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The wide application of deep neural networks (DNNs) demands an increasing amount of attention to their
real-world robustness, i.e., whether a DNN resists black-box adversarial attacks, among which score-based
query attacks (SQAs) are most threatening since they can effectively hurt a victim network with the only access
to model outputs. Defending against SQAs requires a slight but artful variation of outputs due to the service
purpose for users, who share the same output information with SQAs. In this paper, we propose a real-world
defense by Unifying Gradients (UniG) of different data so that SQAs could only probe a much weaker attack
direction that is similar for different samples. Since such universal attack perturbations have been validated as
less aggressive than the input-specific perturbations, UniG protects real-world DNNs by indicating attackers a
twisted and less informative attack direction. We implement UniG efficiently by a Hadamard product module
which is plug-and-play. According to extensive experiments on 5 SQAs, 2 adaptive attacks and 7 defense
baselines, UniG significantly improves real-world robustness without hurting clean accuracy on CIFAR10 and
ImageNet. For instance, UniG maintains a model of 77.80% accuracy under 2500-query Square attack while the
state-of-the-art adversarially-trained model only has 67.34% on CIFAR10. Simultaneously, UniG outperforms
all compared baselines in terms of clean accuracy and achieves the smallest modification of the model output.
The code is released at https://github.com/snowien/UniG-pytorch.

CCS Concepts: « Computing methodologies — Computer vision; Neural networks; « Security and
privacy — Security services.

Additional Key Words and Phrases: Black-box Adversarial Attack, Practical Adversarial Defense

1 INTRODUCTION

Deep neural networks (DNNs) have been revealed to be vulnerable to adversarial examples (AEs),
which can mislead models into incorrect predictions by imperceptible perturbations on inputs
[21, 48, 60]. Such sensitivity poses a threat to real-world applications of DNNZs, since an attacker
only needs the same information as the user, namely the model output, to generate valid AEs.
Considering that the inner information of the network, such as parameters or training datasets,
is hidden from attackers in practical scenarios, the query-based attack [1, 3, 7, 11, 16, 23, 27, 28],
which only requires the model output to hurt a victim model, deserves more attention in the field
of real-world robustness compared to white-box attacks [9, 21] and transferable attacks [14, 15, 26].
Moreover, since plentiful applications output both prediction results and probabilities [6, 6, 10]
to users for better judgement, score-based query attacks (SQAs) are more threatening because of
their effectiveness and feasibility, compared to decision-based query attacks (DQAs), which needs
unreasonable number of queries to attack.
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Since SQAs are based on output probabilities to generate AEs, current defenses are all designed
to alter the probabilities, either directly or indirectly, to resist attackers. For instance, adversarial
training (AT), the most popular defense, uses on-the-fly AEs as training data to obtain a robust model
whose output probabilities are always under-confident [22, 33, 36, 49]. Randomness injection (RI) is
another effective defense against SQAs, which inject randomness into inputs [17, 44, 54], parameters
[20, 25, 35], or features [34] to ultimately change probabilities with random noises to confound
attackers. In contrast to RI, denoising methods [2, 37, 40] pre-process inputs to mitigate adversarial
noises and reconstruct natural images, such that the output probability of adversarial queries can
be modified to be consistent with the score of the corresponding clean query. Additionally, dynamic
defenses [51, 52], which optimize model parameters at inference time to adapt attacks, also try to
keep the same output probabilities with clean data when adversarial queries come. Although above
defenses could mitigate SQAs, however, they hurt clean accuracy, which is a common phenomenon
called accuracy-robustness trade-off [43, 45, 50, 53, 59]. An intuitive explanation to this trade-off is
that high clean accuracy requires the use of detailed features, while they are the inducement of
vulnerability [50]. From distribution perspective, natural images and adversarial examples belong
to different distributions and thus cannot be fitted well simultaneously, which is simply proved by
AT. In addition to the degradation of clean accuracy, we discover that these defenses inevitably
affects the output probabilities of clean images, which seriously influences downstream tasks to
make reasonable decisions, e.g., the detection network needs to report accurate confidence to the
center controller to avoid erroneous decisions on the object with low confidence. Therefore, in this
paper, we aim at keeping accuracy and probabilities of clean data and meanwhile changing output
probabilities of adversarial queries to simultaneously serve users and resist attackers.

