returns the propositions that hold at the given state.

An execution of an MDP
ˆM = (𝑄, Σin, Σout, 𝑞0,Δ, 𝐿) can be seen as an interaction with a system

and a controller. An execution of
ˆM starts at the initial state 𝑞0. Suppose the system is at state 𝑞.

The controller chooses an input 𝑎 ∈ Σin
to the system; then, the system’s state changes based on the

probability distribution Δ(𝑞, 𝑎). This interaction between a system and its controller is expressed by

a path 𝜌 of states and inputs starting at the initial state 𝑞0, i. e., 𝜌 = 𝑞0, 𝑎1, 𝑞1, 𝑎2, 𝑞2, . . . 𝑎𝑛, 𝑞𝑛 ; at each

state 𝑞𝑘 , the input 𝑎𝑘+1 is chosen by the controller, and the next state is chosen probabilistically

according to the distribution Δ(𝑞𝑘 , 𝑎𝑘+1).
A path 𝜌 = 𝑞0, 𝑎1, 𝑞1, 𝑎2, 𝑞2, . . . 𝑎𝑛, 𝑞𝑛 induces a trace𝜎 of theMDP

ˆM;𝜎 = 𝑏0, 𝑎1, 𝑏1, 𝑎2, 𝑏2, . . . 𝑎𝑛, 𝑏𝑛 ,

where for each 𝑘 ∈ {0, 1, . . . , 𝑛}, 𝑏𝑘 = 𝐿(𝑞𝑘). If the MDP
ˆM is deterministic, the path 𝜌 correspond-

ing to a trace 𝜎 is uniquely identified.

The intuition of the interaction between a system and its controller is formalized by modeling

the controller as a strategy.

Definition 3.3 (Strategy). For an MDP
ˆM = (𝑄, Σin, Σout, 𝑞0,Δ, 𝐿), a strategy for

ˆM is a function

𝑠 : Path ˆM →Dist (Σin).

A strategy 𝑠 can be seen as a controller that probabilistically chooses an input 𝑎 ∈ Σin
to be

fed to
ˆM from a path 𝜌 ∈ Path ˆM that represents the execution of the system so far based on the

probability distribution 𝑠 (𝜌).
An interacting system composed of an MDP

ˆM and a strategy 𝑠 is modeled as a discrete-time

Markov chain (DTMC) [14]. We write
ˆM𝑠 for this DTMC.

6 Junya Shijubo, Masaki Waga, and Kohei Suenaga

A strategy is finite-memory if its choice of inputs depends only on the current state and a finite

mode updated by each input and state, not on the entire path. Any finite-memory deterministic

strategy can be encoded by a Mealy machine (𝑀,𝑄 × Σin, Σin,𝑚0, 𝐸), where the choice of input
𝑎 ∈ Σin

depends only on𝑀 and 𝑄 (i. e., for any𝑚 ∈ 𝑀 , 𝑞 ∈ 𝑄 , and 𝑎, 𝑎′ ∈ Σin
, the second elements

of 𝐸 (𝑚, (𝑞, 𝑎)) and 𝐸 (𝑚, (𝑞, 𝑎′)) are the same). For an MDP
ˆM = (𝑄, Σin, Σout, 𝑞0,Δ, 𝐿) and a finite-

memory deterministic strategy 𝑠 of ˆM encoded by a Mealy machine (𝑀,𝑄 × Σin, Σin,𝑚0, 𝐸), ˆM𝑠

is a finite-state DTMC with the state space 𝑄 ×𝑀 × Σin
, initial state (𝑞0,𝑚0, 𝑎0), where 𝑎0 ∈ Σin

is such that (𝑚,𝑎0) = 𝐸 (𝑚0, (𝑞0, 𝑎)) for some𝑚 ∈ 𝑀 and 𝑎 ∈ Σin
, and the transition probability

𝑃 ((𝑞𝑘+1,𝑚𝑘+1, 𝑎𝑘+1) | (𝑞𝑘 ,𝑚𝑘 , 𝑎𝑘)) from (𝑞𝑘 ,𝑚𝑘 , 𝑎𝑘) ∈ 𝑄×𝑀×Σin
to (𝑞𝑘+1,𝑚𝑘+1, 𝑎𝑘+1) ∈ 𝑄×𝑀×Σin

is Δ(𝑞𝑘 , 𝐿(𝑚𝑘 , (𝑞𝑘 , 𝑎𝑘))) (𝑞𝑘+1) if 𝐿(𝑚𝑘 , (𝑞𝑘 , 𝑎𝑘)) = (𝑚𝑘+1, 𝑎𝑘+1), and otherwise 0.

3.1.3 Linear temporal logic (LTL). We use a probabilistic extension of the linear temporal logic
(LTL) [30] for specifying the temporal properties of the behavior of a system.

Definition 3.4 (Syntax of LTL). For a finite set AP of atomic propositions, the syntax of linear
temporal logic is defined as follows, where 𝑝 ∈ AP and 𝑖, 𝑗 ∈ N ∪ {∞} satisfying 𝑖 ≤ 𝑗

𝜑,𝜓 F ⊤ | 𝑝 | ¬𝜑 | 𝜑 ∨𝜓 | X𝜑 | 𝜑 U[𝑖, 𝑗) 𝜓 .

An LTL formula 𝜑 asserts a property on an infinite sequence 𝜋 ∈ (P(AP))𝜔 of subsets of AP.
Intuitively, ⊤ holds for any 𝜋 ; 𝑝 holds if the first element of 𝜋 includes 𝑝; ¬𝜑 holds if 𝜑 does not

hold for 𝜋 ; 𝜑 ∨𝜓 holds if either 𝜑 or𝜓 holds for 𝜋 ; andX𝜑 holds if 𝜑 holds for 𝜋 [1,∞]. The formula

𝜑 U[𝑖, 𝑗) 𝜓 asserts that (1)𝜓 becomes true in the future along with 𝜋 that arrives within 𝑙 ∈ [𝑖, 𝑗)
steps and (2) 𝜙 continues to hold until𝜓 becomes true. More precisely, 𝜑 U[𝑖, 𝑗) 𝜓 holds if𝜓 holds

for some 𝜋 ′ = 𝜋 [𝑙,∞] such that 𝑙 ∈ [𝑖, 𝑗) and 𝜙 holds for 𝜋 [𝑚,∞] for any𝑚 ∈ [0, 𝑙).
The semantics of LTL formulas is defined by the following satisfaction relation (𝜋, 𝑘) |= 𝜑 that

represents that 𝜑 holds for 𝜋 [0, 𝑘]. For an infinite sequence 𝜋 , an index 𝑘 , and an LTL formula 𝜑 ,

(𝜋, 𝑘) |= 𝜑 intuitively stands for “𝜋 satisfies 𝜑 at 𝑘”.

Definition 3.5 (Semantics of LTL). For an LTL formula 𝜑 , an infinite sequence 𝜋 = 𝜋0, 𝜋1, · · · ∈
(P(AP))𝜔 of subsets of atomic propositions, and 𝑘 ∈ N, we define the satisfaction relation (𝜋, 𝑘) |=
𝜑 as follows.

(𝜋, 𝑘) |= ⊤ (𝜋, 𝑘) |= 𝑝 ⇐⇒ 𝑝 ∈ 𝜋𝑘 (𝜋, 𝑘) |= ¬𝜑 ⇐⇒ (𝜋, 𝑘) ⊭ 𝜑
(𝜋, 𝑘) |= 𝜑 ∨𝜓 ⇐⇒ (𝜋, 𝑘) |= 𝜑 ∨ (𝜋, 𝑘) |= 𝜓 (𝜋, 𝑘) |= X𝜑 ⇐⇒ (𝜋, 𝑘 + 1) |= 𝜑

(𝜋, 𝑘) |= 𝜑 U[𝑖, 𝑗) 𝜓 ⇐⇒ ∃𝑙 ∈ [𝑘 + 𝑖, 𝑘 + 𝑗). (𝜋, 𝑙) |= 𝜓 ∧ ∀𝑚 ∈ {𝑘, 𝑘 + 1, . . . , 𝑙 − 1}. (𝜋,𝑚) |= 𝜑

If we have (𝜋, 0) |= 𝜑 , we denote 𝜋 |= 𝜑 .

We use the following syntax sugars of LTL formulas defined as follows.

⊥ ≡ ¬⊤, 𝜑 ∧𝜓 ≡ ¬((¬𝜑) ∨ (¬𝜓)), 𝜑 → 𝜓 ≡ (¬𝜑) ∨𝜓, ^[𝑖, 𝑗)𝜑 ≡ ⊤ U[𝑖, 𝑗) 𝜑,
□[𝑖, 𝑗)𝜑 ≡ ¬(^[𝑖, 𝑗)¬𝜑), 𝜑 U 𝜓 ≡ 𝜑 U[0,∞) 𝜓, ^𝜑 ≡ ^[0,∞)𝜑, □𝜑 ≡ □[0,∞)𝜑

The intuition of ⊥, 𝜑 ∧𝜓 , and 𝜑 → 𝜓 should be clear. The formula ^[𝑖, 𝑗)𝜑 asserts that “𝜑 holds

eventually between 𝑖-step and 𝑗-step future”; the formula □[𝑖, 𝑗)𝜑 stands for “𝜑 holds globally

between 𝑖-step and 𝑗-step future”. We also introduceU, ^, and □ for the unbounded versions of

U[𝑖, 𝑗) , ^[𝑖, 𝑗) , and □[𝑖, 𝑗) .
Given a Mealy machine M and an LTL formula 𝜑 , we write M |= 𝜑 if M(𝜎) |= 𝜑 for any

𝜎 ∈ (Σin)𝜔 . We writeM ̸|= 𝜑 ifM |= 𝜑 does not hold.

Safety LTL is a subclass of LTL that consists of the LTL formulas expressing safety properties,

whose violation can be witnessed by a finite sequence.

Probabilistic Black-Box Checking via Active MDP Learning 7

Definition 3.6 (Safety). An LTL formula 𝜑 is safety if, for any infinite sequence 𝜋 ∈ (P(AP))𝜔
satisfying 𝜋 ⊭ 𝜑 , there is 𝑖 ∈ N such that for any infinite sequence 𝜋 ′ ∈ (P(AP))𝜔 , we have

𝜋 [0, 𝑖] · 𝜋 ′ ⊭ 𝜑 .

3.1.4 Quantitative probabilistic model checking. Probabilistic model checking (PMC) [7] is a method

to verify MDPs against LTL formulas. We use quantitative PMC, which computes the maximum (or

minimum) satisfaction probability of the given LTL formula 𝜑 on the MDP
ˆM.

Quantitative probabilistic model checking problem:
Input: An MDP

ˆM = (𝑄, Σin, Σout, 𝑞0,Δ, 𝐿) and an LTL formula 𝜑

Problem: Computes the maximum satisfaction probability max𝑠∈Sched ˆM
P ˆM,𝑠
(𝜑) of 𝜑 on

ˆM,

where Sched ˆM is the set of strategies of
ˆM and P ˆM,𝑠

(𝜑) is the probability of an execution

of the DTMC
ˆM𝑠 satisfying 𝜑 .

For any MDP
ˆM and an LTL formula 𝜑 , there is a finite-memory deterministic strategy 𝑠 maxi-

mizing the satisfaction probability of 𝜑 on
ˆM [20]. A probabilistic model checker, e. g., PRISM [19],

takes an MDP
ˆM and an LTL formula 𝜑 , and computes a finite-memory deterministic strategy 𝑠

that maximizes the probability of
ˆM𝑠 satisfying 𝜑 ; it returns 𝑠 as well as the probability 𝑝 .

3.2 Active learning of automata and MDPs
Active automata learning is a class of algorithms to construct an automaton through interactions

between the learner and a teacher. In the L
∗
algorithm [5], the best known active automata learning

algorithm, the learner constructs the minimum DFA A over Σ recognizing the target language

Ltgt ⊆ Σ∗ using membership and equivalence questions to the teacher. In a membership question,

the learner asks if a word𝑤 ∈ Σ∗ is a member of Ltgt, i. e.,𝑤 ∈ Ltgt. Membership questions are used

to obtain sufficient information to construct a candidate DFAAcnd. In an equivalence question, the

learner asks if the candidate DFA Acnd recognizes the target language Ltgt, i. e., L(Acnd) = Ltgt.

