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ABSTRACT

Over the last years we witnessed a renewed interest toward

Traffic Classification (TC) captivated by the rise of Deep

Learning (DL). Yet, the vast majority of TC literature lacks

code artifacts, performance assessments across datasets and

reference comparisons against Machine Learning (ML) meth-

ods. Among those works, a recent study from IMC’22 [16] is

worth of attention since it adopts recent DL methodologies

(namely, few-shot learning, self-supervision via contrastive

learning and data augmentation) appealing for networking as

they enable to learn from a few samples and transfer across

datasets. Themain result of [16] on the UCDAVIS19, ISCX-VPN
and ISCX-Tor datasets is that, with such DL methodologies,

100 input samples are enough to achieve very high accuracy

using an input representation called “flowpic” (i.e., a per-flow

2d histograms of the packets size evolution over time).

In this paper (i) we reproduce [16] on the same datasets

and (ii) we replicate its most salient aspect (the importance

of data augmentation) on three additional public datasets

(MIRAGE19, MIRAGE22 and UTMOBILENET21). While we con-

firm most of the original results, we also found a ≈20% ac-

curacy drop on some of the investigated scenarios due to

a data shift in the original dataset that we uncovered. Ad-

ditionally, our study validates that the data augmentation

strategies studied in [16] perform well on other datasets too.

In the spirit of reproducibility and replicability we make all

artifacts (code and data) available to the research community

at https://tcbenchstack.github.io/tcbench/.

1 INTRODUCTION

Traffic classification (TC) is a long investigated topic in the

networking community with seminal works dating back

nearly two decades ago [27] which have been instrumental

for bringing Machine Learning (ML) tools into networks

operation and management. Since then, the TC field has been

flourishing with literature and it is regularly surveyed [28,

30]. The recent hype of Deep Learning (DL) has expanded the

interest on the field with several contributions from flagship

ACM and IEEE conferences, including IMC [16].

Despite the progress made, reproducing (and replicating)

research can still be a challenge [18], especially for TC. This

is often rooted back in the well known self-awareness that “a

scientific publication is not the scholarship itself, it is merely

advertising of the scholarship” [5]. For the networking field,

reproducibility has become more of a commonplace in the

last decade, thanks to the emergence of tools (such as spe-

cialized containers [14]), community-wide awareness (such

as dedicated workshops [34]) and policies (such as ACM

badging [10]). Considering TC, difficulties are knowingly

aggravated by data availability (yet, see Sec.2.3 for a positive

outlook) and pertinence (i.e., due to datasets bias [19] and

ageing, which mandates replication across several datasets).

Following a different direction than previous literature,

this paper aims to reproduce and replicate research results

from a recent TC study. In other words, our final goal is not

only to investigate the scientific aspects behind the method-

ologies under study per-se, but to enable the research com-

munity to take advantage of our code base and artifacts such

as models, logs, and curated datasets with a complementary

website to document and navigate the artifacts (see App. B).

More in detail, we aim to reproduce the most important

aspects of an interesting recent work on TC that appeared as

a short paper in IMC’22 program [16]. This study uses recent

promising DL techniques (notably, few-shot learning, self-

supervision via contrastive learning and data augmentation)

that we believe to be worthy of community-wide interest

as they relate to practical problems that plague ML and DL

application for TC (e.g., poor model generalization and label

scarcity). Summarizing our main findings:

• Regarding reproducibility, from a qualitative viewpoint,

we were able to reproduce most of the results of [16],
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Figure 1: Example of a packet time series transformed into a flowpic representation for a randomly selected

YouTube flow in the UCDAVIS19 dataset. Heatmaps are in a log scale normalized between the max and min value for

each flowpic, with higher packets count values having darker shades (images better viewed digitally).

e.g., confirming the interest in few-shot learning, self-

supervision via contrastive loss and data augmenta-

tion; from a quantitative viewpoint, we incurred in

unexpected results with large discrepancies that we

were able to drill down and explain. Furthermore, with

respect to the original publication, we calculated con-

fidence intervals on our results to achieve better sta-

tistical validity, which may require tempering some of

the observations in [16].

• Concerning replicability, we find qualitative agreement

and confirm that the data augmentation policies se-

lected in [16] behave consistently on other datasets.

• Philosophically, this work could be read as a chapter

of the famous Queneau’s book “Exercises in style”[31],

cast to tell a traffic classification story. In particular,

some aspects of the target paper (that we discuss in de-

tail later) are missing despite being key for effectively

reproducing the study.
1
Hence, readers must be aware

that our resulting exercise is one of the many styles to

tell the same story [31].

In the following, we first provide background about the

target study (Sec. 2). We then lay out our replicability and

reproducibility goals, providing information about artifacts

(Sec. 3).We continue by discussing our experimental protocol

and results (Sec. 4) before concluding with final remarks (Sec.

5). Details that we believe to be needed to make the paper

self contained are deferred to App. C–F.

2 BACKGROUND AND MOTIVATION

Due to its nature, the present study falls in the broad area of

reproducibility that started becoming a popular subject in

1
We carried out our study based onwhat is reported in [16]. In fact, due to the

double blind policy of the submission, we reached out multiple times to the

original authors only in the weeks related to the shepherding of this article

but we received only short and delayed responses. It is worth mentioning

that we found a git repository [9] related to [16] but it presents several

important limitations (see App. D) and cannot be used to replicate [16].

networking a decade ago [14]. Given its breadth, it is out of

the scope of this paper to review the whole reproducibility

discipline. Conversely, we focus on the selected target paper,

starting with an overview of its scope and contributions

which we expand with relevant related work.

2.1 Target paper

In this work we replicate [16], which in the remainder of

this paper we will also refer to as Ref-Paper or Horowicz et al.

In this short study, Horowicz et al. quantify the performance

of classification tasks when using only up to 100 training

samples (i.e., few shot learning scenarios) yet increasing the

training dataset with synthetic samples created with data

augmentation functions. Authors consider both a supervised

and an unsupervised setting, the latter represented by the

popular contrastive learning approach named SimCLR [6],

which starts from pre-training a model in an unsupervised

fashion and later fine-tunes it to address a target task us-

ing a small number of labeled samples. Rather than using

packet time series, Horowicz et al. use a flowpic input rep-

resentation, i.e., a 2d summary of a network flow dynamics.

Overall, we identify three contributions from the Ref-Paper:

(𝑖) a benchmark of the effect on the performance of Convolu-

tional Neural Network (CNN) models across 7 data augmen-

tations (Sec. 2.3), tested on two datasets, UCDAVIS19 and ISCX
(Sec. 3.4); (𝑖𝑖) an evaluation of SimCLR (Sec. 2.4) and its sensi-

tivity to the number of samples used during fine-tuning; (𝑖𝑖𝑖)

an ablation of the fine-tuning performance when using alter-

native input formats to flowpic (Sec. 2.2). In the remainder

of this section we expand on each of those contributions.

2.2 Input data representation

Target work. The flowpic representation used in the Ref-

Paperwas originally introduced by (part of) the same authors

at an INFOCOM’19 workshop [33]. In Figure 1 we show

a YouTube flow (extracted randomly from the UCDAVIS19



dataset) as well as its related flowpic at different resolutions.

The left most plot shows the packet time series. Notice the

expected bursty nature typical of video streaming services.

The Ref-Paper computes a flowpic using only the first 15s

of the time series. Specifically, both the 15s and the packets

size range (0-1500) are split into bins based on the resolution

of the target flowpic.
2
For instance a 32×32 flowpic leads

to 469.8ms time bins and 46B packet size bins. Then, the

count of the packets occurring in each time window are tal-

lied based on the defined packet size bins. In other words,

each time window provides a frequency histogram of the

packet sizes, and by vertically stacking all the histograms

we obtain a “picture” of the flow dynamics. For instance, at

the 32×32 resolution, the vertical stripes match the packet

bursts of the original time series. This sort of patterns make

the flowpic representation appealing for CNN-based DL ar-

chitectures as convolutional layers are explicitly designed to

extract features to detect such patterns. Yet, the higher the

flowpic resolution, the sparser the representation, and the

higher their computational process. While flowpic was in-

troduced with a 1500×1500 resolution, in the Ref-Paper this

is compared against a 32×32 resolution, i.e., a mini-flowpic.

Related work. Despite being well suited for CNN architec-

tures, the flowpic representation is not a mainstream choice

for TC as it requires to observe multiple seconds of traffic.

This can enforce a late/post-mortem classification (i.e., after

the flow ends), which, while still useful for monitoring, might

not fit network management needs—prioritization, schedul-

ing and shaping benefit from classification after the first few

packets, so waiting for multiple seconds to take action can be

sub-optimal. Conversely, the most common input features in

the traffic classification literature are packet time series (e.g.,

the size, direction, inter-arrival time of the first 10 packets

of a flow) and payload bytes (e.g., the first 784 L4 payload

bytes). Since time series (and payload) features enable early

classification, they have been the go-to choice since seminal

works [4, 7, 26]. Additionally, time series and payload input

can be combined in “multi modal” architectures [2, 3, 24] that

have become popular in networking and other fields—rather

than selecting either one representation or the other, a DL

model can be designed to learn from different input formats

at the same time. While we acknowledge it would be interest-

ing to benchmark architectures and input representation, it

is beyond the scope of our reproducibility/replicability study.