Achieving the above goal is difficult because that both users and attackers share the same
information, i.e., the model output probability, while we need to keep the probability of clean data
and change the probability of adversarial queries in the condition of unknown input types. In spite
of this, our chance lies in the fact that users only ask for outputs, while SQAs concentrate on the
change in output indicated by different queries, which implies gradient information used to attack.
Therefore, we propose a defense that explicitly changes the gradient information contained in
the output of consecutive queries. Through slight but designed modifications on outputs, which
guarantee the service to the user, the gradient information contained in the output is perturbed to
be an elaborate direction which is less aggressive. We choose the direction of the universal attack
perturbation (UAP, [58]) here, which is consistent for different inputs and hereby less threatening
than normal adversarial noises that are image-specific. Previous studies have proved the gentleness
of UAP empirically [5, 56-58]. As a result, even through the attacker mines the attack direction
from these outputs, their attack trajectory will be tricked away from the vulnerable adversarial
direction and induced into the weaker path we have designated.

To confuse SQAs towards the UAP direction, the modification on outputs needs to be designed
carefully. A natural idea is that we use a gradient unification loss, which constrains the gradient of
different inputs to be the same, to optimize the output changes. The proposed method is then called
unifying gradients (UniG) approach. Considering computational overhead, we choose to unify the
gradient of features instead of inputs to efficiently calculate the second derivative in practice, as
shown in Figure 1(a). We insert a Hadamard product module A into a pre-trained DNN, where we
want f ~ f for user friendliness and § # g but rather a UAP direction for adversarial robustness.
The specific calculation off,g is that f =Ao f,§ = gi o A; ,where A € R?*? A; € R? (b for batch
size and d for feature dimension) is the module parameter and g; € R? is the feature gradient of
the i-th input. According to the design of f and ¢, we constrain each element of A to be close to
one to ensure slight forward modifications, and optimize A by minimizing the gradient variance
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Fig. 1. (a) The flowchart of our UniG method. The plug-in Hadamard product module A slightly modifies the
forward feature (f ~ f) but totally distorts the backward gradient (§ # g), where g is a less threatening attack
direction. (b) The robust accuracy (under a SOTA SQA named Square [3]) and the logit (output) difference on
clean data. Our UniG has both the best robustness and smallest output modifications compared with SOTA
AT [22] and RI [44] defenses.

between different images to transform g to be a UAP direction. As a result, our method conceals the
vulnerable attack direction g and instead displays a weaker one g through the output probabilities
7 affected by the optimized module A. The advantages of our approach are listed below.

e The module A is plug-and-play for any pretrained network with negligible additional compu-
tation. Each time a test batch arrives, according to our experiments, the module parameters
can be well re-optimized from random initialization within one epoch using the current test
data (Noting that the test data is unlabeled, we compute the cross-entropy loss by using the
predicted class as the label). UniG is remarkably lightweight compared to other dynamic
defenses [51, 52] that optimize the entire model in inference time.

e In contrast to other defenses, our UniG performs best in improving real-world robustness
with the least modification on output probabilities, see Figure 1(b). Our explicit optimization
objective of changing the gradient information contained in the output fundamentally sup-
presses the attack performance of SQAs, while other defenses such as RI randomly change
the forward output to indirectly perturb the attacker’s estimation on the gradient.

We compare our UniG with seven defenses [2, 22, 25, 37, 40, 44, 46, 51] on CIFAR10 [30] and
ImageNet [19] under five popular SQAs [1, 3, 23, 27, 28]. The result shows that our UniG can keep
clean accuracy (94.26% on CIFAR10 [30] and 78.47% on ImageNet [19]) while obtaining the best
robustness in most cases (the remaining accuracy under 2500-query Square attack is 77.80% on
CIFAR10, while the state-of-the-art (SOTA) AT model only achieves 67.34%). Additionally, under
adaptive attacks in black-box scenarios such as steal-based [29, 38] and hyperparameter-tuning
SQAs [44], our UniG also protects DNNs best compared to other defenses [44, 51]. Note that UniG
as a black-box defense, while modifying gradients, does not belong to obfuscated gradients defenses
[4] which resist white-box attacks effectively but cannot mitigate black-box ones.

2 RELATED WORK
2.1 Score-based Query Attacks

Current SQAs can be categorized into two types: gradient estimation [1, 12, 27, 28] and random
direction search [3, 23]. For the first type, attackers calculate directional derivation using the
output of continuous queries to estimate the input gradient [12]. Based on this idea, Bandits [28]
further reduces query times through utilizing data-dependent gradient prior information. Natural
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Evolutionary Strategies (NES, [27]) considers the condition of limited information, eg. only top-k
probabilities are accessible, and develops the corresponding SQA. SignHunter [1] constructively
proposes to ignore gradient magnitudes and only focus on gradient signs to improve attack efficiency.
For the second type, attackers randomly choose an attack direction and adjust or directly abandon
it according to the feedback from models. Square [3] is the most popular approach in this category,
which adds localized square-shape random noises into inputs. In addition to Sqaure, SimBA [23] is
an early and simple random-search attack, which selects perturbations from orthonormal basis.