If we have L(Acnd) ≠ Ltgt, the teacher returns a word cex satisfying cex ∈ L(Acnd)△Ltgt as a

witness of L(Acnd) ≠ Ltgt, where L(Acnd)△Ltgt is the symmetric difference between L(Acnd)
and Ltgt, i. e., L(Acnd)△Ltgt = (L(Acnd) \ Ltgt) ∪ (Ltgt \ L(Acnd)). Equivalence questions are
used to decide if the learning process can be finished.

𝜀 b

𝜀 ⊤ ⊥
a ⊥ ⊥
b ⊥ ⊤
aa ⊤ ⊥
ab ⊥ ⊥
ba ⊥ ⊥
bb ⊤ ⊥

Fig. 2. An ob-
servation ta-
ble in L

∗.

The L
∗
algorithm uses a 2-dimensional array called an observation table to maintain

the information obtained from the teacher. Fig. 2 illustrates an observation table during

learning Ltgt = {𝑤 ∈ (ab)∗ | (# of a in𝑤) mod 2 = (# of b in𝑤) mod 2 = 0}.
The rows and columns of an observation table are indexed by finite sets of words

𝑃∪(𝑃 ·Σ) and 𝑆 . In Fig. 2, 𝑃 is displayed above the horizontal line: we have 𝑃 = {𝜀, a, b},
(𝑃 ·Σ) \𝑃 = {aa, ab, ba, bb}, and 𝑆 = {𝜀, b}. The cell indexed by (𝑝, 𝑠) ∈ (𝑃∪(𝑃 ·Σ)) ×𝑆
shows if the concatenation 𝑝 ·𝑠 ∈ Σ∗ is a member of Ltgt. For example, the cell indexed

by (a, b) shows ab ∉ Ltgt.

A DFA can be constructed from an observation table satisfying certain conditions.

Fig. 3 shows the DFA constructed from the observation table in Fig. 2. In the DFA construction, a

state is constructed for each unique row. For example, from the observation table in Fig. 2, three

states are constructed, corresponding to the rows (⊤,⊥), (⊥,⊥), and (⊥,⊤). A state is accepting

if the cell indexed by (𝑝, 𝜀) is ⊤, where 𝑝 is the index of a row corresponding to the state. The

successor of the state corresponding to the row indexed by 𝑝 with 𝑎 ∈ Σ is the state corresponding

to the row indexed by 𝑝 · 𝑎. For example, from the observation table in Fig. 2, the successor of the

state corresponding to (⊤,⊥), which is indexed by 𝜀, with a is (⊥,⊥), which is indexed by a. For

8 Junya Shijubo, Masaki Waga, and Kohei Suenaga

Algorithm 1: Outline of the candidate-generation procedure.

1 while Observation table is not closed or consistent do // Candidate generation phase

2 update 𝑃 or 𝑆 and fill the observation table with membership questions

3 return constructCandidateAutomaton(𝑃, 𝑆)

Algorithm 2: Outline of the equivalence checking procedure.

1 if Ltgt = L(Acnd) then // Equivalence checking phase with an equivalence question

2 return OK(Acnd)
3 else
4 let cex be an evidence of Ltgt ≠ L(Acnd), i. e., cex ∈ Ltgt△L(Acnd)
5 return CEx(cex)

Algorithm 3: Outline of the L
∗
algorithm for active automata learning.

1 𝑃 ← {𝜀}; 𝑆 ← {𝜀}
2 while ⊤ do
3 while Observation table is not closed or consistent do // Candidate generation phase

4 update 𝑃 or 𝑆 and fill the observation table with membership questions

5 Acnd ← constructCandidateAutomaton(𝑃, 𝑆)
6 if Ltgt = L(Acnd) then // Equivalence checking phase with an equivalence question

7 return Acnd

8 else
9 let cex be an evidence of Ltgt ≠ L(Acnd), i. e., cex ∈ Ltgt△L(Acnd)

10 add prefixes of cex to 𝑃 and fill the observation table with membership questions

the above construction, the observation table must satisfy the following two conditions. Note that

the observation table in Fig. 2 satisfies these conditions.

closedness For each row indexed by 𝑝 ∈ (𝑃 · Σ) \ 𝑃 , there is a row indexed by some 𝑝′ ∈ 𝑃
with the same contents.

consistency For each pair of rows indexed by 𝑝, 𝑝′ ∈ 𝑃 if their contents are the same, for any

𝑎 ∈ Σ, the rows indexed by 𝑝 · 𝑎 and 𝑝′ · 𝑎 also have the same contents.

𝜀 a

b

a

b

a

b

a

b

Fig. 3. Candidate DFA A
cnd

constructed from the obser-
vation table in Fig. 2.

Algorithm 3 outlines the L
∗
algorithm. The L

∗
algorithm consists of

two phases: candidate generation and equivalence checking phases. In

the candidate generation phase, which is outlined in Algorithm 1, the

learner increases 𝑃 and 𝑆 and fills the observation table using member-

ship questions until the observation table becomes closed and consistent

(lines 3 to 4). Once the observation table becomes closed and consistent,

a hypothesis DFAAcnd is constructed (line 5). Then, in the equivalence

checking phase outlined in Algorithm 2, the learner checks if Acnd

recognizes the target language using an equivalence question (line 6). If we have Ltgt = L(Acnd),
Acnd is returned. Otherwise, the teacher returns an evidence cex of Ltgt ≠ L(Acnd) (line 9), and
the prefixes of cex are added to 𝑃 (line 10).

The L
∗

MDP algorithm [33] is an extension of the L
∗
algorithm for active MDP learning. It learns

a deterministic MDP using similar questions and an observation table. In the L
∗

MDP algorithm, the

teacher maintains a prefix-closed multiset S of traces, which contains all the information obtained

Probabilistic Black-Box Checking via Active MDP Learning 9

a b

p {p ↦→ 15, q ↦→ 15} {q ↦→ 25}
paq {p ↦→ 8, q ↦→ 12} {p ↦→ 4, q ↦→ 6}
pap {p ↦→ 5, q ↦→ 5} {q ↦→ 12}
pbp ∅ ∅
pbq {p ↦→ 4, q ↦→ 6} {p ↦→ 2, q ↦→ 3}
paqap {p ↦→ 3, q ↦→ 3} {q ↦→ 4}
paqaq {p ↦→ 2, q ↦→ 3} {p ↦→ 2, q ↦→ 3}
paqbp {p ↦→ 3, q ↦→ 3} {q ↦→ 4}
paqbq {p ↦→ 2, q ↦→ 3} {p ↦→ 2, q ↦→ 3}

Fig. 4. An observation table in L
∗

MDP with Σin = {a, b} and Σout = {p, q}.

p q

a, 0.5
a, 0.5

b, 1.0

a, 0.4

a, 0.6

b, 0.4 b, 0.6

Fig. 5. Candidate MDP constructed from the observation table in Fig. 4. The label at each state represents
the output.

by executing the system under learning and used to answer queries. Fig. 4 illustrates an observation

table in the L
∗

MDP algorithm. The following summarizes the major differences in the observation

table.

• To learn an MDP with inputs Σin
and outputs Σout

, the indices are modified: the row indices

are 𝑃∪(𝑃 ·Σin ·Σout) ⊆fin Σout · (Σin · Σout)∗ and the column indices are 𝑆 ⊆fin Σin · (Σout · Σin)∗.
• The cell indexed by (𝑝, 𝑠) represents a function 𝑇𝑝,𝑠 : Σout → N mapping each output to the

frequency of its appearance in S after 𝑝 · 𝑠 . For instance, in Fig. 4, the cell indexed by (p, a)

shows that we observed each of “pap” and “paq” for 15 times.

The notion of closedness and consistency are also updated to statistically compare the rows with

a Hoeffding bound [16]. To maintain such an observation table, the membership question is replaced

with the following questions: i) Given a trace 𝜎 ∈ Σout · (Σin · Σout)∗, it returns the function mapping

𝑏 ∈ Σout
to the frequency S(𝜎 · 𝑏) of 𝜎 · 𝑏 in the multiset S; ii) Given a trace 𝜎 ∈ Σout · (Σin · Σout)∗,

it returns if S contains sufficient information to estimate the output distribution after 𝜎 ; iii) It asks

the teacher to refine S by sampling traces rarely appearing in S.
The MDP construction from an observation table is also similar to the DFA construction in the L

∗

algorithm. Fig. 5 shows the MDP constructed from the observation table in Fig. 4. State construction

is based on the comparison of rows by Hoeffding bound. Transitions are constructed by estimating

the probability distribution of the successors using the contents of the cells.

3.3 Black-box checking
Black-box checking (BBC) [29] is a method for testing a black-box systemM against its specification

𝜑 . BBC takes the following inputs: i) a deterministic black-box systemM that takes 𝜎 ∈ (Σin)𝜔 as

input and outputsM(𝜎) ∈ P(AP)𝜔 and ii) a safety LTL formula 𝜑 . The input to and the output

fromM are both streams. The aim of BBC is to find a counterexample 𝜎 ′ ∈ (Σin)∗ that witnesses
the violation of 𝜑 : For any 𝜎 ′′ ∈ (Σin)𝜔 , the counterexample 𝜎 ′ satisfiesM(𝜎 ′ · 𝜎 ′′) ̸|= 𝜑 . If such a

counterexample is not found, BBC reports so.

10 Junya Shijubo, Masaki Waga, and Kohei Suenaga

Learn a Mealy machine
ˆM

that approximatesM

Verify if

ˆM |= 𝜑 by

model checking

Test if

M ⊭ 𝜑 is

witnessed by 𝜎

Check if

M ≃ ˆM by

equivalence testing

M ⊭ 𝜑 witnessed by 𝜎DeemsM |= 𝜑

(A)

(B) (C)(D)

Learned Mealy machine
ˆM

ˆM ⊭ 𝜑
witnessed by 𝜎

ˆM |= 𝜑

No.

(M ≠ ˆM is witnessed by 𝜎)
M ≠ ˆM is

witnessed by 𝜎

YesDeemsM = ˆM

Fig. 6. The workflow of black-box checking.

BBC consists of learning, synthesis, and validation phases. BBC iterates the learning phase to

obtain a Mealy machine
ˆM that approximates the behavior ofM, the synthesis phase to synthesize

a witness 𝜎 of
ˆM ̸|= 𝜑 , and the validation phase to check whether 𝜎 is also the true counterexample

toM |= 𝜑 . By combining automata learning and model checking, BBC guides the testing procedure

efficiently instead of randomly generating various test inputs and expecting some of them to falsify

the specification 𝜑 .

Fig. 6 illustrates the workflow of BBC. We explain each component in the figure below. (The

heading of each item corresponds to a box in Fig. 6.)

(A) Using the candidate generation phase of a variant of the L
∗
algorithm, BBC obtains a

Mealy machine
ˆM approximating the behavior ofM.

(B) Then, BBC verifies
ˆM against the specification 𝜑 using model checking.

(C) Suppose the model checker in (B) asserts
ˆM ̸|= 𝜑 . Let 𝜎 ∈ (Σin)∗ be a counterexample

that witnesses
ˆM ̸|= 𝜑 ; notice that such 𝜎 exists in (Σin)∗ because 𝜑 is a safety LTL formula.

This 𝜎 may not be a valid counterexample forM because
ˆM is merely an approximation of

M. BBC checks whether 𝜎 is a valid counterexample also forM by feeding 𝜎 toM and

checking whetherM(𝜎) ̸|= 𝜑 holds. IfM(𝜎) ̸|= 𝜑 , then 𝜎 is a valid counterexample forM.

Otherwise, although 𝜎 does not witnessM ̸|= 𝜑 , it does witness the behavioral difference

betweenM and
ˆM. Therefore, BBC adds 𝜎 to the data used by the learning phase and

jumps to Step (A). Then, the learning procedure progresses to learn more precise
ˆM.

(D) Suppose the model checker used in Step (B) successfully verifies
ˆM |= 𝜑 . Then, BBC tests

the equivalence betweenM and
ˆM, typically by randomly generating many elements of

(Σin)∗ and feeding them toM and
ˆM. If this step finds 𝜎 ∈ (Σin)∗ such thatM(𝜎) ≠ ˆM(𝜎),

then this 𝜎 witnesses the behavioral difference betweenM and
ˆM; therefore, BBC adds 𝜎

to the data used by the learning phase and jumps to Step (A). Otherwise, BBC reports that

no counterexample is found deeming
ˆM is equivalent toM.