2
Traffic directionality is not considered when composing the flowpic in the

Ref-Paper although the representation could be reformulated to take it

into account.

2.3 Label scarcity and data augmentation

Target work. Supervised learning requires large labeled

datasets. As these are notoriously difficult to share and label-

ing is costly, the ability to learn from as few labeled samples

as possible is particularly appealing.

In this direction, the Ref-Paper considered two mid-sized

datasets—UCDAVIS19 [32], which contains 5 classes with up

to≈1,000 samples per class, and ISCX-VPN and ISCX-VPN [29],
which were processed and combined to obtain 10 classes

with a few flows each—and investigated the classification

performance when learning from only 100 samples. To do

so, Horowicz et al. considered data augmentation techniques

applied to either flowpics (e.g., rotation) or to the packets

time series (e.g., altering inter-arrival times) from which

the flowpics are then computed. The Ref-Paper shows that

simple data augmentations can indeed be beneficial even

when using a few samples (with authors preferring time

series transformations over image-related ones). These are

interesting findings worth reproducing—on flowpic in the

context of this work—andwe believe they should be extended

to packet time-series too in a future work.

Relatedwork. Concerning label scarcity, until recent times

only small-sized datasets for TCwere publicly available—tens

of classes and a few thousands of flows at best [29, 32]. This

situation changed with the release of significantly larger

datasets—hundreds of classes and millions of flows [23, 24,

36]. Whereas this encouraging trend is slowly making TC

public datasets reach the scale of computer vision datasets,

reducing dependency from labels is still a desirable goal and

an open question for the ML research community as a whole.

Concerning data augmentation we find that, while it is

widely adopted in computer vision (from the very first work

at the root of the hype of CNNs in the field [21]), only a hand-

ful of studies use it in TC literature. Particularly relevant is

[32] where the authors, beside introducing the UCDAVIS19
dataset, use as input packet time series, which are sampled

into “subflows”. Specifically, given the packet series (size, di-

rection and inter arrival time), the authors propose to sample

values based on different policies (e.g., selecting one packet

every N from a random starting point); hence, from one flow

they obtain multiple “subflows” which semantically corre-

spond to a coarser-grained “view” of the original flow. The

authors use UCDAVIS19 and ISCX-VPN with a two-step learn-

ing process: first, they pre-train a model in an unsupervised

manner, targeting a 24-way regression problem from the gen-

erated subflows, i.e., they create a model that, given a subflow

as input, can provide 24 metrics extracted from the flow; then

such model is fine-tuned to obtain the target classifier using

up to 20 labeled samples per class. In other words, [32] uses

the two-step training approach of the Ref-Paper but does not

adopt contrastive learning. Another recent study about data
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Figure 2: Contrastive learning principles.

augmentation is [17] where the authors use a GAN-based

approach that learns to augment packet time series during

training. Conversely, in the Ref-Paper the augmentations are

designed based on domain knowledge. Overall, while we

believe that a broader and more systematic (i.e., across mul-

tiple datasets and inputs) comparison of data augmentation

techniques in the TC field should be of community-wide

interest, in our study we use the same point of view of the

Ref-Paper.

2.4 Contrastive learning

Basic principles. Contrastive learning is particularly rel-

evant and among the main reasons for our selection of the

Ref-Paper. However, to understand this we first need to re-

view some basic principles of DL model training.

At a high level, a supervised DL classifier is typically a

composition of a feature extractor and a linear classifier.

During training, the feature extractor learns how to project

the input data into a latent space to group samples of the

same class and distance them from other classes samples.

Relying on such geometrical separations, a simple linear

classifier suffices to identify classes but it is important to

underline that such geometrical properties in the latent space

are implicitly learned, i.e., the traditional training loss has no

knowledge of the latent space as it observes points after the

final linear layer, not in the latent space.

Conversely, contrastive learning is a special type of self-

supervision which aims to explicitly enforce geometrical

properties in the latent space by means of data augmenta-

tions. Figure 2 sketches the principles behind the technique.

Input samples are transformed into “views” using augmenta-

tion functions. Then views are compared using a “contrastive

game”: a given view (an anchor) is compared in the latent

space against other views of the same original image (pos-

itive samples) and all other views (negative samples). The

contrastive loss function (namely InfoNCE for SimCLR) aims

at pushing an anchor closer to its positives and distancing

it from negatives. This training is unsupervised and a given

anchor is forced to be similar to other views of the same

image—in a sense, views of the same image form “their own

class” even if negative samples can be of the same under-

lying class of the anchor. Hence, this is a harder problem

than when using supervision and it is intentionally designed

to push the learning of the representation. Figure 2 depicts

one specific configuration of (anchor, positive, negatives) but

during training all possible permutations are computed. The

figure also shows the setting defined by SimCLR, but other

variations are possible (e.g., the anchor can be the original

image, and some contrastive learning algorithms do not use

negative samples [11]). Once the feature extractor (a.k.a., the

representation) is pre-trained, it can be extended by fine tun-

ing a linear layer and obtaining the final classifier. Overall,

the more powerful the representation, the lower the number

of samples required for fine-tuning.

Target work. Contrastive learning’s appeal comes from

(1) the ability to pre-train a feature extractor in an unsuper-

vised manner and (2) the possibility of fine-tuning with just

a few labeled samples. Specifically, Horowicz et al. pre-train

using 100 unlabeled samples transformed based on packet

time series transformations (Change RTT and Time shift)
3

using SimCLR and fine-tune using only up to 10 labeled

samples. Results show that, in some scenarios, classification

performance is almost on-par with fully supervised training.

Related work. The closest related work to the Ref-Paper

is [35], where the authors applied another off-the-shelf con-

trastive learning method (Bootstrap Your Own Latent - BYOL

[11] which, unlike SimCLR, does not rely on negative sam-

ples) by pre-training on augmented data and fine-tuning

on a few samples. The authors relied on the same dataset

as in the Ref-Paper but adopted packet time series as their

input (rather than flowpics), leveraging the data transforma-

tions proposed by [32] and a ResNet18 architecture. Over-

all, [35] shows comparable performance with respect to the

Ref-Paper. A fewmore recent studies investigated contrastive

learning on raw packet bytes as input [25, 37] and compared

it against transfer learning and meta-learning [13], highlight-

ing its recent relevance.

3 METHODOLOGY

3.1 Experimental goals

As previously stated, this work aims (i) to reproduce the main

results of the Ref-Paper, employing the same methodologies

and data, as well as (ii) to replicate the Ref-Paper’s results by

considering three other datasets to confirm the validity of

its findings. In more detail, our specific goals are:

(G0) Provide a baseline analysis of the TC problem using

classic Machine Learning (ML) models.

3
The augmentations used in [16] are inspired by the ones used in [32].



Table 1: Outline of the Ref-Paper contributions, their points of improvement and our contributions.

Ref-Paper contributions Points of improvement Our contribution

Test on 7 data augmentations on UCDAVIS19 and ISCX Issues with ISCX; no statistical analysis of classif. perf. Extra 3 datasets; added statistical analysis

Evaluate SimCLR and its sensitivity to fine-tuning dataset size Lower performance with respect to the Ref-Paper Expansion of training set size

Performance comparison on fine-tuning with alternative inputs Analysis expansion to other parameters Fine-tuning sensitivity to dropout and augmentation

(G1) Reproduce the benchmarking of the proposed data

augmentation techniques for flowpics as a preliminary

selection step for their use in contrastive learning. We

aim for a quantitative reproduction (G1.1) and a quali-

tative reproduction (G1.2) of the augmentations ranks.

(G2) Reproduce the SimCLR-related results with special

attention to their internal details (e.g., use of dropout,

projection layer size, training set size and impact of

the combination of augmentations used).

(G3) Replicate the benchmarking of data augmentation tech-

niques on another set of public datasets.

By addressing G0 we aim to quantify the classification

task’s degree of difficulty using ML methods and to assess if

the use ofmore sophisticatedmodeling techniques is justified.

Additionally, since the Ref-Paper does not provide confidence

intervals nor perform any kind of statistical analysis of their

results,G1 andG2 aim to not only merely reproduce the orig-

inal results but, also, to add a layer of statistical significance

to them. Finally, with G3 we assess whether (statistically

relevant) findings can be extended to other datasets.

3.2 Experimental protocol

We closely followed the configurations and scenarios from

the Ref-Paper which we complemented with ablation studies

and modeling campaigns. In this section we provide a sum-

mary of the main aspects of [16]. Details are deferred to the

related evaluation sections where quote blocks as

example quote block

highlight details from the Ref-Paper that require discussion.

DL architectures. We adopted the same CNN-based net-

works of the Ref-Paper, namely a LeNet5 [22] (i.e., a mini-

flowpic) and a larger version of it (i.e., a full-flowpic).
4
We

also explored the impact of dropout layers and the size of

SimCRL projection layers (see 4.4.2). In addition to our code

artifacts, the printout of the networks is reported in App. C.

Data augmentation. Next to applying no augmentation,

we adopted the 6 augmentations used in the Ref-Paper—

3 packet time series transformations (Change RTT, Time

4
The terminology in the Ref-Paper is overloaded as mini- and full-flowpic

also refer to the resolution of the flowpic created.