2.2 Adversarial Defense

Before, adversarial defenses are mainly designed to resist white-box attacks [9, 36, 48], among
which adversarial training (AT [22, 49]) is the most popular and comprehensive. Recently, defenses
for SQAs are proposed in quantity, which can be categorized into three types: adversarial detection,
denoising and randomness injection. The first one utilizes the similarity between malicious query
data to detect adversarial examples [13, 32, 39]. However, it takes large storage resources and meets
problem when facing long-interval queries. The basic idea of denoising methods is to pre-process
inputs to eliminate adversarial perturbations [2, 37, 40]. Consequently, outputs for continuous
queries remain unaltered, so that SQA attackers cannot obtain valid information of gradients. For
instance, [37] proposes to use a pre-trained diffusion model as the input denoising network. [2]
adds inverse adversarial perturbations to inputs, and [40] mixups the input with other random
clean samples, all for the purpose of shrinking the adversarial perturbation. In contrast, randomness
injection (RI) approaches aim to bewilder attackers by random noises on the outputs. To achieve
this, they inject random noises into different parts of models such as inputs [8, 44, 54], features
[34] and parameters [25]. In addition, [17, 31, 47] propose to combine randomness into training
process for certified robustness. Although randomness protects models from attacking, it inevitably
reduces clean accuracy. Apart from the above defenses, recently proposed transductive methods
[51, 52] are highly related to our method, which dynamically optimize network parameters at
test time to adapt attacks. Nevertheless, the test speed of dynamic defenses is slow because of
their optimization process at each inference time. Different from them, our method only needs to
adjust the parameter of our designed module instead of the whole network, thus is more practical.
Although our approach, like the others, defends against SQAs by changing the output probabilities,
the output modification in our method is obtained via optimizing a designed goal of keeping
forward information and concealing backward knowledge, instead of random noises. This is why
we obtain better accuracy and defense performance compared to RI methods which do not have a
clear optimization goal.

3 METHOD
3.1 Preliminaries and Motivation
Let us denote the victim model as M : X — Y, and the benign data as (x,y) € (X,Y). An attack
aims to craft an adversarial example x” which locates at the neighborhood of x but misguides the
model to an incorrect prediction class. The attack optimization problem can be summarized as

in I(x") = i My(x") - M;(x")),

i (x") x’énl\ll,r%x)( y(x") max i(x") 1)
where N, (x) = {x’|||x — x||, < r} indicates the [, ball around x with a radius r, and M, denotes
the predicted logits (or probabilities) of the y-th class. An effective attack algorithm can make
I(x") < 0 so that the predicted class is no longer the true label y. A common method to solve (1)

is to iteratively optimize the objective function by gradients of [(x’) w.r.t. x’, namely projected
gradient descent (PGD, [36]) algorithm.
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However, for SQAs, the gradient cannot be obtained directly since only the output probability of
the victim model is accessible to attackers. Therefore, SQAs use direction derivation or random
search method to estimate the gradient. The key of these methods is to utilize the forward output
of queries to infer backward gradient information. Accordingly, we propose a defense idea that
modifies the forward outputs slightly to prevent attackers from estimating backward gradients.

3.2 UniG: Unifying Data’s Gradients to Defend against SQAs

We intend to change the gradient information contained in the output of queries to fool the attacker
into a distorted attack trajectory, and simultaneously keep the output of clean data as far as possible.
The overall goal of our method can be summarized as follows:

{M(x) ~ M(x)

G(x) # G(x) @

where M(x), M(x) denote the output logits (probabilities) of the vanilla and defense model respec-
tively, and G(x), G(x) are the backward gradient of inputs of the vanilla and defense model. We
use the gradient constraint to guide our slight modification on outputs. The gradient information
contained in our slightly modified output M(x) is the artful direction G(x) instead of the true
vulnerable trajectory G(x). The SQA attacker hereby can only dig an attack direction G(x) from
the output of queries to generate AEs, which is designed to be weaker than G(x). Here, we choose
G(x) to be the direction of the universal attack perturbation [58] which is consistent between
different samples and proved to be weaker [5, 56—58] than normal attack directions which are
image-specific [36]. According to the above discussion, we propose an optimization problem to
generate our modification on outputs to defend against SQAs.

mA;iIn Z(G(xi) - G(xi41))? (3)

st |IM(x) = M(x)|| < 6,

The constraint obviously corresponds to the slight modification target, where § controls the degree
of output offset. The objective function corresponds to the goal of distorting the gradient information
into a universal one which is less threatening, where G (x;) represents the gradient of the i-th input.
To solve problem (3), a direct way is to finetune the victim model using the above loss function.
However, this solution is not only resource-consuming, but also difficult because of millions of
network parameters and training samples. Therefore, we propose an alternative solution. We replace
M with a simple module A, which is inserted into the penultimate layer of the victim model as
shown in Figure 1(a). The parameter of the victim model remains unchanged and only the module
A needs optimization. Moreover, we choose to unify the gradient of features instead of inputs to
simplify the optimization process. The overall problem becomes the following formulation,

b-1
min (A, x) = ;(g(x,-) ~ (1))’ @
st. If-fl<e.