In Fig. 6, (A) corresponds to the learning phase, (B) corresponds to the synthesis phase, and

(C—D) correspond to the validation phase. Notice that the validation phase (C) and (D) as a whole

checks the equivalence ofM and
ˆM. Instead of checking the equivalence only by the inefficient

random test in (D), BBC first checks a necessary condition of the equivalence:M(𝜎) ̸|= 𝜑 for 𝜎

such that
ˆM(𝜎) ̸|= 𝜑 obtained in (C). BBC then proceeds to (D) only if this check in (C) passes.

Probabilistic Black-Box Checking via Active MDP Learning 11

4 PROBABILISTIC BLACK-BOX CHECKING
We present probabilistic black-box checking (ProbBBC). ProbBBC is an extension of BBC in Section 3.3

for stochastic systems. We assume that the system under test (SUT) is a black-box MDP with finite

states, i. e., there is an underlying MDP (𝑄, Σin, Σout, 𝑞0,Δ, 𝐿) with |𝑄 | < ∞ representing the SUT

M, but we only know Σin
and Σout

. We assume that the MDP is deterministic, which intuitively

requires sufficient observability to distinguish the next states. We also assume that the SUT is

executable, i. e., we can perform the following probabilistic operations on the unobservable current
state 𝑞 ∈ 𝑄 of the SUTM.

• We can reset the current state 𝑞 of the SUTM to the initial state 𝑞0 and obtain the output

𝐿(𝑞0).
• For an input 𝑎 ∈ Σin

, we can update the current state 𝑞 of the SUTM to 𝑞′ ∈ 𝑄 according

to the distribution Δ(𝑞, 𝑎) and obtain the output 𝐿(𝑞′) after the transition.
We believe that these assumptions are acceptable in many usage scenarios. For example, in

reinforcement learning, Q-learning [36] assumes that the environment is a black-box MDP that is

finite, executable, and fully observable, which is more restrictive than ours.

Along with the stochastic extension of the SUT, we also change the problem to synthesize an

optimal strategy rather than finding an input violating the given LTL formula. The problem we

approximately solve with ProbBBC is summarized as follows.

Optimal strategy synthesis problem:
Input: A black-box MDP M and an LTL formula 𝜑

Problem: Find a strategy 𝑠 maximizing the satisfaction probability 𝑝M𝑠 ,𝜑 of 𝜑 on M

4.1 Overview of ProbBBC
Fig. 7 outlines ProbBBC. As the conventional BBC does, ProbBBC consists of the learning phase

((A) in Fig. 7), the synthesis phase ((B) in Fig. 7), and the validation phase ((C—E) in Fig. 7). Given a

black-box systemM and an LTL formula 𝜑 , ProbBBC applies (1) the candidate generation phase

of L
∗

MDP in Section 3.2 to construct an MDP
ˆM that approximatesM in the learning phase ((A)

in Fig. 7) and (2) quantitative probabilistic model checking [7] to synthesize 𝑠 that maximizes the

probability of
ˆM𝑠 satisfying 𝜑 in the synthesis phase ((B) in Fig. 7).

The goal of the validation phase is the same as that of the conventional BBC: to check thatM
and

ˆM are equivalent to each other. To this end, the validation phase first checks the necessary

condition of the equivalence: 𝑝M𝑠 ,𝜑 is the same as 𝑝 ˆM𝑠 ,𝜑
, where 𝑝M𝑠 ,𝜑 and 𝑝 ˆM𝑠 ,𝜑

are the satisfaction

probabilities of 𝜑 onM𝑠 and
ˆM𝑠 ((C) and (D) in Fig. 7). We call this procedure strategy-guided

comparison ofM and
ˆM. If this necessary condition seems to be satisfied, the validation phase

applies the equivalence checking phase of L
∗

MDP to check the equivalence ofM and
ˆM without

guided by the strategy 𝑠 ((E) in Fig. 7).

The strategy-guided comparison is inspired by the witness checking of the conventional BBC ((C)

in Fig. 6). However, unlike the witness checking of the conventional BBC, which can check whether

the counterexample obtained by model checking is a true counterexample forM by executingM
only once, there are following challenges in the strategy-guided comparison of ProbBBC.

• ProbBBC must estimate the probability 𝑝M𝑠 ,𝜑 ofM𝑠 satisfying 𝜑 . A one-shot execution of

M𝑠 is not enough to estimate this probability.

• ProbBBC needs to decide whether 𝑝M𝑠 ,𝜑 differs from 𝑝 ˆM𝑠 ,𝜑
obtained in the synthesis phase.

However, since an estimation of 𝑝M𝑠 ,𝜑 is a probabilistic variable that is not guaranteed to

be the true probability, simply comparing an obtained estimation with 𝑝 ˆM𝑠 ,𝜑
is not enough.

12 Junya Shijubo, Masaki Waga, and Kohei Suenaga

To address these challenges, ProbBBC first executesM𝑠 multiple times and estimates the proba-

bility 𝑝M𝑠 ,𝜑 from the samples ((1) of (C) in Fig. 7). Then, ProbBBC conducts statistical hypothesis

testing with the null hypothesis 𝑝M𝑠 ,𝜑 = 𝑝 ˆM𝑠 ,𝜑
((2) of (C) in Fig. 7). If 𝑝M𝑠 ,𝜑 ≠ 𝑝 ˆM𝑠 ,𝜑

is established

from the hypothesis testing, ProbBBC constructs a trace that witnessesM ≠ ˆM; this trace is added

to the data that the learning phase uses ((D) in Fig. 7).

If the strategy-guided comparison fails to find an evidence ofM ≠ ˆM, we compareM and
ˆM

using the equivalence checking phase of the L
∗

MDP algorithm in Section 3.2 ((E) in Fig. 7). In our

implementation, among various choices of the input construction (e. g., the W-method [11]), we use

uniform random sampling, i. e., each input 𝑎 ∈ Σin
is sampled from the uniform distribution over

Σin
and the sampling stops with a certain stop probability. Moreover, the stop probability is reduced

when we fail to find an evidence ofM ≠ ˆM so that any length of inputs are eventually sampled.

Such an adaptive change of stop probability makes the parameters robust to the complexity ofM.

To enhance ProbBBC, we utilize the information obtained during the strategy-guided comparison

also in the learning phase. In the strategy-guided comparison, ProbBBC adds the traces obtained

by sampling M𝑠 to the observation table used in the learning phase. The closedness and the

consistency of the observation table are periodically checked; if the observation table turns out to

not-closed or inconsistent, then the execution of the validation phase is stopped, and the learning

phase starts to learn new
ˆM with the new observation table. The interruption also happens when

the validation phase discovers a trace that is impossible in
ˆM. These optimizations are achieved by

(1) sharing the multiset S of traces mentioned in Section 3.2 between the learning and validation

phases and (2) adding the traces discovered during the validation phase to S.
Notice that the combination of the synthesis and the validation phases ((B—E) in Fig. 7) can be

considered as the equivalence checking phase of the L
∗

MDP algorithm because, overall, it tries to find

an evidence ofM ≠ ˆM. Therefore, properties of L
∗

MDP (such as convergence) shown in [33] also

holds for ProbBBC with additional discussion on the strategy-guided comparison. As a corollary of

the convergence, we have the correctness of ProbBBC, which we show in Section 4.3.

4.2 Detail of the strategy-guided comparison in the validation phase
In the following, we explain the detail of the validation phase of ProbBBC, focusing on the strategy-

guided comparison. This part is of the largest technical novelty among the three phases.

4.2.1 Comparison ofM and ˆM with a strategy. Algorithm 4 outlines our algorithm to compare

M and
ˆM with strategy 𝑠 , which corresponds to the box (C) in Fig. 7. In the loop starting from

line 2, ProbBBC repeatedly samples traces of the SUTM up to the required sample size 𝑁 . For

each iteration, we obtain a trace 𝜎 by executing the SUTM (line 3), recording it to the multiset S
shared with the learning phase (line 4), and check if 𝜎 satisfies 𝜑 or not (line 5). If 𝜑 is bounded, i. e.,
its satisfaction can be decided by traces of length 𝑘 for some 𝑘 ∈ N, one can sample traces of length

𝑘 . Otherwise, the trace length must be randomly decided. After the sampling, we estimate the

satisfaction probability 𝑝M𝑠 ,𝜑 of 𝜑 byM𝑠 (line 7) and compare it with the satisfaction probability

𝑝 ˆM𝑠 ,𝜑
by the learned MDP (line 8), which is computed by quantitative probabilistic model checking.

In executing the SUTM in line 3 in SampleSingleTrace, ProbBBC needs to executeM𝑠 . How-

ever, 𝑠 requires the path ofM𝑠 to produce an input to be fed toM, which is not possible in this case

because the sequence of the states ofM is unknown. We use the path of
ˆM instead; in executing

M𝑠 , ProbBBC also runs
ˆM𝑠 and maintains the corresponding path 𝜌 in the MDP

ˆM. Then, 𝑠 (𝜌) is
fed toM as the next input. Such use of

ˆM is justified by the convergence of
ˆM toM in the limit.

Notice that such a path 𝜌 = 𝑞0, 𝑎1, 𝑞1, . . . , 𝑎𝑛, 𝑞𝑛 is uniquely determined because (1) we know the

initial state 𝑞0 and the inputs 𝑎1, 𝑎2, . . . , 𝑎𝑛 , (2) we can observe the output 𝑏0, 𝑏1, . . . , 𝑏𝑛 of theM,

Probabilistic Black-Box Checking via Active MDP Learning 13

Generate a candidate MDP

that approximatesM

Learning phase

Probabilistic model checking of

ˆM against 𝜑

Synthesis phase

Check if 𝑠 reveals the difference

between M and
ˆM with respect to 𝜑

Validation phase

(1) Sampling traces from M𝑠

(2) Statistical hypothesis testing

to establish 𝑝 ˆM𝑠 ,𝜑
≠ 𝑝M𝑠 ,𝜑

Try to construct

a trace 𝜎 witnessing

M ≠ ˆM

Check if

M ≃ ˆM
by equivalence testing

the probability 𝑝M𝑠 ,𝜑

and the strategy 𝑠

(A)

(B)

(C)

(D)(E)

candidate MDP
ˆM

the probability 𝑝 ˆM𝑠 ,𝜑
of satisfying 𝜑

on
ˆM with a strategy 𝑠

probability 𝑝M𝑠 ,𝜑 of satisfying 𝜑 onM𝑠

Deems 𝑝 ˆM𝑠 ,𝜑
= 𝑝M𝑠 ,𝜑 𝑝 ˆM𝑠 ,𝜑

≠ 𝑝M𝑠 ,𝜑 is established

Success

(M ≠ ˆM is

witnessed by 𝜎)

Failure

M ≠ ˆM is

witnessed by 𝜎

DeemsM = ˆM

Fig. 7. The workflow of probabilistic black-box checking.

Algorithm 4: Comparison ofM and
ˆM with a strategy 𝑠 and an LTL formula 𝜑 .

1 Function CompareWithStrategy(ˆM,M, 𝑠, 𝑝 ˆM𝑠 ,𝜑
, 𝜑):

input :An MDP
ˆM, the SUTM, a strategy 𝑠 , probability 𝑝 ˆM𝑠 ,𝜑

, and a safety LTL

formula 𝜑

output : If ˆM andM are deemed equivalent for the inputs determined by 𝑠 with respect

to 𝜑

2 for 𝑖 ← 1 to 𝑁 do
3 𝜎 ← SampleSingleTrace(M, 𝑠)
4 add the prefixes of 𝜎 to S
5 if 𝜎 |= 𝜑 then 𝑥𝑖 ← 1

6 else 𝑥𝑖 ← 0

7 𝑝M𝑠 ,𝜑 ←
∑𝑘

𝑖=0
𝑥𝑖/𝑁 ; std𝑥 ← StandardDeviation(𝑥1, 𝑥2, . . . , 𝑥𝑁)

// Conduct Student’s t-testing, where the null hypothesis is 𝑝 ˆM𝑠 ,𝜑
= 𝑝M𝑠 ,𝜑

8 return StudentTesting(𝑝 ˆM𝑠 ,𝜑
, 𝑝M𝑠 ,𝜑 , std𝑥 , 𝑁)

14 Junya Shijubo, Masaki Waga, and Kohei Suenaga

Algorithm 5: Construction of the trace differentiating the SUT and an approximate MDP.