Shift and Packet Loss) and 3 image transformations (Rota-

tion, Horizontal Flip, and Color jitter)—with the same hyper-

parameters (see [16] for details).

Training steps. As in the Ref-Paper, we compared two

DL modeling techniques: fully supervised training and Sim-

CLR + fewshot fine-tune training. For the former, samples are

augmented before starting the training. For the latter, given

a labeled dataset and a selected augmentation function, each

sample is processed to create 2 views of it using the Change

RTT and Time shift transformations. Both views are created

when forming the mini batches used during training. First,

a representation of the dataset is learned by pre-training a

model via SimCLR, contrasting pairs of augmented “views”

of a sample. Then, a new model is formed by freezing the

pre-trained representation and combining it with a classifier

layer which is fine-tuned based on a few labeled samples. As

in the Ref-Paper, we use Change RTT and Time Shift as data

augmentation functions, yet we complement the analysis

testing other augmentation pairs too. Augmentations are

used only during pre-training.

Comparing contributions. To compare our study with

[16], we provide a summary of the Ref-Paper contributions in

Table 1, highlighting the points of improvement we identified

(some of them described in the coming sections) and the

actions we took to expand on them, apart from the basic

reproducibility and replicability efforts described above. We

remark that this table does not cover every contribution in

this paper (e.g., it does not mention the added ML baseline),

but rather contrasts what the original paper covered and

how we increased the scope of the original contributions.

3.3 System and Artifacts

We performed 13 modeling campaigns, each consisting of

the application of a target configuration across multiple ran-

dom seeds and data splits (see Sec. 4 for details) for a total of

2,760 individual experiments. This entailed the implementa-

tion of a modeling framework able to properly track hyper-

parameters, performance metrics and other configurations as

well as output artifacts (e.g., models, summary report, logs).

For this tracking we relied on AimStack5 which we com-

plemented based on our needs (e.g., the framework has only

5
https://github.com/aimhubio/aim

https://github.com/aimhubio/aim


Table 2: Summary of datasets properties.

Name Partition Filter Classes
Flows Pkts

all min max 𝜌 mean

[32] UCDAVIS19
pretraining

none 5

6,439 592 1,915 3.2 6,653

human 83 15 20 1.3 7,666

script 150 30 30 1.0 7,131

[1] MIRAGE19 n.a.
none

20
(∗) 122,007 1,986 11,737 5.9 23

>10pkts 64,172 1,013 7,505 7.4 17

[12] MIRAGE22 n.a.

none

9

59,071 2,252 18,882 8.4 3,068

>10pkts 26,773 970 4,437 4.6 6,598

>1,000pkts 4,569 190 2,220 11.7 38,321

[15] UTMOBILENET21 4-into-1
none 17 34,378 159 5,591 35.2 664

>10pkts 14 9,460 130 2,496 19.2 2,366

𝜌 : ratio between max and min number of flows—the larger the value, the higher the

class imbalance; (*) Despite being advertised of having traffic from 40 apps, the public

version of the dataset only contains 20 apps.

minimal support for tracking output files). Both our model-

ing framework and the whole modeling campaign outputs

are provided as artifacts (see App. B).

All experiments were run on Linux servers equipped with

multiple nVIDIA Tesla V100. Individual modeling experi-

ment duration span from a few minutes to hours and the

overall set of campaigns takes multiple weeks to run even in

a distributed setting.

3.4 Datasets

To address our goals we used the four datasets summarized in

Table 2. UCDAVIS19 is used in the Ref-Paperwhile we selected
the others because of their interesting and complementary

properties with respect to UCDAVIS19: (𝑖) they are collected

in similar setups—research projects related to mobile traffic

monitoring— (𝑖𝑖) they cover a larger number of classes and

users behavior—MIRAGE19 and UTMOBILENET21 are gathered
from volunteering students interacting with instrumented

phones while MIRAGE22 focuses on video meeting services—

and (𝑖𝑖𝑖) they are imbalanced—the 𝜌 values in the table reflect

the ratio between the number of samples of the largest and

smallest class in a dataset; notice the larger imbalance of

the three datasets compared to UCDAVIS19, which is an ex-

pected property of network traffic. More importantly, all

these datasets provide per-packet time series for the whole

flows duration, which is a key requirement for composing

flowpic representations. For instance, we cannot use the

larger AppClassNet [36] and CESNET-TLS [24] datasets be-

cause they only provide the packet time series for the first

20-30 packets of each flow.

Data curation. Each dataset is a collection of files (in ei-

ther CSV or JSON format) which we reprocessed into “mono-

lithic” parquet files (a well known serialization format used in

data science) encoding packet time series as numpy arrays.

As detailed in the table, UCDAVIS19 is pre-partitioned (and
pre-filtered) by the authors of the dataset to create a large set

of samples for unsupervised training (namely pretraining)

and two smaller testing set partitions, namely script and
human.6 As such, we found no need to alter the dataset beside
the mere conversion to parquet.

Conversely, for the other three datasets we filtered out

flows with less than 10 packets and removed classes with

less than 100 samples. To replicate the setting provided

in UCDAVIS19, for MIRAGE19 and MIRAGE22 we also first re-

moved TCP ACK packets from time series and then discarded

flows related to background traffic.
7
We also highlight that

UTMOBILENET21 authors split the dataset into 4 partitions

(“Action-Specific”, “Deterministic Automated“, “Randomized

Automated” and “Wild Test”) but we collated them into one.

The right-most column of the table details the average

number of packets in a flow. Notice how UCDAVIS19 has very
long flows while MIRAGE19 is the dataset with shortest ones.

To further focus on very long flows, we also created a version

of MIRAGE22 with flows having more than 1,000 packets.

Lastly, through our curation we also created reference

train/test splits for the datasets. Specifically, since in the

Ref-Paper the training dataset needs to have 100 samples, for

UCDAVIS19we create 5 folds (the smallest class in the dataset

has 592 flows) of 100 samples per-class each. However, for

the other datasets we opted for having 5 random splits each

having a random selection of 80% of samples for training

(and the rest for testing). To ease replicability, we contribute

the code used for our curation (which can be applied directly

on original version of each dataset) as well as our curated

parquet files (see App. B).

Reproducibility. Beside UCDAVIS19, the Ref-Paper also

considers the ISCX-VPN and ISCX-Tor datasets, but we dis-

carded them after some preliminary investigations. In fact,

as acknowledged by Horowicz et al. and as well known in the

literature, these datasets (even when combined) contain only

tens of viable flows for the analysis. Hence, to use them, one

would need to create multiple 15s windows from the same

flow to reach the 100 samples required for training, which

seems artificious. More important, a recent work [19] care-

fully exposes fallacies for these datasets which are rooted in

some form of data bias.
8
While underlining these issues, we

6
According to [32], both pretraining and script correspond to automated

collection of data, while human is gathered monitoring traffic when real

users were interacting with the selected 5 services.

7
Traffic is collected on mobile phones with labeling ground-truth provided

by netstat. One measurement experiment generates traffic logs for a

specific target app.We processed such logs so that traffic of apps and services

different from the target app (e.g., netd deamon, SSDP, Android gms) is

removed as it represents “background” traffic.

8
To be fair, the fallacies concern more the way the data bias can be unknow-

ingly exploited to produced biased models. See [19] for more details.



do not want to discredit the datasets but rather to justify our

choice of discarding them from our study.

Replicability. Quantitatively reproducing research re-

sults on a dataset is a necessary starting point but not be the

ultimate goal. As we argued earlier, datasets age quickly in

the TC field and new applications regularly emerge. Thus,

replication on novel datasets is equally important. Quali-

tative agreement on a larger span of datasets brings the

additional value of extending the validity of the findings. For

these reasons, we employ MIRAGE19, MIRAGE22 and UTMOBILENET21
to replicate insights related to the comparison of data aug-

mentation functions in the supervised setting.

4 EVALUATION

Unless differently stated, the results reported in this section

are collected using the UCDAVIS19 dataset (training on the

pretraining partition and testing of the two predefined human
and script partitions).

4.1 Providing a simple ML baseline (G0)

4.1.1 Approach. We start with an ML baseline to assess

to what extent DL techniques are justified—which would be

the case if we observe a large discrepancy between ML and

DL performance.

We used a classic XGBoost as our ML model, with default

hyper-parameter values (100 estimators, max depth 6). As

input, we compared a mini-flowpic (a 32×32 image flattened

into a 1,024 values array) against the time series of the packet

size, direction and intertime of the the first 10 packets of a

flow (i.e., 3 features of 10 values each all concatenated into 30

elements arrays). We repeated the experiments 15 times and

computed the 95% confidence intervals using a t distribution.

Table 3 compares our results against those reported in the

Ref-Paper for a LeNet5 CNN model trained without data

augmentation (but no confidence intervals are available).

4.1.2 Results. The trained forests have very short trees

(an average depth of 1.7 for time series and 1.3 for flowpic

input). While trivial to execute, this analysis conveys inter-

esting messages. For the script partition, (𝑖) when using a

flowpic representation, DL models have a slight advantage

(about +2%) over ML models; (𝑖𝑖) the advantage of flowpic

over a simple time series is more noticeable (about +4%),

which could be expected since the amount of information in

an early time series (a few packets) is significantly smaller

than what encoded in a flowpic (multiple seconds of traffic).