where f , g, and b respectively denote feature, feature gradients, and batch size as shown in Figure
1(a). The operation of A is designed to do Hadamard product with input features, that is, f = A o f,
which is simple but effective. To keep forward outputs, every element of A is expected to be close
to one, while the objective loss in problem (4) gives an instructional direction to optimize A around
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all-one matrix. As a result, the slight modification on features plays an important role in distorting
backward information to mislead attackers.

We solve problem (4) using gradient descent (GD) algorithm, and the process of optimizing A is
integrated into the forward calculation of our defense model, see Alg. 1. At each inference time,
the module A is re-optimized from random Gaussian initialization using current test data with
the objective function in Eq. (4). Noticing that test data have no labels, we utilize the prediction
label as the true label in cross-entropy loss to calculate §(x). It is worth noticing that the objective
loss is easy to optimize because only the linear layer and our designed module are involved in the
calculation. Our experiment results show that with only one iteration step, the gradient variance
can be efficiently minimized to significantly improve the robustness under SQAs.

Algorithm 1 Forward Calculation of UniG Model (The symbols correspond to those in Figure 1(a))

Input: batch data: x; optimization iterations: p; learning rate: «; constraint parameter: §
Output: model prediction: §
1: Initialize parameters A with A ~ N(1,0.5)
2: fori=1topdo
32 Compute f = Net(x),y = L(f), § = L(A(f)), c = OneHot(y), CE_loss = — Y ¢; - log(9;)
4:  Calculate and min-max normalize the gradient §
5. Compute the objective loss [(A, x) in problem (4)
6 UpdateAwithA<—A—a~%
7. Clip Awith [|A;j; — 1l < 8
8: end for
9: Compute final output § = L(A(f)) with optimized A
10: return @

3.3 Discussion

To further elucidate our method, we display the training process and the final value of A as
showing in Figure 2(a),3(b). From Figure 2(a), we observe that the gradient unification loss is
well-optimized with one iteration step (The forward consistency loss is calculated by || f - f]l to
show the modification on forward features is tiny.). Figure 3(b) shows partial final values of the
matrix A (the parameter of the designed module), which demonstrates that although randomly
initialized, the value of A is highly dependent on the current batch data after optimization, thus is
different for each query. The difference is because that gradients are naturally diverse for different
data, so unifying them requires divergent values of the matrix A.

Since our method claims that we fool attackers into a universal attack direction, we visualize
the AEs and adversarial perturbations of our UniG model to verify it. The result in Figure 3(a)
directly illustrates our statement, where the adversarial noise of our UniG model keeps consistent
for different images, while that of the vanilla network obviously is different for diverse images.
Because of the distortion of image-dependent attack directions, in our defense, the marginal loss in
Eq. (1) hardly decreases as the number of queries increases, see Figure 2(b).

Considering a possible situation where the model receives a single image to test, our approach,
like other dynamic defenses based on batch optimization, needs a solution to deal with this condition.
One possible way is that we could cascade several training data with the test sample to perform
such optimization for the single test sample situation. We specifically discuss it with experiment
results in Section 4.6.
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Fig. 2. (a) Objective function value (UniG Loss in Eq. (4)) w.r.t iteration step of our defense model. Since each
forward calculation the loss is re-optimized with the current test data, we randomly choose one forward
process to present the loss change. (b) Margin loss w.r.t Query times of four compared defenses under Square
attack. A higher loss means a more robust network.

P\~

(a) Adversarial examples and noises of UniG model (b) The partial value of the matrix A for different inputs

Fig. 3. (a) Adversarial perturbations and the corresponding AEs of our UniG model for different images in
one test batch, where the perturbations are the same for diverse images. (b) The partial value of the matrix A
for different inputs (queries), indicating that different data lead to divergent values of the matrix A.