1 Function ConstructWitnessTrace(ˆM,S):
input :An MDP

ˆM and a multiset S of traces of the SUT

output : If a trace 𝜎 witnessingM ≠ ˆM is found in S, returns 𝜎 . Otherwise, returns ⊥
2 let Sset be S without multiplicity

3 while Sset ≠ ∅ do
4 𝜎 ← pop one of the shortest traces from Sset

5 let 𝜎− · 𝑜 = 𝜎 such that 𝜎− ∈ (Σout × Σin)∗ and 𝑜 ∈ Σout

6 𝑝 ˆM ← the probability of observing 𝑜 in
ˆM after 𝜎−

7 𝑝S ← S(𝜎)/S(𝜎−) // 𝑝S approximates the probability 𝑝M to observe 𝑜

after 𝜎− in M.

8 if |𝑝 ˆM − 𝑝S | is greater than a bound then return 𝜎

9 return ⊥

and (3) the successor 𝑞𝑘+1 in ˆM is uniquely determined from the previous state 𝑞𝑘 , the input 𝑎𝑘+1,

and the output 𝑏𝑘+1 because ˆM is a deterministic MDP.

The sample size 𝑁 needs to be sufficiently large so that the estimated probability 𝑝M𝑠 ,𝜑 is close to

the true probability ofM𝑠 satisfies 𝜑 . ProbBBC decides 𝑁 based on the parameters 𝜖 and 𝛿 specified

by a user so that P(|𝑝M𝑠 ,𝜑 − 𝑝M𝑠 ,𝜑 | ≥ 𝜖) ≤ 𝛿 , where 𝑝M𝑠 ,𝜑 is the true satisfaction probability of 𝜑

by the black-box DTMCM𝑠 . If 0 < 𝑝M𝑠 ,𝜑 < 1 holds, using the property of Chernoff bound [28],

we have the following property among the sample size 𝑁 and the parameters 𝜖 and 𝛿 : 𝛿 = 2𝑒−2𝑁𝜖2

;

hence, ProbBBC uses 𝑁 =

⌈
ln(2)−ln(𝛿)

2𝜖2

⌉
, which is also used in the context of SMC [21]. In our

experiments, we directly fix 𝑁 instead of deriving it from 𝛿 and 𝜖 .

For the comparison of 𝑝 ˆM𝑠 ,𝜑
and 𝑝M𝑠 ,𝜑 in line 8, we perform a one-sample Student’s t-test [17],

where the null hypothesis is 𝑝 ˆM𝑠 ,𝜑
= 𝑝M𝑠 ,𝜑 . We remark that 𝑝 ˆM𝑠 ,𝜑

is the exact maximum probability

of
ˆM𝑠 satisfying 𝜑 , which is obtained by probabilistic model checking. Here, the one-sample

Student’s t-test can be used because 𝑁 is large, and the binomial distribution 𝐵(𝑁, 𝑝M𝑠 ,𝜑) is
reasonably close to a normal distribution [26].

4.2.2 Witness trace construction. If Algorithm 4 deemsM ≠ ˆM, we try to construct a witnessing

trace 𝜎 . The constructed witness 𝜎 is used to refine the observation table in the learning phase.

Algorithm 5 outlines the witness construction. From the multiset S of the traces observed inM,

we construct the set Sset of the traces in S dropping the multiplicity from S (line 2). Then, for each

𝜎 ∈ Sset, we check if 𝜎 is an evidence ofM ≠ ˆM (lines 3 to 8) in the increasing order of the length

of the traces in Sset. Notice that S is prefix-closed, and hence Sset is also prefix-closed. Therefore,

Algorithm 5 tries to find one of the shortest traces 𝜎 witnessingM ≠ ˆM.

At line 4, we pick one of the shortest traces 𝜎 from Sset; at lines 6 and 7, we compute the

probability 𝑝 ˆM of observing 𝜎 in
ˆM if the same input as 𝜎 is fed to

ˆM. This probability is computed

by following the transitions of
ˆM according to 𝜎 and multiplying the transition probabilities in

ˆM.

At line 7, we estimate the probability 𝑝M to observe 𝑜 by feeding the prefix 𝜎− of 𝜎 such that

𝜎 = 𝜎− · 𝑜 toM. SinceM is a black-box system, we can only estimate this probability. For the

estimation, we use S to approximate the trace distribution ofM and compute the probability to

observe 𝜎 after 𝜎− . Concretely, we estimate 𝑝M by 𝑝S = S(𝜎)/S(𝜎−), which is unbiased because

the sampling of the outputs in S follows the transition probabilities ofM.

Probabilistic Black-Box Checking via Active MDP Learning 15

At line 8, we compare 𝑝 ˆM and 𝑝S . We decide whether they are different based on the criteria

using a Chernoff bound mentioned in Section 4.2.1: we deem 𝜎 reveals the difference between
ˆM

andM if |𝑝 ˆM − 𝑝S | >
√︃

ln(2)−ln(𝛿)
2S(𝜎−) holds for the parameter 𝛿 in Section 4.2.1. If 𝜎 differentiates

ˆM andM, it is returned (line 8). If we cannot find a trace differentiating
ˆM andM, we return ⊥

(line 9), which represents the failure of the trace construction.

4.2.3 Optimization using the observation table. To enhance the entire procedure of ProbBBC, our

implementation applies the following optimizations to the validation phase.

• For each trace 𝜎 sampled from the SUTM𝑠 , we check if the candidate MDP
ˆM has a path

𝜌 corresponding to the trace 𝜎 . If there is no such path in
ˆM, the trace 𝜎 differentiates the

SUTM and the candidate MDP
ˆM. Then, the validation phase returns such 𝜎 as a witness

ofM ≠ ˆM, and the learning phase starts.

• We also periodically update each cell of the observation table using the updated multiset

S of the traces obtained fromM𝑠 , and check if the observation table is still closed and

consistent. If the observation table is not closed or not consistent, we stop the validation

phase and go back to the learning phase to refine
ˆM.

4.3 Convergence of ProbBBC
We prove the convergence of ProbBBC by showing that MDPs learned during an execution of

ProbBBC converges to one equivalent toM with probability 1 given thatM is a deterministic

MDP (𝑄, Σin, Σout, 𝑞0,Δ, 𝐿) with |𝑄 | < ∞. Therefore, the strategy obtained by ProbBBC converges

to the optimal one forM. In this section, we assume that the equivalence checking procedure ((E)

in Fig. 6) samples input, runs bothM and
ˆM using the input multiple times, and subsequently

compares the output distributions using hypothesis testing; the null hypothesis states that both

distributions are identical.

4.3.1 Fair-sampling assumption. We first introduce the fair sampling assumption for the equiva-

lence checking procedure, which postulates that the procedure explores each observable path of

the providedM infinitely many times with a positive probability. To formalize this assumption,

we define the set 𝐿M of access sequences ofM. Essentially, 𝐿M is the set of the observable traces

corresponding to a pathM where no state is repeated.

Definition 4.1 (Access sequence). A path 𝑞0, 𝑎1, 𝑞1, 𝑎2, 𝑞2, . . . , 𝑎𝑛, 𝑞𝑛 is cycle-free if 𝑖 ≠ 𝑗 implies 𝑞𝑖 ≠

𝑞 𝑗 . A cycle-free path 𝑞0, 𝑎1, 𝑞1, 𝑎2, 𝑞2, . . . , 𝑎𝑛, 𝑞𝑛 is defined to be maximal if, for any 𝑎 ∈ Σin
and for

any 𝑞′ ∈ 𝑄 , 𝑞′ ∉ {𝑞0, . . . , 𝑞𝑛} implies Δ(𝑞𝑛, 𝑎) (𝑞′) = 0. A cycle-free path 𝑞0, 𝑎1, 𝑞1, 𝑎2, 𝑞2, . . . , 𝑎𝑛, 𝑞𝑛
is observable if Δ(𝑞𝑖 , 𝑎𝑖+1) (𝑞𝑖+1) > 0 for any 𝑖 ∈ [0, 𝑛−1]. The set of access sequences 𝐿M is the set of

traces that correspond tomaximal and observable cycle-free paths ofM; concretely,𝐿M is defined by

{𝐿(𝑞0), 𝑎1, 𝐿(𝑞1), 𝑎2, . . . , 𝑎𝑛, 𝐿(𝑞𝑛) | 𝑞0, 𝑎1, 𝑞1, 𝑎2, . . . , 𝑎𝑛, 𝑞𝑛is cycle-free, observable, and maximal};
as such, 𝐿M is a finite set.

Definition 4.2 (Fairness assumption). We say an equivalence testing procedure satisfies fairness
assumption if it samples every element in 𝐿M infinitely often with a positive probability.

For instance, the equivalence testing by uniform sampling (Section 4.1) used in our implementa-

tion satisfies the fairness assumption.

4.3.2 Outline of the convergence proof. We prove the following theorem on the convergence of

ProbBBC.

16 Junya Shijubo, Masaki Waga, and Kohei Suenaga

Theorem 4.3 (Convergence). Under the fair-sampling assumption, the MDPs synthesized by (A)
in an execution of ProbBBC converge to an MDP equivalent toM with probability 1.

Our proof of this theorem is built upon the convergence proof of the L
∗

MDP [33], in which the

authors have shown that, under the fair-sampling condition, L
∗

MDP converges to a correct MDP

with probability 1.

As discussed in Section 4.1, the synthesis and the validation phases of ProbBBC in combination can

be viewed as an enhancement to the equivalence checking of L
∗

MDP. Nonetheless, the convergence

of ProbBBC does not directly follow from that of L
∗

MDP due to our validation phase being based on

the strategy-guided comparison, which may lead to a biased sampling of paths.

Crucially, we note that if we can prove each execution of the loop (A—D) terminates with

probability 1 (i.e., the loop being almost surely terminating), we can then guarantee that the fair

sampling procedure (E) is executed eventually. Consequently, no matter the strategies synthesized

by (B), every element of 𝐿M is fairly sampled, and therefore, the convergence of ProbBBC follows.

4.3.3 Almost-sure termination of the loop (A—D). Based on the discussion so far, we prove the

almost-sure termination of the loop (A—D). We first elaborate on the observation table of L
∗

MDP.

As we mentioned in Section 3.2, the notion of closedness and consistency in L
∗

MDP is based on the

statistical row comparison with Hoeffding bound [16]. Let us write compatible(𝑟, 𝑟 ′) if the rows
indexed by 𝑟 and 𝑟 ′ are deemed equal based on the comparison with the Hoeffding bound. We

also write eqRow(𝑟, 𝑟 ′) if the rows indexed by 𝑟 and 𝑟 ′ should be deemed equal based on the true
probability ofM. We expect that compatible(𝑟, 𝑟 ′) is equivalent to eqRow(𝑟, 𝑟 ′) after sufficiently

many sampling of traces, which indeed holds.

Lemma 4.4. If S contains sufficiently many traces, then compatible(𝑟, 𝑟 ′) ⇐⇒ eqRow(𝑟, 𝑟 ′)
with probability 1 for any rows indexed by 𝑟 and 𝑟 ′ in the observation table.

Proof. From Theorem 5 of [33]. □

We also use the following property of L
∗

MDP.

Lemma 4.5. If compatible(𝑟, 𝑟 ′) ⇐⇒ eqRow(𝑟, 𝑟 ′) for each 𝑟 and 𝑟 ′ in the row indices 𝑃 of the
observation table, then the MDP derived from the observation table is the smallest among ones that are
consistent with the table.

Proof. From Lemma 13 of [33]. □

We show the proof sketch of the following theorem.

Theorem 4.6. The loop (A—D) of ProbBBC terminates with probability 1 irrespective of the strategies
synthesized by (B).

Proof sketch. Let ˆM1, ˆM2, . . . be the sequence of MDPs learned by (A) in each iteration of the

execution of (A—D). Let 𝑠1, 𝑠2, . . . be the sequence of strategies synthesized by (C) in each iteration.