Instead, a different interpretation arises when considering

the human partition: (𝑖) the results of ML are consistent with

the observations in the script partition, i.e., using time se-

ries as input yields a score just a few percentage points lower

Table 3: (G0) Baseline ML performance without aug-

mentations in a supervised setting.

Input (size) Model Origin Accuracy ± 95%CI

script human

flowpic (32 × 32) CNN LeNet5 [16] 98.67 92.40

flowpic (32 × 32) XGBoost ours 96.80±0.37 73.65±2.14
time series (3 × 10) XGBoost ours 94.53±0.56 66.91±1.40

Each ours is an aggregations of 15 experiments (5 splits × 3 seeds).

than results using a flowpic input (6.74% difference on aver-

age); however, (𝑖𝑖) the gap between DL and ML models when

using flowpic is unexpectedly large (18.75% on average).

Takeaway. Based on the Ref-Paper results, our expectations
were to have models offering similar performance on both

testing partitions. Yet, we observed a large discrepancy for

human which calls for a deeper analysis that we carry out in

the following sections.

4.2 Reproducing quantitative results of

data augmentation (G1.1)

We continue by reproducing results related to Tables 1–2

of [16], which contrast different augmentations applied in a

supervised setting.

4.2.1 Approach. Given the unexpected results of the ML

baseline, we adopted a very careful approach, that we detail

in what follows. Horowicz et al. wrote:

For all experiments, for training set we use only 100 “triggered by script”

flows per class, and for test set we follow the experiments by [16] randomly

choosing 30 flows for each class for a “triggered by script” test set and 15

flows per class for "triggered by human" test set. [...] For all experiments,

we apply each of the augmentations 10 times on the 100 samples per class

training set, which increase the training set to 1000 images per class. We

also train without any augmentation as baseline experiments and term it

"no aug". For all experiments we allocated 20% of the images for validation,

and early stopped the training when the validation loss stopped improving

First of all, recall that UCDAVIS19 is composed of three par-

titions explicitly named to express the intention of separating

a portion of the data used for pre-training from another re-

served for testing and fine-tuning (see Table 2). Although the

authors use “triggered by script” twice, we interpreted that

100 flows are selected for training from the large pretraining



Table 4: Comparing data augmentation functions in a supervised training. Values marked as “ours” correspond to

the average accuracy across 15 modeling experiments and the related 95-th confidence intervals.

Test on script Test on human Test on leftover †

from [16] ours from [16] ours ours

flowpic res 32 64 1500 32 64 1500 32 64 1500 32 64 1500 32 64 1500

No augmentation 98.67 99.10 96.22 95.64±0.37 95.87±0.29 94.93±0.72 92.40 85.60 73.30 68.84±1.45 69.08±1.35 69.32±1.63 95.78±0.29 96.09±0.38 95.79±0.51
Rotate 98.60 98.87 94.89 96.31±0.44 96.93±0.46 95.69±0.39 93.73 87.07 77.30 71.65±1.98 71.08±1.51 68.19±0.97 96.74±0.35 97.00±0.38 95.79±0.31
Horizontal flip 98.93 99.27 97.33 95.47±0.45 96.00±0.59 94.89±0.79 94.67 79.33 87.90 69.40±1.63 70.52±2.03 73.90±1.06 95.68±0.40 96.32±0.59 95.97±0.80
Color jitter 96.73 96.40 94.00 97.56±0.55 97.16±0.62 94.93±0.68 82.93 74.93 68.00 68.43±2.82 70.20±1.99 69.08±1.72 96.93±0.56 96.46±0.46 95.47±0.49
Packet loss 98.73 99.60 96.22 96.89±0.52 96.84±0.63 95.96±0.51 90.93 85.60 84.00 70.68±1.35 71.33±1.45 71.08±1.13 96.99±0.39 97.25±0.39 96.84±0.49
Time shift 99.13 99.53 97.56 96.71±0.60 97.16±0.49 96.89±0.27 92.80 87.33 77.30 70.36±1.63 71.89±1.59 71.08±1.33 97.02±0.50 97.51±0.46 97.67±0.29
Change RTT 99.40 100.00 98.44 97.29±0.35 97.02±0.46 96.93±0.31 96.40 88.60 90.70 70.76±1.99 71.49±1.59 71.97±1.08 98.38±0.18 97.97±0.39 98.19±0.22

mean diff
‡

-2.05 -2.26 -0.63 -21.96 -13.27 -9.13

Each of our result is an aggregation of 15 experiments (5 splits × 3 seeds).

†We named “leftover” the samples from the pretraining partition not belonging to the 100 samples of a given split. Traditionally this would correspond to the test set.

‡ mean diff corresponds to the difference between our assessment and the expected value averaged across augmentations for each given flowpic resolution.

partition, while using the remaining two partitions (script
and human)9 for testing and fine-tuning.
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Secondly, we did not find explicit mentions of how many

experiments were performed to gather the results, nor do

the tables report confidence intervals. Yet, we assume that

several runs were carried out, as it is common practice when

performing modeling campaigns to assess the performance

across different dataset splits and models initialization.
11

Since the original experiments were done by training with

100 samples per-class (and the classes are imbalanced) doing

a traditional k-folds cross validation is not possible. Thus,

as from Sec. 3.4, we created 𝑘 splits by sampling without

replacement groups of 100 samples for each class from the

pretraining partition. Then, a given set of 100 samples is

split randomly 𝑠 times, with each split corresponding to a

80/20 train/validation split for training. Using these data, we

performed a campaign to test the 7 augmentations across

k=5 splits each having s=3 train/validation splits for a total

of 105 experiments. This is repeated for the three flowpic res-

olutions with the same training settings as in the Ref-Paper:

static learning rate at 0.001, early stopping on validation loss

after 5 steps in which the loss does not improve by more than

0.001, batch size of 32, performance measured via accuracy,

flowpic created from the first 15s of a flow.

4.2.2 Results. Table 4 summarizes our results reporting

the mean accuracy and related 95% CI for each scenario. To

ease their comparison, we copy the reference results from

the Ref-Paper and summarize in the last row the differences

9
While script is perfectly balanced with 30 flows per class, human has three
classes with 15 samples, and the remaining two have 18 and 20 samples

respectively. Given the very small imbalance we considered irrelevant to

resample the partitions to have exactly 15 samples per classes. Thus, we use

script and human as is.
10
Authors later clarified that they combined pretraining and script. How-

ever this minor difference does not affect the results of our investigation.

11
Authors did not provide us more details on this aspect.

across scenarios with a simple arithmetic mean. We comple-

ment the evaluation of the Ref-Paper by reporting a new test

set corresponding to all pretraining samples not belonging

to a selected 100 samples split (i.e., what would be called a

test set in a traditional evaluation). As, to the best of our

understanding, these samples have been discarded in the

Ref-Paper, we refer to this test set as leftover.
Overall, we obtained lower performance than what was

previously reported.While differences aremodest on script,
we observe a reduction of over 20% on human—this is coher-
ent with what we observed for the ML baseline. Notice that

no gap appears when comparing script with leftover.
The gap is (slightly) reduced when using a higher res-

olution flowpic but the lower performance on human (and

the larger confidence intervals with respect to script and
leftover) suggests the presence of a hidden problem with

this predefined test set. Understanding the reason of this gap

is important to verify the validity of our study. However, we

defer a significant portion of our study of the performance

gap to App. D.1–D.3 and we report only the salient aspects

of our investigation in the following sections.

We highlight that, while for 32×32 and 64×64 experiments

run in about 1 min, it takes about 30min to run one exper-

iment on 1500×1500. Given this computational cost, moti-

vated by the marginal performance gap across resolutions

and as done by Horowicz et al., in the remainder of the paper

we focus only on the 32×32 resolution.

4.2.3 Root cause of performance gap. We reiterate that

we do not apply any pre-processing (e.g., filtering, reshaping)

to the UCDAVIS19 dataset beside consolidating the original
CSV files (one for each flow) into a monolithic parquet file.

Thus, we conjectured that the root case of the performance

problem might be rooted in the data itself.

To start verifying this assumption, the heatmaps in Fig. 3

break down the results in Table 4 by showing the average



Figure 3: Average confusion matrixes for the 32×32
resolution across all experiments in Table 4.

per-class accuracy across the 105 runs for the 32x32 flowpic

resolution. Specifically, we summed all the confusion matri-

ces for script and human and we normalized them by row.

For human we observe multiple sources of confusion with

Google doc and Google search having the most evident clash.

Conversely, no specific issues can be detected for script.
To drill down, Fig. 4 collects an average flowpic per class

across the original dataset partitions and one training split.

Recall that the horizontal axis of a flowpic corresponds to

time (time zero on the left) while the vertical axis corresponds

to packet sizes (zero length on the top).

The first row in Fig. 4 corresponds to all flows available in

the pretraining partition, while the second one corresponds

to a training split, i.e., an aggregation of 100 samples per class.