4 EXPERIMENT
4.1 Setup

Datasets. We experiment on two widely-used classification datasets: CIFAR10 [30] and ImageNet
[19]. For CIFAR10, the whole testset is used to evaluate method performances. For ImageNet, we
randomly choose 1K images (one image for one class) from the validation set as test data.
Models. PreResNet18 [24] and WideResNet-50-2 [55] are used as typical model architectures. On
CIFAR10, PreResNet18 with vanilla training achieves 94.26% accuracy. On ImageNet, we directely
use the pre-trained model from torchvision package of PyTorch [42], which has 78.47% accuracy.
Score-based Query Attacks. We evaluate defense methods under five popular SQAs, including
Square [3], SimBA [23], Sign [1], NES [27], and Bandits [28]. The first two are based on random
search and the rest are based on gradient estimation. Most of the results in this paper are obtained
under the untargeted f,, norm attack, but we also present the results of the targeted and £ norm
attack in Section Performance under More Attacks for completeness. The £, attack bound is set as
8/255 for CIFAR10 and 4/255 for ImageNet, and the I, attack bound is set as 1 for CIFAR10 and 5
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for ImageNet. The query budget of SQAs is set to be 100 and 2500 for evaluating defense methods
under different attack intensities.

UniG setting. The UniG module is plugged into vanilla training models. For its parameters, we
set §=0.5, p=1, =10 on CIFAR10 and 6=0.1, p=1, #=1 on ImageNet.

Compared defenses. The proposed defense method will be compared with adversarial training
(AT, [22, 46]), random noise defense (RND, [44]) and its enhancement (RND-GF), parameter noise
injection (PNI, [25]), dynamic inference (DENT, [51]), mixup inference (Mixup, [40]), Anti-adversary
combination (Anti-adv, [2]) and adversarial purification based on Diffusion models (DDPM, [37])
approaches. The first one is the most popular defense, the second to fourth ones belong to RI, the
fifth one is a dynamic defense, and the rest are denoising methods. The AT models are obtained from
Robustbench! [18] and we choose the most robust one for comparison. Random noise defense, which
adds random noise into inputs or outputs, is conducted with noise variance 0.02, as recommended
by [44]. RND-GEF is fulfilled by fine-tuning the baseline model with 100 epochs, and then we test it
using variance 0.05. The model of PNI is obtained from the corresponding github code? and we
choose the best for comparison. DENT is a transductive method and we insert it into the vanilla
training model, as the same as UniG. We try different mixup ratios and choose the best one 0.9 to
combine Mixup® method with our baseline and AT model. For Anti-adv*, we use the recommended
iteration number K = 2 and the anti-adversary step is set to 4/255 for the best performance since
the common test attack step is 8/255. We directly utilize the pre-trained diffusion model in DDPM
code® to denoise inputs for each query.

Metric. For a good defense, we need to consider three folds: the clean accuracy, the logit
difference, and the robust accuracy, i.e., the remaining accuracy under attacks. The logit difference
reflects the output difference between vanilla model and the current defense model, whose value is
highly proportional to the probability difference and more pronounced to observe. In this paper,
we use [; norm to measure it. Other norms can be used as well and the conclusion is similar. The
smaller it is, the more friendly the model is to users.

4.2 Defense Performance

Table 1 comprehensively reports the defense performance of the proposed UniG together with AT,
RND, RND-GF, PNI, DENT, Mixup, Anti-adv and DDPM. Due to the huge computing overhead of
DDPM, we just test its performance under the Square attack which is classical and popular. AT
could improve the robust accuracy under different attacks but it degrades clean accuracy by about
7% for CIFAR10 and 10% for ImageNet. The other defenses undertake effort to avoid the downgrade
on clean accuracy, but the robust accuracy is generally lower than AT, especially on CIFAR10.
Although DENT performs well on ImageNet under various SQAs, it sacrifices the accuracy of output
probabilities. In fact, we discover that the output probability of DENT model is almost composed of
zeros or ones, making SQAs degrade into DQAs and hereby achieving good performance. Another
defense named Mixup also outperforms our approach in some cases on ImageNet, however, it
requires thirty additional forward calculations to perform its stochastic input mixing and output
ensemble averaging, which adds too much computation burden in practice. By contrast, our UniG
model achieves similar defense performance as AT, actually for most cases UniG is more robust
than AT, and meanwhile greatly remains the clean accuracy, almost the same as the vanilla training.
For logits difference, the advantage of UniG is more significant that the logits difference is generally

Ihttps://robustbench.github.io/

Zhttps://github.com/elliothe/CVPR_2019_PNI
Shttps://github.com/P2333/Mixup-Inference
“https://github.com/MotasemAlfarra/Combating-Adversaries-with-Anti-Adversaries
Shttps://github.com/NVlabs/DiffPure
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Table 1. The comparison of different defense methods under I, norm attacks (query = 100/2500) on CIFAR10
and ImageNet. The clean accuracy, logits difference and robust accuracy are reported. The higher the clean
accuracy and robust accuracy, the smaller the logits difference, indicating the better performance of the
defense method. The best results are in bold, and the 2nd ones are underline.