Let 𝜎1, 𝜎2, . . . be the sequence of traces returned by Algorithm 5 used in (D). Let us write
ˆM𝑖
𝑠𝑖
(resp.,

M𝑠𝑖) for the composition of
ˆM𝑖

(resp.,M) with strategy 𝑠𝑖 . After sufficiently many iterations of

the loop, we can assume that compatible(𝑟, 𝑟 ′) ⇐⇒ eqRow(𝑟, 𝑟 ′) for any indexes 𝑟 and 𝑟 ′ in the

observation table from Lemma 4.4.

Suppose the procedure (D) executes Algorithm 5 with
ˆM𝑖

and S as inputs. If this execution

results in ⊥, then the loop (A—D) would terminate; therefore, assume that Algorithm 5 returns

𝜎 := 𝜎− · 𝑜 , where 𝜎− ∈ (Σout × Σin)∗ and 𝑜 ∈ Σout
. Let 𝑝 ˆM𝑖 ,𝜎−,𝑜 be the probability of observing 𝑜 in

ˆM𝑖
after 𝜎− and 𝑝S,𝜎−,𝑜 be

S(𝜎− ·𝑜)
S (𝜎−) . Then, |𝑝 ˆM𝑖 ,𝜎−,𝑜 − 𝑝S,𝜎−,𝑜 | is greater than

√︃
ln(2)−ln(𝛿)

2S(𝜎−) .

Probabilistic Black-Box Checking via Active MDP Learning 17

Table 2. Summary of the benchmarks: the number |𝑄 | of states, the size |Σin | of the inputs, the size |Σout | of
the outputs, and the tested LTL formulas.

|𝑄 | |Σin | |Σout | LTL formulas

Slot 471 4 31 ^[0,𝑛)BAR3, with 𝑛 ∈ {5, 8, 11, 14, 17}
SlotLimitedObs 471 4 12 ^[0,𝑛)BAR3, with 𝑛 ∈ {5, 8, 11, 14, 17}
MQTT 62 9 50 ^[0,𝑛) crash, with 𝑛 ∈ {5, 8, 11, 14, 17}
TCP 156 12 12 ^[0,𝑛) crash, with 𝑛 ∈ {5, 8, 11, 14, 17}
GridWorldSmall 35 4 7 ^[0,10)goal
GridWorldLarge 72 4 7 ^[0,13)goal
SharedCoin 272 2 47 ^[0,𝑛)finished, with 𝑛 ∈ {14, 20}
RandomGridWorld {16, 64, 100, 144, 196} 4 7 (¬hole) U goal

Let 𝑝M,𝜎−,𝑜 be the true probability ofM outputting 𝑜 after observing 𝜎− . Since 𝑝S,𝜎−,𝑜 is an

unbiased estimation of 𝑝M,𝜎−,𝑜 , P(|𝑝M,𝜎−,𝑜−𝑝S,𝜎−,𝑜 | < 𝜖) > 1−2𝑒−2𝜖2S(𝜎−)
for an arbitrary positive

real 𝜖 from the property of Chernoff bound in Section 4.2.1. Notice that |𝑝 ˆM𝑖 ,𝜎−,𝑜 − 𝑝S,𝜎−,𝑜 | ≤

|𝑝 ˆM𝑖 ,𝜎−,𝑜 − 𝑝M,𝜎−,𝑜 | + |𝑝M,𝜎−,𝑜 − 𝑝S,𝜎−,𝑜 |. Therefore, P(|𝑝 ˆM𝑖 ,𝜎−,𝑜 − 𝑝M,𝜎−,𝑜 | >
√︃

ln(2)−ln(𝛿)
2S(𝜎−) − 𝜖) >

1 − 2𝑒−2𝜖2S(𝜎−)
. If we choose 𝜖 so that 𝜖 ∈

(√︃
ln(2)−ln(2𝛿−𝛿2))

2S(𝜎−) ,

√︃
ln(2)−ln(𝛿)

2S(𝜎−)

)
, we have P(|𝑝 ˆM𝑖 ,𝜎−,𝑜 −

𝑝M,𝜎−,𝑜 | >
√︃

ln(2)−ln(𝛿)
2S(𝜎−) − 𝜖) > (1 − 𝛿)

2
. This implies that 𝑝 ˆM𝑖 ,𝜎−,𝑜 and 𝑝M,𝜎−,𝑜 are indeed different

with probability greater than (1 − 𝛿)2. Being 𝑝 ˆM𝑖 ,𝜎−,𝑜 ≠ 𝑝M,𝜎−,𝑜 implies that, with the assumption

that compatible(𝑟, 𝑟 ′) ⇐⇒ eqRow(𝑟, 𝑟 ′) for any 𝑟 and 𝑟 ′, compatible(𝜎− · 𝑜, 𝑟) does not hold for

any 𝑟 in the observation table. Therefore, adding 𝜎− · 𝑜 to S identifies a new state in
ˆM𝑖+1

with

probability at least (1 − 𝛿)2.
From the above discussion, there is an infinite sequence of MDPs

ˆM𝑖1 , ˆM𝑖2 , . . . with probability

1 such that
ˆM𝑖 𝑗+1

has strictly more states than
ˆM𝑖 𝑗

. However, this contradicts Lemma 4.4 and

Lemma 4.5; due to these lemmas, after sufficiently many iterations of (A—D), all
ˆM𝑖

should have

less number of states thanM. □

5 EXPERIMENTAL EVALUATION
We have developed a prototype tool implementing ProbBBC in Python

2
. We used AALpy [27] for

active MDP learning and PRISM [19] for quantitative probabilistic model checking.

We conducted experiments to answer the following research questions.

RQ1. Does ProbBBC produce a strategy close to the optimal one?

RQ2. Does ProbBBC produce a better strategy than the existing method [4]?

RQ3. Is ProbBBC robust to the observability of the output?

RQ4. Can ProbBBC estimate a good strategy with a small sample size?

RQ5. Is ProbBBC sensitive to the parameters?

RQ6. Does the strategy-guided comparison in Section 4.2 improve the performance of ProbBBC?

RQ7. Is ProbBBC scalable with respect to the system’s complexity?

5.1 Benchmarks
For the evaluation, we use eight benchmarks: Slot, SlotLimitedObs, MQTT, TCP, GridWorldSmall,
GridWorldLarge, SharedCoin, and RandomGridWorld. Table 2 summarizes them. Each benchmark

consists of an MDP and LTL formulas that are the same except for the timing parameter 𝑛. Slot and

2
The artifact of the experiment is available on https://doi.org/10.5281/zenodo.7997524.

https://doi.org/10.5281/zenodo.7997524

18 Junya Shijubo, Masaki Waga, and Kohei Suenaga

SlotLimitedObs are benchmarks with the same MDP except for observability. MQTT, TCP, and
SharedCoin are benchmarks on communication protocols related to IoT applications. GridWorldS-
mall and GridWorldLarge are benchmarks on controller synthesis of a robot navigation system.

Among the eight benchmarks, MQTT and TCP are benchmarks aiming at testing, whereas others

are on controller synthesis. We use RandomGridWorld to answer RQ7 and the others to answer

the other RQs.

Slot. The MDP in Slot is taken from [24], also used in [4, 33]. The slot machine has three reels,

which are initially “blank”. The player can spin each reel independently. After a spin, each reel

shows either an “apple” or a “bar”. The probability of having a “bar” decreases as the number of

spins increases. A player is given a maximum number 5 of spins. When the game is over, a prize is

given depending on the reel configuration. The player can also “stop” the game: With probability

0.5, the player obtains two extra spins (up to 5 in total); With probability 0.5, the player finishes the

game and receives the award. Overall, there are four inputs: “reel1”, “reel2”, “reel3”, and “stop”. The

outputs show the current reel configuration (during the game) and the received prize (at the end of

the game). We use LTL formulas that are true if we obtain the prize BAR3 for displaying “bar” at all
three reels within specific numbers of total reels.

SlotLimitedObs. The LTL formulas in SlotLimitedObs are the same as Slot. The MDP in SlotLimite-
dObs is also the same as Slot except for the output: In SlotLimitedObs, only the reels displaying

“bar” are observable; In Slot, the status of the reels is fully observable. For example, the MDP

in SlotLimitedObs has the same output for “bar blank apple” and “bar apple blank”, which are

distinguished in Slot. We use SlotLimitedObs primarily to answer RQ3.

MQTT. The MDP in MQTT is taken from [4], which models a broker in the MQTT protocol [1]

with stochastic failures. Namely, the MDP models a broker crashing with probability 0.1. The MDP

has nine inputs, e. g., for message types, and 50 outputs for the internal state of the broker. We use

LTL formulas that are true if we have the output crash representing the stochastic failure within

specific numbers of messages.

TCP. The MDP in TCP is also taken from [4], which models a TCP server [2] with stochastic failures.

The probability of crashing is 0.05. We use LTL formulas that are true if we have the output crash
representing the stochastic failure within specific numbers of messages.

GridWorldSmall. The MDP in GridWorldSmall is taken from [4, 33], which models a robot on a

grid world with probabilistic error in its movement. For example, when a robot tries to move to the

east, it may also move to the northeast or the southeast with small probabilities depending on the

condition of the current position. The MDP has four inputs (“East”, “South”, “West”, and “North”)

for the direction of a move and seven outputs (“Concrete”, “Grass”, “Wall”, “Mud”, “Pavement”,

“Gravel”, and “Sand”) for the condition of the robot’s current position. We use the LTL formula

^[0,10)goal that is true if the robot reaches the goal position within ten steps.

GridWorldLarge. GridWorldLarge is a variant of GridWorldSmall, also from [4, 33]. The state space

of GridWorldLarge is larger, and thus, the estimation of the MDP is harder. The inputs and the

outputs are the same as GridWorldSmall. We use the LTL formula ^[0,13)goal that is true if the
robot reaches the goal position within 13 steps.

SharedCoin. The MDP in SharedCoin is taken from [33], which models a randomized consensus

protocol [6] with two processes. The MDP has two inputs for the process to execute and 47 outputs,

for example, for the status of the coins. We used LTL formulas that are true if the algorithm finishes

within specific numbers of messages.

Probabilistic Black-Box Checking via Active MDP Learning 19

RandomGridWorld. RandomGridWorld is our original benchmark inspired from GridWorldSmall
and GridWorldLarge. RandomGridWorld consists of 25 randomly generated benchmarks: we fixed

five sizes of the grid world and randomly generated five MDPs for each size. RandomGridWorld
is primarily used to evaluate the scalability of ProbBBC. We use the LTL formula (¬hole) U goal
that is true if the robot reaches the goal position without entering the hole position.

5.2 Experiments
To answer RQ1–RQ4, we compared the performance of ProbBBC with ProbBlackReach [4]

3
. Prob-

BlackReach is another testing method for black-box MDPs based on MDP learning and probabilistic

model checking. The main difference from ProbBBC is in the learning algorithm and the sampling

method: ProbBlackReach passively learns an MDP using traces sampled by an 𝜀-greedy algorithm.

See Section 2 for a detailed comparison. To answer RQ5, we compared the performance of ProbBBC

with different parameters. To answer RQ6, we compared the performance of ProbBBC with a

variant (we call ProbBBC w/o str. comp.) of ProbBBC without the strategy-guided comparison,

i. e., a variant such that the validation phase immediately starts equivalence testing by uniform

sampling. As a ground truth, we also compute the optimal satisfaction probability with PRISM [19].

For each benchmark, we ran each method (i. e., ProbBBC with multiple parameters, ProbBlack-
Reach, and ProbBBC w/o str. comp.) for 20 times. Since each method produces a strategy for each

execution of probabilistic model checking, we have a bunch of strategies for each execution. For

each strategy, we estimated the satisfaction probability of the LTL formula 𝜑 by the SUTM using

SMC with sample size 5,000.

We conducted all the experiments on a Google Cloud Platform c2-standard-4 instance (4 vCPU,

16GB RAM) running Debian 11 bullseye. We used Python 3.10.9, AALpy v.1.3.0, and PRISM version

4.7. The parameters in the validation phase are as follows: The sample size 𝑁 in Algorithm 4 is

5000; The threshold Δ for Student’s t-testing (line 8 of Algorithm 4) is 0.025; The bound Δ′ in the

comparison of probabilities (line 8 of Algorithm 5) is 0.025. For the experiments to answer RQ5, we

used all the combinations of 𝑁 ∈ {2500, 5000, 10000} and Δ = Δ′ ∈ {0.01, 0.025, 0.05}, i. e., we used
nine parameters in total. For the parameters of ProbBlackReach, we used the values in [4].