We can clearly see that the reduction of samples has a visual

impact, but overall the first two rows are visually very simi-

lar. The third and the fourth rows correspond to the script
and human partition respectively, i.e., they have 30 and ≈15
samples per class. When comparing the last two rows with

the first two, we can clearly see differences which we fur-

ther annotate with rectangles. Notice how Google search is

expected to have two vertical groups of pixels around the

left-axis and the center of the picture. Surprisingly, for human
these groups are “shifted” to the right (rectangle A). More-

over, notice how all splits but human saturate the maximum

packet size forGoogle search—there is a distinctive horizontal

line (around pixels on row 28) for human (rectangle B) while

in the other cases there are distinct dark lines at row 32.

Interestingly, Fig. 4 also highlights macroscopic differences

for Google music—vertical “stripes” of pixels are visible in all

splits but human (rectangle C). Yet, according to Fig. 3, this

seems less of a problem. We conjecture that this might be

due to the stark difference between Google music and the

other services. In other words, despite the different behavior

between the partitions, Google music is still very different

from the other 4 classes (thus it might be easier to classify).

Figure 4: Average 32×32 flowpic for each class across

dataset partitions.

The analysis of the average flowpics supports the idea of

a data shift, of which we provide further evidence in the Ap-

pendix. Specifically, we support this statement by (𝑖) adding

more evaluations on UCDAVIS19 (App. D.1), (𝑖𝑖) resorting to
content from [32] which introduced the UCDAVIS19 dataset
(App. D.2), and (𝑖𝑖𝑖) verifying code artifacts from [32] to help

us rule out possible mistakes in our approach (App. D.3).

Summarizing this extensive material, the existence of a data

shift is pointed out by both (𝑖) and (𝑖𝑖) and we confirm (𝑖𝑖𝑖)

as our verification yields expected results.

Takeaway. Given the strong evidence provided by our anal-
ysis, we concluded that the human test split is affected by a

data-shift. Yet, we cannot comment on the reason why this was

not detected in the Ref-Paper.
12

4.3 Reproducing qualitative ranking of data

augmentation (G1.2)

4.3.1 Approach. The original key question behind bench-

marking the different augmentations was to understand if,

and by how much, they were beneficial with respect to not

performing any augmentation. Horowicz et al. wrote

In all the nine experiments changing the RTT was the best performing

augmentation. The improvement varies from 1% for the QUIC script dataset

(where the "no aug" accuracy was already 98.7%) up to 17.4% improvement

for the most challenging dataset, the QUIC human.

Without more details on the Ref-Paper it is very difficult

to compare against the reported results. We opted instead for

performing a statistical analysis of our modeling campaign

to understand if Change RTT and Time shift were the best

performing augmentations as reported in the Ref-Paper.

12
Authors did not provide us comments about this aspect.



Figure 5: Critical distance plot of the accuracy obtained

with each augmentation for the 32×32 and 64×64 res-

olutions. Augmentations joined by a horizontal line

are not statistically different. The lower the ranking

(closer to 1, the right side of the plot) the better the

performance. Transformations highlighted in bold are

selected as the best performing one in the Ref-Paper.

The CI values in Table 4 show clear overlaps between dif-

ferent augmentations. To investigate our results, we treat

each augmentation as a different classifier and compare them

according to the procedures presented in [8]. First, accuracy

results are turned into rankings (e.g., if augmentations A,

B and C yield an accuracy of 0.9, 0.7 and 0.8, their associ-

ated rankings would be 1, 3, and 2) with ties being assigned

with the average ranking of the group (e.g., if augmentations

A, B and C yield 0.9, 0.9 and 0.8, their associated rankings

would be 1.5, 1.5 and 3). This process is repeated across all

tested datasets and splits. Then, an average ranking value

is extracted per augmentation. These values are compared

pairwise using a post-hoc Nemenyi test, which compares

these average rankings to decide if the performance differ-

ence between augmentations is significant. This decision

is made using a Critical Distance (CD) in ranking equal to

𝐶𝐷 = 𝑞𝛼

√︃
𝑘 (𝑘+1)
6𝑁

, where𝑞𝛼 is based on the Studentized range

statistic divided by

√
2, 𝑘 is equal to the number of augmen-

tations compared and 𝑁 is equal to the number of samples

used.

4.3.2 Results. Figure 5 displays the results of these com-

parisons. We combined the 32×32 and 64×64 resolutions as
we did not find statistically significant differences between

them (see App. F). In our case, with 𝛼 = 0.05, 𝑘 = 7 and

𝑁 = 30 and 𝑞0.05 = 2.949 the critical distance is 𝐶𝐷 = 1.644.

The closer an augmentation is to the right side of the plot (a

higher average rank), the better the performance.

From our analysis for the script partition, we cannot

conclude significant differences within three groups, which

we sort by increasing performance: {No augmentation and

Horizontal flip}; {Horizontal flip and Rotate}; {Rotate, Packet

loss, Time shift, Change RTT and Color jitter}. Similar groups

exist also for the human partition. As annotated in Fig. 5,

Horowicz et al. selected Change RTT and Time shift as

the best augmentations: whereas these augmentations are

in the best performing group both for script and human,
it is easy to gather that other transformations consistently

appear in the same (statistically relevant) group.

Takeaway. On the one hand, the Time shift and Change

RTT transformations are in the best performing group, a finding

aligned with the ones in the Ref-Paper. On the other hand, from

a statistical viewpoint, they are not distinguishable from other

options, like Color jitter (for script) or Rotate (for human) or
Packet Loss (for both).

4.4 Reproducing constrastive learning

results (G2)

4.4.1 Approach. The second goal of our reproducibility

study concerns the use of contrastive learning and fine-

tuning. A few observations are needed to contextualize the

modeling campaign to perform.

Augmentations for SimCLR. First of all, we need to

select augmentations for SimCLR. Horowicz et al. wrote:

we selected to use ’Change RTT’ by 𝛼 ∼ 𝑈 [0.5, 1.5] together with Time

Shift by 𝑏 ∼ 𝑈 [-1,1]. In each training step, a double batch of 32 unlabeled

images (taken from the pool of 100 unlabelled samples per class) is loaded

after applying the two augmentations above.

This confirms the traditional SimCLR approach where two

views are obtained from each sample in a training mini-batch.

However, precisely how the transformations are applied is

open to interpretation, e.g., one after the other? If so, inwhich

order? A separate transformation for each view? These are

design choices likely depending on the task at hand. For

instance, the original SimCLR paper [6] shows that both

which transformations are selected and the order in which

they are chained are relevant decisions. Since a full ablation

study on this aspect is well beyond our scope, we opted for

applying the two transformations in random order for every

image in amini-batch. Yet, given our ranking analysis showed

equivalence amongmultiple top performing transformations,



we also perform a small-scale ablation study considering

three other pairs beside the pair selected in the Ref-Paper.
13

Networks for SimCLR. Even more subtle design choices

relate to the application of dropout and the projection layer

size used in SimCLR. Horowicz et al. wrote:

As depicted in Figures 6 and 7, our architectures comprise seven layers,

the ReLU activation function is applied to the output of every convectional

and fully-connected layer and dropout with probabilities of 0.25 and 0.5

are used in order to reduce overfitting. [...]

The figures mentioned refer to the “mini” (for 32×32 and
64×64) and “full” (for 1500×1500) architectures. We under-

line that the mini architecture is identical to the original

LeNet5 [22]. However, from the quote we identify a number

of layers miscount, as the full version has one layer less than

the mini version. In fact, the “flatten” layer is reported only in

the full diagram but is actually needed in both versions, and

the diagram clearly shows that the full version has one less

fully connected layer than the mini version (see Fig. 6-7 in

[16]). Moreover, based on the quote it is not clear if dropout

was applied to both architectures or just the full version (as

the original LeNet5 does not rely on dropout). Given the

lower resolution, dropout might be not needed for 32×32.
Regarding the SimCLR projection, Horowicz et al. wrote:

For the representation extractor 𝑓 ( ·) we employed the 5 first layers of the

CNN architectures described in A.1 and replaced the last 2 layers with 2

linear layers sized 120 and 30. Thus, resulting with a 120 dimensional rep-

resentation vector ℎ = 𝑓 (𝑓 𝑙𝑜𝑤𝑝𝑖𝑐 ) and 𝑧 = 𝑔 (ℎ) dimensional similarity

vector.

This refers to what is known as the projection layer of the

feature extractor. In a nutshell, and based on our interpreta-

tion of the quote, after the convolutional blocks, the network

have a 120-120-30 series of linear layers. However, since the

supervised network was using a latent space of size 84, we

investigated networks considering both 30 and 84 as final

projection layer dimension.

An assessment of these lower level details can be key to

obtain a fair comparison against the performance reported

in the Ref-Paper. For reference, we report the listing of the

architecture used in App. C.

4.4.2 Results. As before, we follow the parameters de-

scribed in the Ref-Paper, namely batch size of 32, patience of

3 on the top-5 accuracy when training with SimCLR (temper-

ature=0.07, learning rate=0.001) and patience of 5 on train

(min delta=0.001) during fine-tuning (learning rate=0.01).

13
Horowicz et al. clarified with us that the two transformation were chained

and to check their repository [9]. Yet, we reiterate that such repository

cannot be used to reproduce the results of the Ref-Paper (see App D).