Datasets ‘ Methods ‘ Clean ‘ Logit-diff ‘ Square ‘ SimBA ‘ Sign ‘ NES ‘ Bandits

Vanilla | 94.26 - 38.79/0.46 | 41.03/0.45 | 48.25/0.26 | 75.28/10.06 | 68.81/25.92
AT 87.35 |  7.00 79.15/67.34 | 83.61/71.36 | 78.28/64.43 | 85.30/79.49 | 83.90/74.33
RND | 91.14 | 153 65.04/51.22 | 74.88/63.07 | 64.71/51.95 | 85.67/69.27 | 67.79/58.27
RND-GF | 92.87 1.81 78.02/69.08 | 82.67/75.45 | 72.44/63.15 | 89.16/81.73 | 82.07/74.89
PNI | 8593 | 8.16 64.66/51.54 | 64.13/57.41 | 65.31/50.48 | 80.77/69.30 | 66.93/56.81
DENT | 94.25 | 735 81.78/57.71 | 75.23/54.00 | 64.09/46.18 | 88.60/67.80 | 74.55/69.75
Mixup | 94.32 | 843 76.97/37.72 | 75.50/54.82 | 51.88/15.09 | 90.55/75.46 | 78.91/73.96
Anti-adv | 92.63 | 3.23 62.45/30.31 | 57.70/31.54 | 52.80/29.64 | 86.14/58.36 | 70.55/66.05
DDPM | 88.88 | 230 52.50/42.80 - - - -
UniG | 9426 | 1.09 | 81.90/77.80 | 89.79/86.42 | 72.58/68.81 | 89.55/67.83 | 80.31/75.86

Vanilla | 78.47 - 52.71/6.70 | 64.66/6.28 | 51.00/11.77 | 68.27/59.64 | 67.64/35.23
AT 68.41 | 4923 | 62.25/51.92 | 67.50/51.92 | 60.88/56.10 | 65.67/65.67 | 66.49/61.64
ImageNet | RND | 77.14 | 13.73 | 61.13/48.44 | 71.22/65.25 | 59.40/54.77 | 74.83/72.51 | 70.02/67.42
DENT | 78.60 | 9873 | 68.85/63.47 | 77.69/77.16 | 70.74/59.74 | 77.03/74.67 | 76.62/74.25
Mixup | 77.95 | 62.06 | 69.75/54.57 |  77.65/- 68.60/- 76.39/- 75.44/-
Anti-adv | 72.92 | 49.76 | 50.04/28.40 | 62.04/53.27 | 53.23/42.29 | 69.27/61.40 | 63.44/61.89
UniG | 7847 | 275 | 66.14/52.88 | 78.22/77.44 | 57.28/45.51 | 77.68/71.40 | 74.14/72.65

CIFAR10

reduced by an order of magnitude, which means UniG is much more user-friendly than the other
defenses.

As a plug-and-play module, UniG can be readily applied in any network, for example in a model
trained by adversarial examples. Besides, since Mixup approach is based on AT models, we also
conduct it to compare our performance here. The performance of UniG and Mixup in AT can be
found in Table 2. From AT, the classification accuracy of UniG-AT is well kept on clean examples
and only drops 3.04% on CIFAR10 under 2500-query Square attack, while the AT model drops
about 20%. Similar performance could be found on both CIFAR10 and ImageNet under different
attacks. Besides, UniG surpasses Mixup in terms of robustness both on CIFAR10 and ImageNet. The
improvement of the Mixup method is unstable, seeing the drop in robust accuracy on ImageNet.

Table 2. The performance of AT-based UniG model under SQAs (query = 100/2500) on CIFAR10 and ImageNet.

Datasets ‘ Methods ‘Clean‘ Square ‘ SimBA ‘ Sign ‘ NES ‘ Bandits

AT 87.35 | 79.15/67.34 | 83.61/71.36 | 78.28/64.43 | 85.30/79.49 | 83.90/74.33
Mixup-AT | 86.53 | 84.91/82.56 | 86.59/86.29 | 79.61/77.88 | 85.66/84.80 | 84.71/83.99
UniG-AT | 87.36 | 84.61/84.32 | 86.98/86.98 | 83.87/83.87 | 87.36/86.49 | 75.47/73.03

AT 68.41 | 62.25/51.92 | 67.50/51.92 | 60.88/56.10 | 65.67/65.67 | 66.49/61.64
Mixup-AT | 67.79 | 59.26/52.20 60.54/- 64.40/- 67.40/- 67.34/-
UniG-AT | 68.36 | 65.49/63.71 | 68.29/68.09 | 64.94/64.94 | 68.36/67.68 | 67.60/66.92

CIFAR10

ImageNet

4.3 Performance under More Attacks

Before, we have shown the performance under current popular SQAs in an untargeted setting
and a £y-norm bound. In this section, we further evaluate the performance of our method under
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other settings, i.e., £, / £, norm and target (-T) / untarget (-UT) attacks as listed in the first row
of Table 3. We adopt Square attack, the current SOTA SQA attack, for robustness evaluation. As
Table 3 verified, plugging UniG into vanilla and AT model can both achieve significant robustness
improvement with a little clean accuracy drop. For instance, on CIFAR10, our UniG-Vanilla model
improves robust accuracy by no less than 71.29% under all attack settings with 2500 queries, and
UniG-AT improves by > 13.99% compared with AT model, while our method keeps the same or
even higher clean accuracy.