Table 3 summarizes the maximum satisfaction probabilities of each LTL formula estimated by

ProbBBC (with the strategy-guided comparison) and ProbBlackReach as well as the true maximum

probabilities computed by PRISM. Fig. 8 shows the number of steps on the SUT and the largest

estimated maximum probabilities before the point for some benchmarks. Table 4 shows the mean

of the maximum satisfaction probabilities of each LTL formula estimated by ProbBBC with various

choices of parameters 𝑁 and Δ. Table 5 summarizes the maximum satisfaction probabilities of

each LTL formula estimated by ProbBBC without the strategy-guided comparison. Fig. 9 shows

the number of the states and the mean execution time to estimate a probability that is larger than

97.5% of the true probability for RandomGridWorld.

5.3 RQ1:Quality of the estimated probabilities
In the columns “PRISM” and “ProbBBC/mean” of Table 3, we observe that for any LTL formula in

our benchmarks, the satisfaction probability estimated by ProbBBC is close to the true probabilities

on average. We note that the estimated probabilities can be slightly larger than the true probabilities

due to the statistical error in the estimation with SMC.

Moreover, in the columns “PRISM” and “ProbBBC/min”, we observe that for some benchmarks

(e. g., GridWorldSmall, GridWorldLarge, and SharedCoin), the satisfaction probability estimated

3
We used the implementation of ProbBlackReach available on https://github.com/mtappler/prob-black-reach with additional

codes for experiments.

https://github.com/mtappler/prob-black-reach

20 Junya Shijubo, Masaki Waga, and Kohei Suenaga

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200

B
e
s
t
e
s
t
i
m
a
t
e
d
p
r
o
b
a
b
i
l
i
t
y

Number of steps on the SUT [×100, 000]

ProbBlackReach
ProbBBC

ProbBBC w/o str. comp.

(a) Slot with 𝜑 = ^[0,17)BAR3.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60 70

B
e
s
t
e
s
t
i
m
a
t
e
d
p
r
o
b
a
b
i
l
i
t
y

Number of steps on the SUT [×100, 000]

ProbBlackReach
ProbBBC

ProbBBC w/o str. comp.

(b) SlotLimitedObs with 𝜑 = ^[0,17)BAR3.

0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 5 10 15 20 25 30

B
e
s
t
e
s
t
i
m
a
t
e
d
p
r
o
b
a
b
i
l
i
t
y

Number of steps on the SUT [×100, 000]

ProbBlackReach
ProbBBC

ProbBBC w/o str. comp.

(c) MQTT with 𝜑 = ^[0,14) crash.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30

B
e
s
t
e
s
t
i
m
a
t
e
d
p
r
o
b
a
b
i
l
i
t
y

Number of steps on the SUT [×100, 000]

ProbBlackReach
ProbBBC

ProbBBC w/o str. comp.

(d) TCP with 𝜑 = ^[0,11) crash.

0

0.1
0.2
0.3
0.4
0.5
0.6
0.7

0 5 10 15 20 25 30 35 40

B
e
s
t
e
s
t
i
m
a
t
e
d
p
r
o
b
a
b
i
l
i
t
y

Number of steps on the SUT [×100, 000]

ProbBlackReach
ProbBBC

ProbBBC w/o str. comp.

(e) GridWorldSmall with 𝜑 = ^[0,10)goal.

0

0.1
0.2
0.3
0.4
0.5
0.6
0.7

0 10 20 30 40 50 60

B
e
s
t
e
s
t
i
m
a
t
e
d
p
r
o
b
a
b
i
l
i
t
y

Number of steps on the SUT [×100, 000]

ProbBlackReach
ProbBBC

ProbBBC w/o str. comp.

(f) GridWorldLarge with 𝜑 = ^[0,13)goal.

0

0.02

0.04

0.06

0.08

0.1
0.12

0.14

0 20 40 60 80 100

B
e
s
t
e
s
t
i
m
a
t
e
d
p
r
o
b
a
b
i
l
i
t
y

Number of steps on the SUT [×100, 000]

ProbBlackReach
ProbBBC

ProbBBC w/o str. comp.

(g) SharedCoin with 𝜑 = ^[0,14)finished.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 20 40 60 80 100

B
e
s
t
e
s
t
i
m
a
t
e
d
p
r
o
b
a
b
i
l
i
t
y

Number of steps on the SUT [×100, 000]

ProbBlackReach
ProbBBC

ProbBBC w/o str. comp.

(h) SharedCoin with 𝜑 = ^[0,20)finished.
Fig. 8. Estimated probability after each execution step on the SUT.

Probabilistic Black-Box Checking via Active MDP Learning 21

Table 3. Summary of the estimatedmaximum satisfaction probabilities of𝜑 after the number of steps displayed
in the column “# of steps”. The column 𝑛 shows the parameter 𝑛 of the LTL formulas in Table 2. The column
“PRISM” shows the true probabilities computed by PRISM. The columns “ProbBBC” and “ProbBlackReach”
show the estimated probabilities computed by ProbBBC and ProbBlackReach, respectively. The columns
“mean”, “std”, and “min” show the mean, the standard deviation, and the minimum value of the results. We
highlight the cells if the mean of the estimated probabilities is larger than 97.5% of the true probability.

𝑛
PRISM ProbBBC ProbBlackReach # of steps

mean std min mean std min

Slot

5 8.23e-02 8.21e-02 3.22e-03 7.64e-02 8.23e-02 1.26e-03 7.91e-02 15,000,000

8 3.32e-01 3.28e-01 6.73e-03 3.11e-01 3.21e-01 8.29e-03 2.97e-01 15,000,000

11 4.60e-01 4.59e-01 8.57e-03 4.42e-01 4.40e-01 1.56e-02 4.01e-01 15,000,000

14 4.99e-01 4.92e-01 1.21e-02 4.53e-01 4.82e-01 1.30e-02 4.41e-01 15,000,000

17 5.10e-01 5.07e-01 9.64e-03 4.83e-01 4.80e-01 2.37e-02 4.32e-01 15,000,000

SlotLimitedObs

5 8.23e-02 8.14e-02 3.46e-03 7.58e-02 8.25e-02 1.62e-03 7.94e-02 7,000,000

8 3.32e-01 3.31e-01 1.00e-02 3.17e-01 3.22e-01 5.80e-03 3.11e-01 7,000,000

11 4.60e-01 4.61e-01 4.24e-03 4.52e-01 4.38e-01 1.44e-02 3.94e-01 7,000,000

14 4.99e-01 4.95e-01 1.11e-02 4.62e-01 4.27e-01 4.92e-02 3.11e-01 7,000,000

17 5.10e-01 5.09e-01 5.46e-03 5.01e-01 4.48e-01 4.15e-02 3.44e-01 7,000,000

MQTT

5 3.44e-01 3.43e-01 8.49e-03 3.31e-01 3.44e-01 3.19e-03 3.36e-01 3,000,000

8 5.22e-01 5.22e-01 6.46e-03 5.11e-01 5.20e-01 3.03e-03 5.16e-01 3,000,000

11 6.51e-01 6.45e-01 1.68e-02 6.08e-01 6.50e-01 2.46e-03 6.45e-01 3,000,000

14 7.46e-01 7.45e-01 6.90e-03 7.31e-01 7.47e-01 3.17e-03 7.41e-01 3,000,000

17 8.15e-01 8.08e-01 9.79e-03 7.88e-01 8.15e-01 2.20e-03 8.11e-01 3,000,000

TCP

5 1.90e-01 1.90e-01 5.38e-03 1.78e-01 1.90e-01 2.13e-03 1.86e-01 1,200,000

8 4.10e-01 4.10e-01 6.63e-03 4.00e-01 4.10e-01 2.73e-03 4.05e-01 1,200,000

11 5.70e-01 5.69e-01 5.51e-03 5.59e-01 5.69e-01 2.96e-03 5.63e-01 1,200,000

14 6.86e-01 6.88e-01 6.71e-03 6.75e-01 6.84e-01 9.74e-03 6.45e-01 1,200,000

17 7.71e-01 7.68e-01 1.22e-02 7.40e-01 7.71e-01 2.52e-03 7.66e-01 1,200,000

GridWorldSmall 6.18e-01 6.17e-01 9.57e-03 5.98e-01 5.69e-01 1.35e-01 0.00e+00 4,000,000

GridWorldLarge 6.71e-01 6.72e-01 6.88e-03 6.56e-01 6.83e-02 1.70e-01 0.00e+00 1,500,000

SharedCoin
14 1.25e-01 1.25e-01 5.18e-03 1.14e-01 1.09e-01 2.71e-02 6.15e-02 4,000,000

20 2.50e-01 2.51e-01 5.16e-03 2.41e-01 2.18e-01 2.74e-02 1.55e-01 4,000,000

by ProbBBC is close to the true probabilities even in the worst case. This is likely because of the

relatively small state space (|𝑄 | < 300) and the small input size (|Σin | ≤ 4) of the MDPs in these

benchmarks, which make the maximum size of the observation table relatively small and the L
∗

MDP

algorithm identifies the target MDP with a mild number of queries.

These results suggest that the maximum satisfaction probabilities estimated by ProbBBC are

usually close to the optimal value. Overall, we answer RQ1 as follows.

Answer to RQ1: ProbBBC usually estimates the maximum satisfaction probabilities close to

the true one. For some benchmarks, the estimated probabilities are very close to the optimal

value even in the worst case.

5.4 RQ2:Quality of the estimated probabilities compared with ProbBlackReach
In the columns “PRISM” and “ProbBlackReach/mean” of Table 3, we observe that ProbBlackReach
often fails to estimate the maximum satisfaction probability close to the true one. For example,

for 11 out of 24 LTL formulas, the maximum satisfaction probability of the formula estimated by

ProbBlackReach is less than 97.5% of the true value (i. e., not highlighted in Table 3). This is likely

because ProbBlackReach often gets stuck on a local optimum due to the greedy nature of its trace

22 Junya Shijubo, Masaki Waga, and Kohei Suenaga

sampling. Such a tendency is indeed observed in Fig. 8 for some benchmarks. In contrast, as we

observe in Section 5.3, for all the LTL formulas, the probability estimated by ProbBBC is close to

the true one. This is because the MDP learned by the L
∗

MDP algorithm eventually converges to the

SUT, as shown in [33]. Such convergence is also observed in Fig. 8.

In the column “ProbBlackReach/std” of Table 3, we observe that for GridWorldSmall and Grid-
WorldLarge, the standard deviation of the probabilities estimated by ProbBlackReach is large (e. g.,

greater than 0.1). In the column “ProbBlackReach/min” of Table 3, we also observe that for Grid-
WorldSmall and GridWorldLarge, the satisfaction probability estimated by ProbBlackReach can be

0. This is likely because synthesizing a reasonable strategy for a grid world environment requires a

relatively precise estimation of the environment, which is not always done by ProbBlackReach.
Such a tendency is more evident in GridWorldLarge, where the environment is larger, and its

precise estimation is more challenging. In contrast, ProbBBC always synthesizes a reasonable

strategy up to our observation. Overall, we answer RQ2 as follows.

Answer to RQ2: ProbBlackReach often fails to estimate a reasonable maximum satisfaction

probability. Moreover, it sometimes fails to learn a reasonable strategy for GridWorldSmall
and GridWorldLarge.

5.5 RQ3: Robustness with respect to the observability
In the rows “Slot” and “SlotLimitedObs” of Table 3, we observe that the probabilities estimated by

SlotLimitedObs tend to be smaller with limited observations, especially when 𝑛 is large. This is

likely because ProbBlackReach samples the training data with an 𝜀-greedy algorithm, and their

variety is limited. When an MDP is learned, two candidate states are deemed identical if there is

no clear counterexample, where outputs are used to compare the states. Therefore, to correctly

distinguish the states, there must be sufficient variety in the training data to contain an evidence.