Table 5: Impact of dropout and SimCLR projection

layer dimension on fine-tuning (32×32 only, with 10

samples for fine-tuning training).

test on script test on human

Proj. dim w/ dropout w/o dropout w/ dropout w/o dropout

30 91.81 ±0.38† 92.18 ±0.31 72.12 ±1.37‡ 74.69 ±1.13
84 92.02 ±0.36 92.54 ±0.33 73.31 ±1.04 74.35 ±1.38

Each value is an aggr. of 125 exp. (5 splits × 5 SimCRL seeds × 5 fine-tune

seeds); The reference value for † from [16] reports in the text (94.5% for 10

samples); for ‡ no specific values are reported but should be ≈80% based on

Fig. 4 of [16].

Table 6: Comparing the fine-tuning performance when

using different pairs of augmentations for pretraining

(32×32 resolution, fine-tuning on 10 samples only).

1st augment. Change RTT
∗

Packet loss Change RTT Color Jitter

2nd augment. Time shift
∗

Color jitter Rotate Color Jitter Rotate Rotate

test on script 92.18±0.31 90.17±0.41 91.94±0.30 91.72±0.36 92.38±0.32 91.79±0.34
test on human 74.69±1.13 73.67±1.24 71.22±1.20 75.56±1.23 74.33±1.26 71.64±1.23

Each value is an aggreg. of 125 exp. (5 splits × 5 SimCLR seeds × 5

fine-tune seeds); (*) pair of augmentations used in [16].

Table 5 details the results of our ablation campaign to un-

derstand the impact of dropout and the projection layer.
14

Each value in the table corresponds to the mean and related

95-th percentiles CI across 125 experiments and fine-tuning

using 10 training samples. Aswe expected, we observe poorer

performance when testing on human, while performance on

script is just a few points lower than for supervised train-

ing. When considering a projection layer of 30 units, we

can observe that dropout does not provide a significant dif-

ference for script; conversely, removing dropout makes a

stark difference when testing on human. Increasing the pro-
jection layer dimension does not provide a significant gain.

We conclude than that we can rely on a network without

dropout (differently from the Ref-Paper) but we confirm the

original choice of a projection layer of 30 units.

In Table 5, we also annotate the configuration that (we

believe) was used in the Ref-Paper. Specifically, the study

reported results (only as figures) characterising performance

improvement when increasing the number of samples for

fine-tune training, and concluded that the best performance

was achieved when using 10 training samples, i.e., the sce-

nario we selected for our evaluation. Yet, while for script
Horowicz et al. wrote:

14
We did also an ablation of dropout before running results for Table 4.

Details are reported in Appendix E. The takeaway is that even for 1500×1500
resolution there are minimal differences introduced by dropout. Yet, results

in Table 4 reflect the use of dropout as intended in the original study.



Table 7: Accuracy on 32×32 flowpic when enlarging

training set (without dropout).

script human

S
u
p
e
r
v
i
s
e
d

No augmentation 98.37±0.19 72.95±0.96
Rotate 98.47±0.25 73.73±1.09

Horizontal flip 98.20±0.15 74.58±1.16
Color jitter 98.63±0.21 72.47±1.02
Packet loss 98.63±0.19 73.43±1.25
Time shift 98.60±0.22 73.25±1.17

Change RTT 98.33±0.16 72.47±1.04

SimCLR + fine-tuning 93.90±0.74 80.45±2.37

Each value is an aggregation of 20 experiments (20 different seeds)

Our method achieves 93.4% accuracy with only 3 samples, and 94.5%

with 10 samples

no specific values are reported for human. However, Figure 4
of the paper clearly shows an accuracy of about 80%.

While performance are basically on par for script, our re-
sults for human are significantly lower than the previous eval-
uation. We additionally observe that, for contrastive learn-

ing with fine-tuning, a drop of performance from script
to human is also reported in the Ref-Paper—unlike for su-

pervised training as discussed earlier. While the training

methodologies are fundamentally different, the underlying

dataset and testing methodology are the same (training with

the pretraining partition and testing on script and human).
Thus, the consistency between our ML, supervised and con-

trastive learning campaigns is to be expected, but we cannot

comment on why Horowicz et al. observed the script-vs-
human gap only for the contrastive learning experiments.

15

Takeaway. On the one hand, results are consistent and

quantitatively aligned for script, which confirms the interest

for few shot contrastive learning and data augmentation. On

the other hand, results for human are only qualitatively in

agreement, which calls for agreeing on a community-wide

standard benchmark including multiple datasets.

4.4.3 Extra results. We conclude our analysis by reporting

two complementary analysis with respect to the Ref-Paper.

First, we investigated to which extent alternative pairs of

augmentations affect the fine-tuning performance. Namely,

we considered Time shift and Change RTT next to Rotate and

Color jitter, selected because they achieved good positions

in our ranking analysis. Then we formed groups by either

pairing time series with image transformations or pairing

the image transformations. Results collected in Table 6 show

that, despite the punctual differences between pairs, our

observation on Table 4 and the ranking analysis (Sec 4.3) still

holds—all pairs are qualitatively equivalent.

15
Authors did not provide more comments to us about this aspect.

Table 8: (G3) Data augmentation in supervised setting

on other datasets. The top two transformation strate-

gies for each datasets are in bold for visual purposes

(not to imply statistically relevant conclusions).

MIRAGE22 MIRAGE22 UTMOBILENET21 MIRAGE19
Augmentation (≥10pkts) (≥1000pkts) (>10pkts) (>10pkts)

No augmentation 90.97 ±1.15 83.35 ±3.13 79.82 ±1.53 69.91 ±1.57
Rotate 88.25 ±1.20 87.32 ±2.24 79.45 ±1.28 60.35 ±1.17

Horizontal flip 91.90 ±0.84 83.82 ±2.26 80.03 ±1.33 69.78 ±1.28
Color jitter 89.77 ±1.16 81.40 ±3.62 78.68 ±2.14 67.00 ±1.11
Packet loss 92.34 ±1.10 87.19 ±2.52 72.07 ±1.73 67.55 ±1.46
Time shift 92.80 ±1.21 86.73 ±3.88 81.91 ±2.12 70.33 ±1.26

Change RTT 93.75 ±0.83 91.48 ±2.12 81.32 ±1.54 74.28 ±1.22

Each value is aggregation of 15 experiments (5 splits × 3 seeds).

Second, we expand the methodology used so far by quan-

tifying the effect of using a (pre)training set larger than 100

samples. Specifically, we created 5 random 80/20 train/valida-

tion split using the full pretraining partition, i.e., the dataset

result imbalanced with up to 1,532 training samples for the

largest class and 473 for the smallest. Table 7 reports the

results of the modeling campaign in both a supervised and

contrastive learning settings. As expected, compared to Table

4 and Table 5, enlarging the dataset is effective in improving

performance in both settings. In particular, for contrastive

learning the gain is smaller for script (+1.72% on average)

than for human (+5.76% on average)—the latent space created

via contrastive learning is better at mitigating the data shift.

Takeaway. The transformations selected in the Ref-Paper

constitute a good enough choice, although image transforma-

tions cannot be fully ruled out based on our assessment. This

confirms that identifying the most suitable transformations is

tied to the input representation and datasets used, which re-

mains an open problem. Moreover, while a very limited number

of samples can be enough for training models, the same sce-

narios can benefit from more data—the selected augmentations

alone are not a final replacement for real input samples.

4.5 Replicating data augmentation on other

datasets (G3)

4.5.1 Approach. Given that we observed only small per-

formance differences among the augmentations, we extended

the Ref-Paper by replicating the analysis using other three

datasets, namely MIRAGE19, MIRAGE22 and UTMOBILENET21.
Based on the results displayed in Table 7, we opted for a

traditional 80/10/10 train/validation/test using all samples

available for each class, i.e., we removed the constraint of us-

ing 100 samples per class as in Table 4. This is a compromise

dictated by the differences among the datasets. In particu-

lar, as shown in Table 2, the filtering significantly reduces



Figure 6: Critical distance plot of the accuracy obtained

with each augmentation across the four tested datasets.

the number of samples per class, especially for the smallest

class. Hence, rather than removing the very small classes,

we preferred to use a split preserving the original imbalance

of the data. We argue that this is reasonable considering that

the question we were targeting was about the importance of

the augmentation functions which is per-se to be decoupled

from datasets samples count. Moreover, we restricted our

analysis to the supervised scenario only. It follows that our

analysis can be considered as an upper bound of what can

be achieved when considering less training data and/or via

contrastive learning. Since the training and testing datasets

are imbalanced in this scenario, we measure performance

via an F1 score (rather than using accuracy as done before).

4.5.2 Results. For each dataset we used the architectures

and settings as in Sec. 3.2. Table 8 and Figures 6-7 collect

our results. Extending the analysis to more datasets allows

us to better appreciate differences between the impact of

each augmentation. First of all, while the maximum gap

between augmentations in Table 4 is (on average) 3.22%, this

is now 13.93% (occurring for MIRAGE19). Despite the larger
differences, the analysis confirms Change RTT and Time

shift as the best performing augmentations across all datasets.

Differently from the previous analysis, Fig. 6-7 highlight how

the two functions are significantly better than the others, yet

still not statistically different from each other.