Table 3. UniG under £/l norm and target (-T) /untarget (-UT) Square attack (query = 100/2500)

Datasets ‘ Methods ‘ Clean ‘ foo-T ‘ fo-UT £-T ‘ £-UT
Vanilla 94.26 45.24/0.35 38.79/0.46 56.56/6.60 62.21/5.66
CIFAR10 UniG 94.26 | 78.26/71.64 | 81.90/77.80 | 85.78/84.83 | 87.66/80.12
AT 87.35 | 77.74/66.37 79.15/67.34 76.87/65.51 81.23/68.13
UniG-AT | 87.36 | 83.87/83.87 | 84.61/84.32 | 79.50/79.50 | 84.74/84.74
Vanilla 78.47 | 59.79/14.91 52.71/6.70 50.30/7.14 41.59/7.30
ImaceNet UniG 78.47 | 64.35/51.79 | 66.14/52.88 | 55.95/38.21 | 56.97/40.41
& AT 68.41 | 62.25/53.77 62.25/51.92 55.14/41.63 55.07/39.61
UniG-AT | 68.36 | 65.35/65.08 | 65.49/63.71 | 62.21/59.74 | 61.66/59.68

4.4 Adaptive Attack

In general, an adaptive attack refers to an elaborate white-box attack with full knowledge of the
defense strategy. Nevertheless, in the real-world cases, the attacker and the victim model are
double-blind to each other, which means the defense strategy is not prior information for the
attacker. Therefore, we consider another two adaptive attacks for black-box conditions: model
stealing for transferable attacks [29, 38] and tuning hyper-parameters for optimal attacks [44].

The first one could utilize model outputs to estimate a surrogate model and then use the white-
box adversarial examples of the surrogate model to attack the original model based on attack
transferability [41]. We here adopt two classical and practical steal-based attacks, eg. MAZE®
[29] and KnockoffNet’ [38], to verify the effectiveness of our method. We use the recommended
hyper-parameters in [29], and the query budget is set to 3 x 10”. Table 4 demonstrates that UniG
still outperforms baseline and RND by > 20% under strong KnockoffNet attack. Although DENT
outperforms UniG under the KnockoffNet attack, its performance under the more practical MAZE
attack, which does not require a surrogate dataset as KnockoffNet does, is even worse than the
baseline model, while our UniG improves the robust accuracy by 20.2%.

For the optimal hyper-parameter attack, we follow the settings in RND [44] and choose different
hyper-parameters of Square, NES and Bandits attacks to find the optimal one. The result is shown
in Table 5, 6. As the square size or update step increases, our defense robustness decreases slightly,
but within the normal fluctuation range as demonstrated by the performance of RND.

Shttps://github.com/sanjaykariyappa/MAZE
"https://github.com/tribhuvanesh/knockoffnets
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Table 4. Remaining accuracy of RND, DENT, and  Table 5. Remaining accuracy of RND and UniG w.r.t.
UniG methods on CIFAR10 under steal-based adap-  square size of Square attack (query=100/2500) on

tive attacks. CIFAR10.
‘ Clean ‘ MAZE ‘ KnockoffNets square size ‘ RND ‘ UniG
Baseline | 94.26 | 65.00 21.95 0.05 65.04/51.22 | 81.90/77.80
RND 90.91 84.05 30.02 0.1 63.25/47.64 | 80.99/74.89
DENT | 94.25 | 59.06 64.14 0.2 62.01/42.89 | 79.64/72.16
UniG 94.26 | 85.20 50.28 0.3 60.83/41.05 | 78.79/70.11

Table 6. Remaining accuracy of RND / UniG w.r.t. update step of NES / Bandits (query=100/2500) on CIFAR10.