The training data need more variety when many states have the same output, e. g., more variety is

required in SlotLimitedObs than in Slot.
In contrast, the probabilities estimated by ProbBBC do not have such a deviation. This is likely

because the L
∗

MDP algorithm tries to cover various inputs to have sufficient information to estimate

the transition probabilities. Moreover, ProbBBC tends to estimate better probabilities with limited

observability. This is likely because of the following reason: The MDP of Slot has states that have
different outputs but behave the same; For example, the states corresponding to “bar blank apple”

and “bar apple blank” behave the same, but their outputs are different in Slot; In the MDP of

SlotLimitedObs these states have the same outputs, and they are deemed identical in MDP learning;

Since the target MDP under learning is virtually smaller, the L
∗

MDP algorithm can easily converge

to the optimal one; Therefore, ProbBBC can perform better with limited observability. We indeed

observe that the resulting MDPs tend to be smaller for SlotLimitedObs than Slot (about 50 vs. 160
states on average). Overall, we answer RQ3 as follows.

Answer to RQ3: ProbBBC estimates a near-optimal satisfaction probability even if the ob-

servability in the SUT is limited, whereas ProbBlackReach often fails to estimate it in such

a situation. Moreover, ProbBBC often estimates a better probability when the observability

is limited because the state space of the SUT can be virtually smaller.

5.6 RQ4: Efficiency of the estimation
In Figs. 8a, 8b, 8e and 8f, we observe that the probabilities estimated by ProbBlackReach often

remain suboptimal, as discussed in Section 5.4, whereas those estimated by ProbBBC usually

converge (with some exceptions, e. g., some executions for MQTT with 𝑛 = 14 shown in Fig. 8c). In

Probabilistic Black-Box Checking via Active MDP Learning 23

Table 4. Mean of the estimated maximum satisfaction probabilities of 𝜑 after the number of steps displayed
in the column “# of steps” of Table 3. The column 𝑛 shows the parameter 𝑛 of the LTL formulas in Table 2. We
highlight the cells whose values are larger than 97.5% of the true probability in Table 3.

𝑛
𝑁 = 2500 𝑁 = 5000 𝑁 = 10000

Δ = 0.01 Δ = 0.025 Δ = 0.05 Δ = 0.01 Δ = 0.05 Δ = 0.01 Δ = 0.025 Δ = 0.05

Slot

5 8.19e-02 8.15e-02 8.21e-02 8.23e-02 8.19e-02 8.29e-02 8.22e-02 8.11e-02
8 3.33e-01 3.34e-01 3.32e-01 3.31e-01 3.31e-01 3.26e-01 3.30e-01 3.31e-01
11 4.58e-01 4.58e-01 4.58e-01 4.57e-01 4.59e-01 4.57e-01 4.55e-01 4.59e-01
14 4.94e-01 4.94e-01 4.97e-01 4.92e-01 4.95e-01 4.94e-01 4.91e-01 4.95e-01
17 5.05e-01 5.01e-01 5.04e-01 5.08e-01 5.01e-01 5.05e-01 5.02e-01 5.06e-01

SlotLimitedObs

5 8.07e-02 8.07e-02 8.07e-02 8.07e-02 8.07e-02 8.07e-02 8.07e-02 8.07e-02
8 3.33e-01 3.33e-01 3.33e-01 3.33e-01 3.33e-01 3.33e-01 3.33e-01 3.33e-01
11 4.60e-01 4.60e-01 4.60e-01 4.60e-01 4.60e-01 4.60e-01 4.60e-01 4.60e-01
14 4.97e-01 4.97e-01 4.97e-01 4.97e-01 4.97e-01 4.97e-01 4.97e-01 4.97e-01
17 5.10e-01 5.10e-01 5.10e-01 5.10e-01 5.10e-01 5.10e-01 5.10e-01 5.10e-01

MQTT

5 3.43e-01 3.43e-01 3.43e-01 3.43e-01 3.43e-01 3.43e-01 3.43e-01 3.43e-01
8 5.22e-01 5.22e-01 5.22e-01 5.22e-01 5.22e-01 5.22e-01 5.22e-01 5.22e-01
11 6.45e-01 6.45e-01 6.45e-01 6.45e-01 6.45e-01 6.45e-01 6.45e-01 6.45e-01
14 7.45e-01 7.45e-01 7.45e-01 7.45e-01 7.45e-01 7.45e-01 7.45e-01 7.45e-01
17 8.08e-01 8.08e-01 8.08e-01 8.08e-01 8.08e-01 8.08e-01 8.08e-01 8.08e-01

TCP

5 1.90e-01 1.91e-01 1.90e-01 1.90e-01 1.90e-01 1.88e-01 1.90e-01 1.91e-01
8 4.11e-01 4.08e-01 4.05e-01 4.09e-01 4.09e-01 4.09e-01 4.09e-01 4.07e-01
11 5.61e-01 5.62e-01 5.69e-01 5.69e-01 5.58e-01 5.68e-01 5.65e-01 5.67e-01
14 6.76e-01 6.74e-01 6.84e-01 6.80e-01 6.76e-01 6.81e-01 6.83e-01 6.79e-01
17 7.64e-01 7.60e-01 7.68e-01 7.68e-01 7.67e-01 7.65e-01 7.66e-01 7.61e-01

GridWorldSmall 6.14e-01 6.14e-01 6.15e-01 6.14e-01 6.17e-01 6.18e-01 6.17e-01 6.18e-01

GridWorldLarge 6.73e-01 6.71e-01 6.68e-01 6.70e-01 6.70e-01 6.69e-01 6.70e-01 6.69e-01

SharedCoin 14 1.24e-01 1.24e-01 1.24e-01 1.25e-01 1.24e-01 1.26e-01 1.24e-01 1.24e-01
20 2.50e-01 2.50e-01 2.46e-01 2.52e-01 2.49e-01 2.53e-01 2.49e-01 2.50e-01

contrast, in Figs. 8a, 8b, 8g and 8h, we observe that the initial rising up of the probabilities estimated

by ProbBBC is slower than that by ProbBlackReach. This is also likely because of the use of by an

𝜀-greedy algorithm in the training data construction: The 𝜀-greedy algorithm samples the traces

deemed to increase the satisfaction probability of the given LTL formula. If such traces indeed

increase the satisfaction probability, the estimated probability increases with a small number of

traces. However, this is at the cost of the quality of the final estimation, and the delay of the initial

rising up is not very large except for Fig. 8a. Overall, we answer RQ4 as follows.

Answer to RQ4: ProbBlackReach is often faster to start up than ProbBBC at the cost of the

quality of the estimated probability. Moreover, the delay of the initial rising up is usually

not large.

5.7 RQ5: Sensitivity to the parameters
In Table 4, we observe that for any combination of 𝑁 and Δ, and for any LTL formula in our

benchmarks, the satisfaction probability estimated by ProbBBC is close to the true probabilities on

average. If 𝑁 is small or Δ is large, the probability of the strategy-guided comparison to return a

false witness (i. e., a trace 𝜎 whose occurrence probability is supposed to be different betweenM
and

ˆM but not) is also large. However, if the probability to return a false witness is not too large,

the learned MDP converges in a reasonable number of steps. Overall, we answer RQ5 as follows.

Answer to RQ5: The validation phase in ProbBBC is not much parameter sensitive.

24 Junya Shijubo, Masaki Waga, and Kohei Suenaga

Table 5. Summary of the maximum satisfaction probabilities of 𝜑 estimated by ProbBBC without the strategy-
guided comparison after the number of steps displayed in the column “# of steps” of Table 3. The column
𝑛 shows the parameter 𝑛 of the LTL formulas in Table 2. The columns “mean”, “std”, and “min” show the
mean, the standard deviation, and the minimum value of the results. We highlight the cells if the mean of the
estimated probabilities is larger than 97.5% of the true probability in Table 3.

𝑛 mean std min

Slot

5 8.12e-02 4.67e-03 7.50e-02
8 2.43e-01 1.48e-01 0.00e+00

11 4.98e-02 1.43e-01 0.00e+00

14 4.85e-03 7.53e-03 0.00e+00

17 3.03e-02 1.12e-01 0.00e+00

SlotLimitedObs

5 8.22e-02 4.03e-03 7.42e-02
8 3.34e-01 8.15e-03 3.21e-01
11 4.34e-01 1.02e-01 2.00e-04

14 4.24e-01 1.81e-01 8.00e-04

17 4.84e-01 1.13e-01 4.40e-03

MQTT 5 3.43e-01 5.62e-03 3.26e-01
8 5.20e-01 1.33e-02 4.70e-01

𝑛 mean std min

MQTT
11 6.45e-01 1.42e-02 6.16e-01
14 7.43e-01 9.48e-03 7.16e-01
17 8.05e-01 1.52e-02 7.82e-01

TCP

5 1.89e-01 5.46e-03 1.77e-01
8 1.66e-02 3.92e-02 0.00e+00

11 1.42e-02 2.61e-02 0.00e+00

14 1.27e-02 1.79e-02 0.00e+00

17 1.85e-02 2.68e-02 2.00e-04

GridWorldSmall 6.16e-01 1.14e-02 5.79e-01

GridWorldLarge 1.00e-01 2.43e-01 0.00e+00

SharedCoin 14 7.64e-02 5.88e-02 1.00e-03

20 1.13e-01 1.28e-01 0.00e+00

0

40

80

120

160

200

240

0 40 80 120 160 200

E
x
e
c
u
t
i
o
n
t
i
m
e
[
m
i
n
.]

Number of states of the SUTM

(a) linear-linear plot

0.01

0.1

1

10

100

1000

0 40 80 120 160 200

E
x
e
c
u
t
i
o
n
t
i
m
e
[
m
i
n
.]

Number of states of the SUTM

(b) linear-log plot

0.01

0.1

1

10

100

1000

40

E
x
e
c
u
t
i
o
n
t
i
m
e
[
m
i
n
.]

Number of states of the SUTM

(c) log-log plot
Fig. 9. State size of the SUT and the mean execution time to estimate a probability larger than 97.5% of the
true one, per SUT size in RandomGridWorld. The dashed curve is 𝑦 = 1.99× 10

−4𝑥3.38, obtained by regression.

5.8 RQ6: Effect of the strategy-guided comparison
In the column “mean” of Table 5, we observe that ProbBBC often fails to estimate the maximum

satisfaction probability close to the true one if we do not use the strategy-guided comparison.

In Fig. 8, we observe that the initial rising up of the probabilities estimated by ProbBBC w/o str.

comp. is often slower than that by ProbBBC. These tendencies are likely because, without the

strategy-guided comparison, the validation phase in ProbBBC is solely by uniform random sampling.

In contrast, if we use the strategy-guided comparison, the validation phase can focus on a part of

the MDP relevant to maximize the satisfaction probability of the given LTL formula, which tends

to accelerate the probability estimation. We note that, unlike ProbBlackReach, ProbBBC remains

correct even without the strategy-guided comparison thanks to the convergence of L
∗

MDP. Overall,

we answer RQ6 as follows.

Answer to RQ6: The strategy-guided comparison in Section 4.2 usually allows to generate

a controller achieving high satisfaction probability with fewer steps on the SUT.

5.9 RQ7: Scalability to the system complexity
In Fig. 9, we observe that, on average, ProbBBC can find a near-optimal controller for SUTs with

196 states within around 3.5 hours. In Fig. 9, we also observe that the time to find a near-optimal

controller nearly follows a polynomial curve, which coincides with the polynomial complexity of

L
∗
[5]. Therefore, we answer RQ7 as follows.

Probabilistic Black-Box Checking via Active MDP Learning 25

Answer to RQ7: Experiments suggest that ProbBBC can generate near-optimal controllers

in polynomial time with respect to system size.

In the execution log, we find that ProbBBC often takes quite a long time to make the observation

table satisfy the requirements to construct an MDP. These requirements prevent us from gener-

ating MDPs different from the target one, for example, if the transition function is inconsistent.

Nevertheless, It is a possible future direction to construct an MDP even if the observation table

does not satisfy some of the requirements, e. g., using passive MDP learning [23, 24]. Such an MDP

is imprecise but may be still useful for generating a near-optimal strategy.

6 CONCLUSIONS AND FUTUREWORK
We propose probabilistic black-box checking (ProbBBC), an extension of BBC for stochastic systems,

by combining active MDP learning, probabilistic model checking, and statistical hypothesis testing.