Takeaway. Our results confirm the benefit of data augmen-

tations and validate the selection of Change RTT and Time

shift as in the Ref-Paper.

5 CONCLUSIONS

In this paper we reproduced and replicated the methodology

of [16] which investigated noteworthy DL methodologies

(few-shot learning, self-supervision via contrastive learning

and data augmentation) on TC. These methods are particu-

larly appealing as they allow for learning from a few samples

and transferring models across datasets.

Figure 7: Average rank obtained per augmentation

and dataset. Ranks closer to 1 indicate a better per-

formance.

Summarizing our analysis, we have been able to qualita-

tively reproduce most of the original results, so we confirm

the interest in few-shot contrastive learning and data aug-

mentation. At the same time, our modeling campaigns found

unexpected quantitative discrepancies that we rooted in data

shifts in the UCDAVIS19 dataset (undetected in the Ref-Paper).
Another remarkable consideration can be gathered by con-

trasting our reproducibility vs replicability results. Indeed,

the reproducibility results on UCDAVIS19 show little statisti-

cal significance in the differences among the proposed data

augmentation techniques—just by reproducing the study on

UCDAVIS19 alone would therefore have not allowed us to

validate Horowicz et al.’s choices. Conversely, by replicating

the methodology on three additional datasets, we gathered

evidence that finally validated Change RTT and Time Shift

as more beneficial than other augmentations for the flowpic

input representation.

We also acknowledge some limitations in our replication.

For instance, while we studied augmentations in a supervised

setting, we leave as future work their assessment in a con-

trastive learning setting paired with few shot fine-tuning. In-

deed, such a study should consider the variety of contrastive

learning approaches including supervised contrastive learn-

ing methods such as SupCon [20].

Lastly, in the context of network ML studies, we under-

line the need to agree on a broader set of benchmarks as

other communities (e.g., CV and NLP) are doing more sys-

tematically, which can only improve the quality of the gath-

ered knowledge. To support this future direction, we make

available multiple artifacts in the form of code (besides our

modeling framework, we contribute scripts related to the

modeling campaign and all post-processing to generate re-

ports and figures inhere contained) and data (both trained

models and related logs, as well as the dataset splits used

for training and testing). As described in App. B, artifacts



are also complemented by a website providing documenta-

tion (e.g., guides on how to run the experiments, stats about

the datasets). We believe that TC is in need of a reference

framework binding datasets with modeling tools. We hope

the research community can take advantage of our work

and/or be inspired toward improving current practices.
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This work makes use of only publicly available data. Al-

though experiments might have included end users, no in-

dividuals were monitored in the measurement campaigns.

Thus, no ethical concerns are associated with this study.

B ARTIFACTS

All the material created for this paper is made available to

the research community. This includes our modeling frame-

work, namely tcbench, all data created in our modeling

campaigns (the models themselves and all related logs) and

the curated datasets described in Sec. 3.4. For more details on

the artifacts, how to run our modeling campaigns, notebooks

for recreating tables and figures in this paper, data curation,

etc., please visit https://tcbenchstack.github.io/tcbench/.

C LAYOUT OF DL NETWORK

ARCHITECTURES

We list here our implementation of the network architectures

for the 32×32 flowpic resolution (see also Fig.7 in [16]). The

Listings 1-5 at the end of this appendix are obtained via the

torchsummary python package. For code flexibility, our

architectures are designed to use Pytorch nn.Identity()
modules to mask out layers that are not needed from a given

architecture. When this masking is applied, our training

framework takes care of recreating the network optimizers

to reflect the architecture modifications.

D INVESTIGATING ROOT CAUSE OF G1

DISCREPANCIES

We were clearly surprised by the ≈20% classification accu-

racy performance gap for the human test split. In fact, in

the Ref-Paper the two testing partitions have almost on par

performance. As mentioned before, when reaching out to

Horowicz et al. we received delayed and short/partial answers

so we based our analysis mostly on the content of the pa-

per. By browsing the web, we also found a git repository [9]

that later on was confirmed to have been created by the first

author of the Ref-Paper. Unfortunately, this repository only

contains code related to the contrastive learning part of the

paper (i.e., it only pre-trains a model to later investigate its

latent space using a t-SNE projection in two dimensions).

Moreover, the network architecture used significantly dif-

fers from the one described in the Ref-Paper (e.g., different

activation functions, no dropout is used) and also adopts a

cosine annealing learning rate scheduler (not mentioned in

the original publication). Lastly, the data loading policies are

blending flows between the three partitions of the UCDAVIS19
dataset (hence breaching the evaluation protocol defined in

the paper) and we found also some of the flows in the test set

to be included in the training set. In a nutshell, the repository

was of no use to address our questions.

We therefore performed more analysis of the UCDAVIS19
paying particular attention to details reported in [32] which

introduces the UCDAVIS19 dataset.

D.1 Our analysis of the UCDAVIS19 dataset
Next to Fig 4, Fig. 8 provides a more compelling argument

about the presence of the data shift by showing the Kernel

Density Estimation (KDE) of the per-class packet size distri-

bution across all samples in the three partitions of UCDAVIS19.
While script is perfectly overlapped with the pretraining

split, Google search for human has an evident shift, which

indeed matches the previous observations in Fig. 4.

D.2 UCDAVIS19 dataset analysis from [32]

We next looked at other sources of information which could

help us to exclude problems from our analysis. To the best of

our knowledge, the only study that investigates both script
and human splits with a reference per-class breakdown is [32],
i.e., the same study that introduces the UCDAVIS19 dataset.
The authors wrote:

To study whether automatically generated data with script represents

human interaction, we capture 15 flows for each class from interactions of

real humans in those 5 Google services. We only use this dataset to test the

same model described above. Fig. 3(b) illustrates the performance metrics.

Interestingly, accuracy of the Google search and Google document have not

changed significantly. However, the accuracy of Google drive, Youtube, and

Googlemusic drop up to 7%. This depends on howmuch human interactions

can change the traffic pattern, which is class-dependent. Moreover, there

are some actions, such as renaming a file or moving files in Google drive,

that our scripts do not perform. So, these patterns are not available during

re-training. This shows the limitations of datasets and studies [14, 8, 3]

that only use scripts to capture data.

Interestingly, they reported no problem with Google doc

and Google search, yet they acknowledged the presence of

data-shift due to the way the dataset was collected. However

this information alone cannot help us explaining the dis-

crepancies we observe with respect to the Ref-Paper. In fact,

[32] relies on packet time series augmented via sampling; in

https://conferences.sigcomm.org/sigcomm/2017/workshop-reproducibility.html
https://conferences.sigcomm.org/sigcomm/2017/workshop-reproducibility.html
https://tcbenchstack.github.io/tcbench/


Figure 8: Kernel density estimation of the per-class packet size distributions. Notice the distribution shift for

Google search.

Table 9: Macro-average accuracy with different re-

training dataset and different sampling methods.

from [32] Fig. 9 ours

finetune Sampling
†

Sampling

on Fixed Rand Incre Fixed Rand Incre

script 92.28 (b) 92.28 (c) 95.59 (a) 87.11 ±0.09 94.63 ±0.02 96.22 ±0.01
human - - - 82.60 ±0.03 87.29±0.04 92.56 ±0.03
† “Fixed”: Fixed step sampling; “Rand”: Random sampling; “Incre”: Incremental sampling.

contrast, a flowpic is a “summary” which aggregates patterns

over time and does not consider traffic direction—the two

studies have intrinsically different input.

Also [35] uses the UCDAVIS19 dataset but authors com-

bine all partitions together, i.e., they do not follow the train-

ing/testing protocol of [16, 32].

D.3 Reproduction of [32] on UCDAVIS19
Finally, to rule out errors in our execution, we leveraged [32]

code artifacts.
16

To ensure that the UCDAVIS19 dataset we

used was intact and correct and to analyze the impact of data

shift between script and human partitions, we reproduced
some the results of [32] using the available repository, yet

using our curated version of the UCDAVIS19 dataset (which
we reiterate was just reworking the original CSV files into a

monolithic parquet format). In [32], for each flow, 3 different

sampling methods (i.e., random sampling, fixed step sam-

pling, and incremental sampling) are applied respectively

up to 100 times to generate multiple short “subflow” time-

series, thus augmenting the data set. For self-supervised

pre-training on the entire pre-training partition, the authors

used a statistical features regression task. For supervised

fine-tuning, 3 linear layers are stacked as classifier for the

16
https://github.com/shrezaei/Semi-supervised-Learning-QUIC-

Figure 9: Accuracy on script with different sampling

methods[32].

(a) from [32] (b) ours

Figure 10: Replicating per-class accuracy on human.

classification task and they are trained with up to 20 labeled

flows. While the fine-grained details of the training differ

compared to our study and the Ref-Paper, at a high level

these three studies share the same aim, i.e., the first pre-train

(on the pretraining partition) and then fine-tune (on the two

test partitions).