Attack | update step | 00001 | 00005 | 0001 | 0005 | 001 | 005
NES RND 87.49/79.29 | 86.58/78.38 | 86.58/78.38 | 85.79/71.09 | 83.85/68.36 | 74.73/59.24
UniG | 94.26/91.43 | 94.26/86.72 | 93.32/82.95 | 90.49/69.75 | 87.66/66.92 | 79.18/65.98
Bandits | KND 79.78/61.07 | 77.85/58.90 | 74.09/58.63 | 68.77/58.19 | 67.39/57.83 | 65.36/58.15
UniG | 94.03/86.15 | 89.45/82.34 | 83.78/78.79 | 80.34/75.95 | 80.34/75.94 | 78.48/76.47

4.5 Hyper-parameter Study

Previous experiments are conducted using the fixed hyper-parameters as introduced before. To
further evaluate our method, we here study the influence of different hyper-parameters on the
performance of our method. The main hyper-parameters include the forward constraint parameter
&, the optimization iteration p, and the learning rate . The parameter § decides the largest element-
wise difference between the parameters of our module and all-one matrix, which controls the
trade-off between the clean performance and the robustness of our model. The iteration p and the
learning rate « are related to the optimization process of our module A. For fast test speed, we
adopt one iteration and relatively bigger « to optimize A in the previous experiments, while in this
section, we adopt different p and « to observe their influence on clean accuracy, logit difference
and robustness under Square attack. As Fig 4(a) shows, with the increase of «, the logit difference
slightly increases, but is still less than which of other methods. And for the optimization iteration
p, we observe the same phenomenon as «, see Fig 4(b). For the change of §, the robustness keeps
stable, while the clean accuracy suffers from small fluctuations and the logit difference slightly
increases, see Fig 4(c). Apart from the aforementioned hyper-parameters, we also evaluate our
performance under different batch sizes, since our objective loss is dependent on the input test
data. The result in Figure 4(d) reveals that our method performs better with a larger batch size, but
even with the batch size equals to 32, our robustness performance is quite good.

4.6 Other Algorithmic Discussions

This section discusses the computational complexity and the single test sample situation of our
method. The first one is related to the time and space overhead of our method. And the single test
sample condition is necessary to study taking the reality into account.

Computational Complexity. Because of the optimization process contained in our model’s
forward calculation, the computational complexity of our approach inevitably increases. There are
two metrics to measure this complexity — the number of model parameters and the number of
Floating Point Operations (FLOPs) of the forward process. The first one reflects the space overhead
and the second one represents the time overhead. Table 7 reports the computational complexity of
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Fig. 4. The influence of hyper-parameters on our method. The main hyper-parameters of UniG are the
forward constraint parameter §, the optimization iterations p, and learning rate @, and the batch size b, which
influences our objective loss in batch-wise optimization.

Table 7. The model complexity of vanilla, DENT and UniG network. High FLOPs indicate high complexity.

Methods ‘ Parameter (M) ‘ FLOPs (GMac)

Vanilla 11.17 0.54
DENT 11.17 7.78
UniG 11.43 0.55

Vanilla, DENT and UniG model on CIFAR10 with the PreResNet18 architecture. Although there is
some growth in the number of network parameters, the FLOPs of our method is far less than that
of DENT, with a slight increase compared with that of the vanilla model.

Single Test Sample. Since it is possible that some times the network receives a single image, it is
imperative to discuss our performance in this case. Although our UniG, as well as most transduction
defenses like DENT, are based on batch optimization, we propose a solution that cascading several
(we use ten in our experiments) training data with test data to perform such optimization for the
single test sample situation. Based on the experiment result on CIFAR10 in Table 8, we can conclude
that although there is a debasement of robustness when batch size equals to one, our method still
surpasses baseline and DENT, and even slightly outperforms RND. We use Square attack and set
p = 0.05, query budget=100 here. Thus, although the primary application of our approach is not for
the single test sample situation, our method can still improve robustness for this case.

Table 8. Remaining accuracy of DENT and UniG under Square attack (query=100) on CIFAR10 for the case of
a single test sample. The last two columns are used to compare the performance.

| Baseline | DENT(bz=1) | UniG(bz=1) | RND | UniG(bz=256)

94.26 83.22 94.26 91.14 94.26
38.79 5.32 72.24 65.04 81.90

Clean
Square

5 CONCLUSION

In this paper, we propose a new defense method named Unifying Gradients (UniG) to defend
against the most threatening attack in real applications—score-based query attacks (SQAs). The
proposed method is based on the idea of distorting the gradient information contained in the
query output by a slight modification on the forward output to fool the attacker into a weaker
attack trajectory. In this paper, we choose the universal attack perturbation (UAP) as the weaker
direction. Accordingly, the change on outputs is explicitly optimized with the gradient unification
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loss which indicates the UAP path. To practically implement this modification, we propose a
Hadamard product operation module, which can be inserted into any pre-trained networks, and
optimizes its parameter with the designed forward consistency and backward distortion loss at
each inference time. With comprehensive experiments on CIFAR10 and ImageNet, it is verified that
our approach can significantly boost the robustness under SQAs with no sacrifice of clean accuracy
and a few variation on clean outputs. Noticing that the designed module is plug-and-play with
negligible extra computational overhead, the overall method has a promising application prospect
in the future.
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