We conducted experiments to evaluate the performance of ProbBBC using benchmarks related

to CPS or IoT scenarios. Our experiment results suggest that ProbBBC outperforms an existing

approach [4], especially when the SUT is complex (e. g., GridWorldLarge) or the observability is

limited (e. g., SlotLimitedObs).
As formulas of specifications, ProbBBC uses safety LTL. Using other logic, such as probabilistic

computation tree logic (PCTL) [7], or PCTL* [8], is one of the future directions. Another future

direction is conducting a case study with larger and more practical benchmarks.

ACKNOWLEDGMENTS
This work was partially supported by JST CREST Grant No. JPMJCR2012, JST PRESTO Grant No.

JPMJPR22CA, JST ACT-X Grant No. JPMJAX200U, and JSPS KAKENHI Grant No. 22K17873 &

19H04084.

REFERENCES
[1] [n. d.]. MQTT Version 3.1.1. Edited by Andrew Banks and Rahul Gupta. 29 October 2014. OA-

SIS Standard. http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html. Latest version: http://docs.oasis-

open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html..

[2] [n. d.]. TCP models. https://gitlab.science.ru.nl/pfiteraubrostean/tcp-learner/tree/cav-aec/models. Accessed 20 Jan

2023.

[3] Gul Agha and Karl Palmskog. 2018. A Survey of Statistical Model Checking. ACM Trans. Model. Comput. Simul. 28, 1
(2018), 6:1–6:39.

[4] Bernhard K. Aichernig and Martin Tappler. 2019. Probabilistic black-box reachability checking (extended version).

Formal Methods Syst. Des. 54, 3 (2019), 416–448.
[5] Dana Angluin. 1987. Learning Regular Sets from Queries and Counterexamples. Inf. Comput. 75, 2 (1987), 87–106.
[6] James Aspnes and Maurice Herlihy. 1990. Fast Randomized Consensus Using Shared Memory. J. Algorithms 11, 3

(1990), 441–461.

[7] Christel Baier, Luca de Alfaro, Vojtech Forejt, and Marta Kwiatkowska. 2018. Model Checking Probabilistic Systems.

In Handbook of Model Checking, Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem (Eds.).

Springer, 963–999.

[8] Andrea Bianco and Luca de Alfaro. 1995. Model Checking of Probabalistic and Nondeterministic Systems. In Foundations
of Software Technology and Theoretical Computer Science, 15th Conference, Proceedings (Lecture Notes in Computer
Science, Vol. 1026), P. S. Thiagarajan (Ed.). Springer, 499–513.

[9] Tomás Brázdil, Krishnendu Chatterjee, Martin Chmelik, Vojtech Forejt, Jan Kretínský, Marta Z. Kwiatkowska, David

Parker, and Mateusz Ujma. 2014. Verification of Markov Decision Processes Using Learning Algorithms. In Automated
Technology for Verification and Analysis - 12th International Symposium, ATVA 2014, Proceedings (Lecture Notes in
Computer Science, Vol. 8837), Franck Cassez and Jean-François Raskin (Eds.). Springer, 98–114.

[10] Carlos Canal and Akram Idani (Eds.). 2015. Software Engineering and Formal Methods - SEFM 2014 Collocated Workshops:
HOFM, SAFOME, OpenCert, MoKMaSD, WS-FMDS, Revised Selected Papers. Lecture Notes in Computer Science, Vol. 8938.

Springer.

26 Junya Shijubo, Masaki Waga, and Kohei Suenaga

[11] Tsun S. Chow. 1978. Testing Software Design Modeled by Finite-State Machines. IEEE Trans. Software Eng. 4, 3 (1978),
178–187. https://doi.org/10.1109/TSE.1978.231496

[12] Pedro R. D’Argenio, Axel Legay, Sean Sedwards, and Louis-Marie Traonouez. 2015. Smart sampling for lightweight

verification of Markov decision processes. Int. J. Softw. Tools Technol. Transf. 17, 4 (2015), 469–484.
[13] Edith Elkind, Blaise Genest, Doron A. Peled, and Hongyang Qu. 2006. Grey-Box Checking. In Formal Techniques for

Networked and Distributed Systems - FORTE 2006, 26th IFIP WG 6.1 International Conference (Lecture Notes in Computer
Science, Vol. 4229), Elie Najm, Jean-François Pradat-Peyre, and Véronique Donzeau-Gouge (Eds.). Springer, 420–435.

[14] Vojtech Forejt, Marta Z. Kwiatkowska, Gethin Norman, and David Parker. 2011. Automated Verification Techniques

for Probabilistic Systems. In Formal Methods for Eternal Networked Software Systems - 11th International School on
Formal Methods for the Design of Computer, Communication and Software Systems, SFM 2011. Advanced Lectures (Lecture
Notes in Computer Science, Vol. 6659), Marco Bernardo and Valérie Issarny (Eds.). Springer, 53–113.

[15] Alex Groce, Doron A. Peled, and Mihalis Yannakakis. 2002. Adaptive Model Checking. In Tools and Algorithms for the
Construction and Analysis of Systems, 8th International Conference, TACAS 2002, Proceedings (Lecture Notes in Computer
Science, Vol. 2280), Joost-Pieter Katoen and Perdita Stevens (Eds.). Springer, 357–370.

[16] Wassily Hoeffding. 1963. Probability inequalities for sums of bounded random variables. Journal of the American
statistical association 58, 301 (1963), 13–30.

[17] Damir Kalpic, Nikica Hlupic, and Miodrag Lovric. 2011. Student’s t-Tests. In International Encyclopedia of Statistical
Science, Miodrag Lovric (Ed.). Springer, 1559–1563.

[18] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. 2007. Stochastic Model Checking. In Formal Methods for
Performance Evaluation, 7th International School on Formal Methods for the Design of Computer, Communication, and
Software Systems, SFM 2007, Advanced Lectures (Lecture Notes in Computer Science, Vol. 4486), Marco Bernardo and Jane

Hillston (Eds.). Springer, 220–270.

[19] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. 2011. PRISM 4.0: Verification of Probabilistic Real-Time

Systems. In Computer Aided Verification - 23rd International Conference, CAV 2011. Proceedings (Lecture Notes in
Computer Science, Vol. 6806), Ganesh Gopalakrishnan and Shaz Qadeer (Eds.). Springer, 585–591.

[20] Marta Z. Kwiatkowska and David Parker. 2013. Automated Verification and Strategy Synthesis for Probabilistic

Systems. In Automated Technology for Verification and Analysis - 11th International Symposium, ATVA 2013. Proceedings
(Lecture Notes in Computer Science, Vol. 8172), Dang Van Hung and Mizuhito Ogawa (Eds.). Springer, 5–22.

[21] Kim G. Larsen and Axel Legay. 2016. Statistical Model Checking: Past, Present, and Future. In Leveraging Applications
of Formal Methods, Verification and Validation: Foundational Techniques - 7th International Symposium, ISoLA 2016,
Proceedings, Part I (Lecture Notes in Computer Science, Vol. 9952), Tiziana Margaria and Bernhard Steffen (Eds.). 3–15.

[22] Axel Legay, Sean Sedwards, and Louis-Marie Traonouez. 2014. Scalable Verification of Markov Decision Processes,

See [10], 350–362.

[23] Hua Mao, Yingke Chen, Manfred Jaeger, Thomas D. Nielsen, Kim G. Larsen, and Brian Nielsen. 2012. Learning Markov

Decision Processes for Model Checking. In Proceedings Quantities in Formal Methods, QFM 2012 (EPTCS, Vol. 103), Uli
Fahrenberg, Axel Legay, and Claus R. Thrane (Eds.). 49–63.

[24] Hua Mao, Yingke Chen, Manfred Jaeger, Thomas D. Nielsen, Kim G. Larsen, and Brian Nielsen. 2016. Learning

deterministic probabilistic automata from a model checking perspective. Mach. Learn. 105, 2 (2016), 255–299.
[25] Jeroen Meijer and Jaco van de Pol. 2019. Sound black-box checking in the LearnLib. Innov. Syst. Softw. Eng. 15, 3-4

(2019), 267–287.

[26] Michael Mitzenmacher and Eli Upfal. 2017. Probability and Computing: Randomization and Probabilistic Techniques in
Algorithms and Data Analysis (2nd ed.). Cambridge University Press, USA.

[27] Edi Muskardin, Bernhard K. Aichernig, Ingo Pill, Andrea Pferscher, and Martin Tappler. 2021. AALpy: An Active

Automata Learning Library. In Automated Technology for Verification and Analysis - 19th International Symposium,
ATVA 2021, Proceedings (Lecture Notes in Computer Science, Vol. 12971), Zhe Hou and Vijay Ganesh (Eds.). Springer,

67–73.

[28] Masashi Okamoto. 1959. Some inequalities relating to the partial sum of binomial probabilities. AnnInstStat Math 10

(1959), 29–35.

[29] Doron A. Peled, Moshe Y. Vardi, and Mihalis Yannakakis. 1999. Black Box Checking. In Formal Methods for Protocol
Engineering and Distributed Systems, FORTE XII / PSTV XIX’99, IFIP TC6 WG6.1 Joint International Conference on Formal
Description Techniques for Distributed Systems and Communication Protocols (FORTE XII) and Protocol Specification,
Testing and Verification (PSTV XIX) (IFIP Conference Proceedings, Vol. 156), Jianping Wu, Samuel T. Chanson, and Qiang

Gao (Eds.). Kluwer, 225–240.

[30] Amir Pnueli. 1977. The Temporal Logic of Programs. In 18th Annual Symposium on Foundations of Computer Science.
IEEE Computer Society, 46–57.

[31] Junya Shijubo, Masaki Waga, and Kohei Suenaga. 2021. Efficient Black-Box Checking via Model Checking with

Strengthened Specifications. In Runtime Verification - 21st International Conference, RV 2021, Proceedings (Lecture Notes

https://doi.org/10.1109/TSE.1978.231496

Probabilistic Black-Box Checking via Active MDP Learning 27

in Computer Science, Vol. 12974), Lu Feng and Dana Fisman (Eds.). Springer, 100–120.

[32] Alexander L. Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L. Littman. 2006. PAC model-free

reinforcement learning. In Machine Learning, Proceedings of the Twenty-Third International Conference (ICML 2006)
(ACM International Conference Proceeding Series, Vol. 148), William W. Cohen and Andrew W. Moore (Eds.). ACM,

881–888.

[33] Martin Tappler, Bernhard K. Aichernig, Giovanni Bacci, Maria Eichlseder, and Kim G. Larsen. 2021. L
*
-based learning

of Markov decision processes (extended version). Formal Aspects Comput. 33, 4-5 (2021), 575–615.
[34] Moshe Y. Vardi. 1995. An Automata-Theoretic Approach to Linear Temporal Logic. In Logics for Concurrency - Structure

versus Automata (8th Banff Higher Order Workshop, Banff, Canada, August 27 - September 3, 1995, Proceedings) (Lecture
Notes in Computer Science, Vol. 1043), Faron Moller and Graham M. Birtwistle (Eds.). Springer, 238–266.

[35] Masaki Waga. 2020. Falsification of cyber-physical systems with robustness-guided black-box checking. In HSCC ’20:
23rd ACM International Conference on Hybrid Systems: Computation and Control, Aaron D. Ames, Sanjit A. Seshia, and

Jyotirmoy Deshmukh (Eds.). ACM, 11:1–11:13.

[36] Christopher J. C. H. Watkins and Peter Dayan. 1992. Technical Note Q-Learning. Mach. Learn. 8 (1992), 279–292.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Model of systems and specification logic
	3.2 Active learning of automata and MDPs
	3.3 Black-box checking

	4 Probabilistic black-box checking
	4.1 Overview of ProbBBC
	4.2 Detail of the strategy-guided comparison in the validation phase
	4.3 Convergence of ProbBBC

	5 Experimental evaluation
	5.1 Benchmarks
	5.2 Experiments
	5.3 RQ1: Quality of the estimated probabilities
	5.4 RQ2: Quality of the estimated probabilities compared with ProbBlackReach
	5.5 RQ3: Robustness with respect to the observability
	5.6 RQ4: Efficiency of the estimation
	5.7 RQ5: Sensitivity to the parameters
	5.8 RQ6: Effect of the strategy-guided comparison
	5.9 RQ7: Scalability to the system complexity

	6 Conclusions and future work
	Acknowledgments
	References