Table 9 reports the performance when fine-tuning with

10 samples. In [32] the performance is only measured on

script and is only reported as a figure without numeric an-

notation (see (a), (b), (c) in Fig. 9, based on which we inferred

https://github.com/shrezaei/Semi-supervised-Learning-QUIC-


Figure 11: Boxplots of the accuracy difference between

models with dropout and without dropout in super-

vised learning across different augmentations.

the values reported on the left side of Table 9). On the right

side we reported the results from our modeling campaign

using the reference git repository. Overall the accuracy on

script has differences in the range 0.68-5.17% (much smaller

than the ≈20% accuracy gap under investigation), and we can

also confirm their results, i.e., incremental sampling is the best

strategy for the method reported in [32]. For human instead
we detect a 3.66 − 7.34% drop with respect to script. A sim-

ilar drop is reported in [32] for incremental sampling when

fine-tuned on 20 script flows and tested on human (i.e., in a

transfer learning setting) which we were also able to repli-

cate in Fig. 10. Their reasoning for such differences is quoted

in App. D.2. Overall, this evaluation is in line with the results

of [32] and shows that our preprocessing of UCDAVIS19 is

not responsible for the data shift we observed.

E IMPACT OF DROPOUT IN A

SUPERVISED SETTING

To assess the impact of dropout in a supervised setting, we

performed an ablation study using different test sets, resolu-

tions, and augmentations for 32×32 and 1500×1500 resolu-
tions with the same campaign settings described in Sec. 3.2

(i.e., 15 experiments in each configuration). Fig. 11 shows the

results as boxplots (with whiskers at the 95-th percentile)

of the difference between the accuracy when using dropout

with respect to when not using dropout. In other words,

dropout would be justified if the boxplots would fall on the

positive size of the y-axis. Conversely, across all scenarios,

the boxplots are centered around zero with no evident pat-

terns across augmentations. Overall, we concluded that of

dropout does not play a role and its adoption (as required by

the Ref-Paper) is weakly motivated.

F COMPARISON OF AUGMENTATIONS

PERFORMANCE ACROSS FLOWPIC

SIZES

In order to perform the analysis found in section 4.3, three

sets of experiments were available, corresponding to the dif-

ferent flowpic resolutions used: 32×32, 64×64 and 1500×1500.
If possible, it would be desirable to group the three sets into

a single analysis, as that increases the 𝑁 in the Critical Dis-

tance calculation, which reduces the CD’s width and allows

us to better differentiate between augmentations. However,

first we had to ensure that the augmentations performance

across sets are similar. To do so, we treated each flowpic reso-

lution as a classifier and compared their paired performance

distributions using a posthoc Tukey test, which calculates

whether each resolution’s performance can be assumed to

be significantly different from each other or not. This test’s

results are shown on Table 10 with the p-values for each

comparison. We used a significance level of 0.05, i.e., we can

assume significant differences between resolutions if their

p-value is smaller than 0.05. There are two populations for

which augmentations perform in a similar way: 32×32 and
64×64, with 1500×1500 being clearly different from the other

two. Based on these results, we joined the 32×32 and 64×64
populations for our analysis in section 4.3.

Table 10: Performance comparison across augmenta-

tions for different flowpic sizes. P-values extracted

from Tukey’s post-hoc test at a 0.05 significance level.

Flowpic resolution Flowpic resolution p-value Is Different?

32×32 64×64 0.57 No

32×32 1500×1500 1.93 × 10
−6

Yes

64×64 1500×1500 1.04 × 10
−8

Yes



Listing 1: Supervised network (with dropout).

flowpic_dim: 32
num_classes: 5
with_dropout: True
----------------------------------------------
Layer (type) Output Shape Param #

==============================================
Conv2d-1 [-1, 6, 28, 28] 156
ReLU-2 [-1, 6, 28, 28] 0

MaxPool2d-3 [-1, 6, 14, 14] 0
Conv2d-4 [-1, 16, 10, 10] 2,416
ReLU-5 [-1, 16, 10, 10] 0

Dropout2d-6 [-1, 16, 10, 10] 0
MaxPool2d-7 [-1, 16, 5, 5] 0
Flatten-8 [-1, 400] 0
Linear-9 [-1, 120] 48,120
ReLU-10 [-1, 120] 0

Linear-11 [-1, 84] 10,164
ReLU-12 [-1, 84] 0

Dropout1d-13 [-1, 84] 0
Linear-14 [-1, 5] 425

==============================================
Total params: 61,281
Trainable params: 61,281
Non-trainable params: 0
----------------------------------------------
Input size (MB): 0.00
Forward/backward pass size (MB): 0.13
Params size (MB): 0.23
Estimated Total Size (MB): 0.36

Listing 2: Supervised network (without dropout).

flowpic_dim: 32
num_classes: 5
with_dropout: False
---------------------------------------------
Layer (type) Output Shape Param #

=============================================
Conv2d-1 [-1, 6, 28, 28] 156
ReLU-2 [-1, 6, 28, 28] 0

MaxPool2d-3 [-1, 6, 14, 14] 0
Conv2d-4 [-1, 16, 10, 10] 2,416
ReLU-5 [-1, 16, 10, 10] 0

Identity-6 [-1, 16, 10, 10] 0 <-- masked
MaxPool2d-7 [-1, 16, 5, 5] 0

Flatten-8 [-1, 400] 0
Linear-9 [-1, 120] 48,120
ReLU-10 [-1, 120] 0

Linear-11 [-1, 84] 10,164
ReLU-12 [-1, 84] 0

Identity-13 [-1, 84] 0 <-- masked
Linear-14 [-1, 5] 425

=============================================
Total params: 61,281
Trainable params: 61,281
Non-trainable params: 0
---------------------------------------------
Input size (MB): 0.00
Forward/backward pass size (MB): 0.13
Params size (MB): 0.23
Estimated Total Size (MB): 0.36

Listing 3: SimCLR pre-train (small projection layer).

flowpic_dim: 32
num_classes: 5,
projection_layer_dim: 30
with_dropout: False
---------------------------------------------
Layer (type) Output Shape Param #

=============================================
Conv2d-1 [-1, 6, 28, 28] 156
ReLU-2 [-1, 6, 28, 28] 0

MaxPool2d-3 [-1, 6, 14, 14] 0
Conv2d-4 [-1, 16, 10, 10] 2,416
ReLU-5 [-1, 16, 10, 10] 0

Identity-6 [-1, 16, 10, 10] 0
MaxPool2d-7 [-1, 16, 5, 5] 0

Flatten-8 [-1, 400] 0
Linear-9 [-1, 120] 48,120
ReLU-10 [-1, 120] 0

Linear-11 [-1, 120] 14,520 <- proj layer 1
ReLU-12 [-1, 120] 0

Identity-13 [-1, 120] 0
Linear-14 [-1, 30] 3,630 <- smaller proj layer

=============================================
Total params: 68,842
Trainable params: 68,842
Non-trainable params: 0
---------------------------------------------
Input size (MB): 0.00
Forward/backward pass size (MB): 0.13
Params size (MB): 0.26
Estimated Total Size (MB): 0.39

Listing 4: SimCLR pre-train (large projection layer).

flowpic_dim: 32
num_classes: 5,
projection_layer_dim: 84
with_dropout: False
---------------------------------------------

Layer (type) Output Shape Param #
=============================================

Conv2d-1 [-1, 6, 28, 28] 156
ReLU-2 [-1, 6, 28, 28] 0

MaxPool2d-3 [-1, 6, 14, 14] 0
Conv2d-4 [-1, 16, 10, 10] 2,416

ReLU-5 [-1, 16, 10, 10] 0
Identity-6 [-1, 16, 10, 10] 0

MaxPool2d-7 [-1, 16, 5, 5] 0
Flatten-8 [-1, 400] 0
Linear-9 [-1, 120] 48,120
ReLU-10 [-1, 120] 0

Linear-11 [-1, 120] 14,520 <- proj layer 1
ReLU-12 [-1, 120] 0

Identity-13 [-1, 120] 0
Linear-14 [-1, 84] 10,164 <- larger proj layer

=============================================
Total params: 75,376
Trainable params: 75,376
Non-trainable params: 0
---------------------------------------------
Input size (MB): 0.00
Forward/backward pass size (MB): 0.13
Params size (MB): 0.29
Estimated Total Size (MB): 0.42

Listing 5: Fine-tune network.

flowpic_dim: 32
num_classes: 5,
projection_layer_dim: 30
with_dropout: False
---------------------------------------------

Layer (type) Output Shape Param #
=============================================

Conv2d-1 [-1, 6, 28, 28] 156
ReLU-2 [-1, 6, 28, 28] 0

MaxPool2d-3 [-1, 6, 14, 14] 0
Conv2d-4 [-1, 16, 10, 10] 2,416

ReLU-5 [-1, 16, 10, 10] 0
Identity-6 [-1, 16, 10, 10] 0

MaxPool2d-7 [-1, 16, 5, 5] 0
Flatten-8 [-1, 400] 0
Linear-9 [-1, 120] 48,120
ReLU-10 [-1, 120] 0

Identity-11 [-1, 120] 0 <- masked
Identity-12 [-1, 120] 0 <- masked
Identity-13 [-1, 120] 0 <- masked
Linear-14 [-1, 5] 605 <- final classifier

=============================================
Total params: 51,297
Trainable params: 51,297
Non-trainable params: 0
---------------------------------------------
Input size (MB): 0.00
Forward/backward pass size (MB): 0.13
Params size (MB): 0.20
Estimated Total Size (MB): 0.33
